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Abstract
Although deep learning has achieved remarkable success in various scientific machine learning applications, its opaque 
nature poses concerns regarding interpretability and generalization capabilities beyond the training data. Interpretability is 
crucial and often desired in modeling physical systems. Moreover, acquiring extensive datasets that encompass the entire 
range of input features is challenging in many physics-based learning tasks, leading to increased errors when encountering 
out-of-distribution (OOD) data. In this work, motivated by the field of functional data analysis (FDA), we propose general-
ized functional linear models as an interpretable surrogate for a trained deep learning model. We demonstrate that our model 
could be trained either based on a trained neural network (post-hoc interpretation) or directly from training data (interpret-
able operator learning). A library of generalized functional linear models with different kernel functions is considered and 
sparse regression is used to discover an interpretable surrogate model that could be analytically presented. We present test 
cases in solid mechanics, fluid mechanics, and transport. Our results demonstrate that our model can achieve comparable 
accuracy to deep learning and can improve OOD generalization while providing more transparency and interpretability. Our 
study underscores the significance of interpretable representation in scientific machine learning and showcases the potential 
of functional linear models as a tool for interpreting and generalizing deep learning.

Keywords  Explainable artificial intelligence (XAI) · Scientific machine learning · Functional data analysis · Operator 
learning · Generalization

1  Introduction

In recent years, deep learning has emerged as a transforma-
tive modeling approach in various science and engineer-
ing domains. Deep learning has been successfully used for 
improving the quality of physical data or improving phys-
ics-based models (e.g., superresolution [1], denoising [2], 
system/parameter identification [3], and closure modeling 
[4]). Additionally, deep learning is a key tool in machine 

learning enhanced models where the goal of deep learning 
is to provide a surrogate for the physics-based model, which 
is useful in many-query and real-time predictive modeling 
[5, 6]. Although deep learning has demonstrated impres-
sive success in most of these studies, its inherent opaque 
nature raises concerns regarding the interpretability of the 
prediction processes. In physics-based systems, where causal 
relationships and fundamental first-principle laws play a piv-
otal role in the results, interpretable models are essential 
for understanding the phenomena of interest and obtain-
ing trustworthy results. Additionally, it is often desirable 
for deep learning to generalize and extrapolate beyond the 
training data once the model is deployed and being used in 
practice, which is a challenging task in physics-based deep 
learning [7].

The challenges associated with interpretability and gen-
eralization in machine learning and deep learning could 
be overcome with parsimonious and interpretable models 
[8]. In physics-based modeling, this has been achieved with 
various techniques such as symbolic regression [9], sparse 
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identification of nonlinear dynamics (SINDy) [10], inter-
pretable reduced-order models (ROM) [11], and design of 
certain coordinate transformations in deep neural networks 
[3]. More broadly, the growing field of interpretable and 
explainable artificial intelligence (XAI) offers a set of tools 
aimed at making opaque deep learning models understand-
able and transparent to humans [12, 13]. XAI approaches 
are classified as “by-design” and “post-hoc” methods. The 
aforementioned parsimonious models are by-design where 
one achieves interpretability by building such features in the 
machine learning model from the initial design phase, which 
has been a more common approach in physics-based mod-
eling and scientific machine learning. However, by-design 
XAI approaches usually lead to a tradeoff between model 
accuracy and interpretability [14]. On the other hand, post-
hoc XAI approaches do not compromise model accuracy and 
instead, explain the model’s results in a post-processing step. 
Standard off-the-shelf XAI approaches have been recently 
used in various fields such as healthcare [15, 16], aerospace 
[17], turbulence modeling [18–20], and material science 
[14].

Interpretable machine learning models also offer the 
opportunity to improve generalization. However, gener-
alization to out-of-distribution (OOD) input data is a key 
challenge in scientific machine learning and particularly for 
deep learning models [7]. While standard techniques such as 
regularization could be used to achieve acceptable in-distri-
bution generalization error (interpolation), OOD generaliza-
tion (extrapolation) is usually not achieved. Extrapolation 
poses a serious challenge for opaque deep learning models. 
As an example, machine-learning based turbulence models 
trained from equilibrium turbulence databases have failed 
once applied to non-equilibrium turbulence and transitional 
flows [21]. Interestingly, in certain examples, a simple linear 
regression model has exhibited remarkable performance in 
extrapolating training data, with an average error rate merely 
5% higher than that of opaque models and has even sur-
passed opaque models in approximately 40% of the scientific 
machine learning prediction tasks evaluated [22].

Here, we propose a post-hoc deep learning interpre-
tation strategy where we build a surrogate for a given 
trained neural network in the form of generalized linear 
integral equations. We hypothesize that the interpretable 
model also improves OOD generalization while provid-
ing an approximation to the neural network’s predictions. 
Our definition of interpretability is based on the work in 
[23] where interpretability is qualitatively assessed based 
on characteristics such as additivity, sparsity, and linear-
ity, which are all features of our proposed framework, as 
described below. Given that many deep learning tasks in 
scientific computing deal with mapping between functions 
and functionals, we leverage theories within the field of 
functional data analysis (FDA) [24, 25]. FDA provides a 

theoretical framework to effectively model and analyze 
functional data and has been used in different applica-
tions [24, 26]. Specifically, we will use functional linear 
models that enable one to construct analytical mapping 
involving functions/functionals in the form of interpretable 
integral equations [24, 25]. In scientific machine learning, 
the learning tasks often involve mapping between high-
dimensional data [27]. In these high-dimensional settings, 
the simplest interpretable machine learning model, mul-
tivariate linear regression, can fail and more advanced 
interpretable models such as functional regression have 
been shown to provide better results [28, 29]. Unlike mul-
tivariate methods that discard spatial/temporal distribution 
of the data, functional methods maintain and leverage the 
intrinsic structure of the data, capturing the temporal or 
spatial relationships between data points, and therefore 
can provide a more accurate mapping between the data 
and uncover valuable insights and patterns.

A key challenge in functional regression is the learning 
of the kernel function that appears in the integral equa-
tions. A common approach is expanding the kernel in a 
certain basis or using a pre-defined fixed kernel [24, 30]. 
Kernel regression is an established statistical modeling 
approach [31, 32] and kernel methods have been used 
in building nonlinear ROMs [33, 34]. In this work, we 
propose a more flexible framework in which the kernel 
is learned from a library of candidate kernel functions 
using sparse regression. Once trained on data produced by 
probing a neural network in a post-hoc fashion, the model 
will provide an analytical representation in the form of 
a linear sum of integral equations that not only approx-
imates the neural network’s behavior but also provides 
potential improvement in OOD generalization. The model 
could be trained based on data probed on the entire train-
ing landscape or a subset of the input parameter space to 
provide a global or local interpretation, respectively. Our 
proposed approach could also be viewed in the context of 
operator learning and neural operators [35]. Deep learn-
ing of operators has recently gained attention in learning 
mapping between function spaces and has been utilized 
in various scientific machine learning problems [36–39]. 
Interestingly, certain neural operators also leverage inte-
gral equations and generalized versions of functional lin-
ear models [40]. In scientific computing, the utilization 
of Green’s functions/operators [41, 42] has inspired the 
incorporation of integral equations into the architecture of 
deep neural operators. These integral equations enable the 
learning of operators by mapping between function spaces 
and belong to the category of functional linear models.

In this paper, we present an interpretable machine 
learning model that builds on several fields such as opera-
tor learning, XAI, and FDA. Our paper provides the fol-
lowing major contributions:
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•	 We present an early application of functional linear 
models for post-hoc interpretable representation of 
opaque deep learning models in scientific computing.

•	 We provide a new library based approach together 
with sparse regression for discovering the kernels in 
the functional linear models. This provides more flex-
ibility compared to prior FDA studies with pre-defined 
kernels.

•	 The majority of post-hoc XAI approaches used in sci-
entific machine learning are local and explain neural 
network’s predictions in a region local to a desired 
input. Our proposed approach is a global surrogate 
model that could also be easily adapted to local inter-
pretation tasks.

•	 We demonstrate that our proposed functional linear 
model could be trained either on the data itself or 
by probing a trained neural network. This allows the 
model to be utilized either as an interpretable opera-
tor learning model or an opaque model interpreter. We 
document training and OOD testing performance in 
solid mechanics, fluid mechanics, and transport test 
cases.

The rest of this paper is organized as follows. First, in 
Sect. 2.1, we provide a brief theoretical overview of differ-
ent approaches such as FDA to motivate the use of integral 
equations as a surrogate for deep learning. Next, we present 
our proposed functional linear model (Sect. 2.2) and explain 
how it is applied for interpretation and OOD generalization 
in Sect. 2.3. In Sect. 3, we present our results for different 
scientific machine learning test cases. The results and our 
framework are discussed in Sect. 4, and we summarize our 
conclusions in Sect. 5.

