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Abstract
As climate change advances, there is a need to examine climate conditions at scales that are
ecologically relevant to species. While microclimates in forested systems have been extensively
studied, microclimates in grasslands have received little attention despite the climate vulnerability
of this endangered biome. We employed a novel combination of iButton temperature and humidity
measurements, fine-scale spatial observations of vegetation and topography collected by unpiloted
aircraft system, and gridded mesoclimate products to model microclimate anomalies in temperate
grasslands. We found that grasslands harbored diverse microclimates and that primary productivity
(as represented by normalized difference vegetation index), canopy height, and topography were
strong spatial drivers of these anomalies. Microclimate heterogeneity is likely of ecological
importance to grassland organisms seeking out climate change refugia, and thus there is a need to
consider microclimate complexity in the management and conservation of grassland biodiversity.

1. Introduction

Climate and climate change are heterogeneous across
multiple spatial scales (Loarie et al 2009, Ackerly
et al 2010). At fine spatial scales (typically <100 m),
microclimates may occur where variation in the sur-
face environment creates decoupling from broader
conditions (Geiger et al 2009, Bramer et al 2018).
Microclimates are ecologically significant because
they may best reflect the conditions experienced by
species in their habitats (Potter et al 2013, Hannah
et al 2014). Such microclimate variation can have
significant ecological consequences influencing the
behavior, habitat use, and demographics of species
(Grisham et al 2016, Frey et al 2016a). Further,micro-
climates may potentially act as microrefugia, buf-
fering species from rapid climate change by allow-
ing them to exploit environmental heterogeneity to
remain within their climatic niche (Suggitt et al 2018,
Kim et al 2022).

Measuring the influence of climate at ecologically
relevant scales is a critical step towards understanding
the climate vulnerability (or resiliency) of species, but

this task is complicated by a mismatch between avail-
able climate products and the scale of environmental
heterogeneity experienced by organisms (Potter et al
2013, Nadeau et al 2017, Lembrechts et al 2019). This
mismatch can be multidimensional, as microclimate
conditions may vary both vertically (due to differ-
ing biophysical processes near the Earth’s surface) and
horizontally (due to fine-scale variation in vegetation
and surface topography) (Geiger et al 2009, Bramer
et al 2018).

An increasing number of microclimate studies
have been conducted in forests revealing the ecolo-
gical importance of temperature buffering provided
by horizontal canopy structure (Frey et al 2016b,
Zellweger et al 2020). In contrast, few detailed stud-
ies of microclimate variation have been conducted in
open grasslands (but see Bennie et al 2008). This may
be because grasslands are perceived as homogenous
and topographically simple systems or because grass-
lands appear to have limited capacity to buffer cli-
mate relative to forests (Loarie et al 2009, Suggitt et al
2011). Yet this limited buffering capacity suggests that
grassland-dependent species may be more vulnerable
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to climate change (Jarzyna et al 2016), emphasizing
the importance of understanding microclimate vari-
ation within grassland systems.

Grasslands are among the most threatened and
least protected ecosystems on earth (Scholtz and
Twidwell 2022) and provide habitat for a diversity
of climate-sensitive species, including pollinators
(Hanberry et al 2021) and declining grassland birds
(Rosenberg et al 2019). Grassland ecosystems are pro-
jected to experience a high velocity of climate change
relative to other habitats because of their open struc-
ture and low elevation occurrence (Loarie et al 2009,
Dobrowski et al 2013). Yet, despite lacking a can-
opy structure or large elevational gradients, grass-
lands may still experience spatial variation in micro-
climate conditions for several reasons.

First, the near-surface environment experiences
greater climate variability because of heat storage
in the ground, reduced wind velocity, and less effi-
cient heat-transfer and mixing processes (Geiger et al
2009, Bramer et al 2018, Maclean et al 2021). Second,
variation in microtopography may impart differ-
ences in microclimate by influencing topographic
shading and the drainage of cold air and surface
run-off (Bennie et al 2008, Pastore et al 2022).
Finally, variation in vegetation structure may also
affect temperature and humidity conditions. For
example, although grassland vegetation is narrow-
leafed and primarily vertically oriented, this foliage
may provide shading at lower solar angles through-
out the day (Duffy et al 2021), and importantly,
dense vegetation also influences temperature and
humidity conditions via evapotranspiration (Bramer
et al 2018). Wooded edges can also shade adjacent
grasslands—reflecting incoming shortwave radiation
during the day and trapping outgoing thermal emit-
tance at night—potentially creating a temperature
gradient with proximity to these edges (Latimer and
Zuckerberg 2017).

