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Purpose:  To compare the effectiveness of weak supervision (ie, with examination-level labels only) and strong supervision (ie, with
image-level labels) in training deep learning models for detection of intracranial hemorrhage (ICH) on head CT scans.

Materials and Methods:  In this retrospective study, an attention-based convolutional neural network was trained with either local (ie,
image level) or global (ie, examination level) binary labels on the Radiological Society of North America (RSNA) 2019 Brain CT
Hemorrhage Challenge dataset of 21736 examinations (8876 [40.8%] ICH) and 752422 images (107784 [14.3%)] ICH). The
CQ500 (436 examinations; 212 [48.6%] ICH) and CT-ICH (75 examinations; 36 [48.0%] ICH) datasets were employed for external
testing. Performance in detecting ICH was compared between weak (examination-level labels) and strong (image-level labels) learners
as a function of the number of labels available during training.

Results:  On examination-level binary classification, strong and weak learners did not have different area under the receiver operating
characteristic curve values on the internal validation split (0.96 vs 0.96; P = .64) and the CQ500 dataset (0.90 vs 0.92; P = .15). Weak
learners outperformed strong ones on the CT-ICH dataset (0.95 vs 0.92; P = .03). Weak learners had better section-level ICH detec-
tion performance when more than 10000 labels were available for training (average £, = 0.73 vs 0.65; P < .001). Weakly supervised
models trained on the entire RSNA dataset required 35 times fewer labels than equivalent strong learners.

Conclusion: ~ Strongly supervised models did not achieve better performance than weakly supervised ones, which could reduce radiologist

labor requirements for prospective dataset curation.

Supplemental material is available for this article.

©RSNA, 2023

Intracranial hemorrhage (ICH) is a potentially life-
threatening condition, accounting for approximately
10%-20% of all strokes (1). Expert radiologists can diag-
nose ICH from unenhanced head CT scans by analyzing
the location, shape, and size of the lesions (2). The large
number of CT scans produced daily and the importance
of quick diagnosis make automated diagnosis and triage of
ICH using deep learning (DL) a compelling application of
this technology (3-7).

Supervised learning is the most common approach
to training DL models for detection of disease or injury,
whereby a collection of images with ground truth labels
is used for model training. This framework requires radi-
ologists to manually annotate hundreds or thousands of
images, which is a time-consuming and expensive pro-
cess. This disadvantage was made painfully clear during
the 2019 Radiological Society of North America (RSNA)
Brain CT Hemorrhage Challenge, which required 60
volunteer expert radiologists and thousands of hours to
annotate 21736 head CT examinations for ICH (2). An
alternative approach to collecting image-level labels (ie,
for each section) is to use weak labels obtained at the ex-
amination-level (ie, aggregated over all the sections), such

as those that can be extracted from radiology reports, a
method known as weakly supervised learning. That is, a
CT examination should be flagged as with hemorrhage
regardless of which sections show ICH. Preliminary re-
search efforts have demonstrated potential utility of
weakly supervised learning using radiology report—de-
rived annotations for whole-body PET/CT and body CT
(8,9), suggesting that similar applications in neuroimag-
ing may be successful.

For ICH detection on head CT scans, it remains unclear
what kind of labels are optimal. While ground truth labels
for each image or section of a CT scan may provide granu-
lar pixel-level annotations, they are time-consuming and
expensive to obtain. On the other hand, weak examina-
tion-level labels are quickly and cheaply obtained through
automated extraction from radiology reports using natural
language processing but are coarser and less informative.
Importantly, they cannot be used to train two-dimensional
DL models that consider a single image at a time. At the
same time, weakly supervised learning could reduce the
labor required to curate large medical imaging datasets,
providing a scalable solution to the primary bottleneck in
development of DL models in radiology.
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Abbreviations

AUC = area under the receiver operating characteristic curve, DL
= deep learning, ICH = intracranial hemorrhage, MIL = multiple
instance learning, RSNA = Radiological Society of North America

Summary

Supervised learning with image-level labels did not show superior
performance to multiple instance learning with examination-level bi-
nary labels for intracranial hemorrhage detection on head CT scans.