2 � Methods

2.1 � Theoretical motivation and background

Integral equations provide a mathematical framework that 
encourages the development of interpretable models by 
explicitly defining the relationships between variables. Our 
proposed interpretable surrogate model for understanding 
a deep learning operator is built upon integral equations. 
These integral equations yield an interpretable generalized 
linear model that approximates the predictions of the neu-
ral network. We provide a brief review of several topics in 
applied mathematics and machine learning to motivate the 
idea of using integral equations to build a surrogate for an 
available deep learning model. The theoretical background 
serves as a motivation for the proposed method and readers 
may skip to Sect. 2.2.

2.1.1 � Green’s functions

In many physics-based learning tasks, we are interested in 
solving partial differential equations. Consider the differen-
tial equation Lu = f(x) , where one is interested in solving u , 
for different input source terms f(x) . Similar to how a linear 
system of equations Ax = b could be solved as x = A−1b 
using an inverse operator A−1 , the above differential equa-
tion could also be inverted assuming L is a linear operator

where g(x, �) is the Green’s function corresponding to the 
linear operator L and the action of g(x, �) on f that produces 
the solution is the Green’s operator. Therefore, at least for 
linear operators one can find an analytical operator represen-
tation in the form of an integral equation to map the given 
input f to the output u . When dealing with a nonlinear opera-
tor, it is possible to employ a similar concept to find a linear 
approximation of the operator, at least within a local context. 
This motivates extending Green’s function concept to a gen-
eralized linear integral model that can approximate desired 
physics-based operator learning problems. Given the exist-
ing knowledge about Green functions for linear differential 
equations [41, 42], one can design the integral equations 
based on the physical problem we are trying to solve.

2.1.2 � Convolutional neural networks (CNN)

Convolutional neural networks (CNN) are arguably one 
of the most successful deep learning architectures and are 
widely used in computer vision [43] and mapping 2D image-
like field variables in scientific machine learning [1, 44–46]. 
A key reason behind CNN’s success is the fact that each 
layer is only connected to a local spatial region in the previ-
ous layer. This is achieved using convolutional operators that 
enable CNN to learn hierarchical features. We can write a 
convolutional integral operation as

where the output u is generated by convolving the input f . 
In CNN, the above operation is done in a discrete manner, 
and the kernel K represents the learnable parameters of the 
network. Although convolution in a CNN involves a more 
complex process of sliding filters across the input and is 
accompanied by additional operations in different layers, the 
fundamental idea of a convolutional integral equation that 
maps inputs to outputs through convolutions inspires the 

(1)u(x) = L−1f = ∫ g(x, �)f(�) d� ,

(2)
u(x, y) = ∫ K(� , �)f(x − � , y − �) d� d�

= ∫ K(x − � , y − �)f(� , �) d� d� ,
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development of integral equation models. Such models can 
construct interpretable surrogates for CNNs and other deep 
learning architectures. Interestingly, these convolution lay-
ers perform feature learning that once combined with fully 
connected layers allows CNN to make predictions. Our pro-
posed approach aligns closely with this strategy. Similarly, 
we leverage a library of integral functions to facilitate feature 
learning, and prediction is made through linear regression. 
In CNN, the first version of the above equation involving 
f(x − � , y − �) is used. However, in building our interpretable 
model, we will use the equivalent version involving f(� , �) 
(second form in Eq. 2). Interestingly, a similar analogy 
between integral equations and neural networks can also be 
made for fully connected neural networks. The matrix vector 
multiplications that are building blocks of these networks 
are known to produce mathematically similar structures to 
kernel-based integral equations in Eq. 1 [47].

2.1.3 � Radial basis function (RBF) networks

Radial basis function (RBF) networks are a neural network 
generalization of kernel regression or classification [48]. 
RBF networks use radial basis functions as their activation 
function. For a single hidden layer, the output of an RBF 
network can be written as

where m different hidden units with different prototype vec-
tor �i and bandwidth �i are used with x as an input. The 
weights of the network wi are optimized to find the final 
solution. Each RBF influences a set of points in the vicin-
ity of its feature vector �i with the distance of influence 
dictated by the bandwidth �i . RBF networks are universal 
function approximators. In our library of integral equations 
for our surrogate model below, we will also leverage RBFs 
but in the integral form. That is, the feature vector � will be 
replaced with a continuous variable and the integration will 
be done with respect to this variable.

2.1.4 � Gaussian process regression (GPR)

In Gaussian process regression (GPR), a function is approxi-
mated using Gaussian processes, which are specified by a 
mean function and a covariance function (a kernel) [49]. 
The squared exponential kernel also used in RBF (Eq. 3) is 
a popular choice in GPR. GPR effectively integrates infor-
mation from nearby points through its kernel function, simi-
lar to how we will build our interpretable model below. An 
intriguing observation is that as the number of neurons in a 
single hidden layer of a neural network approaches infinity, it 
evolves into a global function approximator. Similarly, under 

(3)u(x) =

m�

i=1

wi exp

�
−
‖x − �i‖2

2�2
i

�
,

certain constructs, a neural network with a single hidden 
layer for a stochastic process converges toward a Gaussian 
process when the hidden layer contains an infinitely large 
number of neurons [49, 50].

2.1.5 � Neural operators

Neural operators are an extension of neural networks that 
enable learning of mapping between infinite-dimensional 
function spaces [35, 51]. Traditional neural networks also 
learn a mapping between functions (as used in our test cases 
below) but they require a fixed discretization of the func-
tion, whereas neural operators are discretization-invariant. 
In neural operators, typically, each layer is a linear operator 
(e.g., an integral equation) and nonlinear activation func-
tions are used to increase the expressive power. The input v 
to each layer is first passed through an integral linear opera-
tor ∫ K(x, �)v(�) d� using a pre-defined kernel K , and sub-
sequently a nonlinear activation is applied. Therefore, neural 
operators also leverage integral equations in their regression 
tasks but build on neural network architectures for increased 
expressive power at the price of reduced interpretability. Dif-
ferent designs of the kernel lead to different neural operators. 
Fourier neural operators (FNO) are a popular and successful 
example that leverages Fourier transforms and convolutions 
[36]. Graph neural operators [40, 52] are another example 
that uses integral equations similar to the approach we will 
employ in our model. These operators leverage Monte Carlo 
sampling techniques to approximate the integral equations.

2.1.6 � Functional data analysis (FDA)

FDA is a mathematical framework that focuses on analyz-
ing data in the form of smooth functions, rather than dis-
crete observations [24, 25]. We will be presenting our pro-
posed framework within the context of FDA and therefore 
more information is provided here. In FDA, the dependent 
variable, independent variable, or both are functionals. 
Broadly speaking, we may use FDA to perform mapping 
and regression when functions are involved either as input 
or output. Let us consider a mapping between an input func-
tions f(x) and output u , where the output is either a func-
tion (scalar/vector field) or a single scalar/vector. In the 
simplest case mimicking classical regression, for a func-
tion output, one might write the output concurrently as 
u(x) = �(x) + �(x)f(x) , where � and � are bias and regres-
sion coefficient functions, respectively. However, this simple 
concurrent formulation does not consider the potential influ-
ence of neighboring points on the solution. Integral equa-
tions can be used to overcome this issue and provide a more 
realistic scenario. We can formulate the regression problem 
using functional linear models [24, 25]. Assuming that all 
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data are mean-centered, a fully functional model is applied 
to the case where the input and output are both functions

in which the goal is to find � . In a separate problem, when 
the output is a single scalar/vector value, the problem can be 
formulated as a scalar/vector response model

Finally, if the output is a function and the input is a single 
scalar/vector value the problem can be written as a func-
tional response model

In this paper, we will study only the first two cases (Eq. 4 and 
5). It should be noted that Eq. 6 can be equivalent to a single 
layer linear feedforward neural network and Eq. 4–5 can be 
cast as a single layer linear neural operator or a DeepONet. 
However, the FDA form provides an analytical representa-
tion, which assists with interpretation and downstream post-
processing. Additionally, as explained below, once combined 
with sparse regression it allows one to find the appropriate 
kernel analytically based on data rather than pre-defining it 
or representing it discretely as in neural networks.

2.2 � Interpretable functional linear models

The discussion above highlights the importance of integral 
equations in learning mappings between function spaces. 
Although the various methods mentioned earlier may have 
similarities and can be considered equivalent in certain con-
ditions, our primary focus will be on FDA with functional 
linear models. To enhance the expressive capacity of func-
tional linear models, we will expand their capabilities in 
three distinct ways:

•	 First, we will lift the input functions into a higher-dimen-
sional feature space using a pre-specified lifting map T  
(e.g., polynomials) and then define functional linear 
models for each component of the new feature space 
separately and use linear superposition to define the final 
model. Such lifting operations have been successfully 
used in scientific machine learning models (e.g., [53]).

•	 We will use generalized functional linear models [54]. 
Specifically, we will allow a nonlinear function g(.) to be 
applied to the functional linear models to create outputs 
such as u(x) = g

(∫ �(x, �)f(�) d�
)
.

•	 Model selection (choice of the kernel) and tuning its 
hyperparameters is a difficult task in various forms of 
kernel regression [31, 55]. Instead of pre-specifying 

(4)u(x) = ∫ �(x, �)f(�) d� ,

(5)u = ∫ �(�)f(�) d� .