Such variation in grassland microclimate may
affect the ecology of grassland-dependent species. For
example, there is evidence that microclimates may
influence grassland bird species distributions (Jähnig
et al 2020), adult survival (Pérez-Ordoñez et al 2022),
and nest success and productivity (Lloyd and Martin
2004, Carroll et al 2018). Similarly, grassland insects,
such as butterflies, also appear sensitive to micro-
climate and may select habitat and oviposition in
response to these conditions (Scherer and Fartmann
2022). Both temperature and humidity can impose
physiological limits on organisms mediating pro-
cesses like desiccation, heat stress mortality, egg unvi-
ability, and behavioral trade-offs (McKechnie and
Wolf 2010, van de Ven et al 2019, Hoffmann et al
2021). Thus, microclimates could be of particular
importance to species living in exposed environments

where organisms may often operate near tolerance
limits (Carroll et al 2016).

However, an obstacle to quantifying grassland
microclimates is a lack of fine-scale remote sens-
ing data to characterize such environmental vari-
ation. Most widely available satellite sources of land
cover and habitat data provide imagery at resolutions
of 30 m or much greater (Bramer et al 2018), and
1 m data available from some commercial systems
may not be sufficient to capture relevant variation
in space or time. In open grasslands, environmental
heterogeneity may be more fine-grained relative
to forested and montane environments (Zellweger
et al 2019). Unpiloted aircraft systems (UASs) have
recently emerged as a powerful tool to address such
challenges. Specifically, UAS are capable of collecting
imagery at sub-meter resolutions describing environ-
mental characteristics relevant tomicroclimates, such
as elevation, microtopography, primary productivity,
and canopy height (Duffy et al 2021).

Our study had three objectives: (1) assess vari-
ation and magnitude of near-surface anomalies in
temperature and vapor pressure in temperate grass-
lands, (2) understand the drivers of this microclimate
variation, and (3) create spatially explicit models of
grassland microclimates suitable for use in future
ecological studies. We modeled microclimate using
anomalies in near-surface iButton measurements of
temperature and vapor pressure as responses pre-
dicted by a combination of fine-scale UAS environ-
mental variables and gridded climate products (to
characterize background conditions). Our approach
provides what, to our knowledge, are the first fine-
resolution, spatiotemporal models of microclimate
variation in temperate grasslands.

2. Methods

2.1. Experimental design and study area
Wecollected fine-scale, near-surface climate data, and
environmental covariates (figure 1) from 15 May
to 30 July 2021, at four grasslands located in Dane
and Iowa counties in southern Wisconsin, USA (42◦

55′ 11.45′′, −89◦ 50′ 5.91′′). We focused on micro-
climate during the summer months because this
period encompasses the critical reproductive phase
for many grassland-dependent organisms. Our study
sites ranged in size from 8.7–11.0 ha andwere situated
at similar mean elevations of 296–320 m, though the
total elevational range between the highest and lowest
points among all sites was 43 m. Our study sites were
in Wisconsin’s historically unglaciated Driftless Area
(figure S1) and characterized by rolling topography
and a mosaic of agricultural land, forest edge, drain-
ages, riparian zones, planted grasslands, and prairie
remnant. The four sites were on a mixture of public,
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Figure 1. Conceptual illustration of microclimate study design showing iButton and UAS imagery sampling across a range of
vegetation and topographic conditions at grassland study sites.

private, and non-governmental organization-owned
lands. All sites were considered planted grasslands,
but two were non-native, cool-season monocultures,
and two diverse warm-season sites that resembled
native Tallgrass prairie (figure S2). Cool-season sites
were dominated primarily by SmoothBrome (Bromus
inermis) while warm-season sites were dominated
by Big Bluestem (Andropogon gerardi), Indian Grass
(Sorghastrum nutans), and a diversity of native forbs.
The sites varied with respect to topographic complex-
ity and level of shrub encroachment. We deliberately
chose sites that would capture a range of conditions
in midwestern grasslands.

