Interferometric Geometric Phases of P7-symmetric Quantum Mechanics
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We present a generalization of the geometric phase to pure and thermal states in P7-symmetric
quantum mechanics (PTQM) based on the approach of the interferometric geometric phase (IGP).
The formalism first introduces the parallel-transport conditions of quantum states and reveals two
geometric phases, 8! and 62, for pure states in PTQM according to the states under parallel-
transport. Due to the non-Hermitian Hamiltonian in PTQM, 6' is complex and 6? is its real
part. The imaginary part of #' plays an important role when we generalize the IGP to thermal
states in PTQM. The generalized IGP modifies the thermal distribution of a thermal state, thereby
introducing effective temperatures. At certain critical points, the generalized IGP may exhibit
discrete jumps at finite temperatures, signaling a geometric phase transition. We illustrate the IGP
of PTQM through two examples and compare their differences.

I. INTRODUCTION

The introduction of non-Hermitian quantum mechan-
ics (NHQM) [1-3] has uncovered many fascinating phe-
nomena, including the Anderson localization [4], gapless
quantum phase transitions [5], unconventional behavior
of quantum emitters [6, 7], tachyonic dynamics [8, 9],
and distinctive topological properties [10-12]. A major
branch of NHQM includes systems with non-Hermitian
Hamiltonians obeying parity-time reversal (P7 ) symme-
try, which can possess real-valued eigenvalues, making
them a relevant extension of conventional quantum me-
chanics. Therefore, PT-symmetric quantum mechanics
(PTQM) has attracted considerable research attention
in many aspects [13-19] and has been experimentally re-
alized across different fields, including acoustics, optics,
electronics and quantum systems [20, 21]. It has also cat-
alyzed extensive investigations into physical and topolog-
ical characteristics of non-Hermitian systems [22-30].

Geometric phases in quantum systems, including the
Berry phase [31] and the Aharonov-Anandan phase [32],
have advanced our understanding of the geometric struc-
tures behind interesting physical systems and shown sig-
nificant influence across various fields. For instance, the
Berry phase is fundamental in the study of topological
matter since it connects geometric objects from the un-
derlying mathematical structure to measurable physical
quantities [33-44]. Recently, the notion of geometric
phase has been generalized to non-Hermitian quantum
systems [45], which is further applied to the construc-
tion of the quantum geometric tensor for non-Hermitian
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systems [46]. On the other hand, the geometric phase
has also been generalized to mixed quantum states via
different approaches [47-55]. In this work, we will gener-
alize the one proposed by Sjoqvist et al [56] based on an
extension of the optical process in the Mach-Zehnder in-
terferometer, which is referred to as the interferometric
geometric phase (IGP). Numerous studies [57-62] have
been dedicated to this field, and the IGP has been ob-
served by various techniques, including the nuclear mag-
netic resonance [63, 64], polarized neutrons [65], and the
Mach-Zehnder interferometer [66]. A different approach
was introduced by Uhlmann [67-69] soon after the dis-
covery of the Berry phase and the phase is usually called
the Uhlmann phase. This approach incorporates a full
mathematical structure based on fiber bundles and has
gained attention due to its relevance to condensed matter
and quantum information [70-77].

We aim at generalizing the concept of IGP to thermal
states in PTQM. In the beginning, we establish a for-
malism for pure-state geometric phase in PT-symmetric
systems by using the conventional derivation and then
introducing the parallel-transport conditions of quantum
states. In contrast to conventional QM, a PTQM system
is shown to allow two distinct geometric phases, called §*
and 62, which are differentiated by the states undergoing
parallel-transport. On the one hand, #? exactly coincides
with the known result in Ref. [45] and is the real part of
0. On the other hand, 6" is a complex-valued phase with
its imaginary part adjusting the amplitude of the wave-
function due to the lack of Hermiticity. Since 6 will be
shown to be associated with the non-Hermitian Hamilto-
nian, the generalization to thermal states in PTQM will
be based on it.

Following the construction of the IGP of thermal states
in conventional QM and the derivation of the geometric
phase 0!, we develop a framework of the IGP of thermal



states in PTQM. In general, the IGP is the argument
of the thermal-weighted sum of the geometric phase fac-
tor for each individual energy level. The imaginary part
of the generalized IGP will be shown to alter the relative
thermal weights, which introduces effective temperatures
to the thermal states. Consequently, there may be quan-
tized jumps of the IGP at certain temperatures and sys-
tem parameters. This phenomenon signifies a geometric
phase transition at finite temperature in PTQM. To il-
lustrate our findings and visualize the results, we study
a two-level system and a lattice model, both possessing
PT symmetry, and present their generalized IGPs. The
geometric phase transitions of the two models are located
and analyzed.

The rest of the paper is organized as follows. Sec. II
briefly reviews the basics of PTQM and its statistical
physics. We also review the geometric phases of pure and
mixed quantum states in Hermitian systems via parallel-
transport. In Sec. III, we generalize the formalism of
geometric phase to PTQM, first by deriving two differ-
ent expressions due to their associated evolution equa-
tions or parallel-transport conditions. We then general-
ize the results to thermal states in PTQM and derive the
generalized IGP. Sec. IV presents the IGPs of two P7T-
symmetric systems and their geometric phase transitions.
Sec. V concludes our work. Some details and derivations
are summarized in the Appendix.

II. THEORETICAL BACKGROUND

A. PT-symmetric quantum and statistical
mechanics

Before presenting our findings, we first give a brief out-
line of PTQM and lay the foundation for its geometric
description. We will set ¢ = h = kp = 1 through-
out the paper. We consider a parameter-dependent
finite-dimensional non-Hermitian quantum system de-
scribed by a PT-symmetric Hamiltonian H(R). Here
R = (Ry, Ry, -+, R)T is a collection of external param-
eters forming a parameter manifold M. The system may
evolve along a curve R(t) in M. The PT-symmetry is
manifested by the condition

W(R)H(R) = H'(R)W (R), (1)

where W(R) is Hermitian, and its role will become clear
later. A Hamiltonian satisfying Eq. (1) is called a pseudo-
Hermitian Hamiltonian [78]. Assuming H describes a N-
level quantum system, the eigen-equations of H(R) and
HT(R) are respectively given by

H'(R)|2,(R)) = E,(R)|2,(R)) (3)
for n = 1,2,---N. No energy degeneracy is consid-

ered here for simplicity. Eq. (1) implies |®,(R)) =

W(R)|¥,(R)). Here W bears the role of a metric to en-
sure the orthonormal relation (¥,,(R)|W(R)|¥,(R)) =
dmn, or equivalently, (®,,(R)|¥,,(R)) = 0mpn. Thus, the
inner product between the ordinary bra and ket states
is defined as (-|WW|-). The associated completeness of
(1%, (R))} is given by ¥, [ W, (R)) (@, (R)| = 1.

