Engineering with Computers
https://doi.org/10.1007/500366-024-01987-z

ORIGINAL ARTICLE q

Check for
updates

Interpreting and generalizing deep learning in physics-based
problems with functional linear models

Amirhossein Arzani'2® . Lingxiao Yuan® - Pania Newell' - Bei Wang**

Received: 5 October 2023 / Accepted: 17 April 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract

Although deep learning has achieved remarkable success in various scientific machine learning applications, its opaque
nature poses concerns regarding interpretability and generalization capabilities beyond the training data. Interpretability is
crucial and often desired in modeling physical systems. Moreover, acquiring extensive datasets that encompass the entire
range of input features is challenging in many physics-based learning tasks, leading to increased errors when encountering
out-of-distribution (OOD) data. In this work, motivated by the field of functional data analysis (FDA), we propose general-
ized functional linear models as an interpretable surrogate for a trained deep learning model. We demonstrate that our model
could be trained either based on a trained neural network (post-hoc interpretation) or directly from training data (interpret-
able operator learning). A library of generalized functional linear models with different kernel functions is considered and
sparse regression is used to discover an interpretable surrogate model that could be analytically presented. We present test
cases in solid mechanics, fluid mechanics, and transport. Our results demonstrate that our model can achieve comparable
accuracy to deep learning and can improve OOD generalization while providing more transparency and interpretability. Our
study underscores the significance of interpretable representation in scientific machine learning and showcases the potential
of functional linear models as a tool for interpreting and generalizing deep learning.

Keywords Explainable artificial intelligence (XAI) - Scientific machine learning - Functional data analysis - Operator
learning - Generalization

1 Introduction

In recent years, deep learning has emerged as a transforma-
tive modeling approach in various science and engineer-
ing domains. Deep learning has been successfully used for
improving the quality of physical data or improving phys-
ics-based models (e.g., superresolution [1], denoising [2],
system/parameter identification [3], and closure modeling
[4]). Additionally, deep learning is a key tool in machine

< Amirhossein Arzani
amir.arzani @sci.utah.edu

Department of Mechanical Engineering, University of Utah,
Salt Lake City, UT 84112, USA

Scientific Computing and Imaging Institute, University
of Utah, Salt Lake City, UT 84112, USA

Department of Mechanical Engineering, Boston University,
Boston, MA, USA

School of Computing, University of Utah, Salt Lake City,
UT, USA

Published online: 08 May 2024

learning enhanced models where the goal of deep learning
is to provide a surrogate for the physics-based model, which
is useful in many-query and real-time predictive modeling
[5, 6]. Although deep learning has demonstrated impres-
sive success in most of these studies, its inherent opaque
nature raises concerns regarding the interpretability of the
prediction processes. In physics-based systems, where causal
relationships and fundamental first-principle laws play a piv-
otal role in the results, interpretable models are essential
for understanding the phenomena of interest and obtain-
ing trustworthy results. Additionally, it is often desirable
for deep learning to generalize and extrapolate beyond the
training data once the model is deployed and being used in
practice, which is a challenging task in physics-based deep
learning [7].

The challenges associated with interpretability and gen-
eralization in machine learning and deep learning could
be overcome with parsimonious and interpretable models
[8]. In physics-based modeling, this has been achieved with
various techniques such as symbolic regression [9], sparse

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

identification of nonlinear dynamics (SINDy) [10], inter-
pretable reduced-order models (ROM) [11], and design of
certain coordinate transformations in deep neural networks
[3]. More broadly, the growing field of interpretable and
explainable artificial intelligence (XAI) offers a set of tools
aimed at making opaque deep learning models understand-
able and transparent to humans [12, 13]. XAI approaches
are classified as “by-design” and “post-hoc”” methods. The
aforementioned parsimonious models are by-design where
one achieves interpretability by building such features in the
machine learning model from the initial design phase, which
has been a more common approach in physics-based mod-
eling and scientific machine learning. However, by-design
XAI approaches usually lead to a tradeoff between model
accuracy and interpretability [14]. On the other hand, post-
hoc XAI approaches do not compromise model accuracy and
instead, explain the model’s results in a post-processing step.
Standard off-the-shelf XAI approaches have been recently
used in various fields such as healthcare [15, 16], aerospace
[17], turbulence modeling [18-20], and material science
[14].

Interpretable machine learning models also offer the
opportunity to improve generalization. However, gener-
alization to out-of-distribution (OOD) input data is a key
challenge in scientific machine learning and particularly for
deep learning models [7]. While standard techniques such as
regularization could be used to achieve acceptable in-distri-
bution generalization error (interpolation), OOD generaliza-
tion (extrapolation) is usually not achieved. Extrapolation
poses a serious challenge for opaque deep learning models.
As an example, machine-learning based turbulence models
trained from equilibrium turbulence databases have failed
once applied to non-equilibrium turbulence and transitional
flows [21]. Interestingly, in certain examples, a simple linear
regression model has exhibited remarkable performance in
extrapolating training data, with an average error rate merely
5% higher than that of opaque models and has even sur-
passed opaque models in approximately 40% of the scientific
machine learning prediction tasks evaluated [22].

Here, we propose a post-hoc deep learning interpre-
tation strategy where we build a surrogate for a given
trained neural network in the form of generalized linear
integral equations. We hypothesize that the interpretable
model also improves OOD generalization while provid-
ing an approximation to the neural network’s predictions.
Our definition of interpretability is based on the work in
[23] where interpretability is qualitatively assessed based
on characteristics such as additivity, sparsity, and linear-
ity, which are all features of our proposed framework, as
described below. Given that many deep learning tasks in
scientific computing deal with mapping between functions
and functionals, we leverage theories within the field of
functional data analysis (FDA) [24, 25]. FDA provides a

@ Springer

theoretical framework to effectively model and analyze
functional data and has been used in different applica-
tions [24, 26]. Specifically, we will use functional linear
models that enable one to construct analytical mapping
involving functions/functionals in the form of interpretable
integral equations [24, 25]. In scientific machine learning,
the learning tasks often involve mapping between high-
dimensional data [27]. In these high-dimensional settings,
the simplest interpretable machine learning model, mul-
tivariate linear regression, can fail and more advanced
interpretable models such as functional regression have
been shown to provide better results [28, 29]. Unlike mul-
tivariate methods that discard spatial/temporal distribution
of the data, functional methods maintain and leverage the
intrinsic structure of the data, capturing the temporal or
spatial relationships between data points, and therefore
can provide a more accurate mapping between the data
and uncover valuable insights and patterns.

A key challenge in functional regression is the learning
of the kernel function that appears in the integral equa-
tions. A common approach is expanding the kernel in a
certain basis or using a pre-defined fixed kernel [24, 30].
Kernel regression is an established statistical modeling
approach [31, 32] and kernel methods have been used
in building nonlinear ROMs [33, 34]. In this work, we
propose a more flexible framework in which the kernel
is learned from a library of candidate kernel functions
using sparse regression. Once trained on data produced by
probing a neural network in a post-hoc fashion, the model
will provide an analytical representation in the form of
a linear sum of integral equations that not only approx-
imates the neural network’s behavior but also provides
potential improvement in OOD generalization. The model
could be trained based on data probed on the entire train-
ing landscape or a subset of the input parameter space to
provide a global or local interpretation, respectively. Our
proposed approach could also be viewed in the context of
operator learning and neural operators [35]. Deep learn-
ing of operators has recently gained attention in learning
mapping between function spaces and has been utilized
in various scientific machine learning problems [36-39].
Interestingly, certain neural operators also leverage inte-
gral equations and generalized versions of functional lin-
ear models [40]. In scientific computing, the utilization
of Green’s functions/operators [41, 42] has inspired the
incorporation of integral equations into the architecture of
deep neural operators. These integral equations enable the
learning of operators by mapping between function spaces
and belong to the category of functional linear models.

In this paper, we present an interpretable machine
learning model that builds on several fields such as opera-
tor learning, XAI, and FDA. Our paper provides the fol-
lowing major contributions:

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

e We present an early application of functional linear
models for post-hoc interpretable representation of
opaque deep learning models in scientific computing.

e We provide a new library based approach together
with sparse regression for discovering the kernels in
the functional linear models. This provides more flex-
ibility compared to prior FDA studies with pre-defined
kernels.

e The majority of post-hoc XAI approaches used in sci-
entific machine learning are local and explain neural
network’s predictions in a region local to a desired
input. Our proposed approach is a global surrogate
model that could also be easily adapted to local inter-
pretation tasks.

e We demonstrate that our proposed functional linear
model could be trained either on the data itself or
by probing a trained neural network. This allows the
model to be utilized either as an interpretable opera-
tor learning model or an opaque model interpreter. We
document training and OOD testing performance in
solid mechanics, fluid mechanics, and transport test
cases.

The rest of this paper is organized as follows. First, in
Sect. 2.1, we provide a brief theoretical overview of differ-
ent approaches such as FDA to motivate the use of integral
equations as a surrogate for deep learning. Next, we present
our proposed functional linear model (Sect. 2.2) and explain
how it is applied for interpretation and OOD generalization
in Sect. 2.3. In Sect. 3, we present our results for different
scientific machine learning test cases. The results and our
framework are discussed in Sect. 4, and we summarize our
conclusions in Sect. 5.

2 Methods
2.1 Theoretical motivation and background

Integral equations provide a mathematical framework that
encourages the development of interpretable models by
explicitly defining the relationships between variables. Our
proposed interpretable surrogate model for understanding
a deep learning operator is built upon integral equations.
These integral equations yield an interpretable generalized
linear model that approximates the predictions of the neu-
ral network. We provide a brief review of several topics in
applied mathematics and machine learning to motivate the
idea of using integral equations to build a surrogate for an
available deep learning model. The theoretical background
serves as a motivation for the proposed method and readers
may skip to Sect. 2.2.

2.1.1 Green's functions

In many physics-based learning tasks, we are interested in
solving partial differential equations. Consider the differen-
tial equation Lu = f(x), where one is interested in solving u,
for different input source terms f(x). Similar to how a linear
system of equations Ax = b could be solved as x = A~'b
using an inverse operator A~', the above differential equa-
tion could also be inverted assuming L is a linear operator

ux)=L"'f= / g(x, Of(&) dE , (1)

where g(x, £) is the Green’s function corresponding to the
linear operator L and the action of g(x, £) on f that produces
the solution is the Green’s operator. Therefore, at least for
linear operators one can find an analytical operator represen-
tation in the form of an integral equation to map the given
input f to the output u. When dealing with a nonlinear opera-
tor, it is possible to employ a similar concept to find a linear
approximation of the operator, at least within a local context.
This motivates extending Green’s function concept to a gen-
eralized linear integral model that can approximate desired
physics-based operator learning problems. Given the exist-
ing knowledge about Green functions for linear differential
equations [41, 42], one can design the integral equations
based on the physical problem we are trying to solve.

2.1.2 Convolutional neural networks (CNN)

Convolutional neural networks (CNN) are arguably one
of the most successful deep learning architectures and are
widely used in computer vision [43] and mapping 2D image-
like field variables in scientific machine learning [1, 44—46].
A key reason behind CNN’s success is the fact that each
layer is only connected to a local spatial region in the previ-
ous layer. This is achieved using convolutional operators that
enable CNN to learn hierarchical features. We can write a
convolutional integral operation as

U(x,y)=/K(C,n)f(x—C,y—n)dCdn
2
=/K(x—C,y—n)f(C,n)dCdn,

where the output u is generated by convolving the input f.
In CNN, the above operation is done in a discrete manner,
and the kernel K represents the learnable parameters of the
network. Although convolution in a CNN involves a more
complex process of sliding filters across the input and is
accompanied by additional operations in different layers, the
fundamental idea of a convolutional integral equation that
maps inputs to outputs through convolutions inspires the

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

development of integral equation models. Such models can
construct interpretable surrogates for CNNs and other deep
learning architectures. Interestingly, these convolution lay-
ers perform feature learning that once combined with fully
connected layers allows CNN to make predictions. Our pro-
posed approach aligns closely with this strategy. Similarly,
we leverage a library of integral functions to facilitate feature
learning, and prediction is made through linear regression.
In CNN, the first version of the above equation involving
f(x — ¢,y — n)is used. However, in building our interpretable
model, we will use the equivalent version involving f(¢, #)
(second form in Eq. 2). Interestingly, a similar analogy
between integral equations and neural networks can also be
made for fully connected neural networks. The matrix vector
multiplications that are building blocks of these networks
are known to produce mathematically similar structures to
kernel-based integral equations in Eq. 1 [47].