Key Points

= The proposed attention-based convolutional neural network pre-
dicted the presence of intracranial hemorrhage on CT volumes
of any number of sections without needing section- or pixel-level
annotations.

s The models trained on the Radiological Society of North America
(RSNA) 2019 Brain CT Hemorrhage Challenge dataset with
examination-level binary labels achieved better generalization
performance (area under the receiver operating characteristic curve
= 0.95; P =.03) compared with models trained with section-level
binary labels on the task of examination-level binary classification.

» Weakly supervised models (examination-level labels only) trained
on the entire RSNA dataset required 35 times fewer labels than
equivalent strongly supervised models (image-level labels).

Keywords
CT, Head/Neck, Brain/Brain Stem, Hemorrhage

The purpose of this study was to compare the performance of
weakly supervised and strongly supervised DL models for detec-
tion of ICH on head CT scans. Specifically, we evaluated whether

DL models trained using multiple instance learning (MIL)—an
instance of weakly supervised learning in which inputs are con-
sidered bags of instances, and the label of the bag is a known
function of the labels of its instances (10-13)—underperformed
compared with models using standard, strong supervision.

Materials and Methods

Our retrospective study used public data only and was ac-
knowledged as nonhuman subjects research by the University
of Maryland Baltimore institutional review board. All code will
be released.

Datasets

Models were trained and validated (80/20 data split) on the
RSNA 2019 Brain CT Hemorrhage Challenge dataset (Table
1) (2). The dataset comprises 21736 examinations from three
institutions (Stanford University, Thomas Jefferson University,
and Universidade Federal de Sao Paulo), totaling 752422 images
labeled by a panel of board-certified radiologists with the types
of hemorrhage present (epidural, intraparenchymal, intraven-
tricular, subarachnoid, subdural). No pixel-level annotations or
demographics are available. Data splits were created by random
sampling at the examination level to guarantee a fair compari-
son. Weak learners have access to approximately 35 times fewer
labels (ie, the mean number of sections in an examination).
Two datasets were used for external testing (Table 2): the
CQ500 dataset (14) (436 examinations; 212 ICH; mean age, 48
years + 29 [SD]; 158 of 436 [36.2%)] women) and the CT-ICH

rhage Challenge Dataset

Table 1: Number of Positive and Negative Labels in the Training and Validation Splits of the RSNA 2019 Brain CT Hemor-

Validation Split

Negative Labels

Positive Labels Negative Labels

Training Split
Label Level Positive Labels
Image level 86295 of 601930
(14.3)

Examination level 7100 of 17388 (40.8)

515635 of 601930 (85.7) 21489 of 150492

10288 of 17388 (59.2)

129003 of 150492 (85.7)
(14.3)

1776 of 4348 (40.8) 2572 of 4348 (59.2)

Note.—The RSNA dataset does not provide demographic information. For each dataset, data are presented as number of labels, with per-
centage of total image-level or examination-level labels in parentheses. RSNA = Radiological Society of North America.

Table 2: Demographics, Number of Positive and Negative Examinations, Number of Positive and Negative Images, and
Total Number of Images in the CQ500 and CT-ICH Datasets

Positive Negative Negative
Dataset Age (y) Female Examinations Examinations Positive Images Images
CQ500 48 +29 (7-95) 158 of 436 212 of 436 (48.6) 224 of 436 (51.4) NA NA
(36.2)
CT-ICH 28+20(0-72) 33 o0f75(44.0) 36 of 75 (48.0) 39 of 75 (52.0) 318 of 2814 (11.3) 2496 of 2814 (88.7)

nial hemorrhage, NA = not applicable.