2.2. iButton data collection
We systematically deployed iButtons (DS1923,
Maxim Integrated, San Jose CA, USA) at a 5 cm
height and at a 55 m grid resolution across each
of four sites to capture the range of environmental

variation within grassland sites; the number of iBut-
tons per site ranged from 23 to 30 for a total of 109
iButtons (figures S3–S6). Five units across all sites
failed to collect data, leaving a total sample size of
104. It has been demonstrated that unshielded iBut-
tons in high irradiance, low-wind conditions may
be biased toward warmer temperatures by as much
as 15 ◦C (Maclean et al 2021). To help mitigate this
potential bias, we housed iButtons in ventilated PVC
capsules coated with reflective foil tape (figure S7).
PVC capsules have been shown to reduce error by
approximately 50% (Maclean et al 2021), and the
addition of foil tape to deflect direct solar irradiance
likely further reduced this rate.We programmed iBut-
tons to log hourly temperature and relative humidity
measurements for the duration of the study period.
Upon retrieving data from iButtons, we converted
relative humidity to absolute vapor pressure (i.e. par-
tial pressure of water vapor) using Teton’s formula
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(Norman and Campbell 1998). Because the primary
objective of our study was to identify relative vari-
ation in grassland microclimates (e.g. ‘hot spots’ and
‘cool spots’, ‘humid spots’ and ‘dry spots’) rather
than attempt to model exact temperature or humid-
ity mechanistically, we calculated anomaly by sub-
tracting hourly measurements for each unit from the
mean of all other iButtons at the same site for each
logging interval. We then summarized hourly anom-
aly by day for each iButton by averaging all hourly
anomalies for a given day, thus producing daily mean
anomalies of temperature and vapor pressure for each
measurement location.

2.3. Microclimate predictors
We used a combination of UAS-collected light detec-
tion and ranging (LiDAR) and multispectral imagery
to derive seven spatially explicit layers of vegetation
and topography for each site summarized at 60 cm
resolution (figures S3–S6). We collected imagery
using a Matrice M210 V2 RTK drone (DJI, Shen-
zhen, China) equipped with two sensors: (1) Sen-
tera 6× (Sentera, Minneapolis MN, USA) five-band
multispectral camera with 5.4 cm resolution, and
(2) VLP–16 LiDAR sensor (Velodyne Lidar, San Jose
CA, USA) with a point density of 190–300 m−2. The
multispectral camera had an additional downwelling
incident light sensor that measured incoming radi-
ation and was used to radiometrically correct images
to account for changing illumination conditions
throughout the flights. To further reduce the bias
of illumination conditions on collected imagery, we
conducted flights during the hours of 1000–1500 CST
in clear and calm conditions and flew at an alti-
tude of 120 m above ground level (AGL). However,
we conducted LiDAR flights at a lower altitude of
80 m AGL to increase point density. We collected all
imagery at a speed of 8–10 m s−1 with 80% photo
overlap for the multispectral camera and with cam-
eras in a nadir position. We conducted three flights at
each site throughout the season—once in May, June,
and July—to capture seasonal variation in vegetation
predictors.

We processed multispectral imagery using struc-
ture from motion techniques with Metashape Pro
(Version 1.6.5, Agisoft LLC, St. Petersburg, Russia) to
produce orthorectified rasters. We processed LiDAR
point clouds in R (Version 4.2.1; R Core Team 2022)
using the LidR package (Roussel et al 2020). We used
a digital terrain model (DTM; Zellweger et al 2019,
Duffy et al 2021) created from LiDAR point clouds to
characterize bare earth elevation at each of our sites,
and we then used these data to derive layers for topo-
graphic positioning index (TPI)—where high index
values are associated with higher elevation relative
to the neighborhood—slope, aspect, and hill shade
with the terra package in R (Hijman 2022). TPI was