2.1.3 Radial basis function (RBF) networks

Radial basis function (RBF) networks are a neural network
generalization of kernel regression or classification [48].
RBF networks use radial basis functions as their activation
function. For a single hidden layer, the output of an RBF
network can be written as

m — 2
u(x) = Z w; exp (—%) , 3)
i=l

i

where m different hidden units with different prototype vec-
tor u; and bandwidth f; are used with x as an input. The
weights of the network w; are optimized to find the final
solution. Each RBF influences a set of points in the vicin-
ity of its feature vector u; with the distance of influence
dictated by the bandwidth f;. RBF networks are universal
function approximators. In our library of integral equations
for our surrogate model below, we will also leverage RBFs
but in the integral form. That is, the feature vector u will be
replaced with a continuous variable and the integration will
be done with respect to this variable.

2.1.4 Gaussian process regression (GPR)

In Gaussian process regression (GPR), a function is approxi-
mated using Gaussian processes, which are specified by a
mean function and a covariance function (a kernel) [49].
The squared exponential kernel also used in RBF (Eq. 3) is
a popular choice in GPR. GPR effectively integrates infor-
mation from nearby points through its kernel function, simi-
lar to how we will build our interpretable model below. An
intriguing observation is that as the number of neurons in a
single hidden layer of a neural network approaches infinity, it
evolves into a global function approximator. Similarly, under

@ Springer

certain constructs, a neural network with a single hidden
layer for a stochastic process converges toward a Gaussian
process when the hidden layer contains an infinitely large
number of neurons [49, 50].

2.1.5 Neural operators

Neural operators are an extension of neural networks that
enable learning of mapping between infinite-dimensional
function spaces [35, 51]. Traditional neural networks also
learn a mapping between functions (as used in our test cases
below) but they require a fixed discretization of the func-
tion, whereas neural operators are discretization-invariant.
In neural operators, typically, each layer is a linear operator
(e.g., an integral equation) and nonlinear activation func-
tions are used to increase the expressive power. The input v
to each layer is first passed through an integral linear opera-
tor f K(x, £)v(&) d€ using a pre-defined kernel K, and sub-
sequently a nonlinear activation is applied. Therefore, neural
operators also leverage integral equations in their regression
tasks but build on neural network architectures for increased
expressive power at the price of reduced interpretability. Dif-
ferent designs of the kernel lead to different neural operators.
Fourier neural operators (FNO) are a popular and successful
example that leverages Fourier transforms and convolutions
[36]. Graph neural operators [40, 52] are another example
that uses integral equations similar to the approach we will
employ in our model. These operators leverage Monte Carlo
sampling techniques to approximate the integral equations.

2.1.6 Functional data analysis (FDA)

FDA is a mathematical framework that focuses on analyz-
ing data in the form of smooth functions, rather than dis-
crete observations [24, 25]. We will be presenting our pro-
posed framework within the context of FDA and therefore
more information is provided here. In FDA, the dependent
variable, independent variable, or both are functionals.
Broadly speaking, we may use FDA to perform mapping
and regression when functions are involved either as input
or output. Let us consider a mapping between an input func-
tions f(x) and output u, where the output is either a func-
tion (scalar/vector field) or a single scalar/vector. In the
simplest case mimicking classical regression, for a func-
tion output, one might write the output concurrently as
u(x) = a(x) + y(x)f(x), where a and y are bias and regres-
sion coefficient functions, respectively. However, this simple
concurrent formulation does not consider the potential influ-
ence of neighboring points on the solution. Integral equa-
tions can be used to overcome this issue and provide a more
realistic scenario. We can formulate the regression problem
using functional linear models [24, 25]. Assuming that all

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

data are mean-centered, a fully functional model is applied
to the case where the input and output are both functions

u(x) = / v (x, OHIE) dE , “

in which the goal is to find . In a separate problem, when
the output is a single scalar/vector value, the problem can be
formulated as a scalar/vector response model

u= / W) dE .)

Finally, if the output is a function and the input is a single
scalar/vector value the problem can be written as a func-
tional response model

ux) = yxF. (6)

In this paper, we will study only the first two cases (Eq. 4 and
5). It should be noted that Eq. 6 can be equivalent to a single
layer linear feedforward neural network and Eq. 4-5 can be
cast as a single layer linear neural operator or a DeepONet.
However, the FDA form provides an analytical representa-
tion, which assists with interpretation and downstream post-
processing. Additionally, as explained below, once combined
with sparse regression it allows one to find the appropriate
kernel analytically based on data rather than pre-defining it
or representing it discretely as in neural networks.

2.2 Interpretable functional linear models

The discussion above highlights the importance of integral
equations in learning mappings between function spaces.
Although the various methods mentioned earlier may have
similarities and can be considered equivalent in certain con-
ditions, our primary focus will be on FDA with functional
linear models. To enhance the expressive capacity of func-
tional linear models, we will expand their capabilities in
three distinct ways:

e First, we will lift the input functions into a higher-dimen-
sional feature space using a pre-specified lifting map 7°
(e.g., polynomials) and then define functional linear
models for each component of the new feature space
separately and use linear superposition to define the final
model. Such lifting operations have been successfully
used in scientific machine learning models (e.g., [53]).

e We will use generalized functional linear models [54].
Specifically, we will allow a nonlinear function g(.) to be
applied to the functional linear models to create outputs
such as u(x) = g(/ y(x, (&) dé).

e Model selection (choice of the kernel) and tuning its
hyperparameters is a difficult task in various forms of
kernel regression [31, 55]. Instead of pre-specifying

the kernels y, we will pre-define a library of kernels
and associated hyperparameters. Subsequently, we will
use sparse regression to select among the library of
candidate functions. By specifying the desired level of
sparsity, a balance can be achieved between interpret-
ability and accuracy.

In the examples explored in this work, we investigate
deep learning tasks and corresponding interpretable
functional linear models where the input is a 2D function
(image) defined on Q and the output is either a single sca-
lar value, a 1D function (line), or a 2D function (image).
These models can be considered as mappings: f(x,y) - u,
f(x,y) — u(x), and f(x,y) — u(x,y), respectively. Incorpo-
rating the above three modifications to functional linear
models and using convolution-like operators for the tasks
involving image or line outputs, we write the final models
in the most general form as

N M L

ll(xd’) = Z Z Z Wn,m,f 8n

n=1 m=1¢=1
(/Q v, =,y =mT L, n)de dn>

(image to image) ,

)

N M L
u(x) = Z Z Z Wome 8n

n=1 m=1¢=1
Q

(image to line) ,

®

N M L
u= Zzzwn,m,f 8n

n=1 m=1¢=

</ W, (& mTAE,) df dn)
Q

(image to scalar) ,

—_

©))

where a linear combination of L different lifting operations
T on the inputs, M different kernels y, and N different non-
linear functions g is used in writing the final solution. This
could be considered as a generalized version of an additive
functional regression [30, 56]. Generalized additive models
have been utilized to improve interpretability in deep learn-
ing [57]. Our goal is to formulate a linear regression problem
based on the above analytical equations and training data to
find the unknown coefficients w, ,, .. We do not impose any
constraint on the kernel y besides being L2, and therefore
inducing Hilbert-Schmidt operators. Below we present a few
remarks.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

K1oAT30adsar ‘syse) aurf-03-oSewr pue ‘oSewr-03-0Sewl ‘Te[eos-o0}-oSewl [[e ul pasn sem (X)/1’] pue (£ x)/I’] ‘1 Jo wisy se1q JuLISUOD

‘K[oanoadsar ndino oy se peonpoid axe dur pue aSewr ue 21nsud 03 (x)1’] Aq yse) aurf-o3-aSewr ayy ur pue (£ x)!’p Aq pardninu are suia) [[e syse} oSewn-03-afewr uy “x [e 10§ | = (x)7[
V "A[oAl 3 Se padnp np I I

pue (€) [10§ [= ({DPL v B (LX) J10= (LX) pue y > ({X) J1 [= (£ x)"] o10ym V198 oY) 10} uonouny 103ed1put oy stV gl + (3 — YA =*"q pue (4 —) + (5 —)N = @ "voneis

-0)UI 10§ PAsn S[qeLIBA AWWNp a1e & pue J *KIeIqI[oY} UI SULIS) 9JEPIPUEd JO JOqUINU [210} Y ST J PUB ‘[OUIdY Yora 10 pash siojowered1odAy ypimpueq pajdures Ajuiogtun ore fpy <1 =g |

2917=d 0TI ='W 61> g > 1015 asw0

9e=d 0 ="W¢s'1 > ‘4>70
:9osed g71=d L ='W 70 > v>T0
052 7917 =d 021 =/ ¢'1 > 9 > 7°0 1 ased

8¢CI
=4 0¢ =Y ;g ose0 86 =4 01 = /p :1 asw0
01 > g > 1°0 "z 9580 U1 pasn A[uo wLdy 358

(bp Sp (b auv\@\ﬁ%iﬁlévlm \\Ecmu

(Up Sp (U Auv&@\ANfNCudTm \\v Chp op (b rwvw\\n\:lw \\ < hp Sp (b .uv%@\ﬁlow \\

p p WD fyp-2 1) (p 50 WD) figpi5-02 [bp S0 (WD) fquer gy, 2 [f

lp 3p (U 3)fuwer iy 5 2 [(Up 30 U9y [uwer (up 3p (U 3y 507 [uuer
Up 3p () figpuo [p 30 () g5 [(DY Tpup 3p 5,0]

atqup 5p (3o f [()<Y Tqup sp (9 f [

‘ ¢ ‘ ¢ _bp3
up 5p (U uv%@\%i@\é\rm\\. bp 5p (U wvbm\ANfNG\sv\m \\ i

. 1<’/
< spasyy p? - (9

@ 30 DLty iy 32 9

P 3P DSy 5p? D PP WD S g2 [4P WD gy 2 [
A 3P W gy o2 D P 0D gy 5 2 D P WD gy oo ff

Up 5p W fawer o o3 [Up 3P WD 1y [uver p3p gy 502 [fave
Up 3P (W12 [T U0 3P WS g5 [W10 3p o5y o [

[[
. < (uesyI<id/ay e < (wesyI<d/acy e
QSV_A.\a\nm;iv;.&\\\m ()] Thp 5p (U2) S [T+ (U*3) 1 vuﬂﬁu ;&%\\\
p 3p

30 WDy o o p =2 IR D Gy s o0 I Tzpar g

PPy 4y 2 I

up 3Pty ey ? PP WDy, 2 [e 30Uy s o ff

p 0 U DSty s 2 100 CD gy g2 [W0 0D [
Up 3p (W U3 [+ Spxp Sl [} p 3p @3 fe5

Uup Sp) fu [< up 3p U f3 [lp Sp DS [

)N — (£x)f (g oseo) Furddew aury 0) oFewy

LM — (%) [
(9 29 4 29 ¢ 9sed) Surddew oFewr 0) a3ew]

n i (£x)f (g 29 1 9seo) Jurddew refeos 0y oFew]

SOION

, suonenba [e1aur jo Areiqry

wo[qoIg

SWIIS) PA0[as Ay Surppe £q # uonn[os [eanAeue [euy

oy woj pue suonenba [eI3aul Jo Areiqr[9y) SUOWE JI9[AS O} Pasn ST UONB[NULIO} UoIssIZa1 aseds vy “10jerado o[qerardiour ue pring 0y warqoid yoes Joj pasn suorienbo jo Areiqip oy, | a|qel

pringer

AQs

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

e The above models are analytically tractable (interpret-
able), particularly for small L, M, and N. Sparsity pro-
moting regression will be used in this study to elimi-
nate many of the weights w, , » in a data-driven fashion
and improve the interpretability of the final model. The
remaining non-zero weights represent a reduced-order
representation of the system, which behaves linearly with
respect to its parameters w,, ,, ..