Note.—For each dataset, data are presented as mean ages in years + SDs with the ranges in parentheses, numbers and percentages of female
patients, numbers of labels with percentage of total number of examinations in parentheses, and total numbers of images. ICH = intracra-
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Schematic of model architectures. (A) The strong learner makes a prediction on every input image, x, and requires image-level labels for training. (B) The

weak learner makes a predicﬁon for an entire examination, X = (W’,x‘zl,.“,x{'}], containing an crbitrory number of images, 1. Thus, the weak learner requires on|y examination-
level labels for training. Both models use the same convolutional neural network to encode images info feature representations and the same fully connected layer with

sigmoid acfivation as output classifier. Conv = convolufion, max = maximum.

dataset (15,16) (75 examinations; 36 ICH; mean age, 28 years
+ 20; 33 of 75 [44.0%] women). The CQ500 dataset comprises
scans from clinical centers in New Delhi, India, annotated with
the types of hemorrhage present by three expert radiologists. For
a subset of 196 scans, images were enhanced via the BHX dataset
(17,16) with 6282 manual segmentations of bleeds performed
by three other expert radiologists. The CT-ICH dataset was col-
lected from Al Hilla Teaching Hospital, Iraq, from patients with
traumatic brain injury with manual segmentations of bleeds per-
formed by two expert radiologists. All images were windowed
with the standard brain setting (window width = 80; window
level = 40) and minimum and maximum normalized.

Model Architectures

Figure 1 depicts the strong and weak DL models. We consid-
ered examinations as bags of images (10-13) that were labeled
as negative only if they did not contain any image with ICH.
We used an attention-based MIL model (18) that can be trained
with either image- or examination-level labels, thus enabling a
controlled comparison. Details are provided in Appendix S1.

Training Procedure

Both learners are trained with focal loss (19) to account for
label imbalances in the RSNA dataset and the gap in difficulty
between predicting the presence or absence of ICH. Equa-
tions, data augmentation strategies, and hyperparameters are
included in Appendix S1.
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Statistical Analysis

Examination-level binary classification.— For the weak
learner, the examination-level prediction is the output of
the model. For the strong learner, the examination-level pre-
diction is the maximum image-level prediction. Diagnostic
performance was determined by each model’s area under the
receiver operating characteristic curve (AUC) and compared
with the DeLong test.

Section-level hemorrhage detection.— Hemorrhage sequenc-
es are sets of consecutive images with ICH, and section-level
hemorrhage detection is the task of retrieving the true hemor-
rhage sequences. This task is different from pixel-level binary
classification and reflects how learners could be deployed in
clinical settings to report actionable findings to radiologists.
For strong learners, this is equivalent to selecting consecutive
predicted positive images. For weak learners, two separate no-
tions of image importance were used: (2) attention weights and
(6) Shapley values (20,21). Positive images should receive larg-
er attention weights because they contribute toward a positive
prediction. This notion of importance is heuristic. In contrast,
the Shapley value satisfies several desirable theoretical proper-
ties (20). h-Shap (22)—a hierarchical extension of the Shapley
value—was modified to compute the attribution of every im-
age in an examination. Images were selected by thresholding
their importance. DL models were compared by means of
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section-level f, score and recall on the validation split of the
RSNA dataset (2413 true sequences [mean length = 9 images +
71) and the CT-ICH dataset (45 true sequences [mean length =
9 images + 4]). The CQ500 dataset could not be used because
it does not include image-level labels, and the BHX dataset
does not provide segmentations for all positive scans. P values
were computed via one-sided # tests. Details are provided in

Appendix S1.

Pixel-level hemorrhage detection.— Pixel-level hemorrhage
detection is the task of locating bleeds within positive images.
We could not train segmentation models because the RSNA
dataset does not provide pixel-level annotations. However,
DL explainability methods can be used to compute saliency
maps and augment classification models with detection abil-
ity (23,24). We compared two such methods: () Grad-CAM
(25) and (5) h-Shap (22). The latter was extended with cycle
spinning (26) to capture the complex shape of bleeds. Accuracy
was computed via the Dice score between the saliency maps
and the ground truth segmentations. Results were reported for
true-positive images selected by both the strong learner and the
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Figure 2:  Graphs of receiver operating characterisfic curves

and respective area under the receiver operating characteristic curve
[AUC) values of a strong leamer (SL) and a weak leamer (WL) for
the examination-level binary classification task on (A) the validation
split of the RSNA 2019 Brain CT Hemorrhage Challenge datase,
(B) the CQ500 dataset, and (€) the CT-ICH dataset. AUCs are
compared via a one-sided Delong test. (A, B) There was no evi-
dence of a difference in AUCs between the strong and weak leamn-
ers on the validation split of the RSNA 2019 Brain CT Hemorrhage
Challenge dataset (P=.64) or on the CQ500 dataset (P=.15).