(6)u(x) = �(x)f .

the kernels �  , we will pre-define a library of kernels 
and associated hyperparameters. Subsequently, we will 
use sparse regression to select among the library of 
candidate functions. By specifying the desired level of 
sparsity, a balance can be achieved between interpret-
ability and accuracy.

In the examples explored in this work, we investigate 
deep learning tasks and corresponding interpretable 
functional linear models where the input is a 2D function 
(image) defined on Ω and the output is either a single sca-
lar value, a 1D function (line), or a 2D function (image). 
These models can be considered as mappings: f(x, y) → u , 
f(x, y) → u(x) , and f(x, y) → u(x, y) , respectively. Incorpo-
rating the above three modifications to functional linear 
models and using convolution-like operators for the tasks 
involving image or line outputs, we write the final models 
in the most general form as

where a linear combination of L different lifting operations 
T  on the inputs, M different kernels � , and N different non-
linear functions g is used in writing the final solution. This 
could be considered as a generalized version of an additive 
functional regression [30, 56]. Generalized additive models 
have been utilized to improve interpretability in deep learn-
ing [57]. Our goal is to formulate a linear regression problem 
based on the above analytical equations and training data to 
find the unknown coefficients wn,m,� . We do not impose any 
constraint on the kernel � besides being L2 , and therefore 
inducing Hilbert-Schmidt operators. Below we present a few 
remarks.

(7)

u(x, y) =

N∑

n=1

M∑

m=1

L∑

�=1

wn,m,� gn

(

∫Ω

�m(x − � , y − �)T
�
f(� , �) d� d�

)

(image to image) ,

(8)

u(x) =

N∑

n=1

M∑

m=1

L∑

�=1

wn,m,� gn

(

∫Ω

�m(x − � , �)T
�
f(� , �) d� d�

)

(image to line) ,

(9)

u =

N∑

n=1

M∑

m=1

L∑

�=1

wn,m,� gn

(

∫Ω

�m(� , �)T�f(� , �) d� d�

)

(image to scalar) ,
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•	 The above models are analytically tractable (interpret-
able), particularly for small L, M, and N. Sparsity pro-
moting regression will be used in this study to elimi-
nate many of the weights wn,m,� in a data-driven fashion 
and improve the interpretability of the final model. The 
remaining non-zero weights represent a reduced-order 
representation of the system, which behaves linearly with 
respect to its parameters wn,m,�.

•	 In practice, it is not necessary to consider all possible 
combinations of lifting, kernels, and nonlinearity in the 
library employed for sparse regression. The library could 
be defined in a flexible fashion as an arbitrary combina-
tion of these operators and the final solution will be a 
linear superposition of the selected terms in the library.

•	 The kernels � provide an interpretation for each term in 
the model. �(x − � , y − �) in Eq. 7 represents the effect 
of input function f at point ( �,� ) on the output function u 
at point (x,y). �(x, y) in Eq. 9 represents a weight for the 
influence of the input function f ’s value at point (x,y) on 
the output u and creates a weighted average.

•	 Most kernels used are equipped with a bandwidth that 
also needs to be estimated and represents a character-
istic problem-dependent length scale and smoothing 
parameter. Therefore, in our library of candidate terms, 
for each such kernel, we also consider several candidate 
bandwidths and treat each kernel separately. Therefore, 
M in the above equations is typically a large value. For 
instance, if three different analytical expressions are pro-
posed for the kernels � with 20 different potential band-
widths each, then M = 60.

•	 To enable approximation of the integrals during training, 
the above integrals are replaced with discrete sums that 
approximate the integrals. Therefore, the above models 
could be compared to a graph neural operator with a sin-
gle hidden layer [40]. However, in our model, various 
kernels are added linearly in parallel to form the final 
solution in an analytically simple manner, whereas in 
neural operators the kernels are added sequentially in dif-
ferent hidden layers, which reduces the interpretability. 
Additionally, as discussed below, we provide a library 
approach for kernel selection.

•	 In this work, we study only regression tasks. The pro-
posed approach could be extended to classification tasks 
with appropriate selection of the nonlinear function 
g[54], similar to activation function selection in deep 
learning.

To find the coefficients wn,m,� , a linear regression problem 
is formulated based on the above integral equation models. 
Let us assume a set of Q training data pairs ( f  and u ) is 
available and sampled over a set of collocation points xi and 
yj ( i = 1,… , I , j = 1,… , J ) defined on a 2D grid (a total 

of N� = I × J points). The input image f(xi, yj) is mapped 
to u(xi, yj) , u(xi) , or u based on the task. Additionally, let’s 
assume a total of P terms is arbitrarily selected among the 
L ×M × N candidate terms for the library of integral equa-
tions. The above integral equations could be numerically 
evaluated using any numerical integration technique for each 
of the collocation points. This will result in a system of lin-
ear equations in the form U = FW , where U is a (QN�) × 1 
column vector of outputs, F is a (QN�) × P regression matrix 
formed based on evaluating the integrals, and W is a P × 1 
column vector that contains the unknown coefficients for 
each integral equation. Sparse regression is used to find 
the solution by solving the following convex optimization 
problem

where � is a sparsity promoting regularization parameter. 
This optimization problem is solved using a sequential thres-
holded least-squares algorithm [10] to find W . Increasing � 
will reduce the number of active terms in the final integral 
equation model (improved interpretability) but can reduce 
the accuracy. Our proposed framework resembles sparse 
identification of nonlinear dynamics (SINDy) where a simi-
lar optimization problem together with a library of candi-
date terms is used for interpretable data-driven modeling of 
dynamical systems [10]. � = 0.1 was used for all cases unless 
noted otherwise. In the Appendix, we present an alternative 
strategy for solving this linear regression problem by pre-
senting the normal equations for functional linear models.

The library of candidate terms for each task and test 
case (defined in the Results Section) is listed in Table 1. 
The range and number of bandwidths � used for each case 
are also listed. In the more complex tasks, a large number 
of candidate bandwidths should be selected. Additionally, 
some of the candidate integral terms were defined based on 
a truncated domain of integration (local influence), which is 
a common practice in related methods [55, 58].

2.3 � Generalizing deep learning 
with an interpretable surrogate

Our proposed framework provides an interpretable approach 
for learning operators and mapping between functions. The 
entire model is simply a linear combination of integral equa-
tions (listed in Table 1). The model is trained by assuming a 
library of candidate integral equations and solving the con-
vex optimization problem in Eq. 10, which allows for the 
determination of coefficients associated with each integral. 
Subsequently, given any new input function f(x, y) one could 
evaluate the integral equations to find the solution u . The 

(10)min
W

‖U − FW‖2 + �‖W‖1 ,
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input function’s definition is flexible and could be defined 
either analytically or numerically on an arbitrary grid. A 
schematic overview is shown in Fig. 1.

Our definition of interpretability. Our definition is 
based on interpretability features in machine learning such 
as additivity, sparsity, and linearity as presented in [23]. 
These features have also been highlighted in other defini-
tions of interpretable machine learning [59, 60]. Our pro-
posed model is additive since different features and terms 
are added together to find the total analytical equation. Our 
model is sparse because the number of features in our model 
(integral equation coefficients) is far fewer than the param-
eters of a deep neural network. Finally, our model is linear 
with respect to its unknown parameters. Similar features are 
used by other studies to assess interpretability. For example, 
in [61], a functional decomposition (similar to the additive 
nature of our model) is used to assess interpretability, where 
interpretability is assessed with the number of features, 
interaction strength, and main effect complexity. It should 
be noted that the first two criteria are inherently imposed by 

our framework, where we promote sparsity and have zero 
interaction between features.

In this manuscript, we demonstrate three application 
areas for our proposed framework: 

1.	 Interpretable representation of a trained neural 
network (post-hoc analysis). Given a trained neural 
network for mapping between function spaces, we will 
probe the network using a desired range of the input 
function to generate pairs of inputs and outputs. This 
is a model-agnostic approach that is independent of the 
neural network architecture and just depends on the 
output it generates given each input. Subsequently, the 
input and output data will be used to build our inter-
pretable surrogate model, which provides an analytical 
equation that approximates the behavior of the neural 
network. The neural network can be probed within the 
entire range of its training landscape or locally to better 
understand its behavior in a localized landscape (a spe-
cific range of training data). Finally, the network can be 
probed with out-of-distribution input data to understand 

Interpretable surrogate model

...

...

f(x) u(x)

uqf )x(q(x)
Probe the NN  Trained  neural network (NN)

NN
q=1,...,Q (desired range)

fq(x)

uq(x)

[1(x, )f( )d 2(x, )f( )d ...
1(x, )f2( )d ...

[Candidate integral operatorsIntegral evaluation
for each x and each 

training input f

.  .  .
.  .  .

.  .  .
.  .  .

.  .  .
.  .  .

NN-driven 

interpretable model  

Data-driven 

interpretable model  

u(x) = w1 1(x, )f( )d  +w2 2(x, )f( )d  + ...  

