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Abstract: The paper analyzes the closed-loop stability of Dynamically Embedded Model
Predictive Control for input-constrained continuous-time nonlinear systems. Given a stabilizing
continuous-time optimal control problem, the proposed method performs a discrete approxima-
tion to obtain a finite number of optimization variables. The resulting optimization problem is
then embedded into a dynamic feedback law that evolves in parallel to the system. Using Input-
to-State Stability, it is shown that the dynamic interconnection between the ideal continuous-
time model predictive controller and the dynamically embedded solver is asymptotically stable
for a sufficiently small discretization step and sufficiently fast solver dynamics. Numerical results,
however, highlight a counter-intuitive behavior: as the discretization step decreases, the stability
of the closed-loop system tends to deteriorate. This suggests that, although the discretization
should be sufficiently accurate to correctly capture the behavior of the system, oversampling
the system dynamics may be just as harmful as undersampling.

Keywords: Nonlinear predictive control, Numerical methods for optimal control, Real-time
optimal control, Stability of Nonlinear Systems

1. INTRODUCTION

Model Predictive Control (MPC) is a popular control
strategy for stabilizing multi-input nonlinear systems sub-
ject to constraints. As detailed in Mayne et al. (2000) and
Goodwin et al. (2006), the idea behind MPC is to solve
an Optimal Control Problem (OCP) at each time instant
and apply the first step of the optimal control sequence as
an input to the system. Due to the challenges of solving
continuous-time OCPs, MPC is typically formulated in
discrete time. For continuous-time systems, Magni and
Scattolini (2004) introduced a sampled-data MPC formu-
lation that relies on piecewise-constant control inputs to
provide a sufficient amount of time for solving the OCP.
Since solving OCPs to completion can be computationally
prohibitive, the literature features a number of discrete-
time MPC strategies that rely on a running estimate of
the OCP solution, updated at each timestep. Notable ex-
amples include Suboptimal MPC by Scokaert et al. (1999),
CGMRES by Ohtsuka (2004), RTI by Diehl et al. (2005),
IPA-SQP by Ghaemi et al. (2009), and TDO by Liao-
McPherson et al. (2020).

Interestingly enough, the same idea can be implemented in
continuous time by replacing the discrete-time OCP solver
with a continuous-time equivalent. The result, hereafter
referred to as Dynamically Embedded MPC (DE-MPC), is
a continuous-time MPC scheme that tracks the solution to
the OCP with a bounded error. Several variations of DE-
MPC have been proposed for the case of linear systems
by Feller and Ebenbauer (2014), Nicotra et al. (2019), and
Yoshida et al. (2019). Although the underlying ideas are
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Fig. 1. DE-MPC can be interpreted as an ideal continuous-
time MPC subject to two disturbances: the first is
introduced by discretizing the OCP, the second is a
result of not solving the OCP to completion.

similar, none of these papers study how discretizing the
OCP affects the overall stability of the closed-loop system.

This paper introduces a general DE-MPC formulation for
nonlinear systems subject to input constraints. Given the
traditional continuous-time MPC formulation as a starting
point, the first step is to discretize the OCP so that
there are a finite number of optimization variables. The
discretized OCP is then solved in continuous-time using a
dynamic feedback law that runs parallel to the controlled
system. Using Input-to-State Stability (ISS), it is shown
that, if the OCP discretization is sufficiently accurate and
the OCP solver is sufficiently fast, the resulting closed-loop
system is asymptotically stable. Numerical simulations
validate the proposed method but highlight a counter-
intuitive behavior: as the OCP discretization accuracy



increases, the system becomes more difficult to stabilize.
This behavior is studied in detail for a very simple linear
model and is then shown to hold for a more general
nonlinear problem.

The paper is organized as follows: Section 2 introduces
the standard (ideal) continuous-time MPC formulation
and details its main implementation challenges. Section 3
shows how to discretize a continuous-time OCP and stud-
ies the effects of discretization on the closed-loop system.
Section 4 shows how the solution to the discretized OCP
can be tracked with a bounded error using a dynamic feed-
back law and provides sufficient conditions for asymptotic
stability of the closed-loop system in Figure 1. Section
5 features numerical validations of the proposed method
while highlighting how the discretization step influences
the stability of the closed-loop system.