(C) The weak learner had significantly better performance on the

CT-ICH dataset (P=.03). FPR = false-positive rate, ICH = infracranial
hemorrhage, RSNA = Radiological Society of North America, TPR =

true-positive rate.

weak learner with Shapley value thresholding; 885 images were
compared from the CQ500 dataset and 119 images from the
CT-ICH dataset. P values were computed by one-sided paired #
tests on the aggregate distributions. Results were further strati-
fied by hemorrhage type.

Performance as a function of training set size.— We studied how
performance depends on training set size by training additional
DL models while reducing the number of labeled data available for
training (ie, number of labeled images or examinations). Training
was repeated an increasing number of times as the number of la-
bels decreased to account for variance. For the same number of
labels, P values were computed with one-sided # tests across the
training replicates. Details are provided in Appendix S1.

Results

Examination-Level Binary Classification

DL models were compared for the task of predicting whether
a new examination contained at least one image with signs of
ICH on all datasets included in this study. Respectively, the
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performance between the strong learner (average

recall = 0.62) and the weak learner with either
A notion of image importance: attention weights
(average recall = 0.63 [P = .65]) and Shapley val-
ues (average recall = 0.62 [P = .51]). Figure 3B
includes results for any type of hemorrhage in
the CT-ICH dataset without stratification given
the relatively limited number of examinations in
the dataset. We found a statistically significant
difference between the weak learner with h-Shap
(average recall = 0.73) and the strong learner (av-
erage recall = 0.53 [P = .02]).

Pixel-Level Hemorrhage Detection

Figures 4A and 4B display representative sa-
liency maps for a strong and a weak learner

1.0
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o
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—— we (h-Shap)
0.0
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St (single-slice logits)wc (attention weights)

Figure 3:  Graphs of section-level mean hemorrhage detection recall fie, true-positive rate [TPR] =
true positive divided by positive) and 95% Cls for a strong leamer (SL) and a weak learner (WL) with
attention weights and h-Shap on (A) the RSNA 2019 Brain CT Hemorrhage Challenge dataset and
(B) the CT-ICH dataset. (A) Average recall siratified by the true hemorthage sequence length [ie, the
number of consecutive positive images in the true hemorrhage sequence). (B) Recall over true hemor-
rhage sequences of any type in the CT-ICH dataset. ICH = infracranial hemorrhage, RSNA = Radio-

logical Society of North America.

strong and weak learners had AUCs of 0.96 versus 0.96 (P =
.64) on the internal validation split of the RSNA dataset (4348
examinations; 40.8% ICH; 150492 total images), 0.90 ver-
sus 0.92 (P = .15) on the CQ500 dataset (436 examinations;
48.6% ICH; 15156 total images), and 0.92 versus 0.95 (P =
.03) on the CT-ICH dataset (75 examinations; 48.0% ICH;
2814 total images). Figure 2 reports receiver operating char-
acteristic curves and respective AUCs for the two models on
all datasets.

Section-Level Hemorrhage Detection

Figure 3 shows mean section-level hemorrhage recall with 95%
ClIs for the strong and weak learners on the internal valida-
tion split of the RSNA dataset and the external CT-ICH da-
taset. Figure 3A displays results on the validation split of the
RSNA dataset stratified by true hemorrhage sequence length
(ie, the number of consecutive positive images in a true hem-
orrhage sequence). We found no evidence of a difference in

