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ABSTRACT ARTICLE HISTORY
Lespedeza cuneata (L. cuneata) is an invasive legume threatening Received 20 April 2023
grassland ecosystems of several states in the U.S. Mapping the = Accepted 15 October 2023
occurrence of invasive species is the necessary first step to control KEYWORDS

their spread. Imaging spectroscopy or hyperspectral remote sen- Invasive plants; Lespedeza
sing imagery has shown its effectiveness in detecting invasive cuneata; PlanetScope
plants. However, challenges such as limited access to hyperspectral imagery; machine learning;
imagery, coarse temporal resolution, high costs, and lack of stan- vegetation indices
dardized analysis approaches have limited their application in mon-

itoring biological invasions. Here, we aimed to take advantage of

fine spatial and temporal resolution of PlanetScope multispectral

satellite data and develop an effective approach to detect

L. cuneata in a naturally assembled grassland ecosystem. To achieve

this objective, we first sampled a suite of foliar functional traits in

the field and identified key traits that distinguish L. cuneata from

native plants. We then used our airborne hyperspectral data to

select vegetation indices that are associated with the key traits

while focusing on those indices that are applicable to satellite-

derived multispectral data. We developed seven machine learning

models and a decision fusion approach using layers of vegetation

indices to map L. cuneata during the growing season. Using our

approach, we were able to map L. cuneata with high level of

accuracy using PlanetScope multispectral imagery. Our results sug-

gested that the optimal period for detecting L. cuneata in our site

was mid-to-late growing season, with an overall classification accu-

racy of 80.49+5.69% (mid-August) and 82.02 +4.66% (end of

September), respectively. Our study contributes to developing

a cost-effective solution for mapping and monitoring invasive

plants, which is essential for effective control of biological

invasions.
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1. Introduction
1.1. Background

Grasslands cover about 40% of Earth’s land surface and have significant ecologic, eco-
nomic, and social importance (Bengtsson et al. 2019; Blair, Nippert, and Briggs 2014;
Sprague 1954). However, grasslands are one of the most threatened ecosystems, with
main threats including agricultural expansion and biological invasion (Blair, Nippert, and
Briggs 2014; Klein and Smith 2020; Scholtz and Twidwell 2022). Invasive plants can spread
rapidly in a new habitat, outcompete native plants, and negatively impact biodiversity,
ecosystem functioning and services, and human well-being (Bartz and Kowarik 2019;
DiTomaso 2000; Kumar Rai and Singh 2020; Pysek et al. 2020). It is estimated that invasive
plants have caused an economic loss of approximately $190.45 billion across the U.S. since
1960 (Fantle-Lepczyk et al. 2022). Therefore, cost-effective mapping of invasive plants is
crucial for successfully controlling and minimizing the negative impacts associated with
biological invasion. Remote sensing technology, with its capability to collect data across
large geographical areas over time, offers an effective approach for mapping and mon-
itoring the spread of invasive plants. Here, we focused on Lespedeza cuneata (L. cuneata),
commonly known as sericea lespedeza, an invasive perennial legume introduced in the
U.S. in 1896 (Ohlenbush et al. 2001) and developed a remote sensing approach to map its
presence at a naturally assembled tallgrass prairie.

1.2. Remote sensing of invasive plants

As grasslands cover about 15% of North America alone (Anderson 2006), detecting
invasive plants using only traditional field sampling techniques is impossible. A large
body of work has provided evidence that spectral data can be used to detect invasive
plants in grasslands (He et al. 2011; Huang et al. 2021), partly because of distinct func-
tional traits possessed by invasive plants, which can affect remotely sensed spectral
signatures (Niphadkar and Nagendra 2016). For example, Hacker and Coops (2022) used
leaf spectroscopy to differentiate the invasive Cytisus scoparius (commonly known as
scotch broom) from native mixed grassland-woodland plants due to their significantly
different leaf nitrogen content. Previous studies have also used airborne hyperspectral to
distinguish invasive plants from natives. For instance, Williams and Hunt Jr (2002).
detected Euphorbia esula (commonly known as leafy spurge) using airborne imaging
spectroscopic data because of its distinct yellow flowering bracts, which have significantly
less pigment content than its leaves (Hunt Jr et al. 2004).

Although imaging spectroscopy has proven to be an effective approach for detecting
invasive plants, the acquisition of fine-resolution airborne hyperspectral imagery is
costly. Due to this limitation, hyperspectral data are often collected at one or a few
points in time over the growing season. The resulting coarse temporal resolution can
significantly limit the application of remotely sensed data for detecting invasive plants,
especially if invasive and native species display similar traits and spectral signatures to
those of native plants at the time of data collection. Phenology-based approaches using
remotely sensed data with fine temporal resolution are therefore necessary to capture
the spectral differences between invasive and native plants during the growing season,
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which have been widely used and highly successful in detecting invasive species (Han
et al. 2022; Huang and Asner 2009; Peterson 2005; Weisberg et al. 2021).