Following Eq. (1), H is similar to a Hermitian Hamil-
tonian Hy via H = SHoS™!, where W = (S~1)15~1 [79].
The operator S is not unitary. Hereafter, we some-
times suppress the argument R if no confusion may arise.
In some situations, S may also be Hermitian and then
W = (S71)2. Diagonalizing Hy as Ho|V%) = E,|¥2),
one gets

(W) = S[5),  |®n) = (S7H)WY). (4)
For a generic time-dependent state |¥(¢)) in PTQM, its
equation of motion is described by the Schrédinger-like
equation [45]:

e = (- Jwi) o). o

If S is a proper mapping satisfying =15 = (S~19)%, this
equation further reduces to

. d -
i Y(®) = H¥()). (6)

Here H = H —iSproper Sy,

proper With Sproper being a proper
mapping. The second term of His anti-symmetric under
the PT transformation, rendering H not Hermitian in
general. For a PTQM system, a proper S always exists
[45]. However, the analytic expression of Sproper may not
be readily available. Comparing Eqgs. (6) and (2), it is im-
portant to emphasize that for a P7T-symmetric quantum
system, the stationary and dynamic Schrodinger equa-
tions are respectively governed by H and H. This dis-
tinction leads to nontrivial contributions to both the dy-
namic and geometric phases in PTQM, which will be elu-
cidated in the subsequent discussions. According to Eq.
(4), [W%) = S71|¥), and its dynamic evolution can be de-
duced from Eq. (5). If S is a proper mapping, it can be
shown that |¥°(¢)) obeys the conventional Schrédinger
equation

S 100(0) = Ho[u"(1)). @

Otherwise, the dynamic equation of |¥9(¢)) would be
very complicated. Further details can be found in Ap-
pendix A. For the case with a proper S, both the sta-
tionary and dynamic equations of |¥%(t)) are governed
by the Hermitian Hy, unlike those of |¥(¢)). Hence, the
proper S acts like a “gauge” mapping between a PTQM
system and its corresponding Hermitian counterpart.

So far the discussion concerns pure quantum states
only. Recently, there have been studies on non-Hermitian
quantum models at finite temperatures [80, 81]. To
broaden the scope of non-Hermitian physics to mixed



quantum states, we note that the density matrix of a
mixed state from the generalization may also be non-
Hermitian as well. As a first attempt, we focus on states
in thermal equilibrium depicted by p = 97ZBH
B = % is the inverse temperature and Z = > e AEn
is the partition function. In the generalized case, p' # p
due to HT # H. By expressing H = > E,|V,)(®,],
the density matrix is given by

Here

o—BE,

= W, (D, 8

p= 3 )| (5)

whose trace follows the normalization Trp =

2n(@nlpl¥y) = 1. Applying Eq. (4), we get a
relation p = SppS~! connecting p and py = %.

B. Geometric phase of Hermitian systems

1. Pure states

The geometric phase, especially the Berry phase [31],
reflects the underlying geometry of quantum physics.
For Hermitian systems, its formulation can be derived
through the concept of the parallel condition among
quantum states. Two states, |1)1) and |¢2), are consid-
ered parallel with each other if (i1]12) = (2|th1) > 0
[82]. The overlap is also referred to as the fidelity [82].
The parallel condition complements the concept of or-
thogonality of quantum states and builds a binary re-
lation between quantum states. However, it is not an
equivalence relation since it lacks transitivity. This
means even when a state |U(t)) = |U(R(t))) evolves
along a path R(t) and preserves the condition of instan-
taneous parallel-transport, or being “in-phase”, denoted
as

(T(t)|¥(t+dt)) >0, (9)

it is possible that the final state may not remain par-
allel to the initial state. The loss of the parallelity is
measured by the geometric phase, as explained here. By
expanding the left-hand-side of Eq. (9) and noticing that
(W(t)| | (t))dt is imaginary, the parallel-transport con-
dition is equivalent to

(WD) S () = 0. (10)

we rewrite |W(t)) as [W(t)) = e?@|s)(t)), where 0(t) con-
tains the information about the phase, including the dy-
namic and geometric components. However, the parallel-
transport condition only allows the geometric phase to
survive. Explicitly, if |[¥(¢)) experiences a dynamic evo-
lution described by i< |¥(t)) = H|¥(t)) with H being the
Hamiltonian of a Hermitian quantum system, the condi-

t
tion (10) indicates /dt’(‘ll(t')|H\\I/(t’)> = 0, i.e., the
0

dynamic phase vanishes instantaneously. On the other
hand, dynamical evolution may also disrupt the paral-
lelity between quantum states and violate the parallel-
transport condition. Substituting |¥(t)) = €@ |y(t))
into the parallel-transport condition, we get

i+ ((0) 3 (6) = 0. ()

In a cyclic process of duration 7, the solution to Eq. (11)
is the geometric phase

o) =i [ dtlwo)l (o). (12)

In essence, the parallel-transport condition allows us to
separate the total phase into the dynamic and geomet-
ric phases. The same formalism also applies to the
Aharonov-Anandan phase since [1(t)) here may be ei-
ther an instantaneous eigenstate of H or a generic linear
combination of the eigenstates of H.

