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ABSTRACT

Foliar functional traits are essential for understanding plant adaptation strategies and ecosystem function. Due to
limited in-situ observational data, there is a growing interest in upscaling these traits from field sites to regional
and global levels. However, limitations persist: (1) global/national scale upscaling that relies on plant functional
type (PFT) maps, environmental variables or coarse resolution multispectral images, which fail to capture local-
scale trait variability; (2) airborne imaging spectroscopy that enables high-resolution and accurate mapping but
is restricted to site scale and is costly; and (3) multispectral satellites like Sentinel-2 that offer global coverage but
have limited spectral bands and resolution. While previous research has demonstrated the connection between
traits and vegetation phenology, our study seeks to build upon this foundation by further exploring the inte-
gration of phenological information for large-scale trait prediction. We examined the integration of Sentinel-2
data with its time series (for phenology information) to map 12 foliar functional traits across 14 National
Ecological Observatory Network (NEON) sites in the eastern United States. Our results show that time-series
Sentinel-2 models effectively capture the variance in these 12 traits (R*> = 0.60-0.80) when compared with
benchmark trait data generated by state-of-the-art airborne imaging spectroscopy. The models adequately cap-
ture considerable trait variations observed within sites and PFTs. Our approach outperforms existing methods
that rely on environmental variables, or a single Sentinel-2 image as predictors across examined NEON sites in
eastern United States. Interestingly, including environmental variables in our models does not significantly
improve predictive power. Further analysis reveals that a ‘fast-slow’ principal axis predominantly explains the
covariation in Enhanced Vegetation Index amplitude (a proxy for leaf longevity), leaf mass per area, and leaf
nitrogen content across PFTs. This finding highlights the importance of incorporating phenological information
for trait mapping and suggests a potential mechanism underlying these spectra-based models. Our proposed
method, which simultaneously achieves high accuracy, large-scale scalability, and high spatial resolution, rep-
resents a promising avenue for future global trait mapping. Validation on a larger scale to fully realize its po-
tential in addressing fundamental ecological questions will be a key future focus.

1. Introduction

climate change based on suites of plant traits rather than species identity
is of great interest in ecological studies due to the large number of

Plant functional traits represent multiple inter-connected charac- species present on Earth (Funk et al., 2017; Chacon-Labella et al., 2022).
teristics of plants that are important to growth, structure and stress Functional traits encompass variations in morphological, physiological,
tolerance. Prediction of changes in ecosystem function in response to and phenological properties (Violle et al., 2007), reflecting fundamental
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processes related to plants' evolutionary history (Cavender-Bares et al.,
2022; Furey and Tilman, 2023; Yan et al., 2023), evolutionary strategy
(Wright et al., 2004; Diaz et al., 2016), and adaptability to changing
environmental conditions (Bjorkman et al., 2018; Myers-Smith et al.,
2019). These traits, together with their spatial variation (functional di-
versity), significantly drive ecosystem productivity (Reich, 2012; Tilman
et al., 2014), stability (Liang et al., 2022), and the resulting services
(IPBES, 2019), and therefore have been utilized to assess the fate of
ecosystems in the context of climate change and other perturbations.
Earth system modelers employ functional traits to parameterize vege-
tation, aiming to reduce prediction uncertainty in carbon cycles (Rogers
etal., 2017; Walker et al., 2017). Since leaf morphology, pigmentation,
and biochemical components, along with plant canopy structure, are
dominant signals observed in spectral imaging, remote sensing provides
the ability for large-scale characterization of plant traits (Féret et al.,
2021; Gamon et al., 2019; Liu et al., 2023).

Trait data collection is typically performed through field sampling,
but this process is often labor-intensive and restricted to a narrow
geographical scope and selected species. As a result, significant efforts
have been made to aggregate plant trait data from previous studies,
resulting in the establishment of the TRY database (Kattge et al., 2020).
However, the species sampled in the TRY database, which include plant
trait data, account for only 5% of the currently identified vascular plant
species on Earth for leaf mass per area (LMA) and 3.4% for leaf nitrogen
content (Kattge et al., 2020). Given the logistical constraints of char-
acterizing spatial-wise trait variation through field sampling, there has
been growing interest in exploring trait upscaling at landscape (Wess-
man et al., 1988; Martin et al., 2008; Singh et al., 2015; Asner et al.,
2015; Wang et al., 2020), regional (Asner et al., 2017; Aguirre-Gutiérrez
et al., 2021; Loozen et al., 2020; Wallis et al., 2019) and global scales
(Boonman et al., 2020; Butler et al., 2017; Madani et al., 2018; Moreno-
Martinez et al., 2018; Schiller et al., 2021; Vallicrosa et al., 2022; van
Bodegom et al., 2014). Although the motivations for these scaling
studies were numerous, the approaches they used can generally be split
into three categories: the PFT-based approach, the statistical modeling
approach relying on environmental variables, and the remote sensing-
based approach. In practice, these three categories of methods are also
commonly used in combination.

Plant functional types (PFTs) describe species or more often com-
munities of plants according to their dominant physiological, morpho-
logical and phenological characteristics, sometimes modified by
climatic descriptors (Gitay and Noble, 1997; Kattge et al., 2020; Lavorel
et al., 1997; Ustin and Gamon, 2010). Global PFT maps are generally
derived from remote sensing. By integrating global PFT maps with trait
data from databases, PFT-trait lookup tables can be constructed, facili-
tating the upscaling of field observations based on global PFT classifi-
cations (Lavorel et al., 1997). This method is advantageous due to its
simplicity and ease of implementation, providing a level of detail that
drives useful models at regional or global scales (Pacala and Kinzig,
2002). Another method is to use the PFT as a variable in statistical or
machine learning modeling (e.g., Butler et al., 2017). However, there is
no general consensus regarding the inclusion or exclusion of specific
functional traits in the PFT classification, resulting in its ad hoc appli-
cation depending on the immediate purpose (Ustin and Gamon, 2010).
More importantly, the local diversity of plant communities and the trait
variation within a PFT in different environments is overlooked (Running
etal., 1994; Wullschleger et al., 2014). Consequently, model parameters
based on plant trait characteristics are limited by the classification of
PFTs, resulting in a significant source of uncertainty in many terrestrial
biosphere models (Reichstein et al., 2014; van Bodegom et al., 2014).

The environmental variable-driven statistical approach employs
environmental factors (typically encompassing climate, soil, and
terrain) in conjunction with field-observed trait data to develop a sta-
tistical model, which is then upscaled to a broader extent (reviewed by
Dechant et al., 2023). Since these environmental variables have already
been observed or interpolated at a global scale, these approaches allow
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for more straightforward upscaling of traits and offer greater detail
compared to the PFT lookup table approach. However, due to the
generally coarse spatial resolutions of macro-environmental variables,
these methods produce low-resolution grid-cell-based global trait maps
(0.008-0.5°, Dechant et al., 2023), leading to two associated challenges.
The first challenge concerns the mismatch between field data and grid
cells. Grid cells are significantly larger than the scale of in-situ obser-
vations, making it unlikely that the in-situ data accurately represents the
entire grid cell (Asner et al., 2015; Dechant et al., 2023). The second
challenge pertains to the implicit assumption that plant community
traits are solely determined by environmental factors. Plant commu-
nities exhibit considerable intra-site trait variations due to biotic pro-
cesses such as evolution, migration, disturbance, and biological
interactions (Cavender-Bares et al., 2022). Consequently, environmental
variable-driven statistical methods can only account for the abiotic
regulatory factors influencing a trait. To address this challenge, some
studies incorporated PFT or coarse resolution multispectral image in-
formation on top of the environmental variables used (Butler et al.,
2017; Moreno-Martinez et al., 2018).