These phenology-based approaches often use multispectral remotely sensed data with
moderate to coarse spatial resolution, such as MODIS (Wallace et al. 2016), Landsat
satellites (Evangelista et al. 2009; Resasco et al. 2007), Sentinel-2 constellation (Han et al.
2022), and/or AVHRR (Bradley and Mustard 2005). Pixel size of the data obtained from
moderate to coarse spatial resolution sensors ranges from 10 m (Sentinel-2 constellations)
to 250 m (MODIS), whereas our in situ investigations showed that average canopy size of
a mature L. cuneata individual was approximately 25 cm by 25 cm when viewed from
above. Even when L. cuneata individuals form dense and homogeneous patches, they
cover relatively small areas compared to the pixel size of moderate to coarse spatial
resolution sensors. This spatial scale mismatch between L. cuneata and spatial resolution
of satellite-derived imagery negatively impacts detection accuracy of L. cuneata, espe-
cially in cases where native and invasive plants are mixed.

1.3. Proposed approach and objectives

In this study, we addressed the aforementioned spatial/temporal resolution challenges in
detecting L. cuneata by using data collected by PlanetScope, a constellation of approxi-
mately 130 small satellites that provide multispectral data at both fine spatial (3 m spatial
resolution) and temporal (near-daily revisiting frequency) resolutions (Planet Labs 2022).
Previous studies have shown the potential of PlanetScope imagery for monitoring vegeta-
tion phenology (Cheng et al. 2020; Chen, Jin, and Brown 2019; John et al. 2020; Moon,
Richardson, and Friedl 2021), but to our knowledge, the application of PlanetScope data for
detecting invasive plants in grasslands has not been widely tested (Lake et al. 2022). Our
objectives were to (1) develop an approach to detect L. cuneata using multispectral
PlanetScope imagery and (2) assess the added value of multitemporal PlanetScope imagery
in detecting L. cuneata. To achieve objective 1, we used foliar traits collected in the field
and identified remote sensing vegetation indices associated with key functional traits that
differentiated L. cuneata from native plants. We then developed machine learning models
using the selected vegetation indices to detect L. cuneata. To achieve objective 2, we
identified the best periods of the growing season to map L. cuneata spread by applying our
approach developed in objective 1 to each PlanetScope image collected during the
growing season. We also stacked PlanetScope images collected during the growing season
and assessed whether a multispectral/multitemporal data cube enhances our ability to
detect L. cuneata. Our results are poised to contribute to developing a cost-effective
approach for mapping invasive plants across extensive grassland ecosystems. Further,
identifying optimal times of the growing season to detect invasive plants will significantly
enhance decision-making activities to control and manage biological invasions.

2. Methods
2.1. Study site

The study was conducted at the northern part of the Joseph H. Williams Tallgrass Prairie
Preserve (hereafter Tallgrass Prairie Preserve; 36°50° N and 96°25" W), Osage County,
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Figure 1. The true colour composite image of the study area within the Joseph H. Williams Tallgrass
Prairie Preserve, Oklahoma, U.S. The true colour composite image is a PlanetScope dataset obtained
for August 14, 2020.

Oklahoma, U.S., with a total area of 47 km? (Figure 1). The Tallgrass Prairie Preserve,
a naturally assembled prairie, is the largest protected remnant of tallgrass on Earth
(Allen et al. 2009). This site has been managed to maintain and enhance biodiversity
through synergistic application of prescribed fire and grazing (Fuhlendorf and Engle
2001); however, it has also been significantly affected by L. cuneata invasion (Sherrill
et al. 2022).

2.2. Field data collection

Between late July and early August 2020, we identified 49 homogenous grassland
patches, ranging from 19 to 855 m? —20 of which were dominated by L. cuneata and
the rest were free of L. cuneata-where we collected 193 top-of-canopy leaf samples which
were used to quantify vegetation functional traits, including total nitrogen, chlorophyll
a + b, carotenoid content, and plant height. In the field, we used liquid nitrogen to
immediately freeze the foliage samples and stored them on dry ice until their transfer to
a —80°C freezer in the lab. We then quantified chlorophyll a + b and carotenoid content
using a High Performance Liquid Chromatography (HPLC; Agilent 1200 Series, Agilent
Technologies, Santa Clara, CA) at the Forest Chemical Ecology Lab, University of
Wisconsin-Madison. To quantify total nitrogen content, we analysed the samples at the
Soil, Water, and Forage Analytical Laboratory (SWFAL), Oklahoma State University, using
a combustion analyser (Leco CN628, LECO Corporation, St. Joseph, Michigan, U.S.A.). We
measured canopy height in the field using the visual obstruction technique by taking an
RGB (Red Green Blue) image of grassland patches at each sampling location witha 1 X 1Tm
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whiteboard in the background ((Limb et al. 2007); see Fig. S1 in Supplementary material).
We also identified 78 independent grassland patches in the field, among which 36
patches were dominated by L. cuneata and the remaining 42 patches were free of
L. cuneata. We recorded the location of all 127 patches (i.e. 49 patches used for foliar
sampling and 78 L. cuneata presence/absence patches) using a GPS unit (Trimble GeoXH,
Trimble, Sunnyvale, CA, U.S.A.). The area of these patches ranged from 11 to 1139 m”.
Field data collection was conducted within a reasonable time frame from our airborne
hyperspectral data collection to minimize the impact of temporal mismatch between
airborne and in situ data on our results. A complete description of data collection and data
analysis protocols can be found in Gholizadeh et al. (2022).