2.  Thermal states

The geometric-phase formalism can be generalized
to mixed quantum states undergoing a unitary evolu-
tion [47]. When a density matrix evolves as p(t) =
U(t)p(0)UT(t) with a unitary U(t), it acquires a phase
0(t) = argTr [p(0)U(t)]. Here “Ir” is the ordinary trace
in the Hermitian quantum system. It can be shown that
p(t +dt) = Ut + dt)UT(t)p(0)U#)UT(t + dt), yielding
that p(t) evolves into p(t + dt) via U(t + dt)UT(t). Ac-
cordingly, the condition arg Tr [p(t)U (¢t + dt)UT(t)] = 0
means that p(t+dt) is “in phase” with p(t) since no extra
phase is accumulated during the evolution. Taking the
differential form, we obtain the parallel-transport condi-
tion

Tr [p(t)U(t)UT(t)} _ [p(o)UT(t)(J(t)} —0. (13)
Under this condition,
Oc(t) = arg Tr [p(0)U (t)] (14)

is the interferometric geometric phase (IGP), introduced
in Ref. [47]. Similar to its pure-state counterpart, the
parallel-transport condition (13) also prevents the ac-
cumulation of the dynamic phase. If U(t) represents
a dynamic evolution, then iU = HU, or equivalently,
H =iUU". Thus, the dynamic phase accumulated dur-
ing this evolution vanishes identically:

Oo(t) = = [ @t Te o))
_ i [Carm [p(t')U(t')UT(t')} —0.  (15)
0

If the trace is evaluated with the eigenstates {|n(¢))} of
p(t), only the diagonal elements (n(t)|U(t)|n(t)) is rele-
vant to the determination of 6 (t). Thus, to specify U(t),



it was suggested by Sjoqvist et al. [47] to strengthen the
parallel-transport condition as

(n@IUOUT)In(t)) =0,

If p(t) is the density matrix of a pure state, Eq. (13)
naturally reduces to the condition (10) for pure states.

n=1,2---,N. (16)

III. GEOMETRIC PHASE OF PT-SYMMETRIC
QUANTUM SYSTEMS

A. Geometric phase for pure states
1. Adiabatic approaches

The concept of geometric phase has been generalized
to some non-Hermitian systems in Ref. [45], where the
expression of the Berry phase was obtained by following
Berry’s formalism of adiabatic evolution. Explicitly, for a
PT-symmetric system undergoing evolution along a loop
C(t) == R(t) with 0 < t < 7 and R(0) = R(7) in the
parameter manifold, the nth eigenstate at the end of this
evolution is given by

U, (R(7))) = % DHEO g, (R(0))).  (17)

¢
Here, 0P (t) = 7/ dt'E,,(R(t")) represents the instanta-
0

neous dynamic phase, and

03(C) = i}idR- {(\IIH|WV|\I/n> + % (U, [(VIV)|W,,)
(18)

is the Berry phase of PTQM following this approach.
It should be noted that this result is obtained by be-
ginning with the stationary Schréodinger equation shown
in Eq. (2) [45]. In this approach, 6P (¢) is generated
through the time evolution controlled by Hy, as indicated
by Eq. (7).

Meanwhile, a different approach is based on the time
evolution described by Eq. (6), whose dynamlcs 1s gov-
erned by the effective Hamiltonian H = H —iSS5~1 with
S being a proper mapping. Different from the prior ap-
proach, it will be shown that the “gauge” map S im-
parts significant effects on both the dynamic and geo-
metric phases. This also influences the generalization of
the geometric phase to thermal states in P7T-symmetric
systems.

When following Eq. (6) along the loop C(¢), the nth
eigenstate acquires an instantaneous dynamic phase

oL (t) = — /Odt< S(OWH|T, (1))
_ / B () 1 / (w0 ()1 S0 (1)
0 0

=0, (t) SIS (), (19)

/ at'(
where |W,(t)) = |, (R(t))) and [) (1)) = [P} (R(1))).
Importantly, 62 (¢) is real-valued, while 6% (¢) is in gen-
eral complex-valued since the dynamic equation (6) is
governed by the non-Hermitian H. This is reasonable
since PTQM may be realized by open systems, and com-
plex phases implies gain or decay of the amplitude. More-
over, the second term in the last line of Eq. (19) is purely
imaginary if S is a proper mapping. To derive the geo-
metric phase, we consider a state |¥(¢)) and expand it in
terms of the instantaneous eigenstates of H(t) as

1)) = cnlt)e

If the system experiences an adiabatic evolution along
C(t), no level crossing occurs. Thus, we found c,(t) =

95, 0| @, (1)). (20)

n(0)ei?2 () or
@, (8)) = e *onOHR O, (0)). (21)
Here
¢ d
0 =i [ @) G (22)
0

A detailed derivation is outlined in Appendix B. This
definition agrees with some known results [83, 84]. Thus,
we come to an interesting result: There exist two types
of geometric phases in PTQM due to the evolutionary
equations associated with the non-Hermitian Hamilto-
nian and its Hermitian counterpart.

2. Parallel-transport conditions

What is the relation between the geometric phases de-
rived previously? Moreover, we have pointed out that
there is a more generic way to derive the geometric phase
based on the parallelity between quantum states in con-
ventional QM. Does this approach also apply to PTQM?
To answer these questions, we first generalize the previ-
ously introduced parallel-transport condition to PTQM.
Note the time evolution (6) in a P7T-symmetric system is
controlled by H, which is related to the Hermitian Hamil-
tonian Hy that governs the dynamic equation (7) via a
similarity transformation S.

It has been shown that in conventional QM, the
parallel-transport condition (10) ensures that the dy-
namic phase vanishes. Equivalently, the appearance of a
non-vanishing dynamic phase violates the instantaneous
parallelity when a state is evolved. Hence, in order to
avoid violation of the instantaneous parallelity, we fol-
low an approach similar to that of conventional QM to
remove the dynamic phase 6}, from Eq. (20) and intro-

duce |U,(t)) = €|, (¢)). Similarly, we also define



10O (£)) = e (| WO (¢)) by eliminating 62 generated dur-
ing a dynamic evolution controlled by Hy. A generaliza-
tions of Eq. (10) leads to the following parallel-transport
(or instantaneous in-phase) conditions:

(0 (0)| 55 1T (1)) = 0, (23)
(B (0)] S 199,1)) = 0. (24

Thus, 61-2(¢) is the accumulated phase during the respec-
tive parallel transport. Solving these equations, we get

) =i f a@. OGO
GO =1 § @I, )

at the end of the corresponding parallel transport.
Eq. (23) reproduces the geometric phase of Eq. (22) de-
rived by the adiabatic approach. Moreover, it can be ver-
ified that #2 matches the Berry phase shown in Eq. (18):

07,(C) = 6,(C) (27)

as long as S is a proper mapping. This is because the
adiabatic approach is actually encompassed by the for-
malism based on parallelity of quantum states.