Airborne imaging spectroscopy is widely considered the preferred
method for remote sensing-based trait upscaling. This approach is
grounded in the fundamental biophysical principles underlying radia-
tive transfer processes and plant spectroscopy, as it demonstrates a
strong association between leaf/canopy reflectance spectra and their
corresponding morphological, biochemical, and physiological proper-
ties (Curran, 1989; Elvidge, 1990; Kokaly et al., 2009). The advantages
of airborne imaging spectroscopy include high spatial resolution (typi-
cally 1 m) and, more importantly, its ability to discern subtle differences
in plant absorption and scattering properties (Wang et al., 2020).
However, airborne imaging spectroscopy is expensive and because the
resulting limited spatial coverage can only upscale in-situ observations to
the landscape scales at which it is feasible to conduct airplane imaging.
To date, the most extensive collection effort for airborne hyperspectral
imagery for trait upscaling has gathered over 2 million ha of imagery
(Asner et al., 2017) using the Carnegie Airborne Observatory (Asner
et al., 2012). Nevertheless, this only covered 2.5% of the study area in
the Peruvian Andes-Amazon region and required use of a random forest
model with environmental data to cover the larger region of interest
(Asner et al., 2017). Utilizing satellite remote sensing data can address
the issue of large-scale scalability. Researchers have previously
employed this method for invasive plant species identification using a
combination of Sentinel-1 and Sentinel-2 (Kattenborn et al., 2019), as
well as for experimental modeling of traits through spaceborne imaging
spectroscopy data (Miraglio et al., 2023). For example, Aguirre-Gutiér-
rez et al. (2021) employed multispectral satellite imagery from Sentinel-
2 to upscale in-situ trait data at pantropical region, and Moreno-Martinez
et al. (2018) used multi-spectral information from MODIS for a similar
purpose. However, the limited bands and lower spectral resolution of
multispectral data compared to imaging spectrometers yield lower
predictive accuracy than using imaging spectroscopy alone.

The suboptimal predictive accuracy of Aguirre-Gutiérrez et al.
(2021) may also result from the underutilization of multispectral satel-
lite observational techniques, particularly the phenological information
embedded in satellite time-series observations. Globally, plant form and
function are constrained by resource availability, leading to predictable
relationships between phenological and physiological/biochemical
characteristics of plants (Field, 1991; Reich et al., 1997; Ustin and
Gamon, 2010; Whittaker, 1956; Wright et al., 2004). Empirical evidence
from botanical garden experiments which maintain environmental
consistency (Sporbert et al., 2022) and studies focus on the same PFT
(Blumenthal et al., 2020; Liu et al., 2021), suggests that foliar traits and
phenology remain coordinated. Consequently, it is plausible to hy-
pothesize that integrating spectral-phenology information from satellite
data has the potential to provide a trait upscaling method with high
spatial resolution, large-scale scalability, and higher accuracy, thereby
addressing the limitations of existing traits upscaling studies. Notably,
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previous attempts have been made to integrate spectra-phenology for
crop type (Cai et al., 2018) and forest species mapping (Grabska et al.,
2020; Hemmerling et al., 2021), as well as trait estimation by Moreno-
Martinez et al. (2018) using temporal information encoded in temporal
metrics of VIs with MODIS time series. While MODIS data may not
capture all the spectral features necessary to estimate specific traits, they
can indirectly model differences between trait PFTs through temporal
information. Despite these prior successes, the effectiveness of incor-
porating such temporal information in improving prediction accuracy,
particularly for high-resolution Sentinel-2 data, has not been sufficiently
examined.

The objective of this study is to investigate whether incorporating
Sentinel-2 data and its time series (for phenological information) can
provide an improved alternative approach for characterizing foliar
functional traits. To evaluate the effectiveness of this approach, multi-
dimensional foliar trait data capturing the natural variability of both
intra-site and inter-site across large geographical extents is needed. For
this purpose, we employed the trait maps generated by state-of-the-art
airborne imaging spectroscopy across major ecosystem types of the
National Ecological Observatory Network (NEON) in the United States
(Wang et al., 2020). The combination of these high-quality trait maps
with Sentinel-2 data represents a particularly innovative aspect of our
work, as it enables us to develop and test a trait upscaling method with
high spatial resolution, large-scale scalability, and higher accuracy. Note
that although traits exhibit seasonal variation, we utilized traits at mid-
season/peak greenness in this study, adhering to a consistent protocol
commonly followed by plant ecologists. Consequently, we employ
phenological information as supplementary context for predicting traits
rather than predicting temporal variation in traits. Specifically, our
study addresses the following research questions:

Q1. To what extent can the integration of spectral and phenological
information from time-series Sentinel-2 data, combined with
machine learning regression, capture the variation of multiple
foliar functional traits in NEON sites?

130°W 120°W 110°W

40°N~
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Q2. How does our proposed method compare to existing approaches
that utilize environmental variables or single Sentinel-2 images
as predictor variables?

Q3. Which phenological stages and spectral bands are important
predictors in the proposed trait prediction models based on time-
series Sentinel-2 data?

2. Materials and methods
2.1. Materials

2.1.1. Selected NEON sites and associated foliar functional traits data

We utilized high spatial resolution maps of foliar functional traits
(Wang et al., 2020) derived from an imaging spectrometer (426 bands
between 380 and 2500 nm with a spectral sampling of 5 nm and 1 m
spatial resolution; Kampe et al., 2010) mounted on the NEON Airborne
Observation Platform (AOP). These maps were generated using partial
least squares regression (PLSR) models, which were trained using
airborne imaging spectroscopy data and >1000 individual-level in-situ
foliar functional traits data from 18 NEON sites (Wang et al., 2020).
Field campaigns at each site were conducted within two weeks of the
NEON AOP flight, with approximately 90% of the field data collected in
2017 and the remaining 10% in 2016 (Wang et al., 2020). A total of 26
foliar traits were mapped across seven NEON domains, encompassing
temperate and subtropical forests and grasslands in eastern America. We
selected trait map data from 14 of the 18 sites for this study (Fig. 1 and
Table S1) and excluded sites dominated by cropland ecosystems in Wang
et al. (2020), due to the influence of human management on the tem-
poral variation in reflectance. Two additional sites were also excluded
because of insufficient NEON AOP flight coverage (<5 km?).