2. PROBLEM STATEMENT

Consider a continuous-time system

ẋ(t) = f(x(t), u(t)) (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and
f : Rn ×Rm → Rn is the system dynamics. The system is
subject to input constraints u ∈ U, where U is a closed,
convex set.

To control the system using continuous-time MPC, we
ideally need the solution to the optimal control problem

min m(ξ(T )) +

∫ T

0

l(ξ(τ), µ(τ))dτ (2a)

s.t. ξ̇(τ) = f(ξ(τ), µ(τ)), ξ(0) = x, (2b)

µ(τ) ∈ U, ∀τ ∈ [0, T ], (2c)

where T > 0 is the prediction horizon, m : Rn → R is the
terminal cost and l : Rn×Rm → R is the stage cost. Then,
if we denote the solution mapping of (2) with µ∗(τ |x), the
continuous-time MPC can be implemented by assigning
the feedback law u(x) = µ∗(0|x). As detailed in Feller and
Ebenbauer (2014), state constraints can also be taken into
account using barrier functions on the stage cost.

Assumption 1. The dynamics f : Rn × Rm → Rn are
Lipschitz continuous, stabilizable, and admit the origin as
a feasible equilibrium point. The functions m : Rn → R
and l : Rn × Rm → R are convex, twice continuously
differentiable, zero at the origin and lower bounded by
quadratic functions. Notably, there exists η > 0, such
that l(x, u) ≥ η∥x∥2. In addition, there exists a scalar
χ0 > 0 and a terminal control law κ : Rn → Rm such that,
κ(x) ∈ U, ∀∥x∥≤ χ0 and

∇m(x) + l(x, κ(x)) ≤ 0, ∀∥x∥≤ χ0.

Assumption 2. The parametrized optimal control problem
(2) admits a solution mapping µ∗(t|x) that is strongly
regular in x. Specific conditions for this to hold are detailed
in Dontchev et al. (2019).

The following theorem states a well known result for
continuous-time MPC.

Theorem 3. Under Assumptions 1 and 2, there exist posi-
tive scalars χ1 > 0 and ∆1 > 0 such that the origin of the
closed loop system

ẋ = f(x, µ∗(0|x) + d) (3)

is ISS with state and input restrictions ∥x(0)∥≤ χ1 and
∥d∥∞≤ ∆1.

Proof. Given d = 0, it follows from Mayne et al. (2000)
that the optimal control policy µ∗(τ |x), t ∈ [0, T ] and the
resulting optimal trajectory

ξ̇∗(τ |x) = f(ξ∗(τ |x), µ∗(τ |x)), ξ∗(0|x) = x, (4)

are such that the optimal cost

V (x) = m(ξ∗(T |x)) +
∫ T

0

l(ξ∗(τ |x), µ∗(τ |x))dτ (5)

satisfies V̇ (x) ≤ −η∥x∥2, ∀∥x∥≤ χ0. Since the unforced
system is locally exponentially stable, it is also locally ISS
when d ̸= 0.

Unfortunately, the proposed continuous-time MPC formu-
lation presents a few challenges. First, we need to solve the
continuous-time optimal control problem (2). Second, we
need to solve it “instantaneously” to have a continuous-
time control law. To address the first challenge, we con-
sider a discrete approximation of (2) that features a finite
number of optimization variables. The second challenge
will then be addressed by having a continuous-time solver
run in parallel with the system, thereby tracking the OCP
solution with a bounded error.

3. OPTIMAL CONTROL PROBLEM
DISCRETIZATION

To discretize the OCP (2), we first define the discretization
step td = T/N , where N ∈ N ensures that the prediction
horizon T is an integer multiple of td. The system dy-
namics can then be discretized using the forward Euler
approximation.

fd(xk, uk) = xk + tdf(xk, uk). (6)

Likewise, the integral portion of the cost function can be
discretized using the rectangular approximation∫ T

0

l(ξ(τ), µ(τ))dt ≈
N−1∑
k=0

tdl(ξk, µk), (7)

thereby obtaining the discretized OCP

min m(ξ(N)) +
N−1∑
k=0

tdl(ξk, µk) (8a)

s.t. ξk+1 = fd(ξk, µk), ξ0 = x, (8b)

µk ∈ U, ∀k ∈ [0, N − 1], (8c)

Let µ∗
k(x) denote the solution mapping of (8). In general,

the OCPs (2) and (8) are such that µ∗
k(x) ̸= µ∗(ktd|x).