Radiology: Artificial Intelligence Volume 6: Number 1-2024 = radiology-ai.rsna.org
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on the CQ500 and CT-ICH datasets for every
type of hemorrhage. The saliency maps ap-
peared qualitatively similar with appropriate
localization of the various ICH types, and they
aligned well with ground truth annotations.
Other findings that may correlate with the pres-
ence of ICH, such as external hematomas due
to injury, midline shift effects, or compression
of the ventricles, were not highlighted by the
saliency maps. Figures 4C and 4D report the
distribution of the Dice scores between saliency
maps and ground truth manual segmentations
of the bleeds. The ranges of the median scores
across hemorrhage types for each learner and
explainer on the CQ500 dataset were 0.45—
0.71 (strong learner, Grad-CAM), 0.48-0.69
(strong learner, h-Shap), 0.48-0.72 (weak
learner, Grad-CAM), and 0.42-0.65 (weak
learner, h-Shap). Similarly, results on the CT-
ICH dataset were 0.09-0.46 (strong learner,
Grad-CAM), 0.16-0.40 (strong learner, h-
Shap), 0.12-0.40 (weak learner, Grad-CAM),
and 0.17-0.44 (weak learner, h-Shap). Table 3 reports the
complete distribution of median and IQR values for all learn-
ers and explainers across hemorrhage types. For the aggregate
distributions, we found statistically significant differences on
the CQ500 dataset between the strong learner with Grad-
CAM (average Dice score = 0.54) and the weak learner with
Grad-CAM (average Dice score = 0.52 [P < .001]) and be-
tween the strong learner with h-Shap (average Dice score =
0.54) and the weak learner with h-Shap (average Dice score =
0.51 [P < .001]). On the CT-ICH dataset, we found no evi-
dence of a difference between the strong learner with Grad-
CAM (average Dice score = 0.32) and the weak learner with
Grad-CAM (average Dice score = 0.31 [P = .26]) or between
the strong learner with h-Shap (average Dice score = 0.31)
and the weak learner with h-Shap (average Dice score = 0.33
[P = .95]). No single combination of learner and explanation
method provided the highest median across all types of hem-
orrhage and datasets.
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Comparison of a strong learner (SL) and weak learner (WL) on pixel-level hemorrhage detection. (A, B) Qualitative comparison of an example saliency

map for every type of hemorrhage in the CQ500 dataset and the CT-ICH dataset, respectively. Saliency maps are obtained with Grad-CAM and h-Shap. (€, D) Quanti-
tative comparison of the alignment of the saliency maps with the ground truth hemorrhage segmentations provided by radiologists by means of Dice scores. Results are strafi-
fied by hemorrhage type. EDH = epidural hemorthage, ICH = intracranial hemorthage, IPH = inraparenchymal hemorrhage, IVH = infraventricular hemorthage, Q1 = 25th
percentile, Q3 = 75th percentile, SAH = subarachnoid hemorrhage, SDH = subdural hemorrhage.

Performance as a Function of Training Set Size

Figure 5 compares strong and weak learners on the examina-
tion-level binary classification task and on section-level hemor-
rhage detection as a function of the number of labels available
during training. Figures 5A-5C show mean AUCs and 95%
CIs on examination-level binary classification. Weak learn-
ers had significantly better performance across all datasets for
10000 labels. Respectively, the weak and strong learners had
average AUCs of 0.95 versus 0.87 (P < .001) on the internal
validation split of the RSNA dataset, 0.81 versus 0.77 (P =.07)
on the CQ500 dataset, and 0.88 versus 0.75 (P < .001) on
the CT-ICH dataset. Figure 5D showcases mean section-level

hemorrhage detection f; score with 95% Cls. Examination-
level supervision showed a sharp increase in performance be-
tween 1000 and 10000 labels. For 1000 labels, strong learners
(average f| = 0.59) had significantly better performance than
weak learners (average f; = 0.46 [P = .02]). For 10000 labels,
weak learners (average f, = 0.73) had significantly better per-
formance than strong learners (average f; = 0.65 [P < .001]).

Discussion

The collection and annotation of medical imaging datasets is a
major bottleneck for the development of modern DL pipelines
in radiology. For example, the 2019 RSNA Brain CT Hem-