e In practice, it is not necessary to consider all possible
combinations of lifting, kernels, and nonlinearity in the
library employed for sparse regression. The library could
be defined in a flexible fashion as an arbitrary combina-
tion of these operators and the final solution will be a
linear superposition of the selected terms in the library.

e The kernels y provide an interpretation for each term in
the model. w(x — £,y —) in Eq. 7 represents the effect
of input function f at point ({,%) on the output function u
at point (x,y). w(x,y) in Eq. 9 represents a weight for the
influence of the input function f’s value at point (x,y) on
the output u and creates a weighted average.

e Most kernels used are equipped with a bandwidth that
also needs to be estimated and represents a character-
istic problem-dependent length scale and smoothing
parameter. Therefore, in our library of candidate terms,
for each such kernel, we also consider several candidate
bandwidths and treat each kernel separately. Therefore,
M in the above equations is typically a large value. For
instance, if three different analytical expressions are pro-
posed for the kernels y with 20 different potential band-
widths each, then M = 60.

e To enable approximation of the integrals during training,
the above integrals are replaced with discrete sums that
approximate the integrals. Therefore, the above models
could be compared to a graph neural operator with a sin-
gle hidden layer [40]. However, in our model, various
kernels are added linearly in parallel to form the final
solution in an analytically simple manner, whereas in
neural operators the kernels are added sequentially in dif-
ferent hidden layers, which reduces the interpretability.
Additionally, as discussed below, we provide a library
approach for kernel selection.

e In this work, we study only regression tasks. The pro-
posed approach could be extended to classification tasks
with appropriate selection of the nonlinear function
g[54], similar to activation function selection in deep
learning.

To find the coefficients w, , ., a linear regression problem
is formulated based on the above integral equation models.
Let us assume a set of Q training data pairs (f and u) is
available and sampled over a set of collocation points x; and
7 (i=1,...,1,j=1,...,J) defined on a 2D grid (a total

of N =1 xJ points). The input image f(x;, ;) is mapped
to u(x;, y;), u(x;), or u based on the task. Additionally, let’s
assume a total of P terms is arbitrarily selected among the
L x M X N candidate terms for the library of integral equa-
tions. The above integral equations could be numerically
evaluated using any numerical integration technique for each
of the collocation points. This will result in a system of lin-
ear equations in the form U = FW, where U is a (ON') x 1
column vector of outputs, F is a (QN”) X P regression matrix
formed based on evaluating the integrals, and Wisa P X 1
column vector that contains the unknown coefficients for
each integral equation. Sparse regression is used to find
the solution by solving the following convex optimization
problem

min U - FW|, + AlW]]; , (10)

where A is a sparsity promoting regularization parameter.
This optimization problem is solved using a sequential thres-
holded least-squares algorithm [10] to find W. Increasing 4
will reduce the number of active terms in the final integral
equation model (improved interpretability) but can reduce
the accuracy. Our proposed framework resembles sparse
identification of nonlinear dynamics (SINDy) where a simi-
lar optimization problem together with a library of candi-
date terms is used for interpretable data-driven modeling of
dynamical systems [10]. A = 0.1 was used for all cases unless
noted otherwise. In the Appendix, we present an alternative
strategy for solving this linear regression problem by pre-
senting the normal equations for functional linear models.

The library of candidate terms for each task and test
case (defined in the Results Section) is listed in Table 1.
The range and number of bandwidths § used for each case
are also listed. In the more complex tasks, a large number
of candidate bandwidths should be selected. Additionally,
some of the candidate integral terms were defined based on
a truncated domain of integration (local influence), which is
a common practice in related methods [55, 58].

2.3 Generalizing deep learning
with an interpretable surrogate

Our proposed framework provides an interpretable approach
for learning operators and mapping between functions. The
entire model is simply a linear combination of integral equa-
tions (listed in Table 1). The model is trained by assuming a
library of candidate integral equations and solving the con-
vex optimization problem in Eq. 10, which allows for the
determination of coefficients associated with each integral.
Subsequently, given any new input function f(x, y) one could
evaluate the integral equations to find the solution u. The

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

Trained neural network (NN)

o o
N ’ Q .

Probe the NN
£, (X)— NN —uy(x)
q=L1,...,Q (desired range)

NN-driven
interpretable model

@

il

9
° g e
™
e

. . e

-~ (%)
o . ——
® ® -

> Data-driven

interpretable model

— — "'llq(X)

Integral evaluation Candidate integral operators
for each x and each
training input f

Sparse regression

. . Find unknown weights w;
[DIQTE [y, EFE)TE ooe [y (XHPE)E woe l
. . Interpretable surrogate model
. . u(x) = wy [y (ORI +w, [y (X DFE)E + .

Fig. 1 An overview of the proposed framework. Given a trained neu-
ral network that maps an input function f(x) to an output function
u(x), the network is probed within a desired range of input data to
produce pairs of inputs/outputs. Subsequently, these pairs of data are
used to learn an interpretable operator in the form of a linear sum of
integral equations (NN-driven interpretable model). Alternatively,

input function’s definition is flexible and could be defined
either analytically or numerically on an arbitrary grid. A
schematic overview is shown in Fig. 1.

Our definition of interpretability. Our definition is
based on interpretability features in machine learning such
as additivity, sparsity, and linearity as presented in [23].
These features have also been highlighted in other defini-
tions of interpretable machine learning [59, 60]. Our pro-
posed model is additive since different features and terms
are added together to find the total analytical equation. Our
model is sparse because the number of features in our model
(integral equation coefficients) is far fewer than the param-
eters of a deep neural network. Finally, our model is linear
with respect to its unknown parameters. Similar features are
used by other studies to assess interpretability. For example,
in [61], a functional decomposition (similar to the additive
nature of our model) is used to assess interpretability, where
interpretability is assessed with the number of features,
interaction strength, and main effect complexity. It should
be noted that the first two criteria are inherently imposed by

@ Springer

the interpretable mode is directly built based on given training data
and without a neural network (data-driven interpretable model). The
interpretable model is discovered by formulating a sparse regression
problem using a library of pre-specified general functional linear
models with different kernels

our framework, where we promote sparsity and have zero
interaction between features.

In this manuscript, we demonstrate three application
areas for our proposed framework:

1. Interpretable representation of a trained neural
network (post-hoc analysis). Given a trained neural
network for mapping between function spaces, we will
probe the network using a desired range of the input
function to generate pairs of inputs and outputs. This
is a model-agnostic approach that is independent of the
neural network architecture and just depends on the
output it generates given each input. Subsequently, the
input and output data will be used to build our inter-
pretable surrogate model, which provides an analytical
equation that approximates the behavior of the neural
network. The neural network can be probed within the
entire range of its training landscape or locally to better
understand its behavior in a localized landscape (a spe-
cific range of training data). Finally, the network can be
probed with out-of-distribution input data to understand

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

a)

Neural network predictions

Y
2 1 .
g 1 \‘
0 ' \ , M‘
2 , ‘ g
2 - ,,‘.*\.;‘.‘u. » \
I < / .
4r) == True solution
’ # Training data
~— NN prediction
,6_1 05 & - 1

Fig.2 A 1D example to motivate the challenge associated with gen-
eralization to out-of-distribution input is presented. True data (blue
dashed line) and training data (red spheres) are shown. The training

the network’s behavior outside its training landscape.
The network does not necessarily need to be probed with
the exact data that the network used for training. Our
definition of interpretation in this work is based on inter-
pretability characteristics proposed in [23] with the goal
of demonstrating that neural networks could be approxi-
mated with analytical integral equations. Interpreting the
physics of the problem using the interpretable model
will be future work.

2. Generalizing a trained neural network. The surrogate
model built based on the data from the probed neural
network could also be used to improve out-of-distribu-
tion generalization. Namely, the simpler and interpret-
able model is expected to perform better in extrapolation

Table2 Mean absolute error (MAE) for the neural network (NN),
interpretable model trained on neural network predictions (Interp
NN-driven), and interpretable model trained on training data (Interp
data-driven) are listed for training and out-of-distribution testing. Test

GPR fit of neural network predictions

y(x)

Training data
== True solution
=== GPR predictions

[_195% prediction intervals

-1 -0.5 0 0.5 1

data does not cover the entire function. a Neural network (NN) pre-
diction. b Gaussian process regression (GPR) prediction. The more
interpretable GPR model improves prediction for mild extrapolation

and generalization. Therefore, we can envision a hybrid
model where the neural network is utilized to generate
the output when the input data falls within the training
landscape. On the contrary, when the input data lie out-
side the training landscape, the interpretable surrogate
model would be invoked. Of course, this will require one
to first determine the boundary of the training landscape,
which might not be trivial in some problems [62, 63].
An interpretable machine learning model (by-design
analysis). The interpretable model could be trained
directly based on training data to build an interpretable
machine learning model in the form of a linear sum of
integral equations.

case 6 was based on local interpretation and did not evaluate test data.
Additionally, the errors reported for test case 6 are based on the local
data used for local evaluation

Mean absolute error (MAE)

Test case NN (train) Interp NN-driven Interp data-driven NN (test) Interp NN-driven Interp
(train) (train) (test) data-driven

(test)

Case 1 (MNIST) 4.57 7.54 7.29 23.98 12.53 8.93

Case 1 (EMNIST) 9.55 9.29 8.92 141.69 116.88 90.57

Case 2 0.0038 0.011 0.011 0.17 0.054 0.054

Case 3 0.0019 0.0057 0.0055 0.014 0.0073 0.0073

Case 4 0.00058 0.0042 0.0042 0.014 0.027 0.024

Case 5 0.0018 0.0018 0.0013 0.18 0.046 0.042

Case 6 0.0018 0.0016 0.00017 - - -
@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

Table 3 Maximum absolute
error for the neural network

Maximum absolute error

(NN), interpretable model Test case NN (train) Interp NN- Interp data- NN (test) Interp NN- Interp
trained on neural network driven (train) driven (train) driven (test) data-driven
predictions (Interp NN-driven), (test)
and interpretable model trained

on training data (Interp data- Case 1 (MNIST) 63.87 80.04 83.28 138.68 56.15 30.14
driven) are listed for training Case 1 (EMNIST) 72.67 87.04 91.70 297.44 294.38 230.54
and out-of-distribution testing. - ;¢ 5 0.019 0.11 0.11 0.37 0.17 0.18
In cases where the output is a

field, maximum error is either Case 3 PAE 0.10 0.077 0.078 0.12 0.06 0.06
calculated based on point-wise Case 3 image-based 0.017 0.012 0.011 0.083 0.022 0.021
data aggregated across 2{11 Case 4 PAE 0.0057 0.076 0.074 0.11 0.18 0.14
samples (PAE) or in an image- Case 4 image-based 0.0012 0.0069 0.0069 0.074 0.043 0.038
based fashion as the spatially

averaged error of each output Case 5 PAE 0.015 0.014 0.012 0.90 1.04 1.19
field variable. Test case 6 was Case 5 image-based 0.0047 0.0048 0.005 0.76 0.18 0.20
based on local interpretation Case 6 PAE 0.0077 0.0064 0.0013 - - -

and did not evaluate test data Case 6 image-based 0.0039 0.0036 0.0003 - - -

3 Results

First, we will present a simple 1D example to motivate
the importance of interpretable machine learning mod-
els in the context of generalization. Let’s consider the 1D
function u(x) = 4xsin(11x) + 3 cos(2x) sin(5x). The goal is
to learn this function given (x, u) training data. We use
120 training points in the range —0.2 < x < 0.5, which is
considered to be the training region. We are interested
in observing how the trained machine learning model
performs within the range —1 < x < 1, which will require

generalization to out-of-distribution inputs. A fully con-
nected neural network with one input neuron, three hidden
layers and 35 neurons per layer (ReLU activations) and a
Gaussian process regression (GPR) model, which is more
interpretable than the neural network are used for train-
ing. The neural network was trained with a learning rate
of 0.0001 for 6000 epochs using Adam optimization with
a weight decay of 1075, The results are shown in Fig. 2. It
can be seen that both models perform well within the train-
ing region. However, the opaque neural network model has
worse performance outside the training region compared
to GPR. For mild extrapolation outside the training region,

a) b) Absolute error (AE) distribution
Input Output 300 :
4444444 i i
; < 3 100 I 0 -:L -E- :
— E } Strain l 200 ' ! i
E < ke Energy 2) w150 El !
< 3 50 . H ;
WY J. i + 0 e
Modulus Displacement l Q l;I 5 _l ; - |
o= B B T == py=e) -+
Input Output B A R A @ (@ B xS
) \ XX XY XS XK N} N}
= AMAALAAA W = es\“e\ KU &\“e“ I
Zp: 2 W oS ™ Q\“ &
g : 6 EN Strain @ e® N AN W @
< > E . .
E px 3 nergy Mechanical MNIST dataset Mechanlcal EMNIST dataset
pRrrrrr ;
Modulus Displacement