2.3. Remote sensing datasets

Airborne hyperspectral data: We collected full-range airborne hyperspectral imagery
on August 3, 2020, using a Twin Commander 500-B aircraft (Aero Commander, Oklahoma
City, OK). The data have a spatial resolution of 1 m. The sensor had 323 bands ranging
from 400 to 2450 nm but we used 238 bands after pre-processing and removing noisy and
water vapour absorption bands (Table 1). We used airborne hyperspectral data to identify
vegetation indices associated with functional traits that distinguish L. cuneata from native
plants (see Section 2.4.2) and develop machine learning models to map L. cuneata (see
Section 2.4.3).

PlanetScope multispectral satellite data: PlanetScope is a constellation of approxi-
mately 130 small satellites (with a size of 10 cm X 10 cm X 30 cm) owned by Planet Labs
that takes almost daily imagery of the surface of the earth (Planet Labs 2022). We used
Level 3B Planet imagery which were geometrically and radiometrically corrected. Level 3B
is the geometrically corrected surface reflectance data generated using 65V2.1 radiative
transfer code and MODIS near-real-time data (Planet Labs 2022). We used our fine-
resolution airborne imagery as reference to assess the georectification quality of our
PlanetScope imagery. The airborne sensor and the navigation system of the aircraft
were boresight-calibrated. Moreover, realtime differential corrections were used to max-
imize the accuracy of aircraft’s navigation data. Therefore, we compared all PlanetScope
scenes with our fine-resolution airborne imagery as the reference. Since we did not
observe any systematic geometric distortions in our PlanetScope scenes, no further

Table 1. Details of the collected remote sensing imagery used in our study.

Platform Spectral resolution Spatial resolution Imagery acquisition date
Twin Commander 238 bands im 08/03/2020
500-B aircraft (431.10-1299.36 nm,
1487.71-1775.03 nm, 1998.23—
2353.76 nm)

PlanetScope 4 bands Resampled to 3 m 05/06/2020, 05/31/2020,
(Blue 455-515 nm, 06/05/2020, 06/10/2020,
Green 500-590 nm, 06/11/2020, 06/14/2020,
Red 590-670 nm, 08/03/2020, 08/14/2020,
NIR 780-860 nm) 09/28/2020, 09/29/2020,

Multitemporal 56 bands 09/30/2020, 10/01/2020,10/02/

PlanetScope (4 bands x 14 dates) 2020, 10/13/2020
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geometric correction was deemed necessary. We used PlanetScope multispectral imagery
with four spectral bands (Table 1), including red, green, blue, and near-infrared (NIR). The
data had native spatial resolution of 3.0-4.1 m but they were resampled and delivered in
3 m images (Planet Labs 2022). Through NASA’s Commercial Smallsat Data Acquisition
programme, we downloaded 14 available cloud-free PlanetScope images from May 5 to
13 October 2020. We used this time window based on approximate green-up and
senescence of L. cuneata at the Tallgrass Prairie Preserve (Blair, Nippert, and Briggs
2014; Sherrill et al. 2022). We note that no imagery was available for the month of July
due to cloud coverage. We used these images to determine the optimal period of the
growing season to detect L. cuneata.

Multitemporal PlanetScope data cube: To assess whether a multispectral/multitem-
poral data cube enhances our ability to detect L. cuneata, we also combined our multi-
temporal PlanetScope data to produce a cube of 56 bands (4 bands x 14 dates). After
producing the 56-band multitemporal data cube, we applied principal component ana-
lysis (PCA) to the stacked data cube (Ingebritsen and Lyon 1985) using the factoextra
package in R (Kassambara and Mundt 2020) to reduce the dimensionality of the data and
multicollinearity between spectral bands (Singh and Glenn 2009). We selected the first
three PCA components that explained at least 85% of the total variance in the data (see
Fig. 52 in Supplementary material).

