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Understanding magnetic field growth in astrophysical objects is a persistent challenge. In stars
and galaxies, turbulent flows with net kinetic helicity are believed to be responsible for drving
large-scale magnetic fields. However, numerical simulations have demonstrated that such helical
dynamos in closed volumes saturate at lower magnetic field strengths when increasing the magnetic
Reynolds number Rm. This would imply that helical large-scale dynamos cannot be efficient in
astrophysical bodies without the help of helicity outflows such as stellar winds. But do these
implications actually apply for very large Rm? Here we tackle the long-standing question of how
much helical large-scale dynamo growth occurs independent of Rm in a closed volume. We analyze
data from numerical simulations with a new method that tracks resistive versus non-resistive drivers
of helical field growth. We identify a pre-saturation regime when the large-scale field grows at a rate
independent of Rm, but to an Rm-dependent magnitude. The latter Rm-dependence is due to a
dominant resistive contribution, but whose fractional contribution to the large-scale magnetic energy
decreases with increasing Rm. We argue that the resistive contribution would become negligible at
large Rm and an Rm-independent dynamical contribution would dominate if the current helicity
spectrum in the inertial range is steeper than k0. As such helicity spectra are plausible, this renews
optimism for the relevance of closed dynamos. Our work pinpoints how modest Rm can cause
misapprehension of the Rm → ∞ behavior.

I. INTRODUCTION

Large-scale magnetic fields are observed in planets,
stars, and galaxies and play dynamically important roles
in various astrophysical processes and phenomena includ-
ing stellar evolution, galaxy formation, accretion and jet
formation, and the engines of short gamma-ray bursts
and kilonovae [1–4]. Such large-scale magnetic fields typ-
ically require an in situ dynamo mechanism to sustain
against macroscopic and microscopic diffusion. Helical
motion of turbulent eddies is a common driver of large-
scale helical magnetic fields [5–9], known as the α effect.
For closed-volume systems, both theory and simulations
reveal that the late time saturation of large-scale dynamo
(LSD) is constrained by resistive effects, and hence is
achieved on resistively long time scales [10–14].

While these results represent progress in understand-
ing the time evolution of dynamo saturation in simple
idealized computational boxes, the dynamical times of
real physical systems such as stars, galaxies and accre-
tion engines are much shorter than the resistive time
scale given their very large magnetic Reynolds numbers,
Rm. It has thus remained an important and long-debated
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question as to whether significant large-scale fields can be
generated by helical dynamo action for real astrophysical
rotators. [15–22].
Astrophysical dynamo models have included helicity

fluxes [e.g., 23–28] and anisotropic forcing [29] to alleviate
the resistive constraint. (See Ref. [30] for a comprehen-
sive review, and Refs. [31–34].) But a different solution
without boundary fluxes would be an Rm-independent
regime during the dynamical time scale of the dynamo
before the resistive effects become dominant [11, 35, 36].
Whether this regime exists for high-Rm closed systems
has been controversial, because in the numerical simula-
tions of helical dynamos at accessible values of Rm, field
strengths decrease with increasing Rm before the resis-
tive phase. This would seem to challenge the dynamical
quenching (DQ) formalism [11, 23, 37–40], where a sig-
nificant large-scale field is expected before the resistive
regime. In short, the modest values of Rm accessible in
simulations have left previous analyses unable to separate
dynamical and resistive dynamo phases, leaving ambigu-
ity as to whether the measured field strengths and growth
rates are dominated by the dynamical or resistive effects.
In this work, we tackle the problem in a new way. In

particular, we track phases of the helical dynamo us-
ing normalized small-scale current helicity, rather than
the bare time. We demonstrate that such a formulation
facilitates identifying terms in the large-scale dynamo
growth rate that are Rm-independent and measurable
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in simulations, and reveals a pre-quenched (PQ) regime
during which the growth rate is Rm-independent at
asymptotically large Rm. Interestingly, whether an Rm-
independent saturation magnitude of large-scale fields at
the end of the PQ regime exists for closed-volume helical
dynamos depends crucially on the spectral slope of the
underlying turbulent current helicity. In addition to the
implications for astrophysical dynamos, this work also
highlights the necessity of care required to avoid pitfalls
when comparing the physical implciations of large-scale
dynamo and magnetohydrodynamical turbulence theo-
ries with simulations of limited magnetic Reynolds num-
bers.