Find unknown weights wj

Sparse regression

Fig. 1   An overview of the proposed framework. Given a trained neu-
ral network that maps an input function f(x) to an output function 
u(x) , the network is probed within a desired range of input data to 
produce pairs of inputs/outputs. Subsequently, these pairs of data are 
used to learn an interpretable operator in the form of a linear sum of 
integral equations (NN-driven interpretable model). Alternatively, 

the interpretable mode is directly built based on given training data 
and without a neural network (data-driven interpretable model). The 
interpretable model is discovered by formulating a sparse regression 
problem using a library of pre-specified general functional linear 
models with different kernels
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the network’s behavior outside its training landscape. 
The network does not necessarily need to be probed with 
the exact data that the network used for training. Our 
definition of interpretation in this work is based on inter-
pretability characteristics proposed in [23] with the goal 
of demonstrating that neural networks could be approxi-
mated with analytical integral equations. Interpreting the 
physics of the problem using the interpretable model 
will be future work.

2.	 Generalizing a trained neural network. The surrogate 
model built based on the data from the probed neural 
network could also be used to improve out-of-distribu-
tion generalization. Namely, the simpler and interpret-
able model is expected to perform better in extrapolation 

and generalization. Therefore, we can envision a hybrid 
model where the neural network is utilized to generate 
the output when the input data falls within the training 
landscape. On the contrary, when the input data lie out-
side the training landscape, the interpretable surrogate 
model would be invoked. Of course, this will require one 
to first determine the boundary of the training landscape, 
which might not be trivial in some problems [62, 63].

3.	 An interpretable machine learning model (by-design 
analysis). The interpretable model could be trained 
directly based on training data to build an interpretable 
machine learning model in the form of a linear sum of 
integral equations.

Fig. 2   A 1D example to motivate the challenge associated with gen-
eralization to out-of-distribution input is presented. True data (blue 
dashed line) and training data (red spheres) are shown. The training 

data does not cover the entire function. a Neural network (NN) pre-
diction. b Gaussian process regression (GPR) prediction. The more 
interpretable GPR model improves prediction for mild extrapolation

Table 2   Mean absolute error (MAE) for the neural network (NN), 
interpretable model trained on neural network predictions (Interp 
NN-driven), and interpretable model trained on training data (Interp 
data-driven) are listed for training and out-of-distribution testing. Test 

case 6 was based on local interpretation and did not evaluate test data. 
Additionally, the errors reported for test case 6 are based on the local 
data used for local evaluation

Mean absolute error (MAE)

Test case NN (train) Interp NN-driven 
(train)

Interp data-driven 
(train)

NN (test) Interp NN-driven 
(test)

Interp 
data-driven 
(test)

Case 1 (MNIST) 4.57 7.54 7.29 23.98 12.53 8.93
Case 1 (EMNIST) 9.55 9.29 8.92 141.69 116.88 90.57
Case 2 0.0038 0.011 0.011 0.17 0.054 0.054
Case 3 0.0019 0.0057 0.0055 0.014 0.0073 0.0073
Case 4 0.00058 0.0042 0.0042 0.014 0.027 0.024
Case 5 0.0018 0.0018 0.0013 0.18 0.046 0.042
Case 6 0.0018 0.0016 0.00017 – – –
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3 � Results

First, we will present a simple 1D example to motivate 
the importance of interpretable machine learning mod-
els in the context of generalization. Let’s consider the 1D 
function u(x) = 4x sin(11x) + 3 cos(2x) sin(5x) . The goal is 
to learn this function given (x, u) training data. We use 
120 training points in the range −0.2 < x < 0.5 , which is 
considered to be the training region. We are interested 
in observing how the trained machine learning model 
performs within the range −1 < x < 1 , which will require 

generalization to out-of-distribution inputs. A fully con-
nected neural network with one input neuron, three hidden 
layers and 35 neurons per layer (ReLU activations) and a 
Gaussian process regression (GPR) model, which is more 
interpretable than the neural network are used for train-
ing. The neural network was trained with a learning rate 
of 0.0001 for 6000 epochs using Adam optimization with 
a weight decay of 10−6 . The results are shown in Fig. 2. It 
can be seen that both models perform well within the train-
ing region. However, the opaque neural network model has 
worse performance outside the training region compared 
to GPR. For mild extrapolation outside the training region, 

Table 3   Maximum absolute 
error for the neural network 
(NN), interpretable model 
trained on neural network 
predictions (Interp NN-driven), 
and interpretable model trained 
on training data (Interp data-
driven) are listed for training 
and out-of-distribution testing. 
In cases where the output is a 
field, maximum error is either 
calculated based on point-wise 
data aggregated across all 
samples (PAE) or in an image-
based fashion as the spatially 
averaged error of each output 
field variable. Test case 6 was 
based on local interpretation 
and did not evaluate test data

Maximum absolute error

Test case NN (train) Interp NN-
driven (train)

Interp data-
driven (train)

NN (test) Interp NN-
driven (test)

Interp 
data-driven 
(test)

Case 1 (MNIST) 63.87 80.04 83.28 138.68 56.15 30.14
Case 1 (EMNIST) 72.67 87.04 91.70 297.44 294.38 230.54
Case 2 0.019 0.11 0.11 0.37 0.17 0.18
Case 3 PAE 0.10 0.077 0.078 0.12 0.06 0.06
Case 3 image-based 0.017 0.012 0.011 0.083 0.022 0.021
Case 4 PAE 0.0057 0.076 0.074 0.11 0.18 0.14
Case 4 image-based 0.0012 0.0069 0.0069 0.074 0.043 0.038
Case 5 PAE 0.015 0.014 0.012 0.90 1.04 1.19
Case 5 image-based 0.0047 0.0048 0.005 0.76 0.18 0.20
Case 6 PAE 0.0077 0.0064 0.0013 – – –
Case 6 image-based 0.0039 0.0036 0.0003 – – –

Mechanical MNIST dataset Mechanical EMNIST dataset

a) b)
Input

Displacement

Strain 
Energy

Output

Modulus

Input

Displacement

Strain 
Energy

Output

Modulus

M
N

IS
T

EM
N

IS
T

Absolute error (AE) distribution

Fig. 3   Test case 1 results are shown (predicting total strain energy 
from heterogeneous materials in the Mechanical MNIST and EMN-
IST datasets). a An overview of the proposed machine learning task 
is shown where a single scalar value (strain energy) is predicted 
from a 2D image (stiffness). b Boxplots of the absolute error (AE) 
distribution are shown. The performance of the neural network (NN), 
interpretable model trained on neural network predictions (Interp 

NN-driven), interpretable model trained on training data (Interp data-
driven) are shown for the training data and out-of-distribution test 
data. The AE boxplot is showing the median (green line), lower/upper 
quartiles (blue box), the whiskers demonstrate the nonoutlier mini-
mum/maximum of the data, and outliers are shown with red marks. 
Outliers are defined as values larger than 1.5 times the interquartile 
range
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the GPR model has relatively good performance compared 
to the neural network. It should be noted that changing the 
number of neurons in the neural network model affects the 
slope of the close-to-linear solution in the extrapolation 
regime but cannot produce the sinusoidal behavior (results 
not shown).

In the following subsections, we will present different 
examples to test our proposed interpretable model. In each 
test case, we will quantify the training error and test error. 
Validation errors are presented in the Appendix. Throughout 
the manuscript, by test we imply out-of-distribution test. 
Errors are quantified for the neural network (NN) model, 
the interpretable model trained based on the probed trained 
neural network (Interp NN-driven), and the interpretable 
model trained based on training data (Interp data-driven). 
The mean and maximum errors for each case are listed in 
Table 2 and 3, respectively. Throughout the results, in test 
cases with mapping to field variables (image-to-image and 
image-to-line), point-wise absolute error (PAE) aggregates 
all of the point-wise errors, whereas image-based error 
calculates the spatially averaged error of each output field 
variable. The overall mean error is identical between these 
two approaches since all samples have similar resolution but 
each approach has different error distributions and maximum 
errors.

In the cases below, the input data are a 2D scalar field 
(image) sampled with a 28× 28 resolution and in defining 
the input field for calculating integrals (x, y) ∈ [0, 1] × [0, 1] 
was used. In all cases with the exception of case 1 both input 
and output fields are normalized. In all examples (except 
test case 6), the same input training data used in training 
the neural network were employed for probing the neural 
network in the NN-driven interpretable model.  

3.1 � Test case 1: predicting strain energy 
from a heterogeneous material

The Mechanical MNIST–Distribution Shift Dataset [64] 
consists of finite element simulation data of a heterogeneous 
material. As shown in Fig. 3a, the elastic modulus distribu-
tion of the heterogeneous material is mapped from the bitmap 
images of the MNIST and EMNIST datasets [65, 66]. The 
elastic modulus values E of the image bitmaps have non-zero 
values, and lie within a pre-defined range that depends on the 
distribution. Pixel bitmaps are transformed into a map of elas-
tic moduli by transforming the pixel value b of the bitmap 
images through the equation E = b∕255.0 ∗ (s − 1) + 1 . In the 
Mechanical MNIST–Distribution Shift dataset selected [67], 
the value s is set to 100 for training data and 25 for testing data. 
In the Distribution Shift EMNIST dataset, the training data is 
biasedly sampled with the value s set to 100 for training data 
and 10 for testing data. In both cases, equibiaxial extension 
was applied to the heterogeneous materials through a fixed dis-
placement d = 7.0 at all boundaries. In both cases, the training 
data size was 2500 and was randomly split into 80% training 
and 20% validation. A neural network was used to predict the 
change of strain energy in the material after the extension. The 
network consists of five fully connected layers with neurons 
1024, 1024, 512, 64, and 1, each followed by a ReLU acti-
vation function, except for the final layer. No regularization 
techniques were applied in test case 1. The training data was 
input as a single batch (batch size was the size of training data) 
and the model was trained at a learning rate 0.001 for 50001 
epochs using Adam optimization.