While Eq. (19) gives a relation between the two dy-
namic phases 6§, and 62, there is a similar relation con-
necting 61 and 62:

6l — 02 4 ij{dt<\1/g(t)\s—15|q/g(t)>. (28)

The proofs of Egs. (27) and (28) are outlined in Appendix
B. Interestingly, 6 can be complex-valued due to the
presence of the non-Hermitian H in the dynamic evolu-
tion (6). Since the dynamic phase 6}, is excluded by the
parallel-transport condition, what remains is the geomet-
ric component @1. As previously noted, the second term
in Eq. (28) is purely imaginary if S is a proper mapping,
making 9721 the real part of 9711. Therefore, Sproper nOt
only connects the Hermitian system governed by H° and
the PT-symmetric system governed by H but also es-
tablishes a link between their geometric phases 62 and
0l. The imaginary part of #} results in a change of
the amplitude of the wavefunction since the system is
non-Hermitian. We will find similar results in our sub-
sequent discussions on thermal states. The relation (28)
also yields an interesting result: It is known that the
non-Hermitian operator S acts as a “gauge” to describe
how the system interacts with the environment. Appar-
ently, 6! is independent of such a gauge, as indicated by
Eq. (22), since both |¥,,) and |®,) have no dependence
on Hy. However, the real and imaginary parts of 6. are
respectively determined by the proper S.

In the framework of the IGP, the geometric phase
for mixed states is intricately linked to that of pure

states. This raises a pertinent question: In the context
of PTQM, which one of 6} is more natural for a gener-
alization to thermal states? Referring back to Egs. (7),
(17), and (24), it can be inferred that both 2 and 62
may arise in a quantum system governed by Hy if S is
proper. In contrast, 6} and 6, can be generated in a
PT-symmetric system controlled by H. Consequently,
we choose . and the corresponding approach to develop
the formalism of the IGP of thermal states in PTQM.

B. Interferometric geometric phase for thermal
states

1. Basic formalism

To generalize the IGP to PTQM, we focus on states in
thermal equilibrium at temperature T' described by their
non-Hermitian density matrix p = %e_BH as stated be-
fore. Since the density matrix may be a non-Hermitian
operator in those cases, it usually experiences non-
unitary evolution since H is non-Hermitian. We consider
a general form p(t) = U(t)p(0)U~L(t) with p(0) = p.
Similar to conventional QM, the system acquires a (to-
tal) phase

Bion(t) = arg Tr [p(0)U (1) (29)

during this evolution. Since a statistical ensemble encom-
passes all energy levels, each weighted by its respective
thermal weight, it is more suitable to introduce the geo-
metric phase via the parallel-transport condition, which
also fixes the form of U(t). To ensure that p(¢t + dt) is in
phase with p(t) during the evolution, the condition (13)
is generalized as

Tr p(t)('J(t)U—l(t)} :ﬂ[p(o)U—l(t)U(t) —0. (30)

If U(¢) is a time evolution along a loop in the parameter
manifold, then Eq. (6) yields iU = HU or iUU ' = H.
Similar to Eq. (15), the parallel-transport condition (30)
causes the dynamic phase to vanish:

Op(t) = /Ot dt'Tr [p(t’)ﬁl(t’)] =0. (31)

This may be realized by choosing a suitable evolution
path in the parameter manifold [77]. Suppose the initial
density matrix p(0) is given by Eq. (8), the density matrix
under parallel-transport evolves as

—BEn

€ T X <
p(t) = 7 [Vn()) (@ (t)]- (32)
Here |\if,,(f)> =U(t)|¥,) and <(I),,(I‘)\ = (‘I);,,,|U’l(tv). The
trace in Eq. (30) can be evaluated as ) (P, (t)]- |V, (2)).
Similar to Eq. (16), the parallel-transport condition is
also reinforced as

(@n(OIUGU (1) Ta(t)) =0,




or (O, U U()|W,) =0, n=1,2,---,N. (33)

Since the dynamic phase vanishes during parallel-
transport, the system acquires the IGP according to
Eq. (29):

Oc(t) = Oroi(t) = arg Tr [p(0)U(#)] - (34)

A transformation satisfying the parallel-transport con-
dition has the form

Ut) =Y e o (@I 10 g, (1)) (@,,(0)]
= O], () (@ (0)]; (35)

where |0, (1)) = [V, (R(?))) and |9,(t)) = |®n(R(2)))
with [0, (0)) |¥,) and |®,(0)) = |®,). Thus,
(1)) = O[T, (1)), (@n(t)] = (Dn(t)le™ (), and
the parallel-transport condition (33) can also be ex-
pressed as

(@, (OTOU ()T, (5) =0, n=1,2,-,N. (36)
Appendix C shows how U(¢) indeed satisfies this condi-
tion. Similar to its pure-state counterpart, the dynamic
phase 04 (t) for each level is not included to avoid vi-
olating the parallel-transport condition. The IGP accu-
mulated during the evolution is

Oc(t) = arg lz

n

e_ﬁEn

= f;<<1>n(t'>|d§,|wn<t'>>dt',,n(t)] ’
(37)

where v, (t) = (9,(0)|¥,(¢)). If the system undergoes
a cyclic process along a loop C(t) = R(¢) with R(7) =
R(0), then v,(7) =1 and

o—BEn

0c(C) = arg [ 7 eioi(c)] . (38)

n
Here 0} (C) is the geometric phase factor associated with

the nth individual pure state in the process, given by
Eq. (25). It can be shown that 6 (C) reduces to 62 (C)

in the zero temperature limit since limg_, e7ZE1 =1
and limg_,oo e_B§">l = 0. This is consistent with the

reason that we choose 6} (C) as the geometric phase for
pure states in PTQM. Its effect will be clarified later.

2.  Generalization to lattice systems

The previous formalism for the IGP is a generalization
of the unitary evolution for pure quantum states where
the eigenvalues of the Hamiltonian and the density ma-
trix remain unchanged. Therefore, it does not apply to
lattice systems with energy bands since the energy now
depends on the crystal momentum, which is often treated

as a parameter in characterizing the geometry or topol-
ogy. Fortunately, only a slight modification is needed to
extend the previous formalism to lattice systems.