Therefore, there is no guarantee that u(x) = µ∗
0(x) would

be a stabilizing feedback law for system (1). To address this
issue, the following lemma notes that the discretization
error is proportional to td.

Lemma 4. There exist positive scalars L > 0 and χL > 0
such that the discretization error ∆ud = µ∗

0(x) − µ∗(0|x)
satisfies

∥∆ud∥≤ Ltd∥x∥, ∀ ∥x∥≤ χL. (9)

Proof. Following Assumption 2 and the definition of
strong regularity, we have that, for a fixed td, there exists
c1 > 0

∥µ∗(0|x)∥≤ c1∥x∥, (10)



for x in a neighbourhood of the origin.
As detailed in Dontchev et al. (2019), there exists c2 > 0
such that

∥∆ud∥≤ c2td, (11)

for a fixed x. Dontchev et al. (2019) also proves that the
discretized OCP (8) is strongly regular and satisfies

∥µ∗
0(x)∥≤ c3∥x∥, (12)

with c3 > 0. Using the triangular inequality, we then show

∥µ∗
0(x)− µ∗(0|x)∥≤ (c2 + c3)∥x∥. (13)

Equation (9) follows from the fact that (11) holds for
fixed td, (13) holds for fixed x, and both must hold
simultaneously in a neighbourhood of the origin.

Remark 5. In principle, the results obtained in this paper
are independent on the discretization strategy, meaning
that it is possible to replace the forward Euler and rect-
angular approximations with any other numerical method
as long as Lemma 4 remains satisfied.

Having established that the discrete approximation µ∗
0(x)

belongs to a bounded neighbourhood of the ideal MPC law
µ∗(0|x), the following theorem shows that the discretiza-
tion retains similar ISS properties as Theorem 1.

Theorem 6. Given a sufficiently small discretization step
td, there exist positive scalars χ2 > 0 and ∆2 > 0 such
that the origin of the closed-loop system

ẋ = f(x, µ∗
0(x) + δ) (14)

is ISS with state and input restrictions ∥x(0)∥≤ χ2 and
∥δ∥∞≤ ∆2.

Proof. Due to Theorem 3, the system

ẋ = f(x, µ∗(0|x) + ∆u+ δ) (15)

is ISS with restrictions ∥x(0)∥≤ χ1 and ∥∆u+ δ∥∞≤ ∆1.
As such, given δ = 0, there exists a class K function γ1
such that

lim
t→∞

∥x(t)∥≤ γ1

(
lim
t→∞

∥∆u(t)∥
)
, ∀∥∆u(t)∥≤ ∆1, (16)

where limt→∞ is limit superior. Following Lemma 4,

lim
t→∞

∥∆u(t)∥≤ Ltd lim
t→∞

∥x(t)∥, ∀∥x(t)∥≤ χL. (17)

Under the specified conditions, it follows from the small
gain theorem that, given a sufficiently small td satisfying

Ltdγ1(s) < s, ∀s ≤ ∆1, (18)

the system is locally exponentially stable. As a result, it is
locally ISS when δ ̸= 0.

Corollary 7. Under the same conditions as Theorem 6,
there exists γ2 ∈ K such that the closed-loop system (14)
satisfies the input to output gain

lim
t→∞

∥ẋ(t)∥≤ γ2

(
lim
t→∞

∥δ(t)∥
)
. (19)

Proof. Due to Assumption 1, ẋ = f(x, µ∗
0(x) + δ) is

bounded for any bounded state ∥x∥ and input ∥δ∥. Thus,
Input-to-State Stability is sufficient to ensure Input-to-
Output Stability (IOS) when taking ẋ as an output.

The main interest in Theorem 6 is that it shows that
the continuous-time system can be stabilized by solving
the discretized OCP (8) as opposed to the original OCP
(2). However, continuous-time implementation would still
require us to solve (8) instantaneously. This limitation is
addressed in the following section.