The rest of this work is organized as follows. In Sec. II
we introduce the numerical setup of helical dynamo sim-
ulations. In Sec. III we interpret simulation data with
new analysis tools and in Sec. IV we seek for implica-
tions of its Rm-dependence. Discussions and conclusions
are in Sec. V.

II. NUMERICAL SETUP AND
NON-DIMENSIONALIZATION

We perform compressible magnetohydrodynamics sim-
ulations with an isothermal equation of state using the
Pencil Code [41].

The equations to be solved are

∂tρ+∇ · (ρU) =0, (1)

∂tU +U ·∇U =
1

ρ
[J ×B +∇ · (2ρνS)]

− c2s∇ ln ρ+ f , (2)

∂tA =U ×B + η∇2A, (3)

where ρ, U and A are the density, the velocity, and the
vector potential fields, respectively; B = ∇ × A is the
magnetic field, J = ∇ × B/µ0 is the current density
with µ0 being the vacuum permeability, and the units are
chosen such that µ0 = 1; cs is the constant and uniform
sound speed; Sij = (∂iUj + ∂jUi)/2 − δij∇ · U/3 is the
rate-of-strain tensor; ν and η are the viscosity and resis-
tivity, respectively; and finally f is a fully helical forcing
of the form of plane waves, with a fixed wave number kf
and random phase and direction at each time step. The
simulation domain is a Cartesian box, with length of 2π
and periodic boundary conditions in all three directions,
and consequently the magnetic helicity becomes gauge
invariant. For all runs, we use kf = 4 and Mach numbers
Ma = urms/cs ≃ 0.1, where urms is the root-mean-square
(rms) velocity. The Reynolds numbers Re = urms/νkf
are kept roughly constant, ≃ 5, and the magnetic Prandtl
number Pm = ν/η is varied from 1 for run A1 to 80 for
run A6. This isolates the Rm dependence from that of
Re.

Without any mean flow, a helical dynamo generates
fully helical large-scale fields. It is therefore most conve-
nient to delineate the dynamo process using the magnetic

helicity spectrum HM, which is gauge-invariant given our
periodic boundary condition. We normalize energy and
helicity spectra such that integration over all wave num-
bers yields the average energy or helicity density. We
then decompose the large-scale magnetic helicity density
into a mean handedness s1, a mean wave number k1, and
the associated energy,∫ kf

k0

HM
1 dk = s1k

−1
1

∫ kf

k0

k
∣∣HM

1

∣∣ dk, (4)

where the subscripts 1 refer to large-scale modes, k0 is
the lowest wave number in the simulations,

s1 =

∫ kf

k0
HM

1 dk∫ kf

k0

∣∣HM
1

∣∣ dk
(5)

is the mean handedness and

k1 =

∫ kf

k0
k
∣∣HM

1

∣∣ dk∫ kf

k0

∣∣HM
1

∣∣ dk
(6)

is the mean wave number of the large-scale modes. Sim-
ilarly, we decompose the small-scale (denoted by sub-
scripts 2) magnetic helicity density as∫ ∞

kf

HM
2 dk = s2k

−1
2

∫ ∞

kf

k
∣∣HM

2

∣∣ dk, (7)

s2 =

∫∞
kf

HM
2 dk∫∞

kf

∣∣HM
2

∣∣ dk
, (8)

k2 =

∫∞
kf

k
∣∣HM

2

∣∣ dk∫∞
kf

∣∣HM
2

∣∣ dk
. (9)

Note that si ∈ [−1, 1] and ki > 0 for i = 1, 2. The non-
dimensional energy density of the large-scale helical field
is

ẼL =
1

ρu2
rms

∫ kf

k0

k|HM
1 | dk. (10)

We define the dimensionless time as

t̃(t) =

∫ t

0

urms(t
′)kf dt

′, (11)

and the dimensionless exponential growth rate

γ̃ =
dln ẼL

dt̃
. (12)

III. RESULTS AND ANALYSIS

The LSD can be understood with the mean-field for-
malism, described by the mean-field induction equation.
By taking the curl of Eq. (3) and averaing we obtain