created using a moving window of ∼20 m in each
cardinal direction within which the elevation of each
60 cm focal cell was subtracted from the neighbor-
hood mean. Thus, our TPI product was calculated at
a 20 m scale but ultimately yielded a 60 cm resolution
layer. There is no commonly accepted standard for
themost appropriate window size for TPI inmicrocli-
mate studies, therefore we selected our neighborhood
size based on how well it appeared to capture the
microtopography of the site according to our field
observations.We found that, at our sites, larger neigh-
borhoods tended to overlook smaller depressions and
created a variable that was more similar to simple
elevation. Hill shade was calculated using values for
solar noon at the mid-point of the study period
to best represent the potential influence of terrain-
adjusted solar irradiance. Photogrammetry terrain
models can increase error when bare ground is heav-
ily obstructed because imagery cannot penetrate can-
opy cover (Klápště et al 2020). To address this issue,
we used a hybrid approach to create a canopy height
model (CHM) by differencing the multispectral-
derived digital surface models of the canopy from
the LiDAR-collected DTM representing bare earth,
thus creating a raster layer representing vegetation
height (Zellweger et al 2019). Finally, we calculated
normalized difference vegetation index (NDVI) using
the Sentera red (670 nm) and near-infrared (NIR;
870 nm) channels [NIR − red]/[NIR + red] as an
index of primary productivity (e.g. Duffy et al 2021).
NDVI is generally considered a proxy for green-
ness identifying areas of live, photosynthetically active
vegetation. In our study area, greening of cool-season
plant species may begin in March or April follow-
ing snowmelt, while warm-season species often begin
in late May or June. During our study season, NDVI
at cool-season monoculture sites appeared to reach a
peak in June, while diverse warm-season sites showed
amore diffuse pattern of greening (figures S8 and S9).
For NDVI and CHM (e.g. vegetation height)—which
were somewhat dynamic throughout the season—
we associated iButton measurements with the spec-
tral capture from the appropriate month (e.g. iBut-
ton measurements from May were associated with
NDVI and CHM values from the May imagery col-
lection) to make our models as realistic as possible
(figures S8–S11).

In addition to UAS spatial predictors, we created
rasters of distance to nearest wooded edge by manual
digitization in ArcGIS (Version 10.5.1; ESRI, Red-
lands CA,USA).We also included a site-level variable,
ecotype, to account for potential differences between
warm and cool-season sites. Finally, to account for the
influence of broader climate context on microclimate
anomalies (Wolf et al 2021), we includedmesoclimate
predictors (horizontal scale of 1–300 km; Bramer et al
2018) in our models. This also allowed us to examine
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Table 1. Predictors used in Random Forests models of mean daily temperature and vapor pressure microclimate anomalies at grassland
study sites.

Predictor Notation Type Source Resolution

Canopy height model CHM Vegetation UAS 60 cm
Normalized difference vegetation index NDVI Vegetation UAS 60 cm
Distance to wooded edge Wood edge Vegetation GIS 60 cm
Grassland type Ecotype Vegetation Site level NA
Digital terrain model Elevation Topography UAS 60 cm
Topographic positioning index TPI Topography UAS 60 cm
Slope Slope Topography UAS 60 cm
Aspect Aspect Topography UAS 60 cm
Hill shade Hillshade Topography UAS 60 cm
Mean temperature Mean temp. Mesoclimate Daymet 1 km
Mean vapor pressure Mean vapor Mesoclimate Daymet 1 km
Cumulative precipitation Daily precip. Mesoclimate Daymet 1 km
Short-wave solar irradiance Solar Mescoclimate Daymet 1 km

how microclimate dynamics behaved under different
climate conditions, such as hot and sunny relative to
cool and cloudy days.

We sourced mesoclimate predictors from Day-
met, a daily, 1 km resolution gridded climate product
available continent-wide across North America
(Thornton et al 2021). Daymet uses daily weather
station data, and data describing terrain, large bod-
ies of water, winds, and storms to interpolate local
climate conditions; these predictions are then cross-
validated (Thornton et al 2021). Table 1 summarizes
all predictor variables included in our microclimate
models including UAS-collected predictors, site-level
variables, and Daymet mesoclimate variables.