Fig.3 Test case 1 results are shown (predicting total strain energy
from heterogeneous materials in the Mechanical MNIST and EMN-
IST datasets). a An overview of the proposed machine learning task
is shown where a single scalar value (strain energy) is predicted
from a 2D image (stiffness). b Boxplots of the absolute error (AE)
distribution are shown. The performance of the neural network (NN),
interpretable model trained on neural network predictions (Interp

@ Springer

NN-driven), interpretable model trained on training data (Interp data-
driven) are shown for the training data and out-of-distribution test
data. The AE boxplot is showing the median (green line), lower/upper
quartiles (blue box), the whiskers demonstrate the nonoutlier mini-
mum/maximum of the data, and outliers are shown with red marks.
Outliers are defined as values larger than 1.5 times the interquartile
range

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

the GPR model has relatively good performance compared
to the neural network. It should be noted that changing the
number of neurons in the neural network model affects the
slope of the close-to-linear solution in the extrapolation
regime but cannot produce the sinusoidal behavior (results
not shown).

In the following subsections, we will present different
examples to test our proposed interpretable model. In each
test case, we will quantify the training error and test error.
Validation errors are presented in the Appendix. Throughout
the manuscript, by test we imply out-of-distribution test.
Errors are quantified for the neural network (NN) model,
the interpretable model trained based on the probed trained
neural network (Interp NN-driven), and the interpretable
model trained based on training data (Interp data-driven).
The mean and maximum errors for each case are listed in
Table 2 and 3, respectively. Throughout the results, in test
cases with mapping to field variables (image-to-image and
image-to-line), point-wise absolute error (PAE) aggregates
all of the point-wise errors, whereas image-based error
calculates the spatially averaged error of each output field
variable. The overall mean error is identical between these
two approaches since all samples have similar resolution but
each approach has different error distributions and maximum
errors.

In the cases below, the input data are a 2D scalar field
(image) sampled with a 28%28 resolution and in defining
the input field for calculating integrals (x,y) € [0, 1] X [0, 1]
was used. In all cases with the exception of case 1 both input
and output fields are normalized. In all examples (except
test case 6), the same input training data used in training
the neural network were employed for probing the neural
network in the NN-driven interpretable model.

3.1 Test case 1: predicting strain energy
from a heterogeneous material

The Mechanical MNIST-Distribution Shift Dataset [64]
consists of finite element simulation data of a heterogeneous
material. As shown in Fig. 3a, the elastic modulus distribu-
tion of the heterogeneous material is mapped from the bitmap
images of the MNIST and EMNIST datasets [65, 66]. The
elastic modulus values E of the image bitmaps have non-zero
values, and lie within a pre-defined range that depends on the
distribution. Pixel bitmaps are transformed into a map of elas-
tic moduli by transforming the pixel value b of the bitmap
images through the equation £ = b/255.0 % (s — 1) + 1. Inthe
Mechanical MNIST-Distribution Shift dataset selected [67],
the value s is set to 100 for training data and 25 for testing data.
In the Distribution Shift EMNIST dataset, the training data is
biasedly sampled with the value s set to 100 for training data
and 10 for testing data. In both cases, equibiaxial extension
was applied to the heterogeneous materials through a fixed dis-
placement d = 7.0 at all boundaries. In both cases, the training
data size was 2500 and was randomly split into 80% training
and 20% validation. A neural network was used to predict the
change of strain energy in the material after the extension. The
network consists of five fully connected layers with neurons
1024, 1024, 512, 64, and 1, each followed by a ReLU acti-
vation function, except for the final layer. No regularization
techniques were applied in test case 1. The training data was
input as a single batch (batch size was the size of training data)
and the model was trained at a learning rate 0.001 for 50001
epochs using Adam optimization.

The absolute error distribution is shown in boxplots
in Fig. 3. Interpretable models improve the test error and
the interpretable model trained directly on data has better

a) Input — e Output b)) Apsolute error (AE) distribution
kmax T
1
0.3 '
1
Maxml.um w 0.2 . -
velocity 1 1
0.1 : : : '
lltac
1
0 ‘ 0 = + 525
Modified permeability Velocity magnitude W@ (@ (@ wE E
ak = {0 r>R W &NG(\ (\\\8(\ W $’(\{*e(\\,d(\\‘e(“
W 58 N
< e
k r<R \‘\\e@ \‘\\e@

Fig.4 Test case 2 results are shown (predicting maximum velocity
from permeability fields in porous media flow). a An overview of the
proposed machine learning task is shown where a single scalar value
(maximum velocity) is predicted from a 2D image (permeability). b
Boxplots of the absolute error (AE) distribution are shown. The per-

\(_G(Q \(\,@(Q

formance of the neural network (NN), interpretable model trained on
neural network predictions (Interp NN-driven), interpretable model
trained on training data (Interp data-driven) are shown for the train-
ing data and out-of-distribution test data. Refer to Fig. 3 for boxplot
details

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

generalization performance. As also shown in Tables 2 and 3,
the two different interpretable model strategies exhibit com-
parable performance on the training data, and their distinc-
tion becomes more apparent during testing. Another notable
observation is that, in the case of EMNIST data, the interpret-
able models exhibit superior average performance in training
compared to the neural network model and exhibit lower mean
errors. However, the improvement is much smaller when con-
sidering the improvement in generalization error.

3.2 Test case 2: predicting maximum velocity
from a heterogeneous porous medium

In this case, we considered porous media flow in a 2D square
domain [0,1] X [0,1] governed by the steady Darcy-Brinkman
equation

a%u= —Vp +V?u, (11a)

V-u=0, (11b)

where p =10 and a heterogeneous permeability of
k(x,y) = 0.1exp(Ax) + 1 was used. Free-slip boundary
condition (BC) was imposed at the top and bottom walls
(Fig. 4a) and the flow was driven by a pressure gradient
(p=1 and p=0 on the left and right sides, respectively). The
porous domain was switched on using the a parameter set
to @ = 1 when v/(x — 0.5)2 + (y — ¥)? < R and @ = 0 other-
wise as shown in Fig. 4a. Training data was generated by
varying A, Y, and R within0 <A <2,-0.1 <Y <0.15, and

a) Input

kmax

Output

kmin

Permeability Velocity magnitude (ground-truth)

0.8 0.8
I I
0.6
| — — — —
e e | ot o1

Neural network Interpretable model (NN-driven)

0.6

Fig.5 Test case 3 results are shown (predicting velocity field from
permeability fields in porous media flow). a An overview of the pro-
posed machine learning task is shown where a 2D velocity magnitude
field is predicted from a 2D image (permeability). Neural network,
interpretable model trained based on the neural network (NN-driven),
and interpretable model trained based on training data (data-driven)
results are compared to ground-truth for a sample input in the training
regime. b Boxplots of the point-wise absolute error (PAE) distribu-

@ Springer

Interpretable model (Data-driven)

0.09 < R < 0.16. The goal of the deep learning model was to
predict maximum velocity u given ak(x, y) as the input func-
tion. A total of 2250 2D simulations were performed using
the open-source finite-element method solver FEniCS [68]
using ~70k triangular elements. The data were randomly
split into 80% training and 20% validation. Out-of-distribu-
tion test data was also generated by running 100 simulations
within0 <A £2,02 <Y <0.3,and 0.1225 < R < 0.2025
(note that Y is completely outside the previous range). A
convolutional neural network with three layers of convolu-
tion (5 X5 kernel, 6,16,32 channels, and maxpooling after
the second and third layers) was used followed by three hid-
den fully connected layers to map the input 2D function into
a single scalar value. ReLU activation functions were used.
2000 epochs with a learning rate of 5x 10™* and a batchsize
of 64 were used. Stochastic gradient descent optimization
was used with a 107% weight decay. In this example, the L1
regularized formulation (Eq. 10) did not produce good test
results compared to the neural network, and therefore an
L2 regularization was used (presented in the Appendix).
A = 107 was the L2 regularization parameter and the pre-
conditioned conjugate gradients method was used for solv-
ing the normal equations.

The absolute error distribution is shown in boxplots in
Fig. 4b. In this case, as expected the neural network had a
better training error compared to the interpretable models.
However, the interpretable models significantly reduced
the test error. In this case, the NN-driven and data-driven
interpretable models had similar performance in training and
testing, which is likely due to the very good neural network
training error.

b)Pointwise absolute error (PAE) distribution Image-based absolute error distribution
0.12 H 0.08

| |

I-LI().08§
Lo aDao

=4
o
>

Image-based error
g o
o
14

So.06
0.04
0.02

’.
s
i
HLH
b
b

A (B (@B o a we B (@B (B o a
\4\((* &’d \e. \\ “\\ $’6 ‘\\’6 (\\’d X& “\\ ‘\\\

. . N . . PRI
A W PV AN
0.8 Q* \6'5"" @@V\ \63‘3 QQ@ 53 @\w\“ @,‘go
“\\e& \‘\@‘Q W “\@Q \‘\,@(“\\e@ W \‘\\e‘?
0.7

0.6

IOAS

tion considering point-wise error data aggregated across all samples
and image-based absolute error considering the spatially averaged
error of each output field variable are shown. The performance of the
neural network (NN), interpretable model trained on neural network
predictions (Interp NN-driven), interpretable model trained on train-
ing data (Interp data-driven) are shown for the training data and out-
of-distribution test data. Refer to Fig. 3 for boxplot details

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

c)

Pointwise absolute error (PAE) distribution

0.15
uJ 0.1
b) Input Output l l

0 25 I 0.25 0 ;I

—> AN N Y
0.2 Wt . Qﬂ\\“ A N \10‘\ Qe&
0.15 0.15 A o $V\°“ &

Ny o (9® &

0.1 0.1 \(\\e e‘Q W e

0.05

Low-fidelity Velocity magnitude

I 0.3
0.25

10.2
0.15

0.1
— e ——

Interpretable model (NN-driven)

0.15
0.1
0.05

Neural network

Fig.6 Test case 4 results are shown (predicting high-fidelity velocity
field from low-fidelity velocity data). a The simulations are based on
steady flow in an idealized blocked vessel. A sample velocity stream-
line is shown. b An overview of the proposed machine learning task
is shown where high-fidelity 2D velocity magnitude field is predicted
from a 2D low-fidelity simulation in the same region of interest.
Neural network, interpretable model trained based on the neural net-
work (NN-driven), and interpretable model trained based on training
data (data-driven) results are compared to ground-truth for a sample

3.3 Test case 3: predicting velocity magnitude field
from a heterogeneous porous medium

The same boundary conditions and setup as test case 2 are
considered again (without the Brinkman diffusion term). In
this test case, more complex permeability patterns are con-
sidered and the goal is to predict the 2D velocity magnitude
field (image to image mapping). The input permeability field
is defined as k(x,y) = exp(—4Ax)| sin(2zx) cos(2zBy)| + 1,
and0 < A < 1,0 < B < 4 were used in generating 225 simu-
lations used for training. The data were randomly split into
80% training and 20% validation. The goal was to predict
velocity magnitude field ||u(x, y)|| given k(x, y) as the input
function. Out-of-distribution test data were also generated by
running 64 simulations within1 <A <2 and 4.2 < B <6.
In this case, a fully-connected deep autoencoder with ReLU
activation functions was used. The encoder mapped the
input 28x 28 field to a latent size of 32 through 4 layers
(28x% 28-256-128-64-32), which was subsequently mapped
back to another 28x 28 field by the decoder with a similar

Content courtesy of Springer Natur

High-fidelity Velocity magnitude

S92 Image-based absolute error distribution

S0.06 .
(0] .
3 :
§0.04 R
1
0.25 5 ! ;I Q
02 go0.02 I;I
£
0.15 - = =
0.1 o . N N
N o ;S
. W & a&\\le h *\d\q \'bd‘\\‘
Interpretable model (Data-driven) @ & @\V\ [
W (\.@x‘? W e

input in the training regime. ¢ Boxplots of the point-wise absolute
error (PAE) distribution considering point-wise error data aggre-
gated across all samples and image-based absolute error considering
the spatially averaged error of each output field variable are shown.
The performance of the neural network (NN), interpretable model
trained on neural network predictions (Interp NN-driven), interpret-
able model trained on training data (Interp data-driven) are shown for
the training data and out-of-distribution test data. Refer to Fig. 3 for
boxplot details

structure as the encoder. 2000 epochs with a learning rate
of 5% 10~*, Adam optimization, and a batchsize of 64 were
used.