For simplicity, we consider a 1D periodic lattice system
where the crystal momentum is denoted by k. Following
Ref. [85], the 1D Brillouin zone (BZ) introduces a “trans-
port” of the density matrix

p(k) =D M)W (k) (@ (K)]. (39)

As a generalization of Eq. (33), if the following condi-
tion is satisfied, the eigenstates of p are transported in a
parallel manner:

where the derivative is taken with respect to k. In
general, |U,, (k) and |®,(k)) do not meet this parallel-
transport condition. Nevertheless, we only need to per-
form the following phase-shift,

n=1,2,---,N, (40)

(W (k) — eI 2Ol MmO, (),
(B, (k)| — efo (2nING I Ta KN (Y (41)

to ensure that they satisfy Eq. (40) while no other effects
are introduced.

Suppose the transport starts from k = 0, the system
acquires an instantaneous geometric phase

Oc(k) = arg Y (v An(0) A () (R(0) [T, (R)))  (42)

since the dynamic phase has been eliminated by the
parallel-transport condition.  If the transport goes
through the entire Brillouin zone, the periodic condition
requires A\, (2m) = A,(0), and the results in Sec.IITA 2
implies |W,, (27)) = ¢%»(B2)| ¥, (0)). Thus, the IGP that
the system acquires at the end of the transport is

0 (BZ) = arg Y _[An(0)e®(B2)]

0= BEn(0)

i0;, (BZ) 43
O

:argzn:{

which is a direct generalization of Eq. (38) to lattice sys-
tems.

IV. EXAMPLES

To better understand the IGP of PTQM systems, we
investigate two examples exhibiting different IGP behav-
iors. The first example is fully solvable, allowing for a
determination of the proper S and providing insights
into the roles of #' and 6%. The second one is a PT-
symmetric lattice model, which may be more relevant
to condensed-matter systems. Although the explicit ex-
pression of Sproper for the latter is not readily available,



the gauge-independent #' can still be evaluated. These
two examples exhibit significantly different properties.
For example, the former demonstrates a temperature-
induced geometric phase transition while the latter does
not.

A. Two-Level System

We first study a PT-symmetric two-level system intro-
duced in Refs. [45, 86] and calculate its IGP. The Hamil-
tonian is given by

H = €elays + (an” +ibn?) - o, (44)

is the collection of Pauli ma-

where o = (04,0,,0,)7
0 —

trices and n” = (sinfcos ¢,sinfsin¢,cosf)?, n
(cos B cos ¢, cos @ sin ¢, —sin #) 7 are the unit vectors re-
spectively along the radial and tangent directions of a
meridian on a unit sphere. The eigenvalues are FL =
€ £ va? —b%2. We limit our discussion to the regime of
a®? > b2, where the PT-symmetry is preserved and Ey is
real. Without loss of generality, we let a > 0. The two
eigen-vectors are
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where o = a—i-\/% and ny = e it
normalization coefficients. In the broken P7T-symmetry
phase where a? < b2, it is known that (@4 |W,) = 0 [87,
88]. Specifically, when a? = b?, ny diverges. Thus, the
formalism developed for the P7T-symmetric case breaks
down. A full analysis of the broken P7 -symmetry phase
is beyond the scope of the present work. The metric

operator W in the PT-symmetric regime is
b
W=1--n’ o, (47)
a

where n® = (—sin ¢, cos ¢,0)7 is the unit tangent vector
of a latitude. In what follows, we will fix a and b, thus
the parameters (6, ¢) form the parameter manifold 52, a
unit spherical surface.

Using Eq. (18), 6% associated with a loop C' on S? is
given by [45]
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if the north pole is enclosed by C, or

92.(C) (©) (49)
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if the north pole is not enclosed by C. Here Q(C) =
%dd)(l — cosf) is the solid angle enclosed by C' with

respect to the origin.

Figure 1. Contour plot of 6c(C) as a function of 8 and 0 €
[0, 7], where the range of 0 (C) is within [0,2n]. The black
curve shows the arc § = @, and the value of 6¢(C)
jumps at the singular points A and B. The behavior along
the black dashed line will be depicted latter.

As a concrete example, we take a = 3 and b = /5, so
the eigenvalues become FL = e+ 2. To calculate the two
terms of §1(C) via Eq. (28), a proper S is needed, which
may be constructed by solving a differential equation [45].
Details are summarized in Appendix D. Explicitly, it is
given by
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Under this proper transformation, the original non-
Hermitian Hamiltonian is converted into a Hermitian
one:

_ €+ 2cosf 2¢= %" sin 6
HO = Spr})per HSPTOPST = < .

27" sinh ¢ — 2cosf
(51)

The eigenvector associated with €42 is

e kS [cot(8)+csc(6)]
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It can be shown that
1
(08 1S71dS|wl) = —Vosin 6do,
iy{ (WO |S1S|W0 )dt = —ig\/gsine, (53)
C

where the loop C is chosen as a circle of latitude 6. Sim-
ilarly, the imaginary part of 6 is

17{ (00171800 )dt =i VBsing. (54)
C



Since the north pole is enclosed by C' (a circle of latitude),
03 (C) is evaluated by Eq. (48). Using Eqs. (28), (48),
(53) and (54), the geometric phases associated with the
two eigenstates are

2 S
0L (C)=m (—&—?;coq@) — ig\/gsiné’,
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0L (C) =7 (;05) + ig\/gsinﬁ, (55)

respectively. Here an extra factor 27 is dropped from
6% (C). Accordingly, the IGP is
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where 6% is the real part of 01, as shown by Eq. (28).
The imaginary part of 1 actually changes the thermal
weight of each energy-level.

Eq. (14) shows that the IGP is the argument of
Tr [p(0)U(¢)], which is the “returning amplitude” be-
tween the initial state p(0) and the instantaneous state
p(t) [47, 77]. Tt can also be thought of as a generalization
of the Loschmidt amplitude in mixed quantum states. At
its zeros, the IGP exhibits discontinuities and nonanalyt-
ical behavior, signaling a change of the geometric nature
of the system reflected by the IGP. In this example, the
second line of Eq. (56) shows that 6g(C) may become

singular if § = @. To examine the IGP of PTQM,
we visualize our findings in Figs. 1, 2, and 3.
In Fig. 1, we present the contour plot of 0 (C) as

a function of f and 6. On the arc § = @,

there are two singular points A and B satisfying A 5 =
arccos (j:%) at which
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Thus, the IGP changes rapidly near A and B according to
Eq. (56), indicating discrete jumps of 0 (C) across those
singular points. In stark contrast, a jump of the IGP at
finite temperature has been ruled out in any two-level
model of Hermitian quantum systems [77].