2.4. Random Forests models
We used Random Forests to model microclimate
at grassland sites using iButton collected temperat-
ure and vapor pressure anomalies as response vari-
ables predicted by a set of spatially explicit vegetation
and topographic features, as well as gridded meso-
climate variables (table 1). Although we included
mesoclimate predictors in our models, our approach
was not intended as a downscaling, but rather to
model our iButton response variables under varying
external conditions. Random Forests are a decision
tree-based, machine learning algorithm capable of
achieving high predictive accuracy without overfit-
ting through ensemble modeling and a bootstrap-
ping technique known as bagging (Breiman 2001,
James et al 2013). Random Forests have several addi-
tional advantages including the ability to handle high-
dimensional data, model complex interactions, and
a lack of restrictive assumptions. We calculated Pear-
son’s correlation coefficient (r) among all pairs of spa-
tial predictors and found r < 0.7 in all cases (figure
S12). We implemented Random Forests in R with the
ranger package (Wright and Ziegler 2017) and per-
formed k-fold cross-validation with ten partitions, in

which ground-collected iButton measurements were
withheld for testing. These control data were then
compared with predictions from the trained model
to calculate root-mean-squared errors as a metric of
model performance. We performed cross-validation
and model tuning using the caret package (Kuhn
2022). We tuned our Random Forest models across
a range of mtry values, as well as two different split
rules, using 1501 trees for each iteration (table S1).
The mtry value determines how many predictors are
included in each bagging and thus represents a bal-
ance between good prediction and overfitting. We
provided a range of low and highmtry values relative
to the number of predictors in our models and selec-
ted the optimal value from the tuning grid models.

We extracted variable importance, individual
conditional expectations (ICEs), and partial depend-
ence for each model using the flashlight package
(Mayer 2021). Variable importance is calculated by
assessing the drop in model performance when a
feature is randomly permuted, thus a low variable
importance score indicates a lack of influence on
model performance (Breiman 2001). In our res-
ults, we present variable importance as a percent-
age of total drop in performance from all features
combined. This allows variable importance to be
compared across models with different units in the
response variable. Partial dependence is a global met-
ric that examines the average effect of a feature on
the response variable when all other predictors are
held constant (Friedman 2001) and can be inter-
preted analogously to a marginal effects plot. ICE
plots represent the local observations fromwhich par-
tial dependence is produced, and they are suitable
for identifying interactions, non-linearity, and other
complex effects that may be obscured when observa-
tions are averaged as in partial dependence (Molnar
2022). We assessed interaction between features in
our models using Friedman’s H, also implemented
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in the flashlight package (Mayer 2021). Friedman’s
H is calculated from the decomposition of partial
dependence for a given feature and can be inter-
preted as the proportion of variance explained by
that feature that is attributed to covariance with
another feature (Molnar 2022). Finally, we tested our
models for spatial autocorrelation, and those pro-
cedures are described in supplementary materials,
appendix A.

2.5. Spatial prediction of grasslandmicroclimates
We produced spatially explicit, 60 cm resolution,
microclimate predictions for both temperature and
vapor pressure anomalies at our four grassland study
sites by using Random Forests models to predict
across raster stacks containing each spatial predictor.
For NDVI and CHM, we used mean layers for pre-
diction to represent typical grassland conditions. To
examine how microclimates changed under different
climate conditions, we produced three sets of spa-
tial predictions for each study site representing cool
and cloudy days, mean conditions for the season,
and hot and sunny days. We characterized these con-
ditions, respectively, by setting Daymet temperature
and solar irradiance variables to their lower 5th per-
centile (5%), mean, and upper 95th percentile (95%)
values.

3. Results

Hourly iButton summaries revealed similar microcli-
mate profiles among study sites, suggesting few broad
differences in climate dynamics between warm- and
cool-season grasslands (figure S13). Across all sites,
daily mean temperatures and vapor pressures ranged
from 5.4 ◦C–30.7 ◦C and 781.1–3168.3 Pa, respect-
ively (figure S14). Hourly profiles of temperat-
ure and vapor pressure anomalies exhibited devi-
ations from mean conditions of up to 10 ◦C and
3000 Pa, respectively, during daytime hours (figures
S15 and S16). Daily summaries of raw iButton data
revealed that, on average, grassland microclimates at
our sites tracked mesoclimate conditions described
by Daymet variables (figure 2(a)), but experienced
lower minima (figure 2(b)), notably higher maxima
(figure 2(c)), and ultimately were subject to larger
diurnal temperature ranges—particularly on warmer
days (figure 2(d)).