The absolute error distribution is shown in boxplots 
in Fig. 3. Interpretable models improve the test error and 
the interpretable model trained directly on data has better 

Modified permeability 
k = {0     r > R

k     r  R

Input

Velocity magnitude

Maximum 
velocity

Outputa) b)
kmax

0

Vmin Vmax Absolute error (AE) distribution

Fig. 4   Test case 2 results are shown (predicting maximum velocity 
from permeability fields in porous media flow). a An overview of the 
proposed machine learning task is shown where a single scalar value 
(maximum velocity) is predicted from a 2D image (permeability). b 
Boxplots of the absolute error (AE) distribution are shown. The per-

formance of the neural network (NN), interpretable model trained on 
neural network predictions (Interp NN-driven), interpretable model 
trained on training data (Interp data-driven) are shown for the train-
ing data and out-of-distribution test data. Refer to Fig. 3 for boxplot 
details
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generalization performance. As also shown in Tables 2 and 3, 
the two different interpretable model strategies exhibit com-
parable performance on the training data, and their distinc-
tion becomes more apparent during testing. Another notable 
observation is that, in the case of EMNIST data, the interpret-
able models exhibit superior average performance in training 
compared to the neural network model and exhibit lower mean 
errors. However, the improvement is much smaller when con-
sidering the improvement in generalization error.

3.2 � Test case 2: predicting maximum velocity 
from a heterogeneous porous medium

In this case, we considered porous media flow in a 2D square 
domain [0,1] × [0,1] governed by the steady Darcy-Brinkman 
equation 

 where � = 10 and a heterogeneous permeability of 
k(x, y) = 0.1 exp(Ax) + 1 was used. Free-slip boundary 
condition (BC) was imposed at the top and bottom walls 
(Fig. 4a) and the flow was driven by a pressure gradient 
(p=1 and p=0 on the left and right sides, respectively). The 
porous domain was switched on using the � parameter set 
to � = 1 when 

√
(x − 0.5)2 + (y − Y)2 ≤ R and � = 0 other-

wise as shown in Fig. 4a. Training data was generated by 
varying A, Y, and R within 0 ≤ A ≤ 2 , −0.1 ≤ Y ≤ 0.15 , and 

(11a)�
�

k
u = −∇p + ∇2u ,

(11b)∇ ⋅ u = 0 ,

0.09 ≤ R ≤ 0.16 . The goal of the deep learning model was to 
predict maximum velocity u given �k(x, y) as the input func-
tion. A total of 2250 2D simulations were performed using 
the open-source finite-element method solver FEniCS [68] 
using ∼70k triangular elements. The data were randomly 
split into 80% training and 20% validation. Out-of-distribu-
tion test data was also generated by running 100 simulations 
within 0 ≤ A ≤ 2 , 0.2 ≤ Y ≤ 0.3 , and 0.1225 ≤ R ≤ 0.2025 
(note that Y is completely outside the previous range). A 
convolutional neural network with three layers of convolu-
tion (5 × 5 kernel, 6,16,32 channels, and maxpooling after 
the second and third layers) was used followed by three hid-
den fully connected layers to map the input 2D function into 
a single scalar value. ReLU activation functions were used. 
2000 epochs with a learning rate of 5 × 10−4 and a batchsize 
of 64 were used. Stochastic gradient descent optimization 
was used with a 10−6 weight decay. In this example, the L1 
regularized formulation (Eq. 10) did not produce good test 
results compared to the neural network, and therefore an 
L2 regularization was used (presented in the Appendix). 
� = 10−9 was the L2 regularization parameter and the pre-
conditioned conjugate gradients method was used for solv-
ing the normal equations.

The absolute error distribution is shown in boxplots in 
Fig. 4b. In this case, as expected the neural network had a 
better training error compared to the interpretable models. 
However, the interpretable models significantly reduced 
the test error. In this case, the NN-driven and data-driven 
interpretable models had similar performance in training and 
testing, which is likely due to the very good neural network 
training error.

Permeability 

Input

Velocity magnitude (ground-truth)

Outputa) b)

kmin

kmax

Neural network Interpretable model (NN-driven) Interpretable model (Data-driven) 

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

Fig. 5   Test case 3 results are shown (predicting velocity field from 
permeability fields in porous media flow). a An overview of the pro-
posed machine learning task is shown where a 2D velocity magnitude 
field is predicted from a 2D image (permeability). Neural network, 
interpretable model trained based on the neural network (NN-driven), 
and interpretable model trained based on training data (data-driven) 
results are compared to ground-truth for a sample input in the training 
regime. b Boxplots of the point-wise absolute error (PAE) distribu-

tion considering point-wise error data aggregated across all samples 
and image-based absolute error considering the spatially averaged 
error of each output field variable are shown. The performance of the 
neural network (NN), interpretable model trained on neural network 
predictions (Interp NN-driven), interpretable model trained on train-
ing data (Interp data-driven) are shown for the training data and out-
of-distribution test data. Refer to Fig. 3 for boxplot details
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3.3 � Test case 3: predicting velocity magnitude field 
from a heterogeneous porous medium

The same boundary conditions and setup as test case 2 are 
considered again (without the Brinkman diffusion term). In 
this test case, more complex permeability patterns are con-
sidered and the goal is to predict the 2D velocity magnitude 
field (image to image mapping). The input permeability field 
is defined as k(x, y) = exp(−4Ax)| sin(2�x) cos(2�By)| + 1 , 
and 0 ≤ A ≤ 1 , 0 ≤ B ≤ 4 were used in generating 225 simu-
lations used for training. The data were randomly split into 
80% training and 20% validation. The goal was to predict 
velocity magnitude field ‖u(x, y)‖ given k(x, y) as the input 
function. Out-of-distribution test data were also generated by 
running 64 simulations within 1 ≤ A ≤ 2 and 4.2 ≤ B ≤ 6 . 
In this case, a fully-connected deep autoencoder with ReLU 
activation functions was used. The encoder mapped the 
input 28× 28 field to a latent size of 32 through 4 layers 
(28× 28–256–128–64-32), which was subsequently mapped 
back to another 28× 28 field by the decoder with a similar 

structure as the encoder. 2000 epochs with a learning rate 
of 5 × 10−4 , Adam optimization, and a batchsize of 64 were 
used.

The results are shown in Fig. 5. The contour plots and the 
error boxplot show that the neural network makes a better 
qualitative and quantitative prediction within the training 
regime. However, similar to the last test cases, the inter-
pretable models have better generalization performance as 
shown in the boxplot (Fig. 5b) and Table 2 and 3.

3.4 � Test case 4: predicting high‑fidelity velocity 
field from low‑fidelity velocity field

An idealized 2D constricted vessel mimicking blood flow in a 
stenosed artery was considered similar to our prior work [69, 
70] as shown in Fig. 6. Steady incompressible Navier–Stokes 
equations were solved for a Newtonian fluid in FEniCS. A 
parabolic velocity profile was imposed at the inlet and no-
slip BC was used at the walls. Training data were generated 
by performing 400 computational fluid dynamics simulations 
with different flow rates corresponding to different Reynolds 

Input

Low-fidelity Velocity magnitude

Outputb)

c)

Neural network Interpretable model (NN-driven) Interpretable model (Data-driven) 

Pointwise absolute error (PAE) distribution
a)