2.4. Data analysis

We conducted our analysis in two main steps. In step one, using the data we collected in
the field and our airborne hyperspectral data, we identified vegetation indices associated
with key functional traits that differentiated L. cuneata from native plants, including total
nitrogen, chlorophyll a + b, carotenoid content, and plant height (Figure 2). We then
developed machine learning models to separate L. cuneata from native plants using these
vegetation indices as input layers. In step two, we applied our machine learning approach
to our hyperspectral data, each PlanetScope multispectral data collected at different times
of the growing season, and our multitemporal PlanetScope data cube. A flowchart
summarizing our approach is shown in Figure 2.

2.4.1. Assessing the potential of hyperspectral data to separate L. cuneata from
native plants

Using our airborne hyperspectral data, we extracted reflectance of L. cuneata and native
vegetation stands from our 49 homogenous grassland patches. We conducted a Kruskal-
Wallis test (Kruskal and Wallis 1952) in R program (R Core Team 2021) to compare the
reflectance of L. cuneata with native plants at each band and identified wavelength
regions where L. cuneata and native plants had statistically different reflectance.
Identifying whether L. cuneata and native plants had significantly different reflectance
values within the visible and NIR regions guided us to select the most appropriate
vegetation indices to map L. cuneata.

2.4.2. Linking traits to vegetation indices
Using Mann-Whitney U test (Mann and Whitney 1947), we assessed the difference
between key functional traits of L. cuneata and native plants. Specifically, we
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Figure 2. Summary of our approach. In this flowchart, green rectangles with wavy bases represent the
input/output data, grey rectangles represent the processing steps, and orange ellipses are the
objectives.

applied the Mann-Whitney U test to total nitrogen, chlorophyll a + b, carotenoid
content, and canopy height from our 49 patches. We then identified vegetation
indices associated with these traits by conducting a pairwise correlation analysis.
Then, we assessed whether the selected vegetation indices can significantly distin-
guish L. cuneata from native plants using Mann-Whitney U test. Following this
approach, we were able to select vegetation indices associated with underlying
functional traits that distinguish L. cuneata from native plants. We tested ten
vegetation indices (see Table S1 in Supplementary material) applicable to
PlanetScope multispectral imagery. Out of these ten indices, we selected five
indices that were able to distinguish L. cuneata from native plants. These vegeta-
tion indices included NDVI, SIPI, CRI, PSSR, and PSRI (Table 2).
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Table 2. Vegetation indices used to distinguish L. cuneata from native plants. In the table below, ‘R’
represents reflectance from airborne hyperspectral imagery at different wavelengths of the electro-
magnetic spectrum, numbers in front of R represent wavelengths in nm, and ‘B’ represents band
number from PlanetScope imagery.

Formula based on Formula based on
Vegetation index airborne data PlanetScope bands References
NDVI (R800-R683) (B4-B3) /(B4+B3) (Rouse et al. 1974)
(Normalized Difference Vegetation Index) /(R800+R683)
SIPI (R800-R444) (B4-B1) /(B4-B3) (Penuelas, Baret, and
(Structurally Insensitive Pigment Index)  /(R800-R683) Filella 1995)
CRI (1/R512)-(1/R770) (1/B2)-(1/B4) (Gitelson et al. 2002)
(Carotenoid Reflectance Index 2)
PSSR R800/R635 B4/B3 (Blackburn 1998)
(Pigment-Specific Spectral Ratio)
PSRI (R683-R505) (B3-B2)/B4 (Merzlyak et al. 1999)
(Plant Senescence Reflectance Index) /R752

2.4.3. Developing machine learning models to detect L. cuneata using remotely
sensed data

Because large number of machine learning algorithms exist, we decided to select seven
algorithms ensuring that they cover different machine learning paradigms. To detect
L. cuneata, we used seven supervised machine learning algorithms, including conditional
inference tree (Hothorn, Hornik, and Zeileis 2006), recursive partitioning and regression
trees (Clark and Pregibon 1992), random forest (Breiman 2001), support vector machine
linear kernel (Cortes and Vapnik 1995), and polynomial kernel (Cortes and Vapnik 1995),
k-nearest neighbours (Cover and Hart 1967; Fix and Hodges 1989), and generalized linear
model (McCullagh 1983). To develop machine learning algorithms, we used the plyr and
caret packages in R (Kuhn 2008; Wickham 2011). We trained the models using 10-fold
cross-validation with 500 iterations. A description of each machine learning classifier
along with its parameters is provided in Section S1 and Table S2 in Supplementary
material.

To develop machine learning models for detecting L. cuneata, we used 60% of the 127
patches identified in the field (i.e. 49 patches used for foliar sampling and 78 L. cuneata
presence/absence patches) to train the machine learning models and the rest to validate
the models. We developed separate machine learning algorithms for airborne hyperspec-
tral data, each PlanetScope multispectral dataset collected at different times of the
growing season, and our multitemporal PlanetScope data cube. We applied machine
learning algorithms to our hyperspectral data to assess the added value of finer spatial
and spectral resolution for classifying L. cuneata.