∂t ⟨B⟩ = ∇× (⟨U⟩ × ⟨B⟩+ E) + η∇2 ⟨B⟩ , (13)
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where ⟨ · ⟩ is an average over a scale assumed to be much
larger than the turbulent forcing scale. We then use lower
case b to indicate the contribution to B with zero mean,
and similar constructions for the magnetic vector poten-
tial A and velocity U . The turbulent electromotive force
(EMF) is E = ⟨u× b⟩. For statistically isotropic and ho-
mogeneous turbulence, ⟨U⟩ = 0 and the turbulent EMF
takes the form E = α ⟨B⟩ − β∇× ⟨B⟩, where the turbu-
lent diffusivity is β = τu2

rms/3, and τ = 1/urmskf. The
α coefficient is α = αk + αm given by the DQ formalism
[11, 37, 38], where

αk = −1

3

〈∫ t

0

u(t) ·∇× u(t′) dt′
〉

≃ −1

3
ϵurms (14)

is the the kinetic contribution, and

αm =
1

3

〈∫ t

0

b(t) ·∇× b(t′) dt′
〉
≃ 1

3
bhel

≃ 1

3

(∫ ∞

kf

kHM
2 dk

)1/2

(15)

is the magnetic contribution. The latter is related to the
small-scale current helicity density multiplied by a cor-
relation time, and hence has the dimension of velocity in
Alfvén units. bhel is the helical part of the small-scale
magnetic field and can be written in terms of the mag-
netic helcity spectrum HM as in Eq. (15). In Eq. (14), we
have assumed the velocity field to be fully helical, which
is consistent with our simulations. A factor ϵ is intro-
duced to capture the possible deviation of the correla-
tion time between u and its curl, from the eddy turnover
time 1/urmskf. Measuring ϵ can be method-dependent
and so we treat it as a free parameter. We shall see that
ϵ = 0.8 is sufficient to explain simulations, and more
crucially, it has no influence on the implications on the
Rm-dependence of helical LSDs.

In the DQ formalism, αm grows in time, offsets αk, and
eventually quenches the dynamo. We thus define

χ ≡ −ϵ
αm

αk
= u−1

rms

(∫ ∞

kf

kHM
2 dk

)1/2

(16)

as the DQ factor, which is roughly the normalized cur-
rent helicity, contains no free parameter, and is calculable
from simulations. The measured values of χ fluctuate but
grow nearly monotonically in time from ∼ 0 to a value
≲ 1 at the end of the LSD as expected from theory. In
what follows, any quantity taken at χ = χ′ is meant to
be its average over the interval χ ∈ [χ′ − δ, χ′ + δ] with
δ = min {0.2χ′, 0.05}, unless otherwise specified.

In Fig. 1(a) we show the evolution of ẼL tracked with
the dimensionless time t̃ measured in units of 1/urmskf as
in previous work. For sufficiently large Rm, a small-scale
dynamo (SSD) is excited at early times and the growth
of the large-scale modes is dominated by nonlinear inter-
mode interactions rather than the interaction with the
velocity field through the α effect. Fig. 1(a) shows growth

rates during the initial exponential stages (e.g. 0 ≤ t̃ ≲
300 for run A1, 0 ≤ t̃ ≲ 150 for run A6, etc.) increases
with increasing Rm, which is a signature SSD feature.
Unambiguously pinpointing the end of the SSD phase is
difficult on this plot but we next argue that using χ to
track dynamo evolution alleviates this problem.
The SSD and LSD phases can be separated by consid-

ering their contributions to the small-scale current helic-
ity. SSDs efficiently amplify small-scale fields but with
a low fractional magnetic helicity. This is supported by
Fig. 1(b) which shows the evolution of χ (essentially the
normalized small-scale current helicity) tracked by t̃. By
comparing Fig. 1(a) and (b), we see that regardless of
the Rm across different runs, the initial Rm-dependent
exponential growth always corresponds to the χ ≤ 0.1
regime.
Fig. 1(c) provides further support of using χ = 0.1

to separate SSD and LSD phases, where we plot the ra-
tio between the mean and the fluctuating field strengths
tracked using χ. In the χ < 0.1 region, this ratio re-
mains roughly constant for all runs, suggesting that at
this stage all the mean field growth is dominated by the
low-wave number tail of a SSD growth, not a growing
LSD. We therefore regard χ = 0.1 as the onset of the
LSD phases in what follows.
Finally, in Fig. 1(d) we show the evolution of ẼL

tracked by χ. Having identified the starting χ of the
LSD, we must now identify its ending point after which
resistive effects dominate, and quantify the Rm depen-
dence of LSD growth and saturation. This requires de-
tailed theoretical analysis, as explained in the following
subsections.