The 14 selected sites spanned six NEON domains, with mean annual
temperature (MAT) ranging from approximately 4.0 to 22.4°C and mean
annul precipitation (MAP) ranging from around 817 to 1502 mm yr _.
We utilized 12 foliar functional traits out of the 26 provided by Wang
et al. (2020), as these traits are either ecologically important or directly

90°W 80°W 70°W
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Fig. 1. 14 NEON sites selected for this study, spanning six NEON domains (marked as different colors). A terrain map renderied using the cross-blended hypsometric

tints method is shown as the background.
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associated with leaf reflectance spectra. These 12 foliar functional traits
include carbon, carotenoids, cellulose, chlorophyll a + b, equivalent
water thickness (EWT), lignin, LMA, nitrogen, nonstructural carbohy-
drates (NSC), phenolics, phosphorus, and potassium. Independent vali-
dation of PLSR models for these 12 functional traits demonstrated a
coefficient of determination (RZ) ranging from 0.46 to 0.82 and a
normalized root mean squared error (RMSE) ranging from 9.1% to 18%
(Wang et al., 2020). We also considered the uncertainty of PLSR pre-
dictions by applying a threshold of 25% as suggested by Verrelst et al.
(2016). Most of the trait maps in our selected sites — with the exception
for Phenolics, Phosphorus, and Potassium - have >90% of pixels with
high confidence (Fig. S1).

We downloaded maps of 12 selected functional traits and their pre-
dictive uncertainties from https://tinyurl.com/neontraitsl. These
downloaded trait maps are organized in a flight line format. Our first
step was to mosaic the flight line trait maps and their corresponding
uncertainties for each site. Next, we aggregated the trait maps and their
respective uncertainties to a 10 m resolution to match that of the
Sentinel-2 images. During the aggregation process, we used the Sentinel-
2 images of each site to determine the cell location of the aggregated
trait maps for that site (using ArcGIS built-in function ‘aggregate’ with
geoprocessing tool ‘snap raster’), ensuring proper co-alignment between
the Sentinel-2 data and the trait maps. Lastly, we removed pixels with

Materials &

Pre-processing

NEON trait maps

from NEON AOP Relicemipe il

n = 100,000; Minimum allowed
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'
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Aggregate and align to
Sentinel-2 (10m)

Filter out pixels with high l
uncertainty predictions
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high predictive uncertainty (>25%) for the aggregated trait maps.

2.1.2. Sentinel-2 data with associated pre-processing, vegetation indices
and canopy texture

To construct time-series features for modeling foliar functional traits,
we utilized the Sentinel-2 Multispectral Instrument (MSI) Level-2 A data
archived in the Google Earth Engine (GEE), operated by the European
Space Agency (ESA). Our primary objective was to obtain a high-quality
time-series-dense image collection containing reflectance data, vegeta-
tion indices and canopy texture variables (Fig. 2).

To achieve this, we first acquired all images from January 2019 to
December 2022, totaling four years for each site. We selected images
starting in 2019 since the ESA did not provide Level-2 A images for most
sites before 2019. Next, we filtered out images with cloud coverage
>75%. We then removed clouds, cloud shadows (based on Sentinel-2
cloud probability bands with a cloud probability >10%), and snow-
contaminated pixels using a Normalized Difference Snow Index (NSDI)
threshold (i.e., NDSI >0) following Gascoin et al. (2019). We excluded
all images from December to March for CHEQ, UNDE, and STEI sites, as
these sites experienced snow for most of that period (Zhao et al., 2022).
To further filter out non-vegetation pixels and pure branch pixels after
complete leaf fall in winter, we also used an enhanced vegetation index
(EVI) (Huete et al., 1997) threshold of 0.1. Subsequently, we minimized

Sentinel-2 time-series
image collections

Pre-processing

>
Cloud filter
Cloud and snow removal
BRDF correction

Topographic correction
—  Environmental variables v

Climate; Soil; Terrain VIs and texture

EVI; MCARI

GLCM correlation and entropy

v

— Models Mechanism (Q3)

| Weekly Sentinel-2 time-
series image collections

Aggregate to weekly &
Composite into a year

—_—> Maps prediction

Model Explanier: SHAP Uncertainty estimation

Fig. 2. A summary workflow diagram of materials with associated preprocessing and data analysis of this study.
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the effects of solar and sensor view angle by applying a Bidirectional
Reflectance Distribution Function (BRDF). We used BRDF kernel co-
efficients the same as harmonized Landsat and Sentinel-2 (HLS) product
(Claverie et al., 2018). We performed a terrain-based path length
correction algorithm to minimize topography effects following Yin et al.
(2018). After preprocessing the Sentinel-2 images, we assigned each
image a calendar week label to align images from different years to a
consistent temporal scale. Subsequently, we synthesized images from
four years into one-year weekly images by averaging all available im-
ages for each week, enabling us to obtain a denser time-series image
collection for each site. The median value of the pixel-level time-series
null rate for the derived Sentinel-2 image collections was 11.5%, and we
excluded pixels with high time-series null rates (>60%) from subsequent
analysis (Fig. S2).

With the time-series Sentinel-2 image collections, we next generated
a range of features for building trait models. The first set of variables
include the reflectance of B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12
bands of the Sentinel-2 MSI (Table 1). For bands with 20 m spatial
resolution, we downscaled them to 10 m using the nearest neighbor
resampling method. The second set of variables include the EVI and
modified chlorophyll absorption in reflectance index (MCARI) (Daugh-
try et al., 2000), which track the greenness and chlorophyll content
changes of the vegetation, respectively. The last set of variables are Grey
Level Co-Occurrence Matrix (GLCM) based texture features (Haralick
et al., 1973), which were calculated using a 9%9 pixel kernel window, as
suggested by Aguirre-Gutiérrez et al. (2021). Specifically, the Entropy
and Correlation variables based on the GLCM for EVI of each image were
computed. Entropy measures the homogeneity level for a given area,
while Correlation measures the probability of occurrence of specified
pixel pairs across the image.

2.1.3. Environmental data

In this study, we characterized the topography, climate, and soil
properties of our study sites using multiple environmental variables
(Table S2). Specifically, elevation, slope, and aspect information were
obtained from the Shuttle Radar Topography Mission (SRTM) digital
elevation dataset at a spatial resolution of 30 m (Jarvis et al., 2008). We
also employed the WorldClim2 product (Hijmans et al., 2005), which
provides 19 bioclimatic variables with spatial resolution of 30 arcsec
derived from monthly temperature and precipitation records. Moreover,
major soil properties were assessed using 10 variables from the SoilGrids
dataset (Poggio et al., 2021), focusing on maps for the top layer (0-5

Table 1
Spectral configuration of the 10 Sentinel-2 bands used in this study. Abbrevia-
tions for band names are in parentheses.

Spectral Band name Center Band Spatial
band wavelength width resolution (m)
(nm) (nm)

B2 Blue 490 65 10

B3 Green 560 35 10

B4 Red 665 30 10

B5 Red-edge 1 (RE 705 15 20
1)

B6 Red-edge 2 (RE 740 15 20
2)

B7 Red-edge 3 (RE 783 20 20
3)

B8 Near-infrared 842 115 10
(NIR)

B8A Near-infrared 2 865 20 20
(NIR 2)

B11 Short-wave 1610 90 20
infrared 1 (SWIR
1

B12 Short-wave 2190 180 20

infrared 2 (SWIR
2)
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cm). Additionally, we utilized soil moisture data from the SMAP-
HydroBlocks (Vergopolan et al., 2021), a hyper-resolution satellite-
based product covering the continental United States with a spatial
resolution of 1 km. Based on this dataset, we calculated the mean annual
surface soil moisture from 2015 to 2019, providing a climatological
status for soil water content and covering the sampling period of in-situ
trait data. Further details of each environmental variable are presented
in Table S2.