After developing each classification model using the training dataset, we validated the
models using the validation dataset (the remaining 40% of our 127 homogeneous grass-
land patches). Specifically, we calculated the overall classification accuracy, the balanced
accuracy, the specificity, the sensitivity, the no-information rate, the producer’s and the
user’s accuracy of L. cuneata for each model. A description of each accuracy metric is
provided in Section S2 in Supplementary material.
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We used decision fusion to combine the outputs of our seven machine learning
classifiers to reduce the bias from each model in the detection of L. cuneata (Bigdeli,
Samadzadegan, and Reinartz 2014). We used the winner-takes-all (WTA) to combine the
output of the seven machine learning classification at each model run. WTA classification
is based on the majority votes, where the class label with the most ‘votes’ is assigned to
the pixel (Mancini, Frontoni, and Zingaretti 2009). To assess the performance of our WTA
classifier, we used the same classification accuracy metrics mentioned above and in
Section S2 in Supplementary material.

Finally, to report the uncertainty of our models, we repeated our approach 100
times through randomized permutations of our training/validation datasets.
Specifically, we repeatedly selected random subsamples from our 127 homoge-
neous grassland patches and iteratively ran our machine learning models to detect
L. cuneata in the study area. Using the results of these 100 iterations, instead of
producing one binary presence/absence map, we generated a probability presence
map of L. cuneata. We note that we excluded the oak tree non-grassland land-
cover from our analysis.

3. Results

3.1. Assessing differences between the spectral signature of L. cuneata and native
plants

Our results showed that compared to native plants, L. cuneata, in general, had higher
spectral reflectance in the NIR region and lower reflectance in other regions of the
electromagnetic spectrum (Figure 3a). Based on the Kruskal-Wallis test, L. cuneata and
the native plants had significantly different spectral reflectance, particularly in the visible
range of the electromagnetic spectrum (p-value <0.05 for the reflectance at 400-700 nm)
and large portions of the NIR region (p-value <0.05 for the reflectance at 800-1100 nm;
Figure 3b).

4
- L. cuneata <
?0,4 ~A — Native plants 1
2 7 v T o
o 0.3 { G
S | E
@ | )
o2 E:
‘E \] f"/r\\ CI.. E |
o O AL |
’_f\' - wwlf'\r._
0.0 S - - - -
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Wavelength [um]

Wavelength [um]

Figure 3. (a) Spectral signatures of L. cuneata and native plants from our airborne hyperspectral data.
Shaded regions show the standard deviation of spectra. (b) Statistical difference between the
reflectance of L. cuneata and native plants based on Kruskal-Wallis test (green line). The upper purple
dashed line shows the p-value at 0.05, and the lower orange dashed line shows the p-value at 0.01.
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3.2. Using vegetation indices as proxies of plant functional traits to detect
L. cuneata

Using Mann-Whitney U test, our results showed that L. cuneata had higher total nitrogen,
canopy height, chlorophyll, and carotenoid content than native plants (see Fig. S3 in
Supplementary material), a result which was also reported in Gholizadeh et al. (2022).
Pairwise correlation values between functional traits and vegetation indices showed
significant associations (p-value <0.05), except for the correlation between CRI and
chlorophyll content (Figure 4). Additionally, based on Mann-Whitney U test, the selected
vegetation indices were able to differentiate L. cuneata from native plants (p-value <0.05;
Figure 5).

3.3. Detecting L. cuneata using machine learning

Classification accuracy assessment on the validation dataset showed that the overall
classification accuracy using our airborne hyperspectral data ranged from 79.30 +
4.99% (using RF) to 81.62+ 3.85% (using SVM linear kernel; Table 3). Our results
showed that the overall classification accuracy in detecting L. cuneata using the
developed machine learning models exceeded the no-information rate value
(Table 3).

Nevertheless, our results showed that the performance of machine learning algorithms
was not the same, but fusing the outcomes of various machine learning algorithms always
showed performance comparable to that of the best classifier. Specifically, our WTA
decision fusion had an overall classification accuracy of 81.86 +4.12%, producer’s accu-
racy of 84.37 +7.08%, and user’s accuracy of 77.62 + 6.85% using our validation dataset
(Table 3). Classification using our airborne hyperspectral showed that L. cuneata had
invaded at least 6.23% of our study area (Figure 6).

NDVI CRI PSSR SIPlI PSRI

* * * * *

Total nitrogen . . . . .