radiology-ai.rsna.org = Radiology: Artificial Intelligence Volume é: Number 12024
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Table 3: Dice Scores between Saliency Maps and Ground Truth Manual Segmentations on the CQ500 and CT-ICH Datas-
ets for All Learners and Explanation Methods, Stratified by Hemorrhage Type
Dice Score
Dataset Supervision Explainer All (855) EDH (3) IPH (226) IVH (12) SAH (110) SDH (163)
CQ500 Strong Grad-CAM 0.57 (0.25)  0.71 (0.11)  0.51 (0.35) 0.45 (0.41)  0.53 (0.23) 0.60 (0.24)
h-Shap 0.56 (0.24) 0.69 (0.12) 0.63 (0.24) 0.48 (0.31) 0.51 (0.24) 0.54 (0.21)
Weak Grad-CAM 0.53 (0.25) 0.72 (0.02)  0.55 (0.33) 0.48 (0.34) 0.53 (0.18) 0.54 (0.27)
h-Shap 0.53 (0.26)  0.56 (0.07)  0.65 (0.27) 0.42 (0.19)  0.49 (0.26) 0.51 (0.20)
All(107) EDH@33) IPH(4) IVH(7) SAH (3) SDH (23)
CTICH  Strong Grad-CAM 029 (0.41) 032 (0.34) 0.09 (0.14)  0.12(0.05) 0.18 (0.05)  0.46 (0.21)
h-Shap 0.29 (0.28) 0.29 (0.39) 0.17(0.22) 0.16(0.09) 0.26 (0.06) 0.40 (0.25)
Weak Grad-CAM 0.29 (0.34) 0.39 (0.39) 0.12 (0.24) 0.17 (0.04) 0.14 (0.13) 0.40 (0.18)
h-Shap 0.32 (0.38)  0.43 (0.46) 0.17 (0.28) 0.17 (0.09)  0.20 (0.14) 0.44 (0.30)
Note.—For each dataset, data are presented as medians and IQRs stratified by type of supervision, explainer, and hemorrhage type.
Numbers in parentheses in column heads are numbers of images used for the comparison. EDH = epidural hemorrhage, ICH = intracra-
nial hemorrhage, IPH = intraparenchymal hemorrhage, IVH = intraventricular hemorrhage, SAH = subarachnoid hemorrhage, SDH =
subdural hemorrhage.

orrhage Challenge alone required 60 volunteer expert radi-
ologists and thousands of hours (2). Nevertheless, it remains
unclear whether expensive, image-level labels provide a clear
advantage compared with cheap, examination-level labels for
DL detection tasks. In this retrospective study, we investigated
what kind of labels should be collected for ICH detection
in head CT and, specifically, whether the classic supervised
learning framework outperforms MIL. Attention-based MIL
is desirable because it allows for a precise comparison with a
strong learner implemented with the same feature extractor (ie,
a ResNet-18), and the attention mechanism can be used to
explain the model’s prediction at the section level. We found
that weakly supervised models maintained or improved per-
formance across three different datasets while requiring drasti-
cally fewer labels. Our results suggest that MIL can facilitate
the development of high-performing DL models with the use
of annotations at the examination level compared with labor-
intensive radiologist review of images.

On the examination-level binary classification task, the weak
learner achieved high performance on the internal validation
split, showing no evidence of a difference with the strong learner
(AUC = 0.96 vs 0.96; P = .64). This agrees with other weakly
supervised learning approaches that have been successfully ap-
plied to diagnosing abnormalities on whole-body fluorodeoxy-
glucose PET/CT using weak, examination-level labels (8). The
examination-level prediction of the strong learner was defined as
the maximum section-level prediction because it is the natural
equivalent of the ground truth function. Alternatives exist (eg,
quantiles, weighted sum), but they require tuning on an addi-
tional data split.

We also assessed generalizability of the strong and weak learn-
ers to external datasets, which is a critical feature for ensuring
that artificial intelligence models will be suitable for clinical
deployment. There were negligible drops in AUC (< 0.06) on
external test sets for both learners, indicating good generalizabil-
ity. Strong supervision did not have better performance for the
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CQ500 datasets (P = .15), and for the CT-ICH dataset, weak
supervision achieved significantly better performance (P = .03).
Generalizability is paramount to guarantee the safe deployment
of DL models in real-world clinical scenarios, as these systems
can often fail to generalize well to external data in radiology set-
tings (27-29), including ICH detection on head CT scans (28).
We speculate weak supervision may allow for more generalizable
global features, though further study is required to confirm this.