2.1.4. Plant functional type data

In this study, PFT data were utilized to quantify the variation of traits
in 14 NEON sites between and within PFTs. In addition, we used PFTs to
evaluate the predictive capabilities of the models (see Section 2.2 below)
at PFT-level. Finally, we employed PFT maps to exclude non-natural
ecosystems from the analysis. PFTs were derived from the 2019 Na-
tional Land Cover Database (NLCD), which is specifically designed for
monitoring land cover and land cover changes across the United States
(Dewitz, 2021). The NLCD land cover classification scheme clearly de-
lineates distinct PFTs (see here for the full list of NLCD land cover
classes). The primary PFTs identified at the selected 14 NEON sites
include deciduous forest, mixed forest, evergreen forest, pasture/hay,
grassland/herbaceous, shrub/scrub, and woody wetlands. We excluded
non-vegetation land cover types and cultivated crops class from the data
analysis. In addition, we omitted other PFTs that accounted for <1% of
the total area of the studied NEON sites. Among all 14 NEON sites, de-
ciduous forests, woody wetlands, mixed forests, and evergreen forests
were the four largest PFTs in terms of area, collectively accounting for
over 75% of the total area. The PFT composition at each site is sum-
marized in Fig. S3.

2.2. Data analysis

2.2.1. Modeling foliar functional traits using time-series Sentinel-2 data
To prepare the dataset for addressing Q1, we employed a random
point sampling method that reduces the original data volume for
computational efficiency, while sampling the 12 functional trait maps
and time-series Sentinel-2 images with associated VIs and textures
(Section 2.1.2) at each site. We set the total number of random points
across all study sites to 100,000, which is approximately 0.5% of the
total number of pixels of the aggregated NEON AOP hyperspectral im-
ages for the 14 sites. Meanwhile, we set the minimum allowed distance
between random points at 100 m to reduce spatial auto-correlation. The
number of random points of each site was determined based on the
NEON AOP coverage area of the sites, as described in Table S1. We
excluded certain areas, such as patches of croplands or built-up areas,
when delineating the analysis area. Due to the presence of null values or
filtered pixels in both the functional trait maps and the time-series
Sentinel-2 image collections, the average sample size of the final data-
sets prepared for the subsequent modeling step for 12 traits was 81,170.
We refer to the models presented here as Time-series RS models (Table 2)

Table 2

Overview of models and associated features utilized in each modeling scenario.
Environmental variables are detailed in Table S2. For Single image RS models,
features were chosen from Time-series RS models based on the time point nearest
to the trait sampling date at each site, as per Wang et al. (2020).

Models Feature sets Number of
features
Time-series Sentinel-2 reflectance, VIs and
Time-series RS 728
textures
Time-series RS Time-series Sentinel-2 reflectance, VIs and 761
+ Env textures; Terrain, climate and soil
Env Terrain, climate and soil 33
Env + PFT Terrain, climate, soil and PFT 34
Single image
Ifs 8 Sentinel-2 reflectance, VIs and textures 14
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to distinguish them from the models that incorporate only environment
variables and those that use a single Sentinel-2 image (see Section 2.2.2
below).

We utilized the extreme gradient boosting (XGBoost) regressor (Chen
and Guestrin, 2016) to model and predict foliar functional traits from
time-series Sentinel-2 image collections. XGBoost is an efficient, scalable
gradient tree boosting algorithm widely used for machine learning tasks.
It incorporates a unique technique for handling missing values through
sparsity-aware split-finding during tree construction, making it partic-
ularly suitable for our tasks (missing values in satellite time-series data).
The modeling process involved several steps. First, we divided the
dataset into training, testing, and independent validation sets with an
80:10:10 ratio using site-stratified random sampling. Next, we opti-
mized the hyperparameters of the XGBoost model to prevent overfitting
and overcomplication. These hyperparameters can be classified into
regularization (alpha, lambda), tree growth (max_depth, min_child -
weight), and learning process (learning rate, colsample_bytree, sub-
sample), which contribute to model complexity control, overfitting
prevention, and feature selection, respectively. We utilized the Bayesian
optimization method to train the model on the training set and optimize
hyperparameters by evaluating the RMSE on the testing set. Moreover,
we used the early stopping technique to avoid overfitting. The hyper-
parameter optimization results of the model for each trait are presented
in Table S3.

After optimization, we trained the model using the optimized
hyperparameters and used the model to predict outcomes on the testing
and independent validation sets. We assessed the model performance
using the coefficient of determination (RZ), RMSE, mean absolute per-
centage error (MAPE) and normalized bias (nBias) as evaluation metrics.
MAPE is calculated as the average of the absolute percentage differences
between the predicted values and the actual values. nBias is calculated
as the mean difference between the predicted and actual values, divided
by the mean of the actual values. To interpret the impact of features on
the model's predictions, we employed the Shapley Additive Explanations
(SHAP) method (Lundberg et al., 2020). The SHAP method provides a
unified measure of feature importance by attributing the output to each
input feature, based on its contribution to the prediction in a fair and
mathematically consistent manner. Model training and hyperparameter
optimization were conducted using a Python environment on GPU nodes
of the high-performance computing system of the University of Hong
Kong. The ‘optuna’ package (Akiba et al., 2019) was employed for
Bayesian optimization.

Furthermore, we conducted leave-one-site-out and leave-one-PFT-
out validations, in which we successively kept samples from one site
or one PFT for independent validation while utilizing samples from the
remaining sites or PFTs for training. This method enabled us to evaluate
if the Time-series RS models were overfitted and to determine the degree
to which spectral-phenological features were generalizable for predict-
ing in unseen sites and PFTs. Note that this was an additional experi-
ment; results in the results section were primarily derived from the
models trained through 80:10:10 split, rather than the leave-one-site-out
or leave-one-PFT-out approaches, unless stated otherwise.

2.2.2. Comparing foliar trait models with different input

After evaluating the predictive accuracy of our Time-series RS models
for traits, we further investigated how well two other modeling strate-
gies (ie., including environmental variables or using a single multi-
spectral image) contributed to trait characterizations for addressing Q2.
To this end, we trained models using four feature sets, (1) environmental
variables and the features used in Time-series RS models (Time-series RS
-+ Env models), (2) environmental variables alone (Env models), (3)
environmental variables and PFT classification from NLCD data (Env +
PFT models), and (4) single-time Sentinel-2 images (Single image RS
models) with same bands, vegetation indices and canopy texture used in
Time-series RS models.

We used the same set of random points as Section 2.2.1 to sample a
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total of 33 environmental variables (as stated in Section 2.1.3) for the
modeling of Time-series RS + Env, Env and Env + PFT models. For Single
image RS models, we selected features based on the time closest to the
trait sampling date at each site (Wang et al., 2020) from the Time-series
RS models. For these three modeling scenarios, we employed the same
training/testing/validation split, regression model, and model hyper-
parameter optimization methods as described in Section 2.2.1 for the
Time-series RS models.