To grasp the physical significance of the arc § =
@, we revisit the corresponding Hermitian quan-
tum system, where the thermal weight of each level is
proportional to e¥2# at temperature T = % AsT — 0,
the relative weight between the excited and ground states
becomes limg_s 4 ee;—z; = 0, leading the IGP to con-
verge to the geometric phase of the ground state. In the
infinite temperature limit (8 — 0), the relative weight

becomes limgﬁo% = 1. In this case, the Hermi-
tian density matrix corresponds to the maximally mixed
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Figure 2. (Top panel) 6 (C) as a function of 6 at fixed T' =
i. When crossing the singular points 5 = arccos (é) =1.23
and fp = arccos (—3) = 1.92, there is a £7-jump in 6c(C).
(Bottom panel) 6¢(C) as a function of 8 for the evolution
along the circle of latitude with 65 = 1.23. As the system
crosses the critical inverse temperature 8. = 1.66, g (C') ex-

hibits a m-jump.

state, where each level has equal thermal weight, and the
IGP loses its resemblance to the ground-state geometric
phase. Turning to P7-symmetric systems, the parallel-
transport condition eliminates the dynamic phase from
the total phase, leaving a complex 6} . The imaginary
part of §1 modifies the thermal weights of the two lev-

els to exp [:F (2ﬂ— @)], which will be referred

to as the “effective thermal weights”. Notably, in the
low-temperature limit, the behavior of the IGP can still
mirror that of the corresponding Hermitian system. In

Fig. 1, the domain where 5 > @ corresponds to the
phase at “effective” positive temperatures for the non-
Hermitian quantum system. The arc f = @ signi-
fies the “effective” infinite-temperature threshold. Con-
versely, the regime where g < @ corresponds to
the phase at “effective” negative temperatures. In this
scenario, the original temperature T alongside with the
imaginary part of 01 determines the relative thermal dis-

tribution between the excited and ground states.

At the singular points A and B, the corresponding
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critical inverse temperature is 5, = 1
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Figure 3. 0c(C) as a function of In 8 when the system evolves
along the circle of latitude 6§ = 1.7, corresponding to the
dashed line in Fig.1. In this case, the imaginary part of 81
has a significant effect on the thermal weights.

Moreover, Eq. (55) implies

03 (0a) — 0% (0a) =m, 07 (0p) — 0% (0p) = —m. (57)

When the system is at temperature 7, = % and evolves
along a circles of latitude 6 < 4, the system resides in
the “effective” positive-temperature region, as it is situ-
ated below point A in Fig. 1. In this scenario, the ef-
fective thermal weight of the ground state exceeds that
of the excited state. Thus, g resembles the geometric
phase of the ground state, #2 (). Upon crossing §, from
below, the system with 6 > 60, enters the “effective”
negative-temperature regime, causing the relative effec-
tive thermal weights of the ground and excited states to
reverse. The IGP then begins to resemble the geometric
phase of the excited state, 62 (6). According to Eq. (57),
the IGP undergoes a 7w-jump, indicating that the geo-
metric nature of the evolution along the circle of 6 < 64
is essentially different from that of the evolution along
the circle of & > 05 at T,.. Similar phenomena occur
when crossing 0 at T, as well. The IGP experiences
a —m-jump according to Eq. (57). To better visualize
the phenomena, we plot the IGP versus the latitude 6 at
8. = 1.66 in the top panel of Fig. 2. The behavior of the
IGP totally agrees with the above analysis.

Similarly, the geometric nature of the evolution along a
circle of fixed latitude 8 = 05 changes as the inverse tem-
perature crosses (.. This transition is clearly depicted
in the bottom panel of Fig. 2. We refer to this non-
analytical behavior of the IGP as signaling a geometric
phase transition. Explicitly, the system at point A is in
the “effective” positive-temperature phase when g > 3,
and the IGP resembles 6% (C') = Z, the real-valued ge-
ometric phase of the ground state. After crossing [,
the system enters the “effective” negative-temperature
phase with 8 < ., and the IGP changes to resemble
0%(C) = —% = 3 mod 2, the real-valued geometric
phase of the excited state.

When 6 # 6xp, the IGP represents a continuous
interpolation between the values of 62 of the excited
and ground states as temperature varies. If 6 = F,
Eq. (55) implies 62 = 62 = 7 and indicates that the
IGP is a trivial interpolation. To present a nontriv-
ial interpolation, we choose § = 1.70, which leads to
62 ~ 3.75 and 6% ~ 2.53. The behavior of 6¢(C) is
illustrated in Fig. 3, where S transitions from 0 (the
infinite-temperature limit) to +oo (the low-temperature
limit) displayed on a logarithmic scale. In the scenario
where 8 — 400, 0g(C) — 6% (C). Conversely, when 3
approaches 0, 0 (C) approaches 63 (C).

B. 1D P7-symmetric Su-Schrieffer-Heeger (SSH)
Model

Our second example investigates a lattice system, a
bipartite dissipative model with staggered imaginary on-
site potentials and alternating hopping parameters [89],
inspired by the Su-Schrieffer-Heeger (SSH) model [90].
The Hamiltonian can be written as

H= Z [each,cm +epdl,dy + v (cdm + dfcm)

+v' (Cjﬂdm-f-l + dinﬂcmﬂ : (58)

Here, A and B are the two sites of the mth cell, €4 and
ep = €4 — 2il" are the associated onsite energies with I"
denoting the imaginary potential, and v and v’ are the
intracell and intercell hopping coefficients, respectively.
The Hamiltonian with periodic boundary condition can
be cast into the Bloch form

=) [ 5] (%) e

where v, = v + v'e*,

We will set e4 = —eg = iI" to
symmetrize the onsite potentials. Introducing cos ¢ =
ir

which i < tri . A
—L hich is a complex trigonometric function
VIve[2=T2’ '

the eigenvalues and eigenstates of H and HT are given as
follows.