Random Forests models of daily mean temper-
ature (R2 = 0.71) and vapor pressure anomalies
(R2 = 0.52) had predictive accuracies of 0.38 ◦C
and 55.2 Pa, respectively (table S3). The top spa-
tial predictors in both models included primary pro-
ductivity, as represented by NDVI, canopy height
(CHM), elevation, and relative topographic pos-
itioning (TPI); aspect also informed vapor pres-
sure anomaly (figure 3). In addition to spatial UAS

predictors, Daymet daily mean temperature and
solar irradiance were also modestly informative in
our models (figure 3), suggesting that background
climate conditions affected grassland microclimate
dynamics.

Analysis of partial dependence showed that areas
of high primary productivity (NDVI), and to a lesser
extent taller vegetation (CHM), supported cooler
anomalies (figures 4(a) and (b)). By contrast, higher
elevation, as well as higher index values for rel-
ative topographic positioning (TPI), were moder-
ately associated with warmer temperature anom-
alies (figures 4(c) and (d)). Similarly, areas of more
productive and taller vegetation were associated
with higher vapor pressure anomalies (more humid;
figures 4(a) and (b)), while higher elevation posi-
tions were much drier (figures 4(c) and (d)). Par-
tial dependence plots for all variables modeled can
be found in the supplementary materials, figures S17
and S18. Daily mean temperature and solar irra-
diance from Daymet characterizing broader meso-
climate conditions had non-unidirectional effects
(figures 5(a) and (b)). Specifically, warm mesocli-
mate temperatures and high irradiance appeared to
increase both negative and positive anomalies in tem-
perature and vapor pressure, effectively increasing the
magnitude of microclimate decoupling produced by
variation in the spatial predictors discussed above.
This relationship was confirmed by plots of absolute
iButton anomalies against Daymet mesoclimate con-
ditions throughout the season (figure S19). We also
assessed pairwise interactions between all predictors
in both of ourmodels and found that only the interac-
tion between elevation and vegetation height (CHM)
in the temperature anomaly model appeared to be
substantive (figure S20).

Finally, spatially explicit predictions of microcli-
mate revealed heterogeneous conditions at grassland
sites reflecting underlying variation in vegetation and
topography (figure 6; spatial predictions of micro-
climate for all sites can be viewed in supplementary
materials, figures S21 and S22). However, the mag-
nitude of anomalies becamemore pronounced under
hot and sunny conditions (figure 6; 95th percentile).
Under these conditions, the range of daily temperat-
ure anomalies between the coolest and warmest areas
was as much as 3.5 ◦C at some sites (figure S23). Sim-
ilarly, differences in daily vapor pressure anomalies
between the most humid and dry areas at some sites
were as much as 250 Pa (figure S24). Model error
structures showed little directional bias in prediction
and were broadly similar among sites although dif-
ferences in distribution tails suggested some differ-
ences in predictive accuracy (figures S25 and S26).
Additionally, at several sites, there was evidence that
extreme values were predicted with greater uncer-
tainty (figures S27 and S28).
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Figure 2. Raw iButton microclimate measurements summarized by day of season and averaged across all sites plotted alongside
Daymet observations for the same period. While mean microclimate temperatures closely tracked regional conditions, maxima
and minima exceeded Daymet estimates suggesting that grassland microclimates experience a larger range of temperature
conditions than regional climate.

Figure 3. Relative importance of predictor variables expressed as a percentage for Random Forests models of temperature (a) and
vapor pressure (b) microclimate anomalies. Anomalies of both temperature and vapor pressure were most strongly influenced by
vegetation characteristics including productivity (NDVI) and vegetation height (CHM), as well as topographic conditions
(elevation and TPI). Additional variation was explained by broader mesoclimate conditions including mean temperatures and
solar irradiance; site type, (cool vs warm season) had little independent influence.
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Figure 4. Smoothed partial dependence of mean daily temperature and vapor pressure anomalies for top spatial predictors in
Random Forests models of grassland microclimate. Primary productivity (a) and vegetation height (b) had cooling effects on
temperature anomaly, while higher elevations (c) and relative topographic positions (d) (TPI) tended to be warmer. Similarly,
vapor pressures (e.g. humidity) were higher in productive areas with taller vegetation, and lower (e.g. dryer) at higher elevations
and topographic positions.