2.2.3. Mapping foliar functional traits using time-series RS models

For each trait, we applied the trained Time-series RS model (Section
2.2.1) to the preprocessed time-series Sentinel-2 image collections
(Section 2.1.2) to generate trait maps. We employed quantile regression
to obtain prediction intervals and prediction uncertainties, following
(Landry et al., 2016). Quantile regression is a statistical method that
estimates the relationship between a response variable and its explan-
atory variables across different quantiles of the response variable's dis-
tribution. Specifically, we used quantile regression to estimate the 5%
and 95% confidence intervals for each predicted value and calculated
the standard deviation of the predictions using these intervals. The
relative uncertainties were computed as the ratio of standard deviation
to the mean. We performed only minimal post-processing on the pro-
duced trait maps. We filtered out non-vegetated or sparsely vegetated
pixels using a NDVI threshold of 0.3 and excluded pixels with high un-
certainty by applying a relative uncertainty threshold of 0.25.

3. Results

3.1. The capability of spectra-phenology integration for charactering
multi-dimensional foliar functional traits

All 12 traits from the 14 NEON sites exhibited a considerable range
(Table S4). The coefficient of variation (CV) ranging from 0.21 to 0.43
except for carbon (CV = 0.05) (Table S4). We observed significant dif-
ferences in traits between PFTs but also considerable variation within
PFTs (Fig. 3). Taking LMA as an example, for deciduous trees, LMA had a
mean value of 90.88 g m™2 with a CV of 0.32, while evergreen trees
displayed a higher LMA (178.23 g m™2, CV = 0.25) (Fig. 3g). Similar
observations apply to all other foliar traits. For most foliar traits, we
observed significantly different (higher or lower) trait values between
tree PFTs (e.g., deciduous forest, evergreen forest, and mixed and non-
woody PFTs (e.g., pasture/hay, grassland/herbaceous), with interme-
diate values for shrub/scrub and woody wetlands (Fig. 3). These phe-
nomena are consistently observed across traits, except for EWT, LMA
and Nitrogen, in which the evergreen forest PFT displays significantly
higher or lower trait values compared with other PFTs (Fig. 3). Collec-
tively, these results highlight the considerable trait variability in our
data record stemming from various sources such as site, inter-PFT, and
intra-PFT. The PFT-associated trait variations also vary greatly
depending on the trait of interest.

We found that the spectra-phenology integration approach (ie.,
Time-series RS models) is capable of characterizing these traits. For
overall evaluation, we observed that the Time-series RS models for all 12
traits performed almost identically on the test and independent valida-
tion sets in terms of both R? and RMSE (Table S5). This demonstrates
that these models are not over-fitted, and exhibit good generalization
ability. Consequently, we focused on describing the assessment results of
the models on the independent validation set. RZ value ranged from 0.60
(phenolics and phosphorous) to 0.80 (carbon, lignin and LMA) across all
12 foliar traits examined in this study (Fig. 4). MAPE values varied from
1.73% (carbon) to 16.94% (EWT), with 7 out of the 12 traits having a
MAPE <10% (carbon, carotenoids, cellulose, chlorophyll a + b, lignin,
nitrogen, NCS) (Fig. 4). The nBias for all traits was <0.5% (Fig. 4). The
fitted lines of Time-series RS models' predictions at most sites closely
align with the 1:1 line (Fig. 4).

The Time-series RS model demonstrates good performance at both
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Fig. 3. Distribution of 12 foliar functional traits at PFT-level estimated by random points sampling. EWT, equivalent water thickness; LMA, leaf mass per area; NSC,

nonstructural carbohydrate.

site-level (Fig. 5a and b) and PFT-level (Fig. 5c and d) evaluation,
although there was a slight degradation compared to overall evaluation
(Fig. 4). For the site-level evaluation, we observed that carbon has the
highest mean site-level predictive power (R? = 0.69, Fig. 5a), followed
by carotenoids, chlorophyll a + b, LMA, lignin, and potassium with R®>
0.6 (Fig. 5a), cellulose, EWT, NSC, and nitrogen with R?>05 (Fig. 5a),
and least in phenolics (R = 0.46, Fig. 5a) and phosphorous (R? = 0.42,
Fig. 5a). Similarly, we observed variation in the site-level evaluation
across 14 sites, with DELA holding the highest mean predictive power
R?= 0.69, Fig. 5b), followed by UNDE and UKFs with R’>0.6 (Fig. 5b),
CHEQ, STEI, KONZ, SCBI, SERC, MLBS, TALL, LENO, JERC, DSNY with
R? > 0.5 (Fig. 5b), and least in BLAN (R? = 0.40, Fig. 5b).

For the PFT-level evaluation, we observed that LMA has the highest

mean predictive power across all PFTs (R? = 0.69, Fig. 5¢), followed by
carbon, cellulose, chlorophyll a + b, lignin, nitrogen and potassium with
R’>0.6 (Fig. 5¢), carotenoids, EWT, NSC, and phosphorus with R?>0.5
(Fig. 5¢), and least in phenolics R? = 0.47, Fig. 5c). Similarly, we
observed considerable variation in the mean predictive power across all
7 PFTs, with deciduous forest PFT holding the highest mean predictive
power (R = 0.67, Fig. 5d), followed by woody wetlands and mixed
forest (R? = 0.64, Fig. 5d), grassland/herbaceous R? = 0.59, Fig. 5d),
shrub/scrub and pasture/hay (RZ = 0.58, Fig. 5d), and least in evergreen
forest (R2 = 0.57, Fig. 5d).

Our additional leave-one-site-out and leave-one-PFT-out validation
indicated that Time-series RS models provided reasonable prediction
accuracy for most traits even in sites or PFTs lacking training samples
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Fig. 4. Overall evaluation of Time-series RS models on independent validation sets for 12 foliar functional traits (a-1). Black lines indicate the fitted lines for all sample
of independent validation sets. Colored lines indicate the fitted lines for all samples of each site. EWT, equivalent water thickness. LMA, leaf mass per area. NSC,
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(b) Site-level evaluation
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Fig. 5. Site-level evaluation (a, b) and PFT-level evaluation (c, d) of Time-series RS models on independent validation sets for 12 foliar functional traits. The length of
bars represents the average R? across 12 foliar functional traits (a, c) or 14 sites (b) or 7 PFTs (d), while error bar represents the standard deviation. Refer to Table S6.
For detailed site-level evaluation results and Table S7. For detailed PFT-level evaluation results.

(Figs. A2 and Fig. A3). For the leave-one-site-out validation, the R? for
lignin, LMA and NSC was higher than 0.6, whereas phenolics and
phosphorus had a R? <0.4 (Fig. A2). The remaining seven traits exhibit
R? values ranging between 0.4 and 0.6 (Fig. A2). Carbon demonstrated
the lowest MAPE at 2.72%, while EWT, LMA, phenolics and potassium
display higher MAPE between 20 and 25% (Fig. A2). The remaining
traits had MAPE between 10 and 20% (Fig. A2). The leave-one-PFT-out
validation (Fig. A3) outperformed the leave-one-site-out validation for
all 12 traits (Fig. A2), suggesting that Time-series RS models can be more
successfully transferred to unseen PFTs than to samples that are spatially
missing training data. Models trained with other PFTs exhibit relatively
accurate predictions (with a moderately low increase in RMSE for the
leave-one-PFT-out approach compared to the RMSE of the 80:10:10
split) for deciduous forest, evergreen forest, grassland/herbaceous, and
mixed forest. Conversely, the predictions are less accurate for pasture/
hay, shrub/scrub, and woody wetlands (Table S9).