The results are shown in Fig. 5. The contour plots and the
error boxplot show that the neural network makes a better
qualitative and quantitative prediction within the training
regime. However, similar to the last test cases, the inter-
pretable models have better generalization performance as
shown in the boxplot (Fig. 5b) and Table 2 and 3.

3.4 Test case 4: predicting high-fidelity velocity
field from low-fidelity velocity field

An idealized 2D constricted vessel mimicking blood flow in a
stenosed artery was considered similar to our prior work [69,
70] as shown in Fig. 6. Steady incompressible Navier—Stokes
equations were solved for a Newtonian fluid in FEniCS. A
parabolic velocity profile was imposed at the inlet and no-
slip BC was used at the walls. Training data were generated
by performing 400 computational fluid dynamics simulations
with different flow rates corresponding to different Reynolds

@ Springer

e, terms of use apply. Rights reserved.

Engineering with Computers

numbers (defined based on average velocity at the inlet)
between 15 and 225. In the high-resolution finite element
simulations, quadratic and linear shape functions were used
for velocity and pressure, respectively (P2-P1 elements) with
41.4k triangular elements. Similarly, low-resolution (low-fidel-
ity) simulations were performed by increasing the viscosity by
20% (representing a dissipative solution with artificial diffu-
sion) and using first order velocity elements (P1-P1 elements)
with a total of 536 elements. The goal of the machine learning
models is to predict the high-fidelity velocity magnitude field
[y, (x, y)|| from the low-fidelity field ||u,,,,(x, y)||. We focus
on a specific region of interest downstream of the stenosis as
shown in Fig. 6b. Superresolution with machine learning is
an active area of research in fluid mechanics [1], and addi-
tionally, prior machine learning models have dealt with map-
ping between multi-fidelity data [71, 72]. In our example, both
datasets are first interpolated to a structured 28x28 grid. 100
out-of-distribution high-resolution and low-resolution simula-
tions were also performed by varying the Reynolds number
between 240 and 300. The neural network architecture was a
deep autoencoder similar to test case 3 but with one additional
encoder and decoder hidden layer (the encoder architecture
was 28%x 28-512-256-128-64-32 and the decoder was its sym-
metric counterpart.) The training data were randomly split into
80% training and 20% validation. 5000 epochs with a learning

a) Input

rate of 2.5x 1075 and a batchsize of 64 were used. Finally, in
this test case, instead of using a broad range for the candidate
bandwidths in the interpretable model (Table 1), we select a
focused range estimated based on existing plug-in methods
for optimal bandwidth selection. Namely, §,,, = O(n~%?) has
been proposed as an optimal bandwidth for Gaussian kernels
[55, 73]. Considering n=28 as the number of points in each
direction, ,,, ~ 0.37. Therefore, we focusedon 0.2 < f < 0.4
in constructing our library (Table 1). We verified that this
range gave optimal training errors compared to other choices.
It should be noted that the problem of optimal bandwidth
selection is complicated [31, 55], particularly for our problem
where different kinds of kernels and generalized linear models
are used.

The contour plots and the error boxplots are shown in
Fig. 6. The neural network produces very accurate training
results indistinguishable from the ground-truth. The inter-
pretable model results also mimic the key quantitative and
qualitative patterns with minor distinctions visible. In this
test case, the interpretable models could not improve the
average out-of-distribution test errors compared to the neu-
ral network and only reduced the maximum image-based
absolute error.

Output
0.4

True solution
0.2 ==Interpretable model solution,
= Noural network solution

X > 06
0'2 0.8
-1
Low-fidelity Velocity magnitude High-fidelity WSS 0 02 04 N 06 o8 1
b) Pointwise absolute error (PAE) distribution Image-based absolute error distribution
%1073 <103
1.2 15 0.8 5
1 <] <]
o6 £4 .
0.8 10 2 T 2 — .
4 4 7 | B T '
o6 < go4 | & ! ! :
0.4 \ 5 T ® ®
E E —— ==
1 1
0 - e e T B2 0 p T EI 0f e x é $ o .
3 B (@ S & e & @ R o A © i
PPN QS W O O “'a AR \0 & R e X
R &\\‘a Vs W \\\$$ I a&\qa N &@e &\\\e N P \\,a\ ‘\\‘a\ N ‘\sxe\ s o \ ‘\\leﬂ“ d(vlaﬁ
Nt o ¢ 3% & e & e &
NP AN oo o QY ¢ P\ Q\d o8 &
Rt W e o « NN ,@@ \(\x@ & & o

(—)
Zoomed into training

Fig.7 Test case 5 results are shown (predicting wall shear stress WSS
field from low-fidelity velocity data). The same model as test case 4 is
used. a An overview of the proposed machine learning task is shown
where high-fidelity WSS field is predicted from a 2D low-fidelity
simulation. Neural network, interpretable model trained based on the
neural network (NN-driven), and interpretable model trained based
on training data (data-driven) results are compared to ground-truth
for a sample input in the training regime as shown in the WSS vs. x

@ Springer

Zoomed into training

plot. b Boxplots of the point-wise absolute error (PAE) distribution
considering point-wise error data aggregated across all samples and
image-based absolute error considering the spatially averaged error of
each output field variable are shown. The performance of the neural
network (NN), interpretable model trained on neural network predic-
tions (Interp NN-driven), interpretable model trained on training data
(Interp data-driven) are shown for the training data and out-of-distri-
bution test data. Refer to Fig. 3 for boxplot details

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

a) Input Output b)

kmax 0.9
0.8

e

0.75
0

Modified permeability
ok = 0 r>R

Velocity magnitude (ground-truth)

r<R

I I I o
0.85 085 085

—Iw —Iw

Neural network Interpretable model (NN-driven)

Fig.8 Test case 6 results are shown (predicting velocity field from
permeability fields in porous media flow by locally probing the neu-
ral network). a An overview of the proposed machine learning task
is shown where a 2D velocity magnitude field is predicted from a 2D
image (permeability). Neural network, interpretable model trained
based on the neural network (NN-driven), and interpretable model
trained based on training data (data-driven) results are compared to
ground-truth for a sample input in the training regime. b Boxplots of
the point-wise absolute error (PAE) distribution considering point-

3.5 Test case 5: predicting high-fidelity wall shear
stress field from low-fidelity velocity data away
from the wall

In this example, we reconsider the exact same dataset in
the constricted artery model of the previous test case. The
goal of the machine learning model here is to take the low-
fidelity velocity magnitude field in the same region of inter-
est (away from the wall) and predict high-fidelity wall shear
stress (WSS) at the bottom wall as shown in Fig. 7. In this
case, the machine learning model needs to map a 2D scalar
field to a 1D scalar field. A deep autoencoder similar to test
case 3 was used with the last encoder layer being mapped to
a 100 x 1 line instead of an image. 5000 epochs with a learn-
ing rate of 2.5x 107 and a 64 batchsize were used.

As shown in Fig. 7, all methods provide a very accurate
estimate for WSS in the training regime. In this case, the dis-
tinction between the training and test errors was more pro-
nounced for both neural network and interpretable models.
As seen more clearly in Table 2 and 3, in testing, the mean
absolute error was considerably reduced for the interpret-
able models. Another interesting observation was that the
data-driven interpretable model had slightly better training
performance compared to the neural network model.

Pointwise absolute error (PAE) distribution
x103

Image-based absolute error distribution
1073

8 - -
| [o1 7 =
g i [1
e L1 L & .
I . 3
<4 ' . P
o H ! -
% .
===l i
0 -+ - lé %I s o —=
@ @ A @ A e @ @ e W
\s\‘ ‘\\,e«‘ {\@‘\\‘ \‘“@0 d&,a\ W 0@0\‘ &ue“\\ \‘&,&\ oa’*"é‘\
A% ,\\4\4 \S\\ o e o N
a(de It X \e«,\ e&\d | K

0.7

Interpretable model (Data-driven)

wise error data aggregated across all samples and image-based abso-
lute error considering the spatially averaged error of each output field
variable are shown. The performance of the neural network (NN),
interpretable model trained on neural network predictions (Interp
NN-driven), interpretable model trained on training data (Interp
data-driven) are shown for the training data and out-of-distribution
test data. Interpretable model performance with respect to the locally
probed NN is also shown in this test case. Refer to Fig. 3 for boxplot
details

3.6 Test case 6: local explanation of neural network
predictions in a porous media flow example

In all of the previous test cases, we used the exact same
data used in training the neural network to train the pro-
posed interpretable models. However, this is not required
for the NN-driven Interp model. Namely, the trained
neural network could be probed for any desired input to
generate pairs of input—output data for training the NN-
driven Interp model. In the case where one is interested in
explaining the neural network behavior within the training
regime, the NN-driven Interp model will be trained with a
combination of training and in-distribution test data.

In this last test case, we consider the porous media flow
in test case 2. We reconsider the problem where the goal
is to predict the velocity magnitude (instead of maximum
velocity) from the input modified permeability field as
shown in Fig. 8. The same dataset used in test case 2 is
used for training the neural network. A fully connected
autoencoder with ReLU activation functions mapped the
input 28x 28 field to a latent size of 8 through 4 layers
(28% 28-256—128-64-8), which was subsequently mapped
back to another image by a similar decoder. 2000 epochs
with a learning rate of 5x 10~ and a batchsize of 64 were

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

used. The neural network was trained on the entire dataset
explained in test case 2. However, the goal here was to
interpret the neural network predictions locally. The posi-
tion of the porous region was fixed at R=0.02 and Y=—
0.1. The trained network was probed for 100 different A
values (permeabilities) ranging between 0 < A < 2. This
represented a local probing of the neural network with a
higher sampling rate than what was used for its training.
Finite element simulations were also performed for error
quantification.

The results are shown in Fig. 8. A data-driven Interp
model was also trained based on the ground-truth data
for comparison. The NN-driven Interp model produced
very accurate results and could faithfully explain the
neural network behavior in this localized region of the
training landscape. An interesting observation is that the
NN-driven Interp model slightly improves the training
error compared to the neural network model and produces
slightly smoother qualitative patterns. The data-driven
Interp model produces significantly more accurate results
compared to the neural network model. This should not
be surprising because in this case the data-driven Interp
model was trained based on the ground-truth data in a
localized parameter space, whereas the neural network was
trained over a larger parameter space. In other words, it
is not fair to compare the data-driven Interp results to the
neural network in this case. Test errors are not shown in
Fig. 8b as in this case the Interp models were not trained
based on the entire data. Instead, the errors in interpret-
able model predictions with respect to the neural network
predictions are shown. As expected, the NN-driven Interp
case matches the NN behavior more closely compared to
the data-driven Interp case. The difference between the
two interpretable models was less in most previous test
cases where global interpretation instead of local inter-
pretation was done.