A. LSD growth rate versus Rm

For a helical LSD without a mean flow (i.e., an α2

dynamo), the energy growth rate of the mode at wave
number k1 is γ = 2|α|k1 − 2(β + η)k21 [30]. Using
Eqs. (14) and (15), the α coefficient can be written as
α = αk+αm = −urms (ϵ− χ) /3. Using the eddy turnover
rate urmskf for normalization, we have the theoretical ex-
pectation

γ̃th =
γ

urmskf
=

2k1
3kf

(ϵ− χ)−
(
2

3
+

2

Rm

)(
k1
kf

)2

, (17)

where Rm = urms/ηkf is the instantaneous magnetic
Reynolds number. The LSD initially operates kinemat-
ically when χ ≪ 1, but is then dynamically quenched
by χ due to the growing small-scale current helicity. The
maximal value χ can obtain is analytically determined by
γ̃ = 0 to be ϵ−k1/kf when Rm → ∞. This gives ϵ−k0/kf
as the upper bound of χ at which LSD terminates.
The dimensionless growth rate γ̃ versus χ in simula-

tions [defined in Eq. 12] is plotted in Fig. 2(a). In princi-
ple, it should be compared with γ̃th in Eq. (17) to validate
the DQ formalism, based on which γ̃th is derived. How-
ever, the exact value of ϵ is yet unknown. Rather than
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FIG. 1. Evolution of non-dimensional quantities. (a) Normalized large-scale magnetic energy versus dimensionless time. (b)
Dynamical quenching factor versus dimensionless time. (c) Ratio between the mean and fluctuating field strengths versus
dynamical quenching factor. (d) Normalized large-scale magnetic energy versus dynamical quenching factor; the inset is a
zoom-in plot. The horizontal line in panel (b) and the vertical lines in panels (c) and (d) denote the starting point of the LSD
at χ = 0.1.

fitting the data to find the most probable ϵ, we isolate
the Rm-independent part in Eq. (17) by defining

σ =
3kf
2k1

γ̃ +

(
1 +

3

Rm

)
k1
kf

. (18)

Since the right-hand-side terms of Eq. 18 are all mea-
surable, the values of σ from simulation data should col-
lapse to set of Rm-independent straight lines determined
by ϵ− χ when Rm ≫ 1 according to Eq. (17), assuming
that ϵ is asymptotically Rm-independent.
The right side of Eq. (18) is measured and plotted in

Fig. 2(b) for different runs. Overall, the measured values
of σ after the SSD phases at χ ≥ 0.1 can be well described
by the theoretical expectation (ϵ − χ), with ϵ ∈ [0.8, 1],
as indicated by the two black dashed lines. This implies
a modest 20% deficit in the correlation time between u
and its curl (which enters αk) than that between u and it-
self (which enters β), and might explain the sub-maximal
LSD efficiency of Ref. [36]. Since the LSD phase should
be bounded by ϵ− k0/kf, we determine that

0.1 ≤ χ ≤ 0.55 (19)

quantitatively demarks the PQ regime whose Rm depen-
dence we will assess.

The agreement between measured values and theoreti-
cal expectation of σ validates Eq. (17), and thus justifies

that (i) the DQ formalism correctly describes the α2 dy-
namo, and (ii) the LSD growth rate is asymptotically
independent of Rm when Rm ≫ 1. To see the latter
point, notice that on the right of Eq. (17) the only two
Rm-dependent quantities are Rm itself and k1. The k1 is
initially the value ∼ kf/2 which maximizes γ̃. Later, k1
decreases to the lowest wave number available in the sys-
tem, and this evolution may depend on Rm. But overall,
k1 always changes by a factor of kfL/4π if L is the length
scale of the system, which is Rm-independent. Hence the
Rm-dependence of γ̃ introduced by k1 is quite weak and
γ̃ will not decrease to some resistively small value.