3.2. The model performance of foliar traits subject to different input
variables

To address Q2, we compared the Time-series RS models with four
other model scenarios: 1) Time-series RS + Env models, 2) Single image RS
models, 3) Env models, and 4) Env + PFT models. Our results revealed
that the Time-series RS + Env models exhibited a marginally higher mean
R? value of 0.75 compared to Time-series RS models with 0.74 (Fig. 6a).
The MAPE of Time-series RS + Eny models was, on average, only 0.2%
lower than that of Time-series RS models (Fig. 6b). We next investigated
the utilization of environmental variables alone (Env Models) and

discovered that the average R? value was 0.56, accompanied by an
average MAPE value of 14.7% (Fig. 6a and b). Incorporating PFT in-
formation into environmental variables (Env + PFT Models) only
marginally improves performance with an average R? of 0.59 and MAPE
of 14.3% (Fig. 6a and b). This suggests that the Time-series RS models can
capture within-PFT trait variability, rather than simply learning
between-PFT differences. Overall, the absolute nBias for the 5 model
scenarios varied but were small on average (<0.5%) (Fig. 6¢).

We found that incorporating the phonological variation of remote
sensing observation (Time-series RS models) significantly improved the
predictive power as compared to using a single point in time only (Single
image RS models), with a significant higher average R? value of 0.74 of
the Time-series RS models compared to 0.53 of the Single image RS models
(Fig. 6a). Additionally, the average MAPE improved from 15.2% in
Single image RS models to 10.9% in Time-series RS models (Fig. 6b).
Regarding specific traits, all traits had R? improvement larger than 0.15,
with the highest improvement being 0.28 for phosphorus (Fig. 6d). The
most significant MAPE improvements were observed for LMA, EWT, and
potassium, with MAPE improvements of 8.1%, 6.6% and 6.4%, respec-
tively (Fig. 6e). In contrast, the least improvement was seen for carbon,
with a MAPE improvement of only 0.9% (Fig. 6e). Similar results were
also observed at the PFT-level evaluation (Fig. A1). We also compared
the Time-series RS models and Single image RS models at PFT-level. Our
results revealed that the Single image RS model had an average R? value
of 0.29 at PFT-level (Fig. Ala), compared with average R? value of 0.62
of Time-series RS models (Fig. Ala). Time-series RS models significantly
outperformed Single image RS models for all traits across all PFTs
(Fig. Alb-n).
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ized bias.

3.3. Important spectral bands and phenological stages for predicting foliar
functional traits

For the Q3, our results demonstrate some clear associations between
traits and specific spectral characteristics/phenological stages, but these
associations also vary considerably across traits (Fig. 7). Focusing on the
association with specific spectral bands, we found blue, green, red, NIR,
EVI were identified as important for most of traits, while SWIR2 and
MCARI were important for a few traits (Fig. 7).

In addition to the trait-specific association with spectral character-
istics, we also observed considerable variations in spectra-trait associ-
ations across different growing seasons, with the relative order of
season-specific association strength displaying the following four cate-
gories (Fig. 7): (I) Autumn > Summer > Spring > Winter; (II) Summer >
Spring > Autumn > Winter; (III) Summer > Autumn > Spring > Winter;
(IV) Spring = Summer > Autumn > Winter. Specifically, we observed 5
traits (i.e., carbon, carotenoids, NSC, phenolics, potassium) belonging to
the category 1 (Fig. 7a, b, i, j, and 1), 2 traits (ie., cellulose, EWT)
belonging to the category 2 (Fig. 7c and e), 4 traits (chlorophyll a + b,
lignin, nitrogen, phosphorus) belonging to the category 3 (Fig. 7d, f, h,
and k), and 1 trait (i.e., LMA) belonging to the category 4 (Fig. 7g).

3.4. Foliar functional maps predicted from time-series Sentinel-2

Fig. 8 shows the trait maps generated using the Time-series RS
models. We used four traits (LMA, nitrogen, potassium and chlorophyll
a + b) for an area of about 5 km? at four NEON sites for demonstration
(Fig. 8b-e) and compared them with NLCD land cover maps (Fig. 8a).
The trait maps illustrated the significant potential of utilizing Sentinel-2
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for trait mapping, particularly in characterizing fine spatial details and
variations in traits both between and within PFTs. Deciduous forests
exhibit lower LMA and higher nitrogen, whereas evergreen forests
display higher LMA and lower nitrogen (Fig. 8b and c). In comparison to
grasslands, forests generally possess higher potassium and chlorophyll
(Fig. 8d and e). KONZ site is predominantly grassland, yet variations in
traits still exist within the grassland PFT (Fig. 8).

Predictive uncertainty of the trait maps primarily stems from the lack
of training data and secondarily from model prediction errors (Fig. A4).
Using LMA maps at three NEON sites as examples, the Time-series RS
model yielded high prediction uncertainty for water and cultivated crop
regions at BLAN (Fig. A4a), water regions at LENO (Fig. A4b), while
demonstrated relatively high predictive confidence for most areas at
TALL (Fig. A4c). Overall, >75% of the pixels exhibited high predictive
confidence (relative uncertainty<0.25) for all traits, except phenolics in
the UKFS (Fig. A4d). EWT, LMA, phenolics, and potassium had more
pixels with high predictive uncertainty compared to other traits
(Fig. A4d), while they also displayed relatively high MAPE during the
validation of the Time-series RS models (Fig. 4).

We compared trait maps derived from Sentinel-2 with those derived
from NEON AOP (Fig. A5). The degree of agreement between the two
sets of maps (Fig. A5a-1) was found to be generally consistent with the
validation results of the Time-series RS model (Fig. 4). This finding in-
dicates that our random point sampling method provides a representa-
tive sampling and that the Time-series RS model does not overfit the
training data. Visual inspection revealed that the model generally
reproduced the spatial patterns of NEON AOP trait maps, but under-
estimated extremely high trait values and overestimated extremely low
trait values (Fig. ASm and n).
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Fig. 7. Analysis of feature importance of Time-series RS models using SHAP value across 12 foliar functional traits (a-1). The bars indicate the model-specific-
normalized absolute SHAP value (Normalized |SHAP value|). We converted the week number to the first day of each week for clearer demonstration on the x-
axis. The bars on top of the subfigure represent the summed normalized |SHAP value| of each season. Spring is defined as weeks 10-22, summer as weeks 23-35,
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references to colour in this figure legend, the reader is referred to the web version of this article.)

11



S. Liu et al. Remote Sensing of Environment 305 (2024) 114082

D06 KONZ

D02 BLAN

1an09 pue aoIN

o A

B Water [ Deciduous forest [l Evergreen forest Mixed forest Shrub/scrub
Grassland Pasture/hay [ Cultivated crop Woody wetlands

- -

0 Bk PP

(z.w B) VIN

(,.6 6w) usboIUN

(,.6 bw)winissejod

(,.wo 61) g+e [[Aydoioly)

Fig. 8. Land cover (a) and functional trait maps produced by Time-series RS models using Sentinel-2 (b-e) at 4 NEON sites. We used 2019 NLCD land cover product
(a). We used four traits - LMA (b), nitrogen (c), potassium (d) and chlorophyll a + b (e) - as examples for demonstration.