4 Discussion

In this study, we proposed an interpretable surrogate model
that approximates neural network’s predictions locally or
globally. The interpretable model was in the form of inte-
gral equations inspired by functional linear models. We
applied our framework to different deep learning mod-
els trained on making predictions based on functions
and functionals in different physics-based problems. The
results demonstrated that in most test cases the interpreta-
ble model improved generalization error and even in some
cases training error was improved compared to the neural
network. Our proposed approach for improving generali-
zation error could be compared to the process of human
thinking. When we are asked questions that are outside

@ Springer

our knowledge domain we probe the existing knowledge in
our brain and we generate an answer to the new questions
by using interpretation and reasoning. The proposed NN-
driven interpretable model could be perceived within this
context where we probe the neural network (our existing
knowledge) to build an interpretable model to answer an
unknown question (an OOD input).

A surprising observation was the improved training
error in the interpretable model compared to the deep
learning model in some cases. In test case 1 (EMNIST),
the mean training errors were reduced by NN-driven
and data-driven interpretable models, and in test case 5
the data-driven interpretable model reduced the mean
and point-wise peak training errors. Also, in some other
cases (e.g., test case 3), the maximum training error was
reduced. In-distribution generalization (validation) results
shown in the Appendix demonstrated further improve-
ments in the interpretable model performance compared
to the deep learning counterpart. Training error improve-
ment by the NN-driven interpretable model observed in
certain cases was a particularly unprecedented result that
could be attributed to the smoothing effect in functional
linear models, which has been well studied in the con-
text of kernel smoothing [32, 55]. Except for test case 4,
the interpretable models consistently exhibited reduced
test error across all cases. This suggests that interpretable
models have the potential to enhance predictive accuracy
and generalize well to unseen data, showcasing their effec-
tiveness in improving model performance.

A notable characteristic of our proposed framework is its
inherent flexibility. Our interpretable model could be built
either based on the neural network predictions (NN-driven)
or the training data without the need for a neural network
(data-driven). The former is preferred when an interpreta-
tion of an opaque neural network model is desired, while
the latter is preferred where improved accuracy (particularly
improved OOD generalization) is desired. Our framework
also shares many of the advantages offered by other opera-
tor learning models. For instance, similar to neural opera-
tors our framework once trained could be used to evaluate
the solution at any desired input location, rather than being
restricted to fixed locations as in traditional neural networks
[35]. It has been shown in prior operator learning work with
DeepONets that a small amount of data can improve their
generalization error [74]. It has also been demonstrated that
sparsity promoting neural network architectures can have
good performance with small training data [71, 75]. Our
proposed interpretable model promotes a sparse solution
to the operator learning problem, and therefore even just
a small amount of OOD training data is expected to even
further improve its OOD generalization, which should be
investigated in future work.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

In related work, deep learning has been used to discover
extensions of Green’s functions beyond linear operators [76,
77]. It is known that approximating Green’s functions with
neural networks is easier than approximating the action of
Green’s function on the input (Green’s operator) [77]. This is
consistent with our framework where we learn kernel func-
tions in our integral equations. Another analogy could be
made with Koopman operators, which provide a theoretical
framework for linearizing dynamical systems [78, 79] and
have been approximated with opaque neural networks [80].
Dynamic mode decomposition (DMD) is an interpretable
numerical approximation of the Koopman operator. DMD’s
interpretability is improved by retaining fewer modes or
using sparsity promoting approaches [81]. This is similar
to our framework where an interpretable model is selected

Test case 1
Absolute error (AE) distribution
60 60 .
. H H
40 i . . o |
w H H w
< 4 i ! < ' |
20 i + -+ 20 H g
B = o= B E
= o 20 W 0%
o & & e \qa\-@a
N 5 &.\\lz“ NS &\\,e‘\
& " &
< «° & o

Mechanical MNIST dataset

c) Test cae 3

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

0.15
5006
[
o1 Bo.04 .
Ed . . & .
o H Q .
0.05 @ ——
| AN s
E i —t
0 == = 0
. o o . O o
& 3% R N & N
N N i & @ QY)
N ‘g&ﬂe W & s
o
Q@ (G @Q\ S
W W« o o

€) Test cae S
Pointwise absolute error (PAE) distribution

0.025 .
0.02 3
woo1s !
o "
i R
0.005 J_
B2 =B ==
O o O
A5 ¥ A% A
N ! & {\@0\
© U
e W

Fig.9 In-distribution generalization (validation) error distributions
are plotted for the first five test cases. In test cases with mapping to
field variables, point-wise absolute error (PAE) aggregates all of the

Table4 Mean absolute error (MAE) for the neural network (NN),
interpretable model trained on neural network predictions (Interp
NN-driven), and interpretable model trained on training data (Interp
data-driven) are listed for in-distribution testing (validation) data.
Test case 6 was based on local interpretation and is not included

Mean absolute error (MAE) for the validation data

Test case NN Interp NN-driven Interp data-driven
Case 1 (MNIST) 9.49 7.63 7.31

Case 1 (EMNIST) 12.23 13.33 13.64

Case 2 0.015 0.014 0.014

Case 3 0.0087 0.0062 0.0061

Case 4 0.0006 0.0044 0.0044

Case 5 0.002 0.0018 0.0013

b) Test case 2

Absolute error (AE) distribution

0.1

0.08 .
' # 0.08 _uh . *
' 0.04 i - -
I 7
"
-t 0
N WO 20" e
@ e A% o
& 8
N &
\(\m@ \“@9\

Mechanical EMNIST dataset

d) Test cae 4

Image-based error

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

-3
*x10
6 * *
0.06 5 . .
s - -~
w Dy %‘ %
Zo0.04 9 + T
& @
Qo
0.02 b2 i
v = = £ i
o E
A0 W 20 0
& e R
s o \q'o\‘ ~ . &»{\0‘\ 5
\J e O 3 A N
= A AN N2 N N
(Q\ Q\‘y&@ &Ne @ o
W e &
A o “\9‘9\

Image-based absolute error distribution

%10
10 :
8
&+
!
4 i .
: (] == &
0 .
o . .
N 2O 2O
& @ @
‘\\l'&“ (\\1@“
&
3
\(\\e“’ ,@N\

point-wise errors, whereas image-based error calculates the spatially
averaged error of each output field variable

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

Table 5 Maximum absolute error for the neural network (NN),
interpretable model trained on neural network predictions (Interp
NN-driven), and interpretable model trained on training data (Interp
data-driven) are listed for in-distribution testing (validation) data. In
cases where the output is a field, maximum error is either calculated
based on point-wise data aggregated across all samples (PAE) or in
an image-based fashion as the spatially averaged error of each output
field variable. Test case 6 was based on local interpretation and is not
included

Maximum absolute error for the validation data

Test case NN Interp NN-driven Interp data-driven
Case 1 (MNIST) 63.87 38.03 38.82

Case 1 (EMNIST) 6348 58.97 61.15

Case 2 0.077 0.11 0.11

Case 3 PAE 0.15 0.070 0.070

Case 3 image-based 0.068 0.013 0.014

Case 4 PAE 0.0062 0.076 0.074

Case 4 image-based 0.0028 0.0057 0.0057

Case 5 PAE 0.026 0.011 0.013

Case 5 image-based 0.010 0.0036 0.0021

in the form of generalized functional linear models to
approximate an unknown operator. Additionally, the trade-
off between accuracy and interpretability is similar where
reducing the number of modes in DMD (or the number of
integral equations in our framework) increases interpret-
ability at the cost of potentially reduced accuracy. Our sur-
rogate model could be perceived as a reduced-order-model
(ROM) that approximates the neural network behavior and
as such, just like how ROMs can simplify understanding of
a complex system, our model can be used towards a similar
goal (which remains to be investigated). Additionally, each
integral term is equipped with a coefficient that tells the
significance of the term. Therefore, once we identify the
significance of each term, we can understand the network
based on its kernel and associated bandwidth. For example,
if a kernel with a large bandwidth is important in the total
response, then long-range effects in the input image affect
the output. Similarly, in DMD, each mode comes with a
frequency that provides information about the dynamics of
the system.

The utilization of a library of candidate models has been
leveraged in other scientific machine learning problems.
Sparse identification of nonlinear dynamics (SINDy) mod-
els a nonlinear dynamical system by constructing analyti-
cal equations in the form of a nonlinear system of ordinary
differential equations, where the terms in the equations
are selected from a pre-specified library [10]. As another

@ Springer

example, a library of hyperelastic constitutive equations has
been used for discovering constitutive models in nonlinear
solid mechanics problems [82]. Machine learning ROMs
have been proposed where a library of proper orthogonal
decomposition (POD) modes are used for parameter iden-
tification from low-resolution measurement data [83, 84].
Another analogy can be drawn with ensemble machine
learning models. Neural additive models use an ensemble
of parallel neural networks and make final predictions with
linear superposition [57]. Similarly, our approach could be
perceived as an ensemble of approximations to the solution
(each integral equation) that is linearly added to build the
final solution.

Our proposed framework offers the flexibility to be
extended to other deep learning tasks. For instance, in certain
tasks in addition to a field variable, some physical param-
eters might also be inputs to the neural network. As an exam-
ple of an extension to such cases, the scalar response model
(Eq. 5) could be extended as u = r(z)f w(E(E)AE + yz
similar to the work in [85] where z is the additional input
parameter, and r and y are an unknown function and param-
eter, respectively, that need to be estimated. Leveraging
analytical integral equation models in classical physics is
another possible extension. An example of analytical inte-
gral equations used in fluid dynamics is the Biot-Savart Law
used in modeling vortex dynamics [86]. This has recently
inspired the neural vortex methods, which use neural net-
works to map vorticity to velocity [87]. Our analytical inte-
gral equation approach also offers the possibility of solving
inverse problems using standard approaches used in solving
integral equations [42]. Integral equations have been utilized
in developing mathematical theories for inverse problems
and their numerical solution [88, 89]. Another interesting
future direction is the comparison of our method’s generali-
zation with other operator learning methods such as Deep-
ONets [90] and Fourier neural operators [36]. Extension to
time-dependent problems is another future direction, which
is inspired by parabolic Green’s functions [91]. Finally, our
definition of interpretability draws from qualitative attributes
outlined in [23] such as additivity, sparsity, and linearity, as
well as being able to present the model as an analytical equa-
tion. Our current work just focused on demonstrating the
possibility of approximating neural networks with analyti-
cal models that possess such interpretable features and we
did not demonstrate our framework’s potential for physical
interpretation. Our future work will focus on using the model
for interpreting the physics of the problem.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

Table 6 Error percentiles
for the neural network (NN),

Error percentiles (Perc) for point-wise absolute error (training and test data).

interpretable model trained Test case NN (train) Interp NN- Interp data- NN (test) Interp NN- Interp
on neural network predictions driven (train) driven (train) driven (test) data-driven
(Interp NN-driven), and (test)
interpretable model trained on
training data (Interp data- Case 1 (MNIST)
driven) are listed for training 99th Perc 27.2 33.33 33.55 105.46 41.53 24.43
flr‘;i‘tocua‘qggCL‘VZ‘:‘:)’;:;“O?S;%I 97thPerc 17.23 24.62 24.44 87.25 37.38 21.07
int;srprf;tation émd ;iid 1ot 95th Perc 13.41 21.43 20.81 75.57 34.69 19.42
evaluate test data. Additionally, Case 1 (EMNIST)
the errors reported for test case 99th Perc 34.54 35.63 33.94 232.87 227.44 174.79
6 are based on the local data 97th Perc 28.08 27.66 26.48 216.25 205.98 159.41
used for local evaluation 95th Perc 24.98 24.39 23.13 204.94 193.27 148.81
Case 2
99th Perc 0.014 0.050 0.049 0.37 0.17 0.18
97th Perc 0.011 0.031 0.031 0.36 0.17 0.17
95th Perc 0.01 0.027 0.027 0.33 0.16 0.16
Case 3
99th Perc 0.0082 0.026 0.025 0.077 0.032 0.031
97th Perc 0.0058 0.019 0.019 0.062 0.023 0.023
95th Perc 0.005 0.016 0.016 0.054 0.020 0.020
Case 4
99th Perc 0.0022 0.026 0.026 0.064 0.11 0.10
97th Perc 0.0018 0.016 0.016 0.050 0.092 0.080
95th Perc 0.0015 0.013 0.013 0.043 0.080 0.070
Case 5
99th Perc 0.0066 0.0067 0.0055 0.69 0.36 0.47
97th Perc 0.0054 0.0054 0.0042 0.57 0.16 0.20
95th Perc 0.0048 0.0048 0.0035 0.51 0.13 0.12
Case 6
99th Perc 0.0056 0.0051 0.00075 - - -
97th Perc 0.005 0.0044 0.0006 - - -
95th Perc 0.0045 0.004 0.0005 - - -
5 Conclusion Appendix

We have proposed an interpretable surrogate model to not
only interpret a given neural network but also improve
generalization and extrapolation. Our results demonstrate
very good and comparable training error and in most cases
improved OOD generalization error once compared to the
neural network. In a broader sense, our framework suggests
the notion of a hybrid machine learning strategy where a
trained deep learning model is used for in-distribution pre-
dictions and an interpretable surrogate is utilized for OOD
predictions. This hybrid strategy could be compared with
hybrid finite-element and neural network strategies recently
proposed to improve neural network predictions [92]. Our
study suggests that by leveraging integral equations in the
form of generalized functional linear models, we can build
more interpretable and explainable scientific machine learn-
ing models with a high potential for improved generalization.