4. DYNAMICALLY EMBEDDED SOLVER

The objective of this section is to drop the assump-
tion of having to solve (8) instantaneously by using
a continuous-time solver to track the solution as the
OCP parameter x(t) evolves over time. To this end, let
z∗(x) = [µ∗

0(x)
T , µ∗

1(x)
T , . . . , µ∗

N−1(x)
T ]T be the exact

solution to (8), and let the running estimate z(t) =
[µ0(t)

T , µ1(t)
T , . . . µN−1(t)

T ]T be the internal state of a
continuous-time solver in the form

ż = T(z, x). (20)

Rather than prescribing a specific solver, the following
assumption provides sufficient conditions under which a
generic solver can successfully run in parallel to the MPC.
A notable class of solvers that satisfies this assumption is
the projected gradient flow.

Assumption 8. Given a constant parameter x and a solu-
tion estimate z such that ∥z − z∗(x)∥≤ Zs, with Zs > 0,
the continuous-time solver (20) satisfies

(z−z∗(x))TT(z, x) ≤ −αθ∥z−z∗(x)∥β (21)

where α > 0 is a generic tunable parameter, whereas
θ > 0 and β ≥ 2 are positive constants that depend on
the specific choice of the solver.

Theorem 9. Under Assumptions 2 and 8, given a time-
varying x(t) satisfying ∥x∥∞≤ χs, with χs > 0, there
exists a scalar ∆s > 0 such that, the solver (20) is ISS
with state and input restrictions ∥z(0) − z∗(x(0))∥≤ Zs

and ∥ẋ∥∞≤ ∆s.

Proof. Consider the ISS-Lyapunov candidate function
W (z, x) = 1

2∥z−z∗(x)∥2. Following Assumption 8, its time
derivative satisfies

Ẇ ≤ −αθ∥z − z∗(x)∥β+|∂xz∗(x)|∥z − z∗(x)∥∥ẋ∥, (22)

where ∂xz
∗(x) is the Clarke generalised Jacobian of the

solution mapping z∗(x). Due to Assumption 2, there exists
a scalar D∗

x > 0 such that |∂xz∗(x)|≤ D∗
x, ∀∥x∥≤ χs.

Thus, the system satisfies the ISS-Lyapunov condition

Ẇ < 0, ∀∥z − z∗(x)∥> α−1D
∗
x

θ
∥ẋ∥. (23)

The input restrictions can then be obtained to ensure the
condition ∥z(t) − z∗(x)∥≤ Zs, ∀t ≥ 0. Namely, we have
∆s = Zsαθ/D

∗
x.

Corollary 10. Under the same conditions as Theorem 9,
the continuous-time solver (20) satisfies the input to out-
put gain

lim
t→∞

∥δ(t)∥≤ α−1D
∗
x

θ
lim
t→∞

∥ẋ(t)∥, (24)

with δ(t) = µ0(t)− µ∗
0(x(t)).

Proof. The statement follows directly from the fact that
δ(t) is the first element of the vector z(t)− z∗(x(t)).

Having shown that the continuous-time solver is able to
track a time-varying solution with a bounded error, the
following theorem addresses the stability of a dynamically
embedded MPC where the solver runs in parallel to the
system that is being controlled.

Theorem 11. Under Assumptions 1, 2 and 8, given a
sufficiently small td > 0 satisfying Theorem 6, there
exists a sufficiently large α > 0 such that the dynamic



interconnection of (14) and (20), with δ(t) = µ0(t) −
µ∗
0(x(t)), is Asymptotically Stable.

Proof. Theorems 6 and 9 ensure that the individual
subsystems (14) and (20) are ISS with nonzero state and
input restrictions. Moreover, it follows from Corollaries 7
and 10 that the two subsystems are IOS and satisfy the
asymptotic gains (19) and (24). Therefore, it follows from
the small gain theorem that, given a sufficiently large α
such that

α−1D
∗
x

θ
γ2(s) < s, ∀s ≤ ∆2, (25)

the dynamic interconnection of the two subsystems is
asymptotically stable with state and input restrictions
∥x(0)∥≤ χf , χf > 0, and ∥z(0)− z∗(x(0))∥≤ Zf , Zf > 0.

Theorem 9 states that, once the OCP has been discretized,
it is possible to implement a dynamically embedded MPC
by designing a sufficiently fast solver. However, the theo-
rem does not provide insight on the relationship between td
and α. Intuitively, one would expect that the discretization
step td should be “as small as possible” to minimize the
discretization error ∆ud(x) = µ∗(0|x)−µ∗

0(x). As shown in
the next section, however, this intuition may be inaccurate
since the choice of td has a non-trivial impact on both
γ2(·) and θ. As a result, the dynamically embedded MPC
may display counter-intuitive behaviors where, for a fixed
α, the overall stability may benefit from increasing the
discretization step td.