Finally, we note that resistive diffusion of magnetic
helicity reduces the growth rate of χ and thus slows the
magnetic back-reaction on the LSD, but does not directly
show up in the LSD growth rate, Eq. (17). Hence at any
given χ during the LSD phase, the LSD growth rate can
become Rm-independent at lower Rm than the value at
which the mean-field strength becomes Rm-independent.
In the next subsection we explore the resistive effects on
the LSD saturation.
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FIG. 2. (a) Normalized LSD growth rate γ̃ and (b) LSD efficiency σ versus the dynamical quenching factor χ. In both panels,
the vertical dashed line at χ = 0.1 indicates the start of the LSD phase. In panel (b), the two black dashed lines indicate the
theoretical expectation σth = ϵ− χ with different ratios of the time scales of αk and β: ϵ = 1 (upper) and ϵ = 0.8 (lower).

B. Rm-dependent field strengths in simulations

The simulated values of ẼL decrease with increasing
Rm at fixed χ, as evident from Fig. 1. To quantify
this, we define an exponent p(χ) by fitting the power-

law ẼL(χ,Rm) ∝ Rmp(χ). We find that p ≃ −0.5 for all
χ ∈ [0.01, 0.55], indicating that during the SSD phase and
at all stages of the LSD, the mean-field energy decreases
with increasing Rm. We now explain this dependence.

ẼL can be inferred from the total magnetic helicity
without integrating the growth equation. Consider the
case where the volume-averaged magnetic helicity is zero
initially, but later gains ∆H = HM

1 +HM
2 due to resistive

diffusion, where HM
1,2 are the average magnetic helicity

of the large- and small-scale fields, respectively. Using
Eq. (4) we have HM

1 = s1k
−1
1 ẼLρu

2
rms, and therefore

ẼL(χ,Rm) = −k1
s1

HM
2

ρu2
rms

+
k1∆H

s1ρu2
rms

. (20)

We denote the terms on the right of Eq. (20) by TD and

TR, respectively, so that ẼL = TD + TR. Note that TR

is from the resistive loss of magnetic helicity but TD is
purely dynamic. The resistive term does not amplify
the large-scale field directly, but slows the growth of χ,
thereby weakening the back-reaction and allowing more
large-scale growth. The ratio TD/ẼL determines whether
resistive effects dominate and this is to be assessed below.

For all runs at all times, the magnetic fields at the re-
sistive scale have positive magnetic helicity, whilst those
at the lowest wave numbers have negative helicity. Hence
∆H < 0 and s1 < 0 always. As we discuss in detail in
Appx. A, HM

2 < 0 during the SSD phase, and hence

TD/ẼL < 0 initially. In what follows we focus on the
LSD phase when HM

2 > 0, the period during which TD

and TR are both positive.
The evolution of TD/ẼL is shown in Fig. 3(a). The LSD

starts to dominate the field growth at k1 at χ ≳ 0.1, and
its back-reaction on the small scales grows TD. By the

time χ = 0.55 which is close to the end of the LSD regime,
Eq. (20) determines how much the LSD has benefited
from resistive contributions. That TD < TR implies that
the LSD quenching is still weakened substantially by the
resistive dissipation of small-scale current helicity, and
therefore the PQ regime depends strongly on Rm. This
is why ẼL decreases with increasing Rm at fixed χ.

IV. IMPLICATIONS FOR HIGHER Rm

In Fig. 3(b) we show the fractional contribution

TD/ẼL at χ = 0.55 versus Rm. A power-law relation
∝ Rm0.23 is found, but also notice that the trend flat-
tens at large Rm. We now describe why this apparent
saturation may not apply for much larger Rm, and why
TD might actually dominate at χ = 0.55 as Rm → ∞
and become Rm-independent.
Since TR ∝ ∆H and is negligible during the LSD

phase in the Rm → ∞ limit, the necessary condition
for an Rm-independent PQ regime is dTD/dRm → 0 as

Rm → ∞ (while its fractional contribution TD/ẼL → 1
since TR → 0). In the LSD phase, the small-scale mag-
netic helicity spectrum HM

2 is of one sign, so we write
TD = −s2k1χ

2/s1k2. Since |s1,2| ≃ 1 and k1 is bounded
from below, an Rm-independent PQ regime requires k2
to depend at most weakly on Rm at fixed χ, which is de-
termined by the magnetic helicity spectrum as explained
below.