* * * ¥ *

Canopy height . . . . .
> * * *

Chlorophyll a+b . . . . .
Total carotenoid .* .* .* .* .*

Figure 4. Pairwise correlations between vegetation indices derived from our airborne hyperspectral
data and functional traits measured in the field. The circle sizes are proportional to the correlation
coefficients, which are represented by the numbers shown inside each circle. The red asterisks show
significant correlations (p-value <0.05). Vegetation index acronyms: NDVI: normalized difference
vegetation Index, CRI: carotenoid reflectance Index, PSSR: pigment-specific spectral Ratio, SIPI:
structurally insensitive Pigment Index, and PSRI: plant senescence reflectance Index.
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Figure 5. Differences in vegetation indices for L. cuneata versus native plants using the Mann-Whitney
U test based on our airborne hyperspectral data. Significant differences in vegetation indices indicate
the ability of these indices in distinguishing L. cuneata from native plants. Vegetation index acronyms:
NDVI: normalized difference vegetation Index, CRI: carotenoid reflectance Index, PSSR: pigment-
specific spectral Ratio, SIPI: structurally insensitive Pigment Index, and PSRI: plant senescence reflec-
tance Index.

3.4. Identifying the best periods of the growing season to detect L. cuneata

We detected L. cuneata for each PlanetScope image collected during the growing season
to identify optimal time periods for separating L. cuneata from native plants (Figure 7).
Based on our validation data, the overall classification accuracy at the start of the growing
season was relatively low. Only GLM and SVM classifiers showed an overall classification
accuracy higher than the no-information rate at the start of the growing season.

Starting from DoY (day of year) 216, the overall classification accuracy in detecting
L. cuneata for all the classifiers was higher than the no-information rate (Figure 7). The
value ranged from 66.62 + 7.73% (DoY 216 using RF) to 81.63 + 5.99% (DoY 276 using SVM
polynomial kernel). During the same time period (after DoY 216), the user’s accuracy was
lowest at DoY 287 (63.77 +8.73% using CTREE) and highest at DoY 273 (81.63 + 10.79%
using SVM linear kernel). Following a similar pattern, the producer’s accuracy was lowest at
DoY 287 (60.00 + 12.17% using RF) and was highest at DoY 273 (80.57 + 7.35% using KNN).

During the mid-growing season, our WTA decision fusion classification showed an
improved overall classification accuracy in detecting L. cuneata compared to the seven
classifiers developed for this study. The overall classification accuracy using WTA decision
fusion ranged from 58.58 + 7.61% (DoY 162) to 82.02 +4.66% (DoY 273). The user's
accuracy value ranged from 58.65 + 12.46% (DoY 157) to 81.01 + 8.78% (DoY 273), while
the producer’s accuracy value ranged from 41.02 + 18.66% (DoY 152) to 79.49 + 8.65%
(DoY 272).

Although our WTA decision fusion improved our classification accuracy results, the
overall classification accuracy in detecting L. cuneata remained relatively low at the start
of the growing season. Around the peak of the growing season at DoY 227 (NDVI value of
0.79 + 0.04), the overall classification accuracy of L. cuneata was 80.49 + 5.69%. Around the
end of the growing season at DoY 273 (NDVI value of 0.60 + 0.07), the overall classification
accuracy was the highest (82.02 + 4.66%). At the beginning of the senescence period at
DoY 287 (NDVI value of 0.46 + 0.04), the overall classification accuracy decreased to 70.74
+ 5.48% (Figure 8).
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Figure 6. Probability of L. cuneata presence using vegetation indices obtained from airborne hyper-
spectral image based on our WTA classification. We obtained these results by running our classifica-
tion models 100 times with different training/validation datasets through randomized permutations,
as described in Section 2.4.4. We excluded the oak tree land-cover from our results.

We mapped the probability of L. cuneata presence on August 14, 2020, the peak
of the growing season (Figure 9). The results showed a comparatively similar map
to that obtained from the airborne hyperspectral imagery collected on August 3,
2020. Similar to our findings using airborne hyperspectral imagery, our results
showed that at least 6.83% of our study area had been invaded by L. cuneata.

3.5. Determining the contribution of combined multitemporal PlanetScope
imagery in detecting L. cuneata

Using the first three components of our multitemporal PlanetScope data cube as
input layers to our machine learning approach, we were able to detect L. cuneata.
Specifically, while no-information rate in detecting L. cuneata was 60.73 +7.22%,
our overall classification accuracy based on WTA decision fusion was 69.26 + 8.45%,
with a user's accuracy of 76.29+19.11% and a producer’s accuracy of 41.51%
17.83%. These results suggest that L. cuneata and native plants presumably have
different phenology that was captured by the PCA of our data cube. However,
while previous maps using vegetation indices had identified pixels with 100%
probability of L. cuneata presence (Figure 6 and 9), the highest probability for
L. cuneata presence using PCA approach was 97% (Figure 10).
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Figure 7. Average overall classification accuracy in detecting L. cuneata during the growing season
using seven machine learning classifiers (CTREE, KNN, RF, SVM polynomial kernel, SYM linear kernel,
GLM, RPART) and WTA decision fusion approach. The dashed black line shows the average of the no-
information rate value for each DoY. We obtained these results by running our machine learning
models 100 times with different training/validation datasets through randomized permutations. Note
that we were not able to assess the performance of our model in July due to cloud coverage in our
PlanetScope imagery.
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Figure 8. Overall L. cuneata classification accuracy (mean and standard deviation value) using the WTA
decision fusion (blue line). The dark red line shows the mean and standard deviation of NDVI during
the growing season, which represents the plant greenness. We obtained these results by running our
machine learning models 100 times with different training/validation datasets through randomized
permutations. Note that we were not able to assess the performance of our models in July due to
cloud coverage in our PlanetScope imagery.
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Figure 9. Probability of L. cuneata presence using vegetation indices obtained from PlanetScope
multispectral image at the peak of the growing season (DoY 227) based on our WTA classification. We
obtained these results by running our classification models 100 times with different training/valida-
tion datasets through randomized permutations. We excluded the oak tree land-cover from our
results.