5. NUMERICAL ANALYSIS

5.1 Double Integrator: Discretization

To highlight and interpret the effects of discretization, we
begin by studying the unconstrained linear time-invariant
system

ẋ =

[
0 1
0 0

]
x+

[
0
0.1

]
u. (26)

Given the initial condition x(0) = [10, 0]T and the control
horizon T = 30s, consider the OCP

min ∥ξ(T )∥2P+
∫ T

0

∥ξ(t)∥2Q+∥µ(t)∥2R dt (27a)

s.t. ξ̇ = Aξ +Bµ, ξ(0) = x(t), (27b)

where Q = I2, R = 0.04, and P is the solution to the
Algebraic Riccati Equation ATP + PA − PBR−1BTP +
Q = 0.

As well known, the closed-form solution to this prob-
lem is the continuous Linear Quadratic Regulator (LQR)
µ∗(0|x) = −Kx, with K = R−1BTP . To study the effect
of discretization, however, we now consider the discrete
OCP approximation

min ∥xN∥2P+
N−1∑
k=0

∥xk∥2Qd
+∥uk∥2Rd

(28a)

s.t. xk+1 = Adxk +Bduk, x0 = x, (28b)

where Ad = I2+tdA, Bd = tdB, Qd = tdQ, Rd = tdR, and
N = T/td ∈ N. Since P is the solution to the continuous
Algebraic Riccati Equation, the solution to (28) is not the
discrete LQR. Nevertheless, as detailed in Rawlings et al.
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Fig. 2. Closed-loop trajectory of the double integrator sub-
ject to the exact solution to (28). As td decreases, the
system tends to the solution of the continuous-time
LQR. Increasing td slows the closed-loop response.

(2017), the closed-form solution can still be obtained by
propagating the Discrete Algebraic Riccati Equation

Pk−1 = Qd +AT
d PkAd −AT

d PkBd(Rd+BT
d PkBd)B

T
d PkAd,

with PN = P , and assigning µ∗
0(x) = −K0x, where the

optimal gain is K0 = (Rd +BT
d P0Bd)

−1BT
d P0Ad.

Having the closed-form expression of µ∗(0|x) and µ∗
0(x)

enables us to study how the choice of td affects the
behavior of the closed-loop system. Figure 2 shows the
closed-loop response of the output x1(t) = [1 0] x(t),
when subject to the control laws u(x) = µ∗(0|t) and
u(x) = µ∗

0(x) for different discretization steps td.

As expected from Lemma 4, the error between the
continuous-time optimal control policy and its discrete
approximation tends to zero as td → 0. More importantly,
we note that the closed-loop response becomes slower as td
increases. This behavior is likely due to the fact that the
forward Euler approximation becomes increasingly unsta-
ble as td increases, thereby causing the discretized control
law µ∗

0(x) to be overdamped compared to the continuous-
time solution µ∗(0|x).

5.2 Double Integrator: Solver Dynamics

Instead of using the closed-form solutions, we now solve
the discrete optimal control problem (28) using the pre-
conditioned gradient flow solver

ż = − α

cond(H)
∇z

(
1

2
zTHz + hT z

)
(29)

where H and h are the Hessian and the Jacobian of the
cost function described in (28), defined as

H = 2(R̂+ B̂T Q̂B̂) (30)

h = 2B̂T Q̂Âx(0) (31)

with
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Fig. 3. Convergence rate of (29) for a fixed value of x.
Increasing td causes the solver to converge faster.

B̂ =


B 0 . . . 0

AB B
. . .

...
...

. . .
. . . 0

AN−1B · · · AB B

 , Â =


A
A2

...
AN

 , (32)

Q̂ =


Qd

. . .
Qd

P

 , R̂ =

Rd

. . .
Rd

 (33)

Figure 3 shows the rate of convergence of (29) to the
optimal input µ∗

0(x), assuming a fixed parameter x. Here,
we note that higher values of td are associated with a
higher convergence rate. This can be explained by noting
that higher values of td entail lower N = T/td, thereby
meaning that the optimization problem has fewer variables
and is therefore easier to solve.