12



S. Liu et al.

4. Discussion

4.1. Spectra-phenology integration from multispectral satellite data
enables high spatial resolution, large-scale scalability and accurate
upscaling of foliar functional traits

In this study, we demonstrated that spectra-phenology integration of
Sentinel-2 time-series data can be an accurate approach to mapping
multiple foliar traits (Fig. 4, Fig. 8) at a high spatial resolution, capturing
intra-site and intra-PFT trait variation (Fig. 5) and offering scalability
due to large-scale coverage. The spectra-phenology integration
approach is grounded in the physical principles of plant spectroscopy
and the ecological trait-phenology association (directly or through
species linkages), addressing the limitations of existing trait upscaling
strategies. Global-scale studies typically rely on PFT-based and envi-
ronmental variable-driven statistical method (reviewed by Dechant
et al., 2023) or coarse resolution multispectral images (Moreno-Marti-
nez et al., 2018). In contrast, our approach outperforms environmental
modeling methods (Env models, Fig. 6) in our 14 NEON sites with a wide
range of environmental gradients, although our approach is not vali-
dated on a global scale. Furthermore, we observed considerable vari-
ability within each PFT for all 12 traits (Fig. 3), and the Time-series RS
models captured this variability well (Fig. 5), making it logically obvious
that our method is superior to methods based only on PFT lookup tables
which ignores the trait variation within a PFT. The importance of
within-PFT trait has prompted numerous prior research endeavors to
incorporate environmental variables, spatial models, or remote sensing
temporal and spectral metrics, in addition to solely utilizing PFT infor-
mation (Dechant et al., 2023).

Compared to previous studies on regional-scale multi-trait mapping
(Aguirre-Gutiérrez et al., 2021; Asner et al., 2017; Wallis et al., 2019),
our study demonstrates the following advantages. We upscaled from in-
situ trait observations to landscape-scale and then regional-scale,
following the strategy in Asner et al. (2017), however, our approach
can provide trait maps with higher resolution (10 m vs. 1 km) and
prediction accuracy (compared to the Env models, Fig. 6). The Time-se-
ries RS models also outperforms the Single image RS models used in
Aguirre-Gutiérrez et al. (2021) and Wallis et al. (2019) and greatly
improves the PFT-level evaluation (Figs. 5 and Al). More importantly,
the proposed approach overcomes the coverage limitation of airborne
imaging spectroscopy (Wessman et al., 1988; Martin et al., 2008; Asner
et al., 2015; Wang et al., 2020) and offers significantly enhanced scal-
ability by utilizing Sentinel-2 data with global coverage. Note that we
have only compared the Time-series RS model with the primary methods
and variables used in existing studies. While these methods were also
used in combination (e.g Single image RS + Env in Aguirre-Gutiérrez
et al., 2021), and the utilization of various satellite data sources have
been explored (e.g. MODIS data used in Moreno-Martinez et al., 2018),
we have not exhausted all possible combinations in our comparison
(Fig. 6).

Our spectra-phenology integration approach can effectively capture
trait variation without using environmental variables (Time-series RS
models vs. Time-series RS + Env models, Fig. 6). The lack of necessity for
environmental variables is also supported by a plant species classifica-
tion study using dense time-series Sentinel-2 images (Hemmerling et al.,
2021). One possible explanation is a strong correlation between plant
phenology and macro-climate. Given that phenological information was
implicitly incorporated into the Time-series RS model, environmental
factors did not contribute too much additional information. In contrast,
incorporating environmental variables in models lacking time series
data enhances model accuracy (Aguirre-Gutiérrez et al., 2021; Loozen
et al., 2020; Wallis et al., 2019). Another potential reason is that traits
are actually influenced by micro-environmental factors (Gagliardi et al.,
2021; Lopez et al., 2016; Sanczuk et al., 2023), while most of the
environmental variable data used in our study is only capable to char-
acterize macro-environmental variation. We chose to use Time-series RS
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models without macro-environmental variables for the final mapping
products, because compared with Time-series RS models, Time-series RS
+ Env models did not increased accuracy in terms of both R? and MAPE
(Fig. A6a and b), but rather, they increased the bias (Fig. A6c) when
extrapolated to unseen sites. This can also potentially present opportu-
nities for understanding the environmental regulation of traits at larger
scales. Moreover, our study found that exclusion of canopy texture
variables from Time-series RS models did not reduce the predictive power
(Fig. S4). This may be because the biophysical information represented
by texture variables are not clear at a 10 m spatial resolution (Hem-
merling et al., 2021), unlike spectra-phenology features that are
generalized across species, life forms, and regions (Serbin et al., 2019;
Wright et al., 2004).

4.2. Biophysical and ecological mechanism of time-series RS models

The Time-series RS models successfully upscale traits due to both
spectral and phenological factors. Our analysis of the feature importance
of Time-series RS models in summer generally aligned with previous
literature findings regarding crucial spectral region for canopy-level
trait prediction. Bands in visible wavelengths are more important for
predicting pigments (carotenoids, chlorophyll a + b, Fig. A7, Martin
et al., 2018, Ustin et al., 2009) and traits associated with pigments
(nitrogen, phosphorus, Fig. A7, Martin et al., 2018). The NIR band is
predominantly important for predicting LMA and EWT (Fig. A7) which
is supported by Asner et al. (2011). The NIR band is also important for
carbon and lignin (Fig. A7), which normally co-vary with LMA (Martin
et al., 2018). SWIR bands proves important for predicting phenolics,
phosphorus, and potassium (Fig. A7), as phenolics has absorption fea-
tures in the SWIR region (Curran, 1989; Fourty et al., 1996; Kokaly and
Skidmore, 2015), and previous literature has emphasized their impor-
tance for predicting phosphorus and potassium (Chadwick and Asner,
2016). The only unexpected result is the modeling for cellulose, where
the red band is most important, while the SWIR bands are not (Fig. A7).
This is potentially because the Sentinel-2 SWIR 1 band (1610 nm with
90 nm band width, Table 1) does not cover the strong absorption feature
of cellulose (1780 nm, Curran, 1989), making the model-predicted cel-
lulose a consequence of the covariation with other traits.

Our results indicate that while summer spectral features are gener-
ally more important, they do not greatly surpass the importance of other
seasons (Fig. 7), highlighting the relevance of phenology information in
trait prediction. Previous studies have also recognized the value of non-
summer spectral features, such as utilizing time-series remote sensing
for plant species classification (Cai et al., 2018; Grabska et al., 2020;
Hemmerling et al., 2021), grassland land-use intensity assessment
(Lange, 2022), and crop yield estimation (Hunt et al., 2019). In addition
to analyzing feature importance, we further investigated whether a
widely recognized theory of phenology-foliar trait coordination, the leaf
economics spectrum (LES) (Reich et al., 1997; Wright et al., 2004), re-
mains valid in our data.