Ey(k) = £/|vg]? — T2,
bk Pk
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If |vg|? > T2, the model is PT-symmetric and E. (k) are
real-valued. Using Eq. (22), the Berry phase for each
energy level associated with the first Brillouin zone is

0L(BZ) = i / Z (a2 ) di (61)



Introducing the parameters ¢ = %,7 n = %, T = (qiiql)g,
and y = (q+14)7%ﬂ72 and following Ref. [84], the expression

of 61 becomes
9L(B7) = 76(q — 1)

K@)+ 0wy|. (62

T [
(q+1)2—n? q+1

Here ©(q — 1) is the step function, and

Kw)= [ -

0 +/1—ysin® K’

2 dk

o) = [ (63)
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are elliptic integrals. The presence of those integrals
makes it difficult to derive an analytic expression for
Sproper- Nevertheless, 9:2‘: can still be obtained by extract-
ing the real part of 61, as previously explained. When ¢
changes from 1 — € to 1 + € with € — 0, the value of 62
experiences a m-jump due to the step function, which is
similar to the result of the Hermitian SSH model [91], as
the topological structure of the energy bands changes.

If |v,|? < T2, the system is in the broken PT-symmetry
regime, rendering the previous formalism inapplicable.
Utilizing the previously introduced parameters, the con-
dition for preserving PT-symmetry can be expressed as
1+ 2qcosk + ¢*> > n?, implying

(g+1)> —n® > 2¢(1 — cosk) > 4q, (64)

which is equivalent to 0 < y < 1 (note that ¢ > 0). In
this case, the elliptic integrals in Eq. (63) are both real-
valued. Accordingly, Eq. (62) indicates that 6% (BZ) =
Refl (BZ) = mO(g —1). Solving the inequality y > 1, we
get the broken PT-symmetry regime on the (g, n)-plane
determined by 1 < ¢g<n+1lorl—mn<g<1. In this
case, the elliptic integrals in Eq. (63) become singular
since 1 — ysin? k can cross zero.

According to Eq. (43), the IGP of the PT-symmetric
SSH model is

0—BEL(0) | o BE_(0)

—BE,(0) ,i0" (BZ) —BE_(0) ,i0* (BZ)
0c(BZ) = arg le e re ¢ ]

—BEL(0)—Im#t i6?

te +_1_e—ﬁE_(o)—1rm9lei93]

=arg {e
— arg KeﬁE,(o)Hmei n e—ﬁE,(o)—Imei) ei@i}
=62, (65)

where the label “BZ” is suppressed after the second line
for simplicity. In the derivation, £y = —F_, Im@}_ =
—Imf! and 6% = 6% (since 7 = —7 mod 27) have been
applied. Unlike the first example, the IGP of the SSH
model in the P7T-symmetric phase is equal to the real-
valued geometric phase 62 of the ground state and inde-
pendent of temperature. Consequently, the IGP in this
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Figure 4. (Top panel) Plot of the IGP in the (g,7n)-plane.
The grey region represents the P7T-broken symmetry phase.
In the PT-symmetric regions where ¢+n <1 and ¢ > n+1,
the value of O (BZ) is 0 and =, respectively. At the point
(g,m) = (1,0), the IGP experiences a m-jump. (Bottom panel)
Plot of the IGP in the (q,T)-plane with n = 0.3. The region
where 0.7 < ¢ < 1.3 represents the P7T-broken symmetry
phase, which crosses the ¢ = 1 line. Similarly, in the two PT-
symmetric regions where ¢ < 0.7=1—nand ¢ > 1.3=1+mn,
the value of the IGP is respectively 0 and 7.

model cannot probe any geometric phase transition in-
duced by temperature. However, it inherits the same
topological properties as the geometric phase for pure
states, meaning that it can still detect the same geomet-
ric phase transitions induced by ¢ and 7 as 62 does.
Figure 4 illustrates the behavior of g on the (g,7)-
and (¢, T)-planes, respectively. In the top panel, the IGP
is plotted in the PT-symmetric regions with ¢ + 7 < 1
and ¢ > n+ 1. The point (¢,n) = (1,0) is the gap-
less point where the geometric phase jumps. The IGP
in the two PT-symmetric regions takes the values 0 and
m, respectively. Therefore, the IGP is constant within
the same PT-symmetric region but differs from the IGP
on the other region. In the bottom panel, we plot the
IGP in the (¢, T)-plane when n = 0.3. At finite temper-
atures, the IGP exhibits the same features of the geo-
metric phase for pure states: Its values are respectively
0 and 7 in the two PT-symmetric regions. However, the
broken P7T-symmetry region separates the two regions.
Thus, the IGP from the PT-symmetric formalism is dis-
rupted. Nevertheless, the IGP reveals the different geo-
metric phases as ¢ and 7 vary. For the PT-symmetric



SSH model studied here, the independence of the IGP
with respect to temperature allows the determination of
the value of 2 at zero temperature even when the system
is at finite temperature.

C. Implications

On the one hand, PTQM may be realized in driven
systems. For example, Ref. [92] demonstrated a PT-
symmetric quantum system with two coupled optical
waveguides selectively pumped. By modulating the re-
fractive index along the waveguides, the Hamiltonian
may be engineered to the desired form. On the other
hand, the IGP of mixed states in Hermitian systems have
been measured by using a Mach-Zehnder interferome-
ter setup demonstrated in Refs. [93, 94], where mixed
states were generated through two methods: Decoher-
ing pure states with birefringent elements and creating a
non-maximally entangled state of two photons followed
by tracing out one photon.

As shown in this work, the IGP of PTQM is in general
complex-valued, where the real part represents a phase
factor while the imaginary part adjusts the distribution.
By applying the phase measurement [93, 94] to extract
the IGP of mixed states in PT-symmetric systems, it is
likely to extract only the thermal average of the IGPs
of individual states. Nevertheless, one may compare the
population distribution of the evolved system with that
of a corresponding system without the accumulation of
the IGP. The difference in the distribution is due to the
imaginary part of the IGP of the PTQM system. There-
fore, the real- and imaginary- parts of the IGP of PTQM
systems seem to be measurable albeit the procedure is
more complicated due to the lack of Hermiticity.