5.3 Double Integrator: Interconnection

When the solver evolves in parallel with the system, we
know from Theorem 11 that, for a given discretization
step td, there exists a sufficiently large α that stabilizes
the closed-loop system. In Figure 4, we illustrate the
behavior of the system for a fixed α and observe that the
interconnection features better stability properties as td
decreases.

This surprising result can be explained by considering
Figures 2 and 3. Notably, we observe that higher values of
td simultaneously slow down the dynamics of the closed-
loop system and speed up the convergence rate of the
solver. This combined effect makes it easier for the DE-
MPC to track the solution of the discretized OCP as the
discretization step increases. It is to be noted that varying
the fixed parameter, α, for each td may help regain the
stability of the closed-loop system. However, for a fixed α,
the behavior is as shown in this paper.

5.4 Emergency Lane Change: Linearized Case

To further our study, we now consider the linearized
dynamics of the emergency lane change maneuver found
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Fig. 4. Closed-loop response of the DE-MPC for α = 2e−3.
The system is unstable for td = 1, but converges to the
origin as td increases.

Table 1. Effect of discretization on the
linearized lane change model.

td .06 .1 .12 .2 .3

N 30 18 15 9 6

max(|eig(Ad)|) 24.5708 41.5986 50.1127 84.1691 126.7397

max(|eig(Ad)|N ) 5e41 1e29 3e25 2e17 4e12

in Liao-McPherson et al. (2020), but without the dynamic
extension, i.e. the control input u are the steering angles
and not their derivatives. The steering angles are not a
part of the state vector. The system is subject to input
constraints u1 ∈ [−30◦, 30◦] and u2 ∈ [−6◦, 6◦]. Given
the initial conditions x(0) = [5, 0, 0, 0]T and a prediction
horizon T = .6s, Figure 5 shows the effect of five different
discretization steps on the closed-loop stability of the DE-
MPC. The constrained OCP was solved using a projected
primal-dual gradient flow, e.g., Bianchin et al. (2022).

Once again, we verify that, for a fixed flow rate of the
solver, lowering td can make the interconnection unstable.
To provide more insight on this behavior, Table 1 reports
the eigenvalues of the open-loop matrix Ad and its matrix
exponential AN

d , with N = T/td. The table shows that
decreasing td causes AN

d to have larger eigenvalues which,
in turn, causes the optimal control problem to become
ill-conditioned. The loss of stability is then explained by
the fact that the dynamic solver is too slow compared to
the plant, thereby causing the interconnection to become
unstable. This behavior is somewhat similar to what is
observed in Liao-McPherson et al. (2022) for the discrete-
time case, where it was noted that, under appropriate
circumstances, decreasing the prediction horizon length
can be beneficial for closed-loop stability.

5.5 Emergency Lane Change: Nonlinear Case

We now consider the nonlinear model for the lane change
maneuver, as described in the pervious section, where the
dynamics can be found in Liao-McPherson et al. (2020).
The dynamic feedback law is obtained by approximating
(8) with a time-varying Quadratic Program and imple-
menting a projected primal-dual gradient flow to track
the OCP solution. Once again, we note that (given a
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Fig. 5. Lane change maneuver for the linearized system.
Given a fixed solver, the response can be destabilized
by selecting an excessively small discretization step.
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Fig. 6. Lane change maneuver for the nonlinear model.
Given a fixed solver, the response can be destabilized
by selecting an excessively small discretization step.

fixed solver) the closed-loop system becomes unstable as
td decreases.

6. CONCLUSION

This paper analyzes the stability of Dynamically Embed-
ded MPC applied to input-constrained continuous-time
nonlinear systems. Rigorous proofs show that it is pos-
sible to mimic the behavior of continuous-time MPC by
having a sufficiently accurate discrete approximation and
tracking it with a sufficiently fast continuous-time solver.
Numerical studies, however, highlight a counter-intuitive
behavior: for a given solver, the natural instinct of choosing
the discretization step “as small as possible” can actually
destabilize the closed-loop system. Notwithstanding, the
paper should not be interpreted as an invitation to choose
an “arbitrarily large” discretization step (which can also
cause instability). Rather, the message is that once the
discretization is accurate enough to capture the system dy-
namics, any further reductions may be counter-productive
to the stability of DE-MPC when taking into account the
solver dynamics.
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