Flow

High-fidelity Velocity magnitude
Image-based absolute error distribution

Fig. 6   Test case 4 results are shown (predicting high-fidelity velocity 
field from low-fidelity velocity data). a The simulations are based on 
steady flow in an idealized blocked vessel. A sample velocity stream-
line is shown. b An overview of the proposed machine learning task 
is shown where high-fidelity 2D velocity magnitude field is predicted 
from a 2D low-fidelity simulation in the same region of interest. 
Neural network, interpretable model trained based on the neural net-
work (NN-driven), and interpretable model trained based on training 
data (data-driven) results are compared to ground-truth for a sample 

input in the training regime. c Boxplots of the point-wise absolute 
error (PAE) distribution considering point-wise error data aggre-
gated across all samples and image-based absolute error considering 
the spatially averaged error of each output field variable are shown. 
The performance of the neural network (NN), interpretable model 
trained on neural network predictions (Interp NN-driven), interpret-
able model trained on training data (Interp data-driven) are shown for 
the training data and out-of-distribution test data. Refer to Fig. 3 for 
boxplot details
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numbers (defined based on average velocity at the inlet) 
between 15 and 225. In the high-resolution finite element 
simulations, quadratic and linear shape functions were used 
for velocity and pressure, respectively (P2-P1 elements) with 
41.4k triangular elements. Similarly, low-resolution (low-fidel-
ity) simulations were performed by increasing the viscosity by 
20% (representing a dissipative solution with artificial diffu-
sion) and using first order velocity elements (P1-P1 elements) 
with a total of 536 elements. The goal of the machine learning 
models is to predict the high-fidelity velocity magnitude field 
‖uhres(x, y)‖ from the low-fidelity field ‖ulres(x, y)‖ . We focus 
on a specific region of interest downstream of the stenosis as 
shown in Fig. 6b. Superresolution with machine learning is 
an active area of research in fluid mechanics [1], and addi-
tionally, prior machine learning models have dealt with map-
ping between multi-fidelity data [71, 72]. In our example, both 
datasets are first interpolated to a structured 28× 28 grid. 100 
out-of-distribution high-resolution and low-resolution simula-
tions were also performed by varying the Reynolds number 
between 240 and 300. The neural network architecture was a 
deep autoencoder similar to test case 3 but with one additional 
encoder and decoder hidden layer (the encoder architecture 
was 28× 28–512–256–128–64-32 and the decoder was its sym-
metric counterpart.) The training data were randomly split into 
80% training and 20% validation. 5000 epochs with a learning 

rate of 2.5× 10−5 and a batchsize of 64 were used. Finally, in 
this test case, instead of using a broad range for the candidate 
bandwidths in the interpretable model (Table 1), we select a 
focused range estimated based on existing plug-in methods 
for optimal bandwidth selection. Namely, �opt = O(n−0.3) has 
been proposed as an optimal bandwidth for Gaussian kernels 
[55, 73]. Considering n=28 as the number of points in each 
direction, �opt ≈ 0.37 . Therefore, we focused on 0.2 < 𝛽 < 0.4 
in constructing our library (Table 1). We verified that this 
range gave optimal training errors compared to other choices. 
It should be noted that the problem of optimal bandwidth 
selection is complicated [31, 55], particularly for our problem 
where different kinds of kernels and generalized linear models 
are used.

The contour plots and the error boxplots are shown in 
Fig. 6. The neural network produces very accurate training 
results indistinguishable from the ground-truth. The inter-
pretable model results also mimic the key quantitative and 
qualitative patterns with minor distinctions visible. In this 
test case, the interpretable models could not improve the 
average out-of-distribution test errors compared to the neu-
ral network and only reduced the maximum image-based 
absolute error.

Input

Low-fidelity Velocity magnitude

Outputa)

b) Pointwise absolute error (PAE) distribution

High-fidelity WSS

x

Zoomed into training 

Image-based absolute error distribution

Zoomed into training 

Fig. 7   Test case 5 results are shown (predicting wall shear stress WSS 
field from low-fidelity velocity data). The same model as test case 4 is 
used. a An overview of the proposed machine learning task is shown 
where high-fidelity WSS field is predicted from a 2D low-fidelity 
simulation. Neural network, interpretable model trained based on the 
neural network (NN-driven), and interpretable model trained based 
on training data (data-driven) results are compared to ground-truth 
for a sample input in the training regime as shown in the WSS vs. x 

plot. b Boxplots of the point-wise absolute error (PAE) distribution 
considering point-wise error data aggregated across all samples and 
image-based absolute error considering the spatially averaged error of 
each output field variable are shown. The performance of the neural 
network (NN), interpretable model trained on neural network predic-
tions (Interp NN-driven), interpretable model trained on training data 
(Interp data-driven) are shown for the training data and out-of-distri-
bution test data. Refer to Fig. 3 for boxplot details
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3.5 � Test case 5: predicting high‑fidelity wall shear 
stress field from low‑fidelity velocity data away 
from the wall

In this example, we reconsider the exact same dataset in 
the constricted artery model of the previous test case. The 
goal of the machine learning model here is to take the low-
fidelity velocity magnitude field in the same region of inter-
est (away from the wall) and predict high-fidelity wall shear 
stress (WSS) at the bottom wall as shown in Fig. 7. In this 
case, the machine learning model needs to map a 2D scalar 
field to a 1D scalar field. A deep autoencoder similar to test 
case 3 was used with the last encoder layer being mapped to 
a 100 × 1 line instead of an image. 5000 epochs with a learn-
ing rate of 2.5× 10−5 and a 64 batchsize were used.

As shown in Fig. 7, all methods provide a very accurate 
estimate for WSS in the training regime. In this case, the dis-
tinction between the training and test errors was more pro-
nounced for both neural network and interpretable models. 
As seen more clearly in Table 2 and 3, in testing, the mean 
absolute error was considerably reduced for the interpret-
able models. Another interesting observation was that the 
data-driven interpretable model had slightly better training 
performance compared to the neural network model.

3.6 � Test case 6: local explanation of neural network 
predictions in a porous media flow example

In all of the previous test cases, we used the exact same 
data used in training the neural network to train the pro-
posed interpretable models. However, this is not required 
for the NN-driven Interp model. Namely, the trained 
neural network could be probed for any desired input to 
generate pairs of input–output data for training the NN-
driven Interp model. In the case where one is interested in 
explaining the neural network behavior within the training 
regime, the NN-driven Interp model will be trained with a 
combination of training and in-distribution test data.

In this last test case, we consider the porous media flow 
in test case 2. We reconsider the problem where the goal 
is to predict the velocity magnitude (instead of maximum 
velocity) from the input modified permeability field as 
shown in Fig. 8. The same dataset used in test case 2 is 
used for training the neural network. A fully connected 
autoencoder with ReLU activation functions mapped the 
input 28× 28 field to a latent size of 8 through 4 layers 
(28× 28–256–128–64-8), which was subsequently mapped 
back to another image by a similar decoder. 2000 epochs 
with a learning rate of 5 × 10−4 and a batchsize of 64 were 

Modified permeability 
k = {0     r > R

k     r  R

Input Outputa) b)
kmax

0

Velocity magnitude (ground-truth)

Neural network Interpretable model (NN-driven) Interpretable model (Data-driven) 

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

Fig. 8   Test case 6 results are shown (predicting velocity field from 
permeability fields in porous media flow by locally probing the neu-
ral network). a An overview of the proposed machine learning task 
is shown where a 2D velocity magnitude field is predicted from a 2D 
image (permeability). Neural network, interpretable model trained 
based on the neural network (NN-driven), and interpretable model 
trained based on training data (data-driven) results are compared to 
ground-truth for a sample input in the training regime. b Boxplots of 
the point-wise absolute error (PAE) distribution considering point-

wise error data aggregated across all samples and image-based abso-
lute error considering the spatially averaged error of each output field 
variable are shown. The performance of the neural network (NN), 
interpretable model trained on neural network predictions (Interp 
NN-driven), interpretable model trained on training data (Interp 
data-driven) are shown for the training data and out-of-distribution 
test data. Interpretable model performance with respect to the locally 
probed NN is also shown in this test case. Refer to Fig. 3 for boxplot 
details
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used. The neural network was trained on the entire dataset 
explained in test case 2. However, the goal here was to 
interpret the neural network predictions locally. The posi-
tion of the porous region was fixed at R=0.02 and Y=−
0.1. The trained network was probed for 100 different A 
values (permeabilities) ranging between 0 ≤ A ≤ 2 . This 
represented a local probing of the neural network with a 
higher sampling rate than what was used for its training. 
Finite element simulations were also performed for error 
quantification.

The results are shown in Fig. 8. A data-driven Interp 
model was also trained based on the ground-truth data 
for comparison. The NN-driven Interp model produced 
very accurate results and could faithfully explain the 
neural network behavior in this localized region of the 
training landscape. An interesting observation is that the 
NN-driven Interp model slightly improves the training 
error compared to the neural network model and produces 
slightly smoother qualitative patterns. The data-driven 
Interp model produces significantly more accurate results 
compared to the neural network model. This should not 
be surprising because in this case the data-driven Interp 
model was trained based on the ground-truth data in a 
localized parameter space, whereas the neural network was 
trained over a larger parameter space. In other words, it 
is not fair to compare the data-driven Interp results to the 
neural network in this case. Test errors are not shown in 
Fig. 8b as in this case the Interp models were not trained 
based on the entire data. Instead, the errors in interpret-
able model predictions with respect to the neural network 
predictions are shown. As expected, the NN-driven Interp 
case matches the NN behavior more closely compared to 
the data-driven Interp case. The difference between the 
two interpretable models was less in most previous test 
cases where global interpretation instead of local inter-
pretation was done.

4 � Discussion

In this study, we proposed an interpretable surrogate model 
that approximates neural network’s predictions locally or 
globally. The interpretable model was in the form of inte-
gral equations inspired by functional linear models. We 
applied our framework to different deep learning mod-
els trained on making predictions based on functions 
and functionals in different physics-based problems. The 
results demonstrated that in most test cases the interpreta-
ble model improved generalization error and even in some 
cases training error was improved compared to the neural 
network. Our proposed approach for improving generali-
zation error could be compared to the process of human 
thinking. When we are asked questions that are outside 

our knowledge domain we probe the existing knowledge in 
our brain and we generate an answer to the new questions 
by using interpretation and reasoning. The proposed NN-
driven interpretable model could be perceived within this 
context where we probe the neural network (our existing 
knowledge) to build an interpretable model to answer an 
unknown question (an OOD input).