4. Discussion
4.1. Mapping grassland invasive plants using vegetation indices

Hyperspectral remote sensing has been identified as a viable tool to map invasive plants
in grasslands (Arasumani et al. 2021; Bolch et al. 2020; Hestir et al. 2008; Huang et al. 2021;
Niphadkar and Nagendra 2016; Underwood 2003). However, due to the high acquisition
and computational cost of hyperspectral remote sensing and limited access to airborne
hyperspectral data, we developed an approach to detect the invasive L. cuneata for
multispectral data based on vegetation indices. While using vegetation indices to distin-
guish different land-cover types or species is not new (Lyon et al. 1998), our approach was
based on the fact that there are remotely observable plant functional traits that can
separate invasive from native plants (Underwood, Ustin, and Ramirez 2007; Asner et al.
2008). Therefore, we used multispectral vegetation indices as proxies of these plant
functional traits to increase the transferability and generalizability of our approach. Our
approach showed lower overall classification accuracy for detecting L. cuneata compared
to previous studies which used airborne hyperspectral data (Gholizadeh et al. 2022). The
lower detection accuracy of our approach is likely due to our use of vegetation indices
estimated using only two to three spectral bands, while Gholizadeh et al. (2022) used
remotely observable plant functional traits estimated using more than 200 spectral bands.
Moreover, vegetation indices do not estimate traits directly but are proxies of these traits.
Nevertheless, our results showed that detecting L. cuneata using PlanetScope
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Figure 10. Probability of L. cuneata presence based on WTA decision fusion using three PCA
components obtained from the combined multitemporal PlanetScope imagery. We obtained these
results by running our classification models 100 times with different training/validation datasets
through randomized permutations. We excluded oak tree land-cover from our results.

multispectral data is feasible, presumably because of selection of relevant vegetation
indices that are associated with key functional traits that separate L. cuneata from native
plants.

Although our approach had lower classification accuracy compared to the
results obtained from fine-resolution airborne hyperspectral data in Gholizadeh
et al. (2022), our classification accuracy remained higher than the no-information
rate (see Table 3), indicating that our approach offers a cost-effective alternative to
detecting invasive plants using hyperspectral data, especially given the transfer-
ability and generalizability of our approach. Specifically, airborne hyperspectral
data acquisition at our site cost approximately US$60,000, while PlanetScope
imagery of the same site cost US$500. If the available funding for acquiring
PlanetScope data was US$60,000, these data would have covered roughly 19,000
km? more area than airborne hyperspectral imagery. Therefore, in addition to its
ecological and conservation benefits, our study can have significant economic
benefits, especially when controlling the spread of invasive plants in grasslands
represents one of the greatest land management costs. Through providing an
iterative, scalable, and cost-effective monitoring system, our approach can assist
landowners with locating priority area for early intervention and, thereby, reduce
the costs of invasion control.
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4.2. Advantages of fine spatial and temporal resolution in detecting biological
invasions

Our results showed the superior performance of airborne hyperspectral data in mapping
invasive plants in terms of producer’s accuracy (see Table 3 and Section 3.4) because of
the finer spatial resolution of our airborne data. Nevertheless, our results showed that
multispectral PlanetScope data were capable of mapping L. cuneata accurately when
applied at optimal times of the growing season. This result agrees with findings of
Mullerova et al. (2017) indicating that selecting optimal timing can compensate for the
coarse spectral resolution of satellite-derived data in detecting invasive species.

Fine temporal resolution of PlanetScope imagery can also contribute to identifying
distinct phenological patterns of invasive versus native plants, which in turn, enhances
the accuracy of mapping invasive plants. Previous studies using multitemporal
PlanetScope imagery for mapping invasive species, such as Euphorbia esula (leafy spurge)
(Lake et al. 2022) and Spartina alterniflora (saltmarshes cordgrass) (Han et al. 2022) have
shown the added value of PlanetScope multitemporal imagery through providing infor-
mation on plant phenology. Similarly, our results showed that PlanetScope data can
separate L. cuneata from native plants, and identify optimal periods of the growing season
to detect its spread, as described in Section 4.3 below.