Normal equations for functional linear models

Here, we present an alternative strategy for finding the ker-
nels in functional linear models using the normal equations,
based on the presentation in [24]. Let’s consider the fully
functional model, which was used for image to image map-
ping in this study (Eq. 4) in the scalar form

u(x) = / w(& x)f(&)dE , (12)

where given Q pairs of training data, we have grouped
them as column vectors u(x) = [ul(x), ,uQ(x)]T and

f& = [fl é,... ,fQ(§)]T. We expand the unknown kernel
function in Eq. 12 using pre-defined arbitrary bases as

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

v(Ex) = 3 Y b6 (13)
J

i

where w; and 6; are the basses and b;; are the unknown coef-
ficients that could be grouped into a matrix B = [bi/']' Our
goal is to solve the following least squares problem

Y
min 3" 1,00~ [wig w6 gl (14)
v n=1

Grouping the bases into column vectors @(§) = [col é),...]T

and O(x) = [Hl(x),]T, we can rewrite Eq. 12 in matrix
form as

u(x) = ZBO(x) , (15)

where Z = / f(&)o™ (&) dE. Finally, by defining the matrix
J= f 0(x)0” (x) dx, we can derive the final form of the nor-
mal equations

Z'7B)y =177 / u(x)0” (x) dx , (16)

where we need to solve for B.

We can also write a similar version of the above equa-
tion by reconsidering the optimization problem in Eq. 10,
which was used for approximating the solution of U = FW
in Sect. 2.2. Instead of introducing an L1-regularized prob-
lem as done in Eq. 10, we can directly solve this regression
problem using the normal equations

F'FW =F'U. 17)

This equation could be solved using a linear solver to find
W. However, in practice the F' F matrix is highly ill-condi-
tioned and close to singular, therefore an L2 regularization
should be added

(FTF + ADW =F'U , (18)

where A is the regularization parameter. An increased A pro-
vides a more robust linear system of equations but at the
cost of reduced accuracy. Our preliminary investigation has
shown that this formulation in certain cases produces more
accurate results related to the training error. The OOD gen-
eralization error was better in most cases for the L1-regular-
ized problem (except for test case 2). It should also be noted
that the L2-regularized problem produces a dense solution
where most integral equations in the library will be nonzero,
and therefore a less interpretable model is produced.

In-distribution generalization
In this section, we present the in-distribution generalization

(validation) errors for all the test cases where global inter-
pretation was performed (cases 1-5). The simulations used

@ Springer

Table 7 Error percentiles for the neural network (NN), interpretable
model trained on neural network predictions (Interp NN-driven), and
interpretable model trained on training data (Interp data-driven) are
listed for the validation data. Test case 6 was based on local interpre-
tation and is not included

Error percentiles (Perc) for point-wise absolute error (validation data)

Test case NN Interp NN-driven Interp data-driven

Case 1 (MNIST)

99th Perc 39.39 32.32 33.74
97th Perc 29.95 26.05 26.09
95th Perc 27.2 23.44 21.32
Case 1

99th Perc 42.12 40.71 39.33
97th Perc 34.53 32.78 3141
95th Perc 31.12 29.56 27.96
Case 2

99th Perc 0.071 0.097 0.097
97th Perc 0.057 0.053 0.053
95th Perc 0.053 0.047 0.046
Case 3

99th Perc 0.059 0.029 0.029
97th Perc 0.041 0.021 0.020
95th Perc 0.033 0.017 0.017
Case 4

99th Perc 0.0023 0.027 0.027
97th Perc 0.0018 0.017 0.017
95th Perc 0.0016 0.014 0.014
Case 5

99th Perc 0.0074 0.0067 0.0051
97th Perc 0.0058 0.0054 0.0038
95th Perc 0.0050 0.0048 0.0033

in evaluating the validation errors were sampled from the
same parametric space defined in the problems but different
from the training data to assess the in-distribution generali-
zation (interpolation) accuracy of the models. The validation
datasets used in assessing the deep learning and XAI models
in this section are identical. The point-wise absolute error
and image-based absolute error distributions for the valida-
tion data are shown in Fig. 9. Additionally, Table 4 and 5
present the mean and maximum validation errors. Compar-
ing the validation errors with the previously presented train-
ing errors demonstrates reasonable performance for all mod-
els. Interestingly, in some cases, the interpretable models
have slightly better validation errors compared to the neural
networks. Additionally, in some cases, the validation errors
are slightly better than the training error, which is because
the most challenging data (e.g., higher Reynolds number) is
included in the training set.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

Error percentiles

Given the sensitivity of the maximum point-wise absolute
error (PAE) to outliers due to its point-wise nature, Table 6
presents the PAE percentiles for the training and OOD test
data. PAE percentiles for the validation data are listed in
Table 7. In general, the tables indicate that the trends in
comparisons remain consistent.

Statistical significance

Statistical analysis was performed to assess the statistical
significance of the differences observed in the error distribu-
tions for each test case based on the point-wise data. First,
Friedman’s test was performed in a three-way manner con-
sidering the NN, Interp NN-driven, and Interp data-driven
models. Separate Friedman tests were performed for the
training, validation, and OOD test datasets. Subsequently,
after verifying statistical significance, one-on-one tests
were performed using Wilcoxon’s signed rank test. This
was done for all training, validation, and OOD test datasets,
where within each case all possible pairs (e.g., NN vs. Interp
NN-driven) were tested to ensure the differences in errors
are significant. To account for the moderate/large sample
size, Good’s g-value [93] was used instead of the regular
p-value. A g-value smaller than 0.005 was considered sta-
tistically significant.

All Friedman g-values were significant with the excep-
tion of case 2’s validation errors. Therefore, the differences
observed in the performance of different methods on the
validation dataset for case 2 were not statistically meaning-
ful (training and OOD differences were meaningful for case
2). The subsequent Wilcoxon test on all of the other cases
revealed statistically significant results with the exception of
case 5’s comparison between the NN and Interp NN-driven
models on the training dataset (q-value = 0.11 and p-value
= 0.0058).

Acknowledgements This work was supported by NSF Award No.
2247173 from NSF’s Office of Advanced Cyberinfrastructure, and par-
tially supported by NSF Award OAC-2247173, 11S-2205418, and
DMS-2134223. We would like to thank Dr. Emma Lejeune and Dr.
Harold Park for discussions related to this work and assistance in using
the MNIST/EMNIST datasets. We are also grateful to the anonymous
Referee for their constructive comments that improved the paper.

Data availability The codes and data used to generate the results in

the manuscript can be accessed at https://github.com/amir-cardiolab/
XAI_FDA.

Declarations

Conflict of interest The authors have no Conflict of interest.

References

10.

11.

12.

13.

14.

15.

17.

18.

19.

Fukami K, Fukagata K, Taira K (2023) Super-resolution analysis
via machine learning: A survey for fluid flows. arXiv preprint
arXiv:2301.10937

Fathi MF, Perez-Raya I, Baghaie A, Berg P, Janiga G, Arzani A,
D’Souza RM (2020) Super-resolution and denoising of 4D-Flow
MRI using physics-informed deep neural nets. Comput Methods
Progr Biomed, page 105729

Champion K, Lusch B, Kutz JN, Brunton SL (2019) Data-driven
discovery of coordinates and governing equations. Proc Natl Acad
Sci 116(45):22445-22451

Duraisamy K (2021) Perspectives on machine learning-augmented
reynolds-averaged and large eddy simulation models of turbu-
lence. Phys Rev Fluids 6(5):050504

De S, Britton J, Reynolds M, Skinner R, Jansen K, Doostan A
(2020) On transfer learning of neural networks using bi-fidelity
data for uncertainty propagation. Int J Uncertain Quant 10:6
Shukla K, Oommen V, Peyvan A, Penwarden M, Bravo L, Ghoshal
A, Kirby RM, Karniadakis GE (2023) Deep neural operators can
serve as accurate surrogates for shape optimization: a case study
for airfoils. arXiv preprint arXiv:2302.00807

Yuan L, Park HS, Lejeune E (2022) Towards out of distribution
generalization for problems in mechanics. Comput Methods Appl
Mech Eng 400:115569

Kutz JN, Brunton SL (2022) Parsimony as the ultimate regu-
larizer for physics-informed machine learning. Nonlinear Dyn
107(3):1801-1817

Oh H, Amici R, Bomarito G, Zhe S, Kirby R, Hochhalter J (2023)
Genetic programming based symbolic regression for analytical
solutions to differential equations. arXiv preprint arXiv:2302.
03175

Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing
equations from data by sparse identification of nonlinear dynami-
cal systems. Proc Natl Acad Sci 113(15):3932-3937

Kapteyn MG, Knezevic DJ, Willcox K (2020) Toward predic-
tive digital twins via component-based reduced-order models and
interpretable machine learning. In AIAA Scitech 2020 Forum,
page 0418

Samek W, Montavon G, Lapuschkin S, Anders CJ, Miiller KR
(2021) Explaining deep neural networks and beyond: A review
of methods and applications. Proc IEEE 109(3):247-278
Thampi A (2022) Interpretable Al: building explainable machine
learning systems. Simon and Schuster, New York

Zhong X, Gallagher B, Liu S, Kailkhura B, Hiszpanski A, Han
TYJ (2022) Explainable machine learning in materials science.
NPJ Comput Mater 8(1):204

Rasheed K, Qayyum A, Ghaly M, Al-Fuqaha A, Razi A, QadirJ
(2022) Explainable, trustworthy, and ethical machine learning for
healthcare: A survey. Comput Biol Med, pp 106043

. Salahuddin Z, Woodruff HC, Chatterjee A, Lambin P (2022)

Transparency of deep neural networks for medical image anal-
ysis: A review of interpretability methods. Comput Biol Med
140:105111

Sutthithatip S, Perinpanayagam S, Aslam S, Wileman A (2021)
Explainable Al in aerospace for enhanced system performance.
In: 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC), pages 1-7. IEEE

Séaez H, Sondak D, Protopapas P (2022) Convolutional neural
network models and interpretability for the anisotropic Reyn-
olds stress tensor in turbulent one-dimensional flows. J Turbul
23(1-2):1-28

Kim H, Kim J, Lee C (2023) Interpretable deep learning for pre-
diction of Prandtl number effect in turbulent heat transfer. J Fluid
Mech 955:A14

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Cremades A, Hoyas S, Quintero P, Lellep M, Linkmann M,
Vinuesa R (2023) Explaining wall-bounded turbulence through
deep learning. arXiv preprint arXiv:2302.01250