A surprising observation was the improved training 
error in the interpretable model compared to the deep 
learning model in some cases. In test case 1 (EMNIST), 
the mean training errors were reduced by NN-driven 
and data-driven interpretable models, and in test case 5 
the data-driven interpretable model reduced the mean 
and point-wise peak training errors. Also, in some other 
cases (e.g., test case 3), the maximum training error was 
reduced. In-distribution generalization (validation) results 
shown in the Appendix demonstrated further improve-
ments in the interpretable model performance compared 
to the deep learning counterpart. Training error improve-
ment by the NN-driven interpretable model observed in 
certain cases was a particularly unprecedented result that 
could be attributed to the smoothing effect in functional 
linear models, which has been well studied in the con-
text of kernel smoothing [32, 55]. Except for test case 4, 
the interpretable models consistently exhibited reduced 
test error across all cases. This suggests that interpretable 
models have the potential to enhance predictive accuracy 
and generalize well to unseen data, showcasing their effec-
tiveness in improving model performance.

A notable characteristic of our proposed framework is its 
inherent flexibility. Our interpretable model could be built 
either based on the neural network predictions (NN-driven) 
or the training data without the need for a neural network 
(data-driven). The former is preferred when an interpreta-
tion of an opaque neural network model is desired, while 
the latter is preferred where improved accuracy (particularly 
improved OOD generalization) is desired. Our framework 
also shares many of the advantages offered by other opera-
tor learning models. For instance, similar to neural opera-
tors our framework once trained could be used to evaluate 
the solution at any desired input location, rather than being 
restricted to fixed locations as in traditional neural networks 
[35]. It has been shown in prior operator learning work with 
DeepONets that a small amount of data can improve their 
generalization error [74]. It has also been demonstrated that 
sparsity promoting neural network architectures can have 
good performance with small training data [71, 75]. Our 
proposed interpretable model promotes a sparse solution 
to the operator learning problem, and therefore even just 
a small amount of OOD training data is expected to even 
further improve its OOD generalization, which should be 
investigated in future work.
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In related work, deep learning has been used to discover 
extensions of Green’s functions beyond linear operators [76, 
77]. It is known that approximating Green’s functions with 
neural networks is easier than approximating the action of 
Green’s function on the input (Green’s operator) [77]. This is 
consistent with our framework where we learn kernel func-
tions in our integral equations. Another analogy could be 
made with Koopman operators, which provide a theoretical 
framework for linearizing dynamical systems [78, 79] and 
have been approximated with opaque neural networks [80]. 
Dynamic mode decomposition (DMD) is an interpretable 
numerical approximation of the Koopman operator. DMD’s 
interpretability is improved by retaining fewer modes or 
using sparsity promoting approaches [81]. This is similar 
to our framework where an interpretable model is selected 

a) b)

Absolute error (AE) distribution

Mechanical MNIST dataset Mechanical EMNIST dataset

Test case 1 Test case 2
Absolute error (AE) distribution

c) Test cae 3
Pointwise absolute error (PAE) distribution Image-based absolute error distribution

d) Test cae 4

e) Test cae 5

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

Pointwise absolute error (PAE) distribution Image-based absolute error distribution

Fig. 9   In-distribution generalization (validation) error distributions 
are plotted for the first five test cases. In test cases with mapping to 
field variables, point-wise absolute error (PAE) aggregates all of the 

point-wise errors, whereas image-based error calculates the spatially 
averaged error of each output field variable

Table 4   Mean absolute error (MAE) for the neural network (NN), 
interpretable model trained on neural network predictions (Interp 
NN-driven), and interpretable model trained on training data (Interp 
data-driven) are listed for in-distribution testing (validation) data. 
Test case 6 was based on local interpretation and is not included

Mean absolute error (MAE) for the validation data

Test case NN Interp NN-driven Interp data-driven

Case 1 (MNIST) 9.49 7.63 7.31
Case 1 (EMNIST) 12.23 13.33 13.64
Case 2 0.015 0.014 0.014
Case 3 0.0087 0.0062 0.0061
Case 4 0.0006 0.0044 0.0044
Case 5 0.002 0.0018 0.0013
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in the form of generalized functional linear models to 
approximate an unknown operator. Additionally, the trade-
off between accuracy and interpretability is similar where 
reducing the number of modes in DMD (or the number of 
integral equations in our framework) increases interpret-
ability at the cost of potentially reduced accuracy. Our sur-
rogate model could be perceived as a reduced-order-model 
(ROM) that approximates the neural network behavior and 
as such, just like how ROMs can simplify understanding of 
a complex system, our model can be used towards a similar 
goal (which remains to be investigated). Additionally, each 
integral term is equipped with a coefficient that tells the 
significance of the term. Therefore, once we identify the 
significance of each term, we can understand the network 
based on its kernel and associated bandwidth. For example, 
if a kernel with a large bandwidth is important in the total 
response, then long-range effects in the input image affect 
the output. Similarly, in DMD, each mode comes with a 
frequency that provides information about the dynamics of 
the system.

The utilization of a library of candidate models has been 
leveraged in other scientific machine learning problems. 
Sparse identification of nonlinear dynamics (SINDy) mod-
els a nonlinear dynamical system by constructing analyti-
cal equations in the form of a nonlinear system of ordinary 
differential equations, where the terms in the equations 
are selected from a pre-specified library [10]. As another 

example, a library of hyperelastic constitutive equations has 
been used for discovering constitutive models in nonlinear 
solid mechanics problems [82]. Machine learning ROMs 
have been proposed where a library of proper orthogonal 
decomposition (POD) modes are used for parameter iden-
tification from low-resolution measurement data [83, 84]. 
Another analogy can be drawn with ensemble machine 
learning models. Neural additive models use an ensemble 
of parallel neural networks and make final predictions with 
linear superposition [57]. Similarly, our approach could be 
perceived as an ensemble of approximations to the solution 
(each integral equation) that is linearly added to build the 
final solution.

Our proposed framework offers the flexibility to be 
extended to other deep learning tasks. For instance, in certain 
tasks in addition to a field variable, some physical param-
eters might also be inputs to the neural network. As an exam-
ple of an extension to such cases, the scalar response model 
(Eq. 5) could be extended as u = r(z) ∫ �(�)f(�) d� + �z 
similar to the work in [85] where z is the additional input 
parameter, and r and � are an unknown function and param-
eter, respectively, that need to be estimated. Leveraging 
analytical integral equation models in classical physics is 
another possible extension. An example of analytical inte-
gral equations used in fluid dynamics is the Biot-Savart Law 
used in modeling vortex dynamics [86]. This has recently 
inspired the neural vortex methods, which use neural net-
works to map vorticity to velocity [87]. Our analytical inte-
gral equation approach also offers the possibility of solving 
inverse problems using standard approaches used in solving 
integral equations [42]. Integral equations have been utilized 
in developing mathematical theories for inverse problems 
and their numerical solution [88, 89]. Another interesting 
future direction is the comparison of our method’s generali-
zation with other operator learning methods such as Deep-
ONets [90] and Fourier neural operators [36]. Extension to 
time-dependent problems is another future direction, which 
is inspired by parabolic Green’s functions [91]. Finally, our 
definition of interpretability draws from qualitative attributes 
outlined in [23] such as additivity, sparsity, and linearity, as 
well as being able to present the model as an analytical equa-
tion. Our current work just focused on demonstrating the 
possibility of approximating neural networks with analyti-
cal models that possess such interpretable features and we 
did not demonstrate our framework’s potential for physical 
interpretation. Our future work will focus on using the model 
for interpreting the physics of the problem.

Table 5   Maximum absolute error for the neural network (NN), 
interpretable model trained on neural network predictions (Interp 
NN-driven), and interpretable model trained on training data (Interp 
data-driven) are listed for in-distribution testing (validation) data. In 
cases where the output is a field, maximum error is either calculated 
based on point-wise data aggregated across all samples (PAE) or in 
an image-based fashion as the spatially averaged error of each output 
field variable. Test case 6 was based on local interpretation and is not 
included

Maximum absolute error for the validation data

Test case NN Interp NN-driven Interp data-driven

Case 1 (MNIST) 63.87 38.03 38.82
Case 1 (EMNIST) 63.48 58.97 61.15
Case 2 0.077 0.11 0.11
Case 3 PAE 0.15 0.070 0.070
Case 3 image-based 0.068 0.013 0.014
Case 4 PAE 0.0062 0.076 0.074
Case 4 image-based 0.0028 0.0057 0.0057
Case 5 PAE 0.026 0.011 0.013
Case 5 image-based 0.010 0.0036 0.0021
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5 � Conclusion

We have proposed an interpretable surrogate model to not 
only interpret a given neural network but also improve 
generalization and extrapolation. Our results demonstrate 
very good and comparable training error and in most cases 
improved OOD generalization error once compared to the 
neural network. In a broader sense, our framework suggests 
the notion of a hybrid machine learning strategy where a 
trained deep learning model is used for in-distribution pre-
dictions and an interpretable surrogate is utilized for OOD 
predictions. This hybrid strategy could be compared with 
hybrid finite-element and neural network strategies recently 
proposed to improve neural network predictions [92]. Our 
study suggests that by leveraging integral equations in the 
form of generalized functional linear models, we can build 
more interpretable and explainable scientific machine learn-
ing models with a high potential for improved generalization.