V. CONCLUSION

The concept of geometric phase has been general-
ized to PTQM via the introduction of parallel-transport.
For pure-states, the parallel-transport conditions for the
eigenstates of H and Hj lead to distinct generalizations
of the geometric phases, ' and 62, as obtained from the
conventional methods. In general, 8" is complex and 62 is
its real part. As @' arises from the non-Hermitian Hamil-
tonian, it is generalized to mixed states in PTQM. More-
over, the discussion of the IGP of mixed states is mean-
ingful after the dynamic phase has been removed by the
parallel-transport condition. The imaginary part of the
IGP of PTQM affects the thermal weights and introduces
effective temperatures. Consequently, even in a simple
two-level system, the IGP of PTQM can display interest-
ing behaviors unavailable in conventional QM, such as
the geometric phase transition of a two-level system at
finite temperature. For more complicated non-Hermitian
quantum systems, the generalized IGP may serve as a
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probe to uncover intriguing characteristics due to geom-
etry and topology.
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Appendix A: Dynamic equation of |¥°)

Recalling that H = SHpS™! and [¥°) = S~1|¥), we
substitute them into Eq. (5) and get

i%(s\\p“)) = iS|w0) +15%\‘IJO>
_H- %sz ($7H)Ts 4 (57187 s)w)
- {HS - % {SST(S*)T + SS*S} } [B%). (A1)

After moving the first term iS |0 to right-hand-side and
left-multiplying S~ on both sides, we obtain the dy-
namic equation of [W0):

i%\\p% _ {Ho + % (5715~ s1(5] } 0 (A2)

If S is a proper mapping satisfying
(A3)

N1 N1

SproperSPT‘)PEr = (Spr()perspr(’l)er)Ta
the dynamic equation |¥°) reduces to Eq. (7), the or-
dinary Schodinger equation. Thus, the time-dependent
PTQM is “mapped to” the conventional QM by Sproper-

Appendix B: Details of the geometric phase of pure
states

To derive the geometric phase shown in Eq. (22), the
expansion (20) is plugged into Eq. (6), yielding

i) = 3 [+ )% () + i)

(B1)

where E,, = Ey, + i<\119n|5_15|\119n>. Applying Eq. (6),
the left-hand-side becomes

i10) =3 enel®r (B, —iS87Y) W), (B2)



Multiplying the above equations by (®,| from the left
and applying the relation [45]

(0, |H|T,,)

®,|0,,) =
(P | W) £, L,

for m # n, (B3)

we get

bn = i, (0, 0,)
Y el @m0 (@, _H iS58 W)

En - Em
m#n
(B4)

As in the conventional quantum mechanics, the adiabatic
approximation is employed, so level-crossing terms (i.e.,

terms with m # n) are dropped. We finally get

d

whose solution is
en(t) & e (0)e™ Jo 4 (2n ()15 ¥a () (B6)

Next, we verify that

R RO AT

1
=i f R (@I + (0T,
C
=0, (B7)
subject to S~S (S71S)f.  Using [®,(t)) =

W(t)|¥,(t)) and Wt = W, the first term on the right-
hand-side of Eq. (18) is nothing but 6., which can be

J

(@aITOUH ()T (1)) = (@ (t)] | ~(Dn(t)]

Note that [ (®,(#)-4|¥,(#'))dt’ can be complex-

de’
valued, so U~! # Ut in general. Thus, U does not nec-
essarily represent a unitary evolution.
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further expressed as
08 =1  de(@, ()] 31 a(0)
n — n dt n
=i f @l )]s S 0) +1 f (01100 0)

= 7{ At (00 (£)[S 1510 (1)) + 02, (B3)

The second term on the right-hand-side of Eq. (18) is

i

5 § OV, 0)ar

5 $ OIS+ (ST, (1),
c

—5 § a0 [$TE T+ 88| oot
c

——i 75 (W0,(1)] 5 L8|W0 (1)) dt, (B9)
C

where we have applied ST(S~1)f = §~1§ from the proper

mapping condition. Along with Eq. (B8), we conclude

that 68 = 92.

Appendix C: Details of geometric phase of thermal
states

To verify that U(t) in Eq. (35) satisfies the parallel-
transport condition (33), we need the following identities:

0(t) =~ 3 (@0 S wa )0

_ ryj_d ey [ d
+ Ze f<¢’”(t )ldt’ [Wn (t))dt <dt|\I’n(t)>) <(I)n(0)|7

UL (t) = e (B @IGz ¥ 1y (0)) (@, (1))

n

They lead to Eq. (33):

100+ (G100 ) @01 | a0

(C1)

Appendix D: Proper mapping of the two-level
system

To search for a proper mapping S of our example in the
main text, we first notice that W = (S~1)fS~!, which
is invariant under a U(N) transformation w: S'~! =
uS™t — W = ($""1)18'~1. We can use this degree of



freedom to obtain a proper S. For convenience, we ini-
tially take W = (S~1)? or conversely S~ = /W since
W is already given by Eq. (47). Since W is Hermitian,
this kind of S has at least two solutions:

vaz —-b2+a ibe~im
—ibel™ va2—0b02+a

—1
S:I: = )

V20 (VaZ P % a)

(D1)

Take a = 3 and b = /5 and choose S = Sy without loss
of generality, then

(D2)
and the original Hamiltonian is converted to

Celpra . [€+2cos0 2e7¥sing
Ho =5 HS_(2ei¢sin€ €e—2cosf )’ (D3)

The eigenvector of Hy associated with £, = e+ 2 is

e~ % (cot f4-csc 0)
_ \/ (co csc6)?
|\I,5)r(9, ¢)> _ ( t0+1 0)2+1

(cot O+csc 0)2+41

(D4)
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which leads to
1
(w9 S~1ds|vY) = 71(\/58,1119 +icos 6)de,

i]{ (U8 S~1dS| v )dt = g(cose —iv5sinf). (D5)
c

Apparently, the second term of 0_1~_ is complex in this
case. To make it purely imaginary, we impose a unitary

transformation S~!' = wS,l .., where u can be fixed
~1

b}' the condition of a proper mapping Sproper Sproper =
(Sproper Sproper ). This is equivalent to solving the equa-
tion
. 101 1o\ T
i=$ S—(S s) u (D6)
subject to the initial condition w(0) = 1ax2. The gen-
eral solution is quite involved. Fortunately, if the system

evolves along a circle of latitude such that df = 0, an
analytical expression of u can be found as

et 0
u(¢) = ( m) : (D7)
0 e 1
Accordingly, the proper mapping S is
1 /15 i¢ 1-\/5 _ sie
= =e14 —=1 =e 4
Sproper = Su = 12 3 sig 12 1r2 ig (DS)
51\£97 2y ze T
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