Consider a magnetic helicity spectrum, HM
2 (k) ∝ k−q

in the inertial range. This is appropriate for Pm < 1
flows. Using Eq. (9) for k2, we then have that k2/kf =
F (q − 1)/F (q), where F (x) =

∫ r

1
x−q dx, and r is the

ratio between the dissipative scale of the helical fields
and kf. When Rm → ∞, we have r ≫ 1, so that k2/kf =
(q−1)/(q−2) when q > 2, but diverges for q ≤ 2. Hence
an Rm-independent PQ regime arises if q > 2.
For Pm > 1 flows whose magnetic energy and helicity

spectra may have broken power laws at k ≥ kf, the con-
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FIG. 3. Rm-dependent field strength in helical LSDs. (a) Fractional contributions to ẼL from the dynamical term, TD/ẼL,

from different runs. Hence TR/ẼL = 1 − TD/ẼL decreases with increasing Rm but still dominates when Rm ≃ 400, leading
to Rm-dependent field strengths in simulations. The vertical line at χ = 0.1 indicates the start of the LSD phase. (b) The

fractional contribution from the dynamical term increases with increasing Rm with a power index 0.23. This implies TD/ẼL

reaches 0.95 at Rm = 3.5× 105 if the relation can be extrapolated.

ditions for an Rm-independent PQ regime become (i) a
q > 2 range exists, and (ii) the wave number above which
q > 2 does not increase with increasing Rm. Such evi-
dence is indeed observed from our Pm ≥ 1 simulations.
For the two highest-Rm runs (at Rm ≃ 250 and 400),
we find that the wave numbers at which q − 2 changes
sign are both ≃ 2kf and do not scale with Rm. This is
consistent with previous indications that the peak wave
number of the magnetic energy spectrum for large-Pm
SSDs remains Rm-independent for large Rm from both
theory [42] and simulation [43]. Hence, our simulations
imply an Rm-independent PQ regime for Pm ≥ 1 flows.
We note that Re = 5 throughout our simulations, so

the flow in the simulations is stochastic but not fully
turbulent. At larger Re, the slope of the magnetic helic-
ity spectrum will be affected by the more extended iner-
tial range of the velocity field. The spectrum may also
evolve from shallower than the aforementioned threshold
at early times to steeper at later times. Then the influ-
ence of Rm on the saturated state could still be small, as
is crudely suggested in a four-scale approach [39]. Future
high-resolution simulations for both Pm > 1 and Pm < 1
are needed to concretely confirm the spectral slope of the
magnetic helicity at large Re and Rm and its temporal
evolution.

To summarize, for a magnetic helicity spectrum
that satisfies the conditions mentioned three paragraphs
above, the Rm-independent value that ẼL can obtain at
any χ is

lim
Rm→∞

ẼL(χ,Rm) = lim
Rm→∞

TD

= −s2
s1

k1
kpeak

q − 2

q − 1
χ2, (21)

where kpeak is the Rm-independent peak of the magnetic
helicity spectrum and q > 2 is the slope at k ≥ kpeak.

Eq. (21) is the lower bound for any case with finite

Rm, to which the positive TR term will additionally con-
tribute. One caveat is that achieving this lower bound
within a finite time is not guaranteed if the time to reach
any given value of χ increases with Rm. In this case, TD

may not obtain any significant value as Rm → ∞, even
though TD/ẼL ≃ 1. This could happen if the SSD were to
somehow suppress helicity generation at small scales, and
in turn, slow large-scale dynamo growth through helicity
conservation. However, at the Rm values explored in this
work, we do not observe such evidence that SSD would
suppress the growth of χ [see Fig. 1(b), which shows the
opposite trend], but future higher-resolution simulations
could help to further asses this.
For all of our simulation runs, we observe ẼL is more

than 12.5 times the lower bound Eq. (21) by taking
s1/s2 = −1, kpeak = 2kf and q = 8/3, again high-
lighting the dominance of the resistive contribution. Fur-
thermore, assuming s1/s2 = −1, kpeak = 2kf, q = 8/3,
kf/k1 = 5 and χ2 = 1 − k1/kf, we find this lower bound

to be ẼL ≃ ⟨B⟩2 /
〈
b2
〉
= 0.032, comparable to some ob-

served galactic magnetic fields [44] which have benefited
from the Rm-independent Ω effect and possible helicity
fluxes. Hence, the DQ formalism predicts a substantial
lower bound for the large-scale magnetic energy.