Figure 5. Partial dependence (black lines; displaying the average effect of variables) of mean daily temperature and vapor pressure
anomalies overlaid with individual conditional expectations (colored lines; displaying change in individual observation over
variable range) for mesoclimate mean temperature (a) and solar irradiance (b) in Random Forests models of grassland
microclimate. Higher daily temperatures and greater solar irradiance resulted in greater variation in anomaly for both
temperature and vapor pressure.
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Figure 6. Variation in magnitude of microclimate anomalies with mesoclimate conditions at a grassland site using spatially
explicit, 60 cm resolution, Random Forests predictions of temperature (a) and vapor pressure (b) anomalies under low (5th
percentile), seasonal mean, and high (95th percentile) temperature and solar irradiance conditions.

4. Discussion

Grasslands are a globally endangered ecosystem
(Scholtz and Twidwell 2022) that is likely to exper-
ience rapid climate change (Loarie et al 2009). Con-
sequently, many grassland-dependent species are vul-
nerable to climate conditions (González-Varo et al
2013, Wilsey et al 2019), and microclimates may
play an important role in buffering these species
from future changes (e.g. Suggitt et al 2018). How-
ever, a lack of studies examining the magnitude and
drivers of grassland microclimate has limited under-
standing of this potential. We found that grasslands
support substantial variation in microclimate anom-
alies, and in some cases, the magnitude of temperat-
ure variation (3.5 ◦C mean; 10 ◦C hourly) may be
of a similar order to projected climate change for
the central United States (Pörtner et al 2022; 3 and
6 ◦C warmer under 2 ◦C and 4 ◦C average global
warming scenarios, respectively). The spatial distri-
bution of grassland microclimates was driven largely
by vegetation conditions, including primary pro-
ductivity and vegetation height, as well as elevation
and topographic positioning. Microclimate differ-
ences also becamemore pronounced in hot and sunny
conditions, suggesting that microclimates could play
an important ecological role as microrefugia during
extreme events (e.g. heat waves).

Broadly, microclimate temperatures recorded by
iButtons in our study documented greater climate
variability near the surface in grasslands, as well
as substantially greater maxima, and to a lesser
extent, lower minima relative to regional conditions
described by Daymet. This was expected given that
there is greater climate variability near the surface.
In addition, our model residuals indicated that in
some cases, the most extreme anomalies were pre-
dicted with greater uncertainty and thus these estim-
ates should be interpreted cautiously. Much higher
maximum temperatures recorded in grasslands could
also reflect bias associated with iButton use in the
absence of canopy (Maclean et al 2021), or a lack of
temperature buffering in grasslands relative to other
cover types (Suggit et al 2011). It is likely that both
mechanisms were at play suggesting that while some
maxima we observed may have been exaggerated,
grasslands do experience greater exposure to tem-
perature extremes as reported elsewhere (Loarie et al
2009, Suggitt et al 2011).

Temperature anomalies in our study were most
influenced by primary productivity, and product-
ive areas were correlated with cooler microclimates
suggesting that dense vegetation may buffer heat
extremes in grassland habitats. This effect was likely
driven by evaporative cooling through plant stomatal
conductance associated with photosynthetic capacity
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(Bramer et al 2018, Duffy et al 2021). Vegetation
height also had a moderate cooling effect—likely
from shading during lower solar angles. The import-
ance of vegetation productivity and structure suggests
that microclimate buffering of temperature in grass-
land systems may be threatened by extreme droughts
and changes to precipitation patterns associated with
future climate change (Cook et al 2022); prolonged
drought conditions may cause browning of vegeta-
tion and an associated reduction in evapotranspira-
tion, as well as diminished plant structure. However,
an important limitation of our study is that climate
observations were made at a 5 cm height, typic-
ally below the grass canopy. Therefore, microclimate
dynamics above or near the top of vegetation could
operate differently.

Both elevation and topographic position also
influenced microclimate, and low-lying areas relat-
ive to neighborhoods, as well as lower elevations in
general, were associated with cooler and more humid
anomalies—an effect possibly driven by the pooling
of cold air and surface water run-off, as well as night-
time humidity inversion (Geiger et al 2009, Bramer
et al 2018, Pastore et al 2022). Although cold air
drainage is more often associated with mesoclimatic
processes in mountainous systems (Dobrowski 2011,
Ashcroft and Gollan 2012), even depressions with
depths as little as 2 m may be sufficient to influ-
ence temperature conditions and cold air movement
(Mahrt 2022). Another possibility is that lower and
less exposed positions tend to receive more terrain
shading and reduced wind speeds, thus preserving
moisture and leading to greater evaporative cool-
ing; this might explain the interaction of elevation
and vegetation height observed in our temperature
model. Regardless, our findings suggest that although
grassland ecosystems are characterized as low-lying
and lacking in topographic complexity (e.g. com-
pared to montane forests), small microtopographic
differences can support strong microclimate variab-
ility (Mahrt 2006, 2022).