Fang L, Bao TW, Xu WQ, Zhou ZD, Du JL, Jin Y (2022) Data
driven turbulence modeling in turbomachinery—an applicability
study. Comput Fluids 238:105354

Muckley ES, Saal JE, Meredig B, Roper CS, Martin JH (2022)
Interpretable models for extrapolation in scientific machine learn-
ing. arXiv preprint arXiv:2212.10283

Sudjianto A, Zhang A (2021) Designing inherently interpretable
machine learning models. arXiv preprint arXiv:2111.01743
Horvath L, Kokoszka P (2012) Inference for functional data
with applications, vol 200. Springer Science & Business Media,
Berlin

Wang JL, Chiou JM, Miiller HG (2016) Functional data analy-
sis. Ann Rev Stat Appl 3:257-295

Ullah S, Finch CF (2013) Applications of functional data analy-
sis: a systematic review. BMC Med Res Methodol 13:1-12
Arzani A, Wang JX, Sacks MS, Shadden SC (2022) Machine
learning for cardiovascular biomechanics modeling: challenges
and beyond. Ann Biomed Eng 50(6):615-627

Borggaard C, Thodberg HH (1992) Optimal minimal neural
interpretation of spectra. Anal Chem 64(5):545-551

Griswold CK, Gomulkiewicz R, Heckman N (2008) Hypothesis
testing in comparative and experimental studies of function-
valued traits. Evolution 62(5):1229-1242

Ferraty F, Romain Y (2011) The Oxford handbook of functional
data analysis

Kohler M, Schindler A, Sperlich S (2014) A review and com-
parison of bandwidth selection methods for kernel regression.
Int Stat Rev 82(2):243-274

Ghosh S (2018) Kernel smoothing: principles, methods and
applications. John Wiley & Sons, New York

Csala H, Dawson S, Arzani A (2022) Comparing different nonlin-
ear dimensionality reduction techniques for data-driven unsteady
fluid flow modeling. Phys Fluids 34:11

Baddoo PJ, Herrmann B, McKeon BJ, Brunton SL (2022)
Kernel learning for robust dynamic mode decomposition: lin-
ear and nonlinear disambiguation optimization. Proc R Soc A
478(2260):20210830

Kovachki N, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K,
Stuart A, Anandkumar A (2023) Neural operator: learning maps
between function spaces with applications to PDEs. J Mach Learn
Res 24(89):1-97

Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K,
Stuart A, Anandkumar A (2020) Fourier neural operator for para-
metric partial differential equations. arXiv preprint arXiv:2010.
08895

Yin M, Ban E, Rego BV, Zhang E, Cavinato C, Humphrey JD, Em
Karniadakis G (2022) Simulating progressive intramural damage
leading to aortic dissection using DeepONet: an operator-regres-
sion neural network. J R Soc Interface 19(187):20210670

You H, Zhang Q, Ross CJ, Lee CH, Hsu MC, Yu Y (2022) A
physics-guided neural operator learning approach to model bio-
logical tissues from digital image correlation measurements. J
Biomech Eng 144(12):121012

Renn PI, Wang C, Lale S, Li Z, Anandkumar A, Gharib M (2023)
Forecasting subcritical cylinder wakes with Fourier Neural Opera-
tors. arXiv preprint arXiv:2301.08290

Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K,
Stuart A, Anandkumar A (2020) Neural operator: Graph kernel
network for partial differential equations. arXiv preprint arXiv:
2003.03485

Duffy DG (2015) Green’s functions with applications. CRC Press,
Boca Raton

Springer

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Nair S (2011) Advanced topics in applied mathematics: for engi-
neering and the physical sciences. Cambridge University Press,
Cambridge

Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E
(2018) Deep learning for computer vision: a brief review. Comput
Intell Neurosci 20:18

Pandey S, Schumacher J, Sreenivasan KR (2020) A perspective on
machine learning in turbulent flows. J Turbul 21(9-10):567-584
Guastoni L, Giiemes A, Ianiro A, Discetti S, Schlatter P, Azizpour
H, Vinuesa R (2021) Convolutional-network models to predict
wall-bounded turbulence from wall quantities. J Fluid Mech
928:A27

Zhang Z, LiY, Zhou W, Chen X, Yao W, Zhao Y (2021) TONR:
An exploration for a novel way combining neural network
with topology optimization. Comput Methods Appl Mech Eng
386:114083

Naylor AW, Sell GR (1982) Linear operator theory in engineering
and science. Springer Science & Business Media, Berlin
Aggarwal CC (2018) Neural networks and deep learning: a text-
book. Springer, Berlin

Williams CKI, Rasmussen CE (2006) Gaussian processes for
machine learning, vol 2. MIT Press, Cambridge

Neal RM (2012) Bayesian learning for neural networks, vol 118.
Springer Science & Business Media, Berlin

Goswami S, Bora A, Yu Y, Karniadakis GE (2022) Physics-
informed neural operators. arXiv preprint arXiv:2207.05748
Huang O, Saha S, Guo J, Liu WK (2023) An introduction to ker-
nel and operator learning methods for homogenization by self-
consistent clustering analysis. Comput Mech 2:1-25

Qian E, Kramer B, Peherstorfer B, Willcox K (2020) Lift & learn:
Physics-informed machine learning for large-scale nonlinear
dynamical systems. Phys D: Nonlinear Phenomena 406:132401
Miiller HG, Stadtmiiller U (2005) Generalized functional linear
models. Ann Stat 33(2):774-805

Horova I, Kolacek J, Zelinka J (2012) Kernel smoothing in MAT-
LAB: theory and practice of kernel smoothing. World Scientific,
Singapore

Miiller HG, Yao F (2008) Functional additive models. J Am Stat
Assoc 103(484):1534-1544

Agarwal R, Melnick L, Frosst N, Zhang X, Lengerich B, Caru-
ana R, Hinton GE (2021) Neural additive models: interpretable
machine learning with neural nets. Adv Neural Inf Process Syst
34:4699-4711

James GM, Wang J, Zhu J (2009) Functional linear regression
that’s interpretable. Ann Stat 37(5A):2083-2108

Marcinkevi¢s R, Vogt JE (2023) Interpretable and explainable
machine learning: a methods-centric overview with concrete
examples. Wiley Interdiscip Rev Data Mining Knowl Discov
13(3):e1493

Xu S, Bu Z, Chaudhari P, Barnett IJ (2023) Sparse neural addi-
tive model: Interpretable deep learning with feature selection
via group sparsity. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 343—-359.
Springer

Molnar C, Casalicchio G, Bischl B (2020) Quantifying model
complexity via functional decomposition for better post-hoc inter-
pretability. In: Machine Learning and Knowledge Discovery in
Databases: International Workshops of ECML PKDD 2019, pages
193-204. Springer

DeVries T, Taylor GW (2018) Learning confidence for out-of-
distribution detection in neural networks. arXiv preprint arXiv:
1802.04865

Yang J, Zhou K, Li Y, Liu Z (2021) Generalized out-of-distribu-
tion detection: A survey. arXiv preprint arXiv:2110.11334

Yuan L, Park HS, Lejeune E (2022) Mechanical MNIST—distribu-
tion shift

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Engineering with Computers

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278-2324

Cohen G, Afshar S, Tapson J, Van Schaik A (2017) EMNIST:
Extending MNIST to handwritten letters. In: 2017 international
joint conference on neural networks (IICNN), pages 2921-2926.
IEEE

Lejeune E (2020) Mechanical MNIST: a benchmark dataset for
mechanical metamodels. Extreme Mech Lett 36:100659

Logg A, Mardal KA, Wells G (2012) Automated solution of dif-
ferential equations by the finite element method, vol 84. Springer,
Berlin

Arzani A, Wang JX, D’Souza RM (2021) Uncovering near-wall
blood flow from sparse data with physics-informed neural net-
works. Phys Fluids 33:7

Aliakbari M, Sadrabadi MS, Vadasz P, Arzani A (2023) Ensem-
ble physics informed neural networks: A framework to improve
inverse transport modeling in heterogeneous domains. Phys Fluids
33:053616

De S, Doostan A (2022) Neural network training using L1-regu-
larization and bi-fidelity data. J Comput Phys 458:111010
Aliakbari M, Mahmoudi M, Vadasz P, Arzani A (2022) Predicting
high-fidelity multiphysics data from low-fidelity fluid flow and
transport solvers using physics-informed neural networks. Int J
Heat Fluid Flow 96:109002

Altman N, Leger C (1995) Bandwidth selection for kernel distri-
bution function estimation. J Stat Plann Inferen 46(2):195-214
Zhu M, Zhang H, Jiao A, Karniadakis GE, Lu L (2023) Reli-
able extrapolation of deep neural operators informed by phys-
ics or sparse observations. Comput Methods Appl Mech Eng
412:116064

Lemhadri I, Ruan F, Abraham L, Tibshirani R (2021) Las-
sonet: A neural network with feature sparsity.] Mach Learn Res
22(1):5633-5661

Gin CR, Shea DE, Brunton SL, Kutz JN (2021) Deepgreen: deep
learning of Green’s functions for nonlinear boundary value prob-
lems. Sci Rep 11(1):21614

Boullé N, Earls CJ, Townsend A (2022) Data-driven discovery of
Green’s functions with human-understandable deep learning. Sci
Rep 12(1):4824

Budisi¢ M, Mohr R, Mezi¢ I (2012) Applied koopmanism. Chaos
Interdiscip J Nonlinear Sci 22(4):047510

Mezié I (2013) Analysis of fluid flows via spectral properties of
the Koopman operator. Annu Rev Fluid Mech 45:357-378
Takeishi N, Kawahara Y, Yairi T (2017) Learning koopman invari-
ant subspaces for dynamic mode decomposition. Adv Neural Inf
Process Syst 30

Jovanovi¢ MR, Schmid PJ, Nichols JW (2014) Sparsity-promoting
dynamic mode decomposition. Phys Fluids 26(2):024103

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

Flaschel M, Kumar S, De Lorenzis L (2021) Unsupervised dis-
covery of interpretable hyperelastic constitutive laws. Comput
Methods Appl Mech Eng 381:113852

Bright I, Lin G, Kutz JN (2013) Compressive sensing based
machine learning strategy for characterizing the flow around
a cylinder with limited pressure measurements. Phys Fluids
25(12):127102

Arzani A, Dawson S (2021) Data-driven cardiovascular flow mod-
elling: examples and opportunities. J R Soc Interface 18:20200802
Li Y, Wang N, Carroll RJ (2010) Generalized functional linear
models with semiparametric single-index interactions. J Am Stat
Assoc 105(490):621-633

Panton RL (2013) Incompressible flow. John Wiley & Sons, New
York

Xiong S, He X, Tong Y, Deng Y, Zhu B (2023) Neural vortex
method: from finite Lagrangian particles to infinite dimensional
Eulerian dynamics. Comput Fluids 258:105811

Isakov V (2006) Inverse problems for partial differential equa-
tions, vol 127. Springer, Berlin

DeLillo T, Isakov V, Valdivia N, Wang L (2003) The detection of
surface vibrations from interior acoustical pressure. Inverse Prob
19(3):507

Lu L, Jin P, Pang G, Zhang Z, Karniadakis George E (2021)
Learning nonlinear operators via DeepONet based on the uni-
versal approximation theorem of operators. Nat Mach Intell
3(3):218-229

Boullé N, Kim S, Shi T, Townsend A (2022) Learning green’s
functions associated with time-dependent partial differential equa-
tions.] Mach Learn Res 23(218):1-34

Liang L, Liu M, Elefteriades J, Sun W (2023) Synergistic inte-
gration of deep neural networks and finite eleent method with
applications for biomechanical analysis of human aorta. bioRxiv,
pages 2023-04

Woolley TW (2003) The p-value, the Bayes/Neyman-Pearson
Compromise and the teaching of statistical inference in introduc-
tory business statistics. Proc Acad Bus Educ 4:823

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature™).

Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.

These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access
control;

2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is
otherwise unlawful;

3. falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in
writing;

4. use bots or other automated methods to access the content or redirect messages

5. override any security feature or exclusionary protocol; or

6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal
content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice(@springernature.com

mailto:onlineservice@springernature.com