V. CONCLUSIONS

For astrophysical flows with Rm ≫ 1, the saturation
time of helical dynamos is resistively long, and fully sat-
urated states are constrained by the resistive helicity loss
[12, 14] if there is no helicity flux. In this work, we
use the normalized small-scale current helicity χ to track
dynamo evolution in simulations and identify their LSD
phases. We show that (i) the onset of the LSD is marked
by χ ≥ 0.1, independent of Rm; (ii) the LSD growth
rate agrees well with the prediction of the DQ formal-
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ism in becoming Rm-independent as Rm → ∞; (iii) the
LSD saturation at numerically accessible Rm values is
still dominated by resistive contributions, but whether it
becomes Rm-independent as Rm → ∞ depends on the
slope of the magnetic current helicty spectrum.

Our results clarify that the decreasing saturation level
of helical dynamos associated with increasing Rm in
closed boxes is due to the decreasing resistive contribu-
tion, but this does not preclude convergence to a resis-
tivity independent value for large Rm. For high-Rm α2

or α2-Ω dynamos of stars and galaxies, our results im-
ply that when the current helicity spectrum falls off with
any positive power of k, efficient LSD growth is possible.
This applies even without boundary helicity fluxes, in-
cluding systems requiring Rm-independent cycle periods,
although helicity fluxes may play a prominent role in the
actual operation of dynamos in real systems. For shal-
lower spectra, helicity fluxes or some non-helically driven
LSD [e.g. 45] would be need to explain the observed field
strengths, let alone fast cycle periods. For planetary dy-
namos whose resistive time scales can be comparable to
LSD dynamical times, α quenching is significantly weak-
ened by resistive diffusion and so the LSD is much less
constrained by the slope of the current helicity spectrum.

The results also highlight the broader importance of
feedback between mean-field dynamo growth and MHD
turbulent spectra as the the latter itself may evolve due
to the increasing large-scale magnetic field. The mutual
evolution of turbulence, LSD, and outflows in spinning-
down stars or accretion flows from LSD-mediated mag-
netic winds exemplifies that the implications of such feed-
back have direct observational consequences.
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Appendix A: Helical fields during the SSD phase

The evolution of TD/ẼL is shown in Fig. 3(a) in the
main text. For the three runs with the highest Rm, we
see TD/ẼL < 0 and therefore TR/ẼL = 1 − TD/ẼL > 1
during the SSD phase. Together with s1 < 0, this implies
a negative average handedness of the small-scale field,
s2 < 0 [see Eqs. (8) and (20) in the main text]. This
is because at that time, negative helicity resides on a
wide range of k, particularly at both k < kf and a finite
range at k ≥ kf; see Fig. 4. This implies that, since the
field at k1 is already fully helical, k1∆H/s1 alone would

overestimate the large-scale contribution, i.e., TR/ẼL >
1.

In fact, the initial dividing wave number kdiv between
the positively and negatively helical parts is not kf, but
roughly the viscous wave number kν (Fig. 4). The SSD
initially operates most efficiently on the viscous scale, and
generates positively helical fields at k > kν . Conservation
of magnetic helicity requires that negatively signed mag-
netic helicity must compensate at k < kν at a generation
rate comparable to that of the efficient SSD at kν . Thus,
the net sign of helicity at k < kν is initially negative. As
the SSD at kν approaches saturation, its back-reaction
that produces negative helicity on larger scales eventu-
ally becomes slower than the SSD rate below kν , and so
positive helicity starts to build up there and we see kdiv
decreasing, until eventually it reaches kdiv = kf. Hence,
s2 < 0 during the kinematic SSD phase but becomes
positive when the SSD saturates.

Although ẼL decreases with increasing Rm at fixed χ
in the simulation runs it is for different reasons in the
SSD and LSD phases. In the SSD phase at χ ≃ 0.01, the
scaling ẼL ∝ Rm−0.5 for our Pm ≥ 1 cases is similar to

the result of Refs. [47, 48] that ⟨B⟩ /brms ∝ Rm−3/4 for
Pm = 0.1 cases. In fact, we find that the ratio ⟨B⟩ /brms

is a constant at χ ≤ 0.1 for each run [see Fig. 1(c);

roughly 300 eddy turnover times], but is ∝ Rm−1/2. That
⟨B⟩ and brms grow at the same rate is a signature of the
SSD phase (or, in the language of Ref. [48], a feature
of the kinematic dynamo phase), although the origin of
−1/2 is not yet fully understood [47].
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