Given that vegetation played an important role
in mediating grassland microclimates, lack of dif-
ferences between cool- and warm-season grassland
sites was surprising and suggests that site productiv-
ity and vegetation structure, and not species composi-
tion or functional traits (Zellweger et al 2019), have a
greater influence on microclimate conditions. How-
ever, we did not collect primary productivity data
at a fine temporal grain (e.g. daily measurements),
and it is conceivable that differences in C3 and C4
carbon pathways in cool and warm-season plants
(Wang et al 2013) may influence microclimate differ-
ently throughout the season depending on the tim-
ing of greening. Plant functional diversity may also
play an important role in supporting the resiliency
of grasslands to extreme climate events (Craine et al
2013), thus further study on the subject could be of
value.

The magnitude of temperature and vapor pres-
sure anomalies was also influenced by daily temper-
ature and solar irradiance, which drove increasing
anomalies in both positive and negative directions
(e.g. warmer and cooler, more and less humid).
Hot and sunny days supported greater microclimate
anomalies, suggesting heat extremes impart greater
contrast across grassland landscapes. This effect is
likely driven by diurnal temperature and vapor cycles
in which extremes occur at the surface where heat
stored in the ground is transferred to the near-surface
air layer via convection (Geiger et al 2009). On hot
and sunny days where there is high energy input into
the system, these extremes are likely to be greater,
thus creating high anomalies in exposed areas and
low anomalies where conditions are buffered by other
factors. The ultimate result of these biophysical pro-
cesses is greater microclimate deviation from mean
conditionswith heat and irradiance extremes—aphe-
nomenon that is of high ecological importance to
grassland species seeking refugia to avoid exposure
to conditions beyond their thermal and moisture tol-
erance limits (Grisham et al 2016, Ruth et al 2020,
Scherer and Fartmann 2022).

Many grassland-dependent species are experien-
cing widespread declines and are vulnerable to cli-
mate change (González-Varo et al 2013, Wilsey et al
2019). Fine-scale temperature and humidity condi-
tions are important tomany of these grassland organ-
isms and can influence their reproductive success, and
use of habitat across landscapes. For example, grass-
land birds may select nest sites that buffer eggs and
nestlings from lethal thermal extremes and desicca-
tion (e.g. Grisham et al 2016, Carroll et al 2018).
Landscape-level thermal conditions, and the presence
of refugia, can also influence the habitat use and sur-
vival of these species (Hovick et al 2014, Carroll et al
2016, Ruth et al 2020). Similarly, oviposition and hab-
itat use in grassland insects and pollinators is also
influenced by microclimates (Gardiner and Hassall
2009, Scherer and Fartmann 2022). Consequently,
microclimatesmay become an increasingly important
aspect of managing and conserving grassland biod-
iversity under climate change.

Grasslands are often subject to intensive man-
agement actions such as prescribed fire, grazing,
and mowing. Understanding how these tools influ-
ence microclimates is of critical importance. For
example, given the role of primary productivity in
fostering cooler microclimates, managers may wish
to consider activities that could enhance productiv-
ity such as sustainable grazing regimes (to avoid
overgrazing) or irrigation to improve primary pro-
ductivity during extreme droughts (Greenwood et al
2016). By contrast, intensive activities such as fre-
quent mowing may be less desirable for creating
microrefugia during the breeding season as they
reduce primary productivity and homogenize struc-
ture. In some cases, these activities have even been
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implicated in disrupting microclimates required by
insect species (Gardiner and Hassall 2009, Thomas
et al 2009). Finally, the importance of topography
in creating grassland microclimate complexity sug-
gests that prioritizing the acquisition and conserva-
tion of grassland areas of high topographic complex-
ity will likely increase the prevalence of microrefugia
for climate-vulnerable grassland species (Bennie et al
2008, Suggitt et al 2018).
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