In LES theory, leaf longevity co-varies with other foliar traits along a
‘fast-slow’ principal axis (Reich et al., 1997; Wright et al., 2004).
Following the assumption of Running et al. (1995), we used the vege-
tation index (VI) amplitude as a remote sensing proxy for leaf longevity
and employed the two band Enhanced Vegetation Index (EVI2) derived
from multi-sensor land surface phenology (MS-LSP) product (Bolton
et al., 2020) (see detail in Method S1). Plants with longer leaf longevity
tend to exhibit lower VI amplitude, and vice versa (Running et al., 1995).
We found that a single principal axis (PC 1) accounted for 74% of the
covariation among EVI2 amplitude, LMA, and nitrogen across different
PFTs (Fig. 9). Fast-return plants exhibit high leaf nitrogen, high EVI2
amplitude, and low LMA (Fig. 9). In contrast, plants with higher EVI2
amplitude, high LMA, and low leaf nitrogen demonstrate slower returns
(Fig. 9). Within each PFT, the principal axis can still explain a substantial
amount of covariation (50.8%-73.7%, Fig. A8), suggesting the coordi-
nation is maintained across major PFTs. Similarly, Moreno-Martinez
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Fig. 9. The covariation of LMA, nitrogen and EVI2 amplitude (remote-sensing proxy of leaf longevity) in a ‘fast-slow’ axis in three-dimensional space. The black
dashed line indicates the direction of the first principal component. The point colors represent the PFT. LL, leaf longevity.

et al. (2018) found that VI max and VI std. were crucial for multi-trait
prediction, with both metrics strongly correlating with VI amplitude.
Our revalidation of LES reveals a direct correlation between plant traits
and phenological characteristics, such as EVI2 amplitude. The Time-se-
ries RS models already contain information on EVI2 amplitude (Fig. S5),
as the EVI2 amplitude is the difference between minimum and
maximum greenness over a year and the inclusion of it did not increase
model accuracy (results not shown). Thereby, the Time-series RS models
could potentially use the information of EVI2 amplitude for trait pre-
diction. Moreover, the Time-series RS models may predict traits based on
trait-trait coordination or relationships between traits and other
phenological characteristics. For example, literature found a link be-
tween leaf senescence date and carbon content (Bucher and
Romermann, 2021; Sporbert et al., 2022), but more in-depth analyses
are needed.

Another potential mechanism of the Time-series RS models involves
leveraging the differences in phenological rhythms among plant species.
Differences in plant phenology (seasonal changes in greenness) among
species have been reported (Chuine and Beaubien, 2001; Richardson,
2019). Concurrently, past researches have used temporal information
from satellite to estimate traits (Moreno-Martinez et al., 2018), and have
demonstrated that employing satellite time-series spectral data en-
hances plant species discrimination compared to relying on single-time
plant reflectance spectra (Grabska et al., 2020; Hemmerling et al.,
2021). Given the interspecific trait variations (Diaz et al., 2016; Wang
et al., 2022; Wright et al., 2004), the Time-series RS models can predict
traits by differentiating between species. In this context, there is no
causal relationship between foliar traits and phenology; rather, both are
characteristics of the plant species. Importantly, the Time-series RS
models can improve species identification, thereby increasing the ac-
curacy of trait predictions.

4.3. Limitations

In this study, we utilized time-series Sentinel-2 data to obtain
phenology information for modeling traits. However, cloud
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contamination of satellite data reduces the availability of time-series
observations, particularly in regions with frequent cloud cover. To
address this issue, we employed a four-year composite approach to
generate dense time-series image collections. Nevertheless, this multi-
year compositing approach is unsuitable for vegetated areas where
phenological characteristics exhibit considerable inter-annual varia-
tions, such as croplands, vegetation subject to disturbance or logging, or
rapidly growing young forests. Also, our benchmarks were trait maps
derived from airborne imaging spectroscopy rather than in-situ trait
observations. We opted for trait maps as benchmarks due to two bene-
fits: increased sample size and range for model training, and reduction of
error in matching satellite imagery and in-situ data. However, since the
trait maps are generated using PLSR models, their representativeness of
real-world trait variation may be less accurate compared to in-situ data.
In-situ data also have limitations, as scaling traits for a limited number of
leaf measurements to the satellite image pixel remains challenging
(Dechant et al., 2023). Finally, the method was tested across a limited
set of sites and geographical regions, and its transferability needs to be
assessed in new areas with potentially differing phenology and spectral
characteristics. Also, because the training data are not representative of
the global variability of traits, the model can only be confidently
upscaled to the regional scale.

4.4. Implications

The results of this research provide opportunities to address current
real-world challenges and to tackle ongoing and future ecological
questions. NEON domains are designed to be representative of the
ecosystems of the United States; as such, our models can be applied
across the eastern United States to develop spatially continuous maps
that include tens of foliar traits. For instance, these maps could be used
to examine broad patterns of trait-trait coordination (Asner et al., 2016),
trait-environment relationships (Joswig et al., 2022; Wang et al., 2022),
and the processes underlying whether and how functional diversity
regulates ecosystem productivity (Duran et al., 2019; Gomarasca et al.,
2023; Schneider et al., 2017). Trait maps can enhance the representative
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of ecosystem processes by more accurately characterizing vegetation
(Schneider et al., 2023; Wieczynski et al., 2022) in Earth system models,
serving as a foundation for predicting responses to environmental
change. In addition, these trait maps may provide baseline data to
identify biodiversity hotspots, thus contributing to the development of
local biodiversity conservation policies (Cavender-Bares et al., 2022). As
the integration of phenology information is inspired by the coordination
and trade-offs in plant traits, this approach may hold potential not only
for inference of foliar traits, but also for other traits, e.g., related to plant
canopy structure and belowground processes (Cavender-Bares et al.,
2021; Diaz et al., 2016).

Our study presents opportunities to use archived satellite observa-
tions to infer coarse-scale changes in plant traits. Satellite observations
have long been used to classify the world into various vegetation types
(Defries and Townshend, 1994; Running et al., 1995), such as forests and
grasslands, or more specifically, leaf area index or forest cover (Hansen
et al., 2013; Myneni et al., 2002), contributing to Earth system studies.
Using models such as those presented in this paper, the long time-series
satellite observations from Landsat could be used to implement the
spectra-phenology integration approach in conjunction with historical
in-situ trait observations. This potentially enables the development of
spatially and temporally universal trait prediction models and provides
an essential way forward for future global trait mapping. As well, this
may provide additional documentation to support the identification of
biodiversity loss (Cavender-Bares et al., 2022; Jetz et al., 2016; Skid-
more et al., 2021).

5. Conclusion

In this study, we investigated a spectra-phenology integration
approach for modeling and mapping 12 foliar functional traits using
time-series Sentinel-2 data in the eastern United States. We demon-
strated that combining time-series Sentinel-2 data with machine
learning regression can effectively capture the variation of all 12 traits
for overall, site-level, and PFT-level evaluation (Figs. 4 and 5). The
spectra-phenology integration approach outperformed existing methods
(which rely on environmental proxies or a single satellite image as
predictors) without necessarily requiring additional environmental
variables as input (Fig. 6). Both the biophysical and ecological mecha-
nisms of the proposed method are consistent with established literature
and LES theory (Figs. 7 and 9). Collectively, we demonstrated that
spectra-phenology integration using time-series Sentinel-2 data can
serve as an accurate, high-throughput, and scalable method for high
spatial-resolution mapping of foliar traits, opening new avenues for
mapping and monitoring foliar functional traits at regional and global
scales. This study offers a valuable contribution to the field of remote
sensing and functional ecology, with the potential to advance our un-
derstanding of plant traits and their role in ecosystem processes.
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