Appendix

Normal equations for functional linear models

Here, we present an alternative strategy for finding the ker-
nels in functional linear models using the normal equations, 
based on the presentation in [24]. Let’s consider the fully 
functional model, which was used for image to image map-
ping in this study (Eq. 4) in the scalar form

where given Q pairs of training data, we have grouped 
them as column vectors u(x) =

[
u1(x),… , uQ(x)

]T  and 
f (�) =

[
f1(�),… , fQ(�)

]T . We expand the unknown kernel 
function in Eq. 12 using pre-defined arbitrary bases as

(12)u(x) = ∫ �(�, x)f (�) d� ,

Table 6   Error percentiles 
for the neural network (NN), 
interpretable model trained 
on neural network predictions 
(Interp NN-driven), and 
interpretable model trained on 
training data (Interp data-
driven) are listed for training 
and out-of-distribution testing. 
Test case 6 was based on local 
interpretation and did not 
evaluate test data. Additionally, 
the errors reported for test case 
6 are based on the local data 
used for local evaluation

Error percentiles (Perc) for point-wise absolute error (training and test data).

Test case NN (train) Interp NN-
driven (train)

Interp data-
driven (train)

NN (test) Interp NN-
driven (test)

Interp 
data-driven 
(test)

Case 1 (MNIST)
99th Perc 27.2 33.33 33.55 105.46 41.53 24.43
97th Perc 17.23 24.62 24.44 87.25 37.38 21.07
95th Perc 13.41 21.43 20.81 75.57 34.69 19.42
Case 1 (EMNIST)
99th Perc 34.54 35.63 33.94 232.87 227.44 174.79
97th Perc 28.08 27.66 26.48 216.25 205.98 159.41
95th Perc 24.98 24.39 23.13 204.94 193.27 148.81
Case 2
99th Perc 0.014 0.050 0.049 0.37 0.17 0.18
97th Perc 0.011 0.031 0.031 0.36 0.17 0.17
95th Perc 0.01 0.027 0.027 0.33 0.16 0.16
Case 3
99th Perc 0.0082 0.026 0.025 0.077 0.032 0.031
97th Perc 0.0058 0.019 0.019 0.062 0.023 0.023
95th Perc 0.005 0.016 0.016 0.054 0.020 0.020
Case 4
99th Perc 0.0022 0.026 0.026 0.064 0.11 0.10
97th Perc 0.0018 0.016 0.016 0.050 0.092 0.080
95th Perc 0.0015 0.013 0.013 0.043 0.080 0.070
Case 5
99th Perc 0.0066 0.0067 0.0055 0.69 0.36 0.47
97th Perc 0.0054 0.0054 0.0042 0.57 0.16 0.20
95th Perc 0.0048 0.0048 0.0035 0.51 0.13 0.12
Case 6
99th Perc 0.0056 0.0051 0.00075 – – –
97th Perc 0.005 0.0044 0.0006 – – –
95th Perc 0.0045 0.004 0.0005 – – –
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where �i and �j are the basses and bij are the unknown coef-
ficients that could be grouped into a matrix B =

[
bij
]
 . Our 

goal is to solve the following least squares problem

Grouping the bases into column vectors �(�) =
[
�1(�),…

]T 
and �(x) =

[
�1(x),…

]T , we can rewrite Eq. 12 in matrix 
form as

where Z = ∫ f(�)�T (�) d� . Finally, by defining the matrix 
J = ∫ �(x)�T (x) dx , we can derive the final form of the nor-
mal equations

where we need to solve for B.
We can also write a similar version of the above equa-

tion by reconsidering the optimization problem in Eq. 10, 
which was used for approximating the solution of U = FW 
in Sect. 2.2. Instead of introducing an L1-regularized prob-
lem as done in Eq. 10, we can directly solve this regression 
problem using the normal equations

This equation could be solved using a linear solver to find 
W . However, in practice the FTF matrix is highly ill-condi-
tioned and close to singular, therefore an L2 regularization 
should be added

where � is the regularization parameter. An increased � pro-
vides a more robust linear system of equations but at the 
cost of reduced accuracy. Our preliminary investigation has 
shown that this formulation in certain cases produces more 
accurate results related to the training error. The OOD gen-
eralization error was better in most cases for the L1-regular-
ized problem (except for test case 2). It should also be noted 
that the L2-regularized problem produces a dense solution 
where most integral equations in the library will be nonzero, 
and therefore a less interpretable model is produced.

In‑distribution generalization

In this section, we present the in-distribution generalization 
(validation) errors for all the test cases where global inter-
pretation was performed (cases 1–5). The simulations used 

(13)�(�, x) =
∑

i

∑

j

bij�i(�)�j(x) ,

(14)min
�

Q�

n=1

‖un(x) − ∫ �(�, x)fn(�) d�‖2 .

(15)u(x) = ZB�(x) ,

(16)ZTZBJ = ZT ∫ u(x)�T (x) dx ,

(17)FTFW = FTU .

(18)(FTF + �I)W = FTU ,

in evaluating the validation errors were sampled from the 
same parametric space defined in the problems but different 
from the training data to assess the in-distribution generali-
zation (interpolation) accuracy of the models. The validation 
datasets used in assessing the deep learning and XAI models 
in this section are identical. The point-wise absolute error 
and image-based absolute error distributions for the valida-
tion data are shown in Fig. 9. Additionally, Table 4 and 5 
present the mean and maximum validation errors. Compar-
ing the validation errors with the previously presented train-
ing errors demonstrates reasonable performance for all mod-
els. Interestingly, in some cases, the interpretable models 
have slightly better validation errors compared to the neural 
networks. Additionally, in some cases, the validation errors 
are slightly better than the training error, which is because 
the most challenging data (e.g., higher Reynolds number) is 
included in the training set.

Table 7   Error percentiles for the neural network (NN), interpretable 
model trained on neural network predictions (Interp NN-driven), and 
interpretable model trained on training data (Interp data-driven) are 
listed for the validation data. Test case 6 was based on local interpre-
tation and is not included

Error percentiles (Perc) for point-wise absolute error (validation data)

Test case NN Interp NN-driven Interp data-driven

Case 1 (MNIST)
99th Perc 39.39 32.32 33.74
97th Perc 29.95 26.05 26.09
95th Perc 27.2 23.44 21.32
Case 1
99th Perc 42.12 40.71 39.33
97th Perc 34.53 32.78 31.41
95th Perc 31.12 29.56 27.96
Case 2
99th Perc 0.071 0.097 0.097
97th Perc 0.057 0.053 0.053
95th Perc 0.053 0.047 0.046
Case 3
99th Perc 0.059 0.029 0.029
97th Perc 0.041 0.021 0.020
95th Perc 0.033 0.017 0.017
Case 4
99th Perc 0.0023 0.027 0.027
97th Perc 0.0018 0.017 0.017
95th Perc 0.0016 0.014 0.014
Case 5
99th Perc 0.0074 0.0067 0.0051
97th Perc 0.0058 0.0054 0.0038
95th Perc 0.0050 0.0048 0.0033
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Error percentiles

Given the sensitivity of the maximum point-wise absolute 
error (PAE) to outliers due to its point-wise nature, Table 6 
presents the PAE percentiles for the training and OOD test 
data. PAE percentiles for the validation data are listed in 
Table 7. In general, the tables indicate that the trends in 
comparisons remain consistent.

Statistical significance

Statistical analysis was performed to assess the statistical 
significance of the differences observed in the error distribu-
tions for each test case based on the point-wise data. First, 
Friedman’s test was performed in a three-way manner con-
sidering the NN, Interp NN-driven, and Interp data-driven 
models. Separate Friedman tests were performed for the 
training, validation, and OOD test datasets. Subsequently, 
after verifying statistical significance, one-on-one tests 
were performed using Wilcoxon’s signed rank test. This 
was done for all training, validation, and OOD test datasets, 
where within each case all possible pairs (e.g., NN vs. Interp 
NN-driven) were tested to ensure the differences in errors 
are significant. To account for the moderate/large sample 
size, Good’s q-value [93] was used instead of the regular 
p-value. A q-value smaller than 0.005 was considered sta-
tistically significant.

All Friedman q-values were significant with the excep-
tion of case 2’s validation errors. Therefore, the differences 
observed in the performance of different methods on the 
validation dataset for case 2 were not statistically meaning-
ful (training and OOD differences were meaningful for case 
2). The subsequent Wilcoxon test on all of the other cases 
revealed statistically significant results with the exception of 
case 5’s comparison between the NN and Interp NN-driven 
models on the training dataset (q-value = 0.11 and p-value 
= 0.0058).
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