Beyond examination-level classification, our results showed
that strong supervision does not provide superior section-level
hemorrhage-detection performance. Attention weights or Shap-
ley values were used to select positive images within predicted
positive examinations for the weak learner. For either notion of
image importance, the strong learner did not achieve superior
section-level recall (P = .65; P =.51). Our results confirmed that
it is generally harder to detect shorter hemorrhage sequences.
Recall was relatively stable for hemorrhage sequences longer than
10 images but dropped sharply with sequence lengths below 10.
When both models were trained with 10000 labels, weak super-
vision showed better section-level £, score (P < .001).

There may be several confounding factors that correlate
with ICH but are not bleeds. Thus, gaining insights into the
decision-making processes of DL models is important for medi-
cal applications to build trust with their end users. Certain laws
require explanations of what led a DL model to recommend a
specific treatment or diagnosis (30). In our study, Grad-CAM
and h-Shap were used to verify whether both DL models learned
to recognize signs of ICH. Saliency maps were compared both
qualitatively and quantitatively in terms of their Dice scores with
the ground truth segmentations of radiologists, and the results
demonstrated strong supervision but did not guarantee im-
proved performance on the CT-ICH dataset. These results sug-
gest that pixel-level hemorrhage detection can be implemented
without image-level labels by leveraging attention-based MIL
and DL explanation methods. Neither learner was trained on
ground truth segmentations, so we did not compare them with
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Figure 5:  Graphs comparing several strong learners (Sls) and weak leamers (WLs) on (A-€) examination-level binary classification and (D) section-level hemorrhage

detection as a function of number of labels available during training, m. Results are reported across several training runs to account for variance. Solid lines represent the
mean value across runs, and shaded regions represent 5% Cls. Data points with m > 10000 do not have 95% Cls because the training process is carried out only once.
For the RSNA dataset, results were reported over a fixed subset of 1000 examinations from the validation split. AUC = area under the receiver operating characteristic

curve, ICH = infracranial hemorrhage, RSNA = Radiological Society of North America.

segmentation models. We expand on the discussion of these re-
sults in Appendix S2 (Fig 6).

The ability to identify ICH at the section and pixel level is
important in radiologists’ workflows. DL models in triage use
cases flag potentially actionable findings such as ICH (3-5).
Radiologists then confirm whether they agree with the find-
ings. The weaker sense of localization provided by explanation
methods indicates weak learners could be deployed clinically
to extend such flags beyond the presence of ICH and include
specific images with saliency maps. This process is critical to
allow radiologists to expeditiously confirm the diagnosis and to
build trust with physician end users who have been shown to
be wary of automated systems (31).

Our study had limitations. First, the scope of this study
was limited to a single diagnostic use case of ICH detection
on head CT scans. However, we note that the approach pre-
sented is applicable to other cross-sectional medical imag-
ing methods, including CT on other body parts as well as
other modalities like MRI. Future work includes validating
this approach in other diagnostic scenarios. Second, some

image-level annotations were still needed to validate our
method on section- and pixel-level hemorrhage detection.
This minimal amount of locally annotated data will also be
necessary in future extensions. Only around 6% of the num-
ber of image-level labels otherwise necessary for strong su-
pervision were employed in our study, which is feasible for
future work. Other modern DL architectures, such as vision
transformers, may provide additional advantage over our
MIL weakly supervised methods and should be investigated
to verify whether the findings of this work translate beyond
convolutional neural networks. Finally, further studies should
focus on quantifying the extent to which MIL can be advan-
tageous to radiologists in clinical settings.

In conclusion, our results indicate that weak supervision
may be sufficient for the task of ICH detection in head CT
across three levels of granularity—(#) global binary classifica-
tion, (&) section level, and (¢) pixel level—if enough data are
available (72 = 5000) while requiring approximately 35 times
fewer labels. This approach could potentially save thousands
of hours of annotation labor by radiologists, alleviating the
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respectively. (€, D) Graphs show precision of saliency maps. (E, F) Graphs show recall of saliency maps. EDH = epidural hemorthage, ICH =
infraventricular hemorrhage, Q1 = 25th percentile, Q3 =7 5th percentile, SAH = subarachnoid hemorrhage, SDH = subdural

IPH = intraparenchymal hemorrhage, IVH =
hemorrhage, SL = strong leamer, WL = weak leamer.

biggest bottleneck in developing high-performing DL models

for medical imaging diagnosis.
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