4.3. Importance of the timing of remote sensing data collection in mapping
biological invasions

Our findings indicated that the optimal period to detect L. cuneata at the Tallgrass
Prairie Preserve was near the peak and towards the end of the growing season. The
peak of the growing season corresponds to the period when plants form a full
canopy and when the difference between the spectral signatures of invasive and
native plants, in general, is maximized (Dao, Axiotis, and He 2021). Our results also
showed high overall classification accuracy towards the end of the growing season.
Although the NDVI values of native and invasive plants were not significantly
different at the end of the growing season (see Fig. S4 in Supplementary material),
the average NDVI values of L. cuneata were higher than those of the native plants
(see Fig. S4 in Supplementary material). These results suggest that L. cuneata may
have remained green (i.e. photosynthetically active) longer than native plants, which
presumably increased the detection accuracy of L. cuneata at the end of the growing
season. Similar findings have been reported in Evangelista et al. (2009), showing that
the detection accuracy of Tamarisk spp. (tamarix) was highest during the peak of the
growing season and flowering period (June) and around the start of the senescence
period (September and October). While our results identified the peak and the end of
the growing season as optimal time periods to detect L. cuneata, we acknowledge
that the optimal time periods for remote detection of invasive plants is species-
specific. For instance, while Tuanmu et al. (2010) mapped Bashania faberi and
Fargesia robusta (bamboo species) during the early stages of the growing season
and during the senescence period, Lake et al. (2022) showed that Euphorbia esula
(leafy spurge) was best detected during the early and mid-growing season. We also
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acknowledge that plant phenology can change in response to environmental condi-
tions, such as precipitation and temperature, which further complicates remote
monitoring of invasive plants. Therefore, incorporating environmental variables with
remote sensing observations can be a promising approach to improve monitoring
biological invasions.

4.4. Limitations

4.4.1. Temporal mismatch between in situ and remotely sensed data collection
campaigns
Our results showed that the detection accuracy of L. cuneata at the start of the growing
season was relatively low. In our study, we used ground-reference data collected at the peak
of the growing season to identify L. cuneata at different periods of the growing season. This
temporal mismatch may have affected the performance of our approach at the beginning of
the growing season. Cummings et al. (2007) reported that new germination of L. cuneata
generally occurs between early April and June in Oklahoma (Cummings et al. 2007).
Therefore, the homogeneous patches that we sampled during the peak of the growing
season may not fully represent L. cuneata patches at the start of the growing season.
Another plausible reason for the low detection accuracy of L. cuneata at the start of the
growing season is that we identified functional trait differences based on the foliage
samples collected during the peak of the growing season. In other words, we used plant
traits collected during the peak of the growing season to identify suitable vegetation
indices and applied the same vegetation indices to our data collected at different times of
the growing season. To reduce the impact of this uncertainty, we encourage multitem-
poral field data collection campaigns when possible.

4.4.2. Spatial mismatch between plant size and pixel size

The degree to which remote sensing methods can detect invasive species depends on the size
of the individual plant or the dimensions of stands they form with respect to the spatial
resolution of remote sensing data. For grassland ecosystems, it is unlikely for spaceborne
remote sensing data, such as PlanetScope, to detect individual plants (see Fig. S5 in
Supplementary material) or map sparse patches of invasive plants mixed with native species.
Given the limited spatial resolution of available spaceborne platforms, using finer-resolution
multispectral data, for example, those collected using unoccupied aircraft systems, can
provide an exciting opportunity to assess the sensitivity of our approach to sparse or mixed
vegetation communities.

5. Conclusions

This study aimed to map the invasive L. cuneata in a naturally assembled grassland using
multispectral multitemporal remotely sensed data. We first used airborne hyperspectral data
to identify vegetation indices associated with key functional trait differences that separated
L. cuneata from native plants. We then applied these vegetation indices to PlanetScope
multispectral data to map L. cuneata over the growing season. Our approach showed that
PlanetScope data were capable of detecting L. cuneata although the accuracy of detection
varied based on the timing of the imagery used. We also recorded a high classification
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accuracy at the peak of the growing season, with our best classification accuracy achieved
towards the end of the season. Overall, our results showed that although we used the 4-band
PlanetScope multispectral data, our classification accuracy results were comparable to those
obtained from hyperspectral data with fine spatial and spectral resolution. These findings can
contribute to developing cost-effective approaches for monitoring invasive plants in grass-
lands across large geographical extents and over the growing season. Our results demon-
strate that available satellite multispectral imagery can be used to map invasive species and
offer an approach to develop effective and science-driven management practices to control
the spread of invasive plants in grassland ecosystems and mitigate the impacts of biological
invasions.
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