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A B S T R A C T   

Hyperspectral remote sensing has emerged as an efficient tool to quantify the spatial and temporal variations in 
crop foliar nutrients, thus reducing the burden on in-situ tissue sampling and traditional chemical assays. 
However, the physical mechanism of hyperspectral remote sensing of foliar nutrients is under-explored, espe
cially for those lacking absorption features. Using four-year data collected from a cranberry farm, we demon
strate the capacity of leaf and imaging spectroscopy to quantify a comprehensive set of crop foliar nutrients, 
including seven macronutrients (N, P, K, Mg, Ca, S, Na) and five micronutrients (Fe, Mn, B, Cu, Zn). Specifically, 
we: 1) compared the performance of four data-driven approaches to estimate foliar nutrients at both leaf and 
canopy scales, including partial least square regression (PLSR), support vector regression (SVR), Gaussian process 
regression (GPR) and random forest regression (RFR); and 2) explored the physical basis of hyperspectral remote 
sensing of foliar nutrients. Our results showed that: 1) at leaf scales linear approaches PLSR and SVR performed 
best for nine nutrients (P, Mg, Ca, S, Na, Fe, B, Cu and Zn), whereas nonlinear approaches GPR and RFR per
formed best only for three nutrients (N, K and Mn); 2) at canopy scales no data-driven approach significantly 
outperformed others; 3) the best modelling accuracy varied with foliar nutrients (leaf scales: R2 from 0.30 to 0.93 
and RRMSE from 9 to 51%; canopy scales: R2 from 0.15 to 0.81 and RRMSE from 7 to 37%). The physical basis of 
hyperspectral remote sensing of foliar nutrients was mainly attributed to their strong correlations with leaf 
compounds that have apparent absorption features. More specifically, at leaf scales the correlation between foliar 
nutrients and LMA (leaf mass per area) was leveraged by models to predict foliar nutrients from leaf spectra; at 
canopy scales the correlation of foliar nutrients with leaf chlorophyll and canopy LAI (Leaf area index) was 
leveraged by models to predict foliar nutrients from canopy spectra. This study revealed the importance of trait 
correlations in predicting foliar nutrients, and improved our understanding of the physical mechanisms in 
hyperspectral remotes sensing of foliar nutrients.   

1. Introduction 

The American cranberry (Vaccinium macrocarpon Ait.) is a short, 
woody and evergreen perennial plant that is grown as a commercial crop 
in North America. Commercial cranberries are typically grown in 
marshes or bogs and their crop quality and production are greatly 
impacted by nutrient management, including the timing, source and 
dosage of fertilizer applications (Davenport, 1996; Jamaly et al., 2021; 
Parent et al., 2021). For example, a deficiency in nitrogen supply de
creases the density and yield of berries (Jamaly et al., 2021; Roper, 

2006), whereas an overapplication of nitrogen leads to plant crowding, 
impedes pollinators and decreases yield (De Moranville and Ghantous, 
2018). Phosphorus is important for root development and plant meta
bolism. However, excess phosphorus may result in the eutrophication of 
surface water (De Moranville, 2014; Parent and Marchand, 2006). Some 
micronutrients such as aluminum, zinc and copper become toxic when 
oversupplied (Roper, 2006). Because cranberries are grown in acidic 
soils, management of aluminum and iron, as well as tracking of acid- 
sensitive cations such as calcium, is critical to maintaining plant 
health and productivity (De Moranville and Ghantous, 2018). 
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Plant tissue analysis is conventionally used for assessing the nutrient 
status of cranberries (Harbut, 2011). In practice, growers annually 
collect leaf samples from a subset of cranberry beds and send them to a 
lab for chemical analysis. Lab analysis typically reports the concentra
tions of 12 foliar nutrients, including seven macronutrients (nitrogen, 
phosphorus, potassium, magnesium, calcium, sulfur, sodium) and five 
micronutrients (iron, manganese, boron, copper and zinc). Tissue 
analysis usually occurs between mid-August and mid-September, a 
period when the cranberry growth in the current year is finished and the 
nutrient concentrations are relatively stable (Davenport et al., 1995), 
thereby informing nutrient management practices for the next year. 

Tissue analysis cannot provide spatially complete information about 
the nutrient status of cranberries. It is time consuming, costly and labor 
intensive. Therefore, tissue samples are often taken at few and widely 
separated cranberry beds. In our study site, the growers were able to 
sample only 30% of the cranberry beds for tissue analysis, with the 
actual tissues collected from a small number of plants in each of their 
approximately 50 × 350 m beds. With spatially limited samples, it is 
difficult for growers to make management decisions for those cranberry 
beds not receiving tissue analysis, and even for unsampled areas of the 
beds for which sample collections were made. 

Reflectance spectroscopy (i.e., hyperspectral remote sensing) at the 
leaf level and from imagery has emerged as an efficient tool to quantify 
and map foliar biochemicals (Abdel-Rahman et al., 2017; Abukmeil 
et al., 2022; Asner et al., 2015; Axelsson et al., 2013; Bian et al., 2013; 
Chen et al., 2022; Cheng et al., 2014; Gao et al., 2019, 2020; Gara et al., 
2022; García-Haro et al., 2020; Li et al., 2017; Pullanagari et al., 2021, 
2016; Singh et al., 2022; Van Cleemput et al., 2018; Verrelst et al., 2016, 
2021; Wang et al., 2020, 2019; Watt et al., 2020, 2019; Xu et al., 2022; 
Zhang et al., 2013), thus reducing the burden on in-situ tissue sampling 
and traditional chemical assays (Asner et al., 2015). Chemometric 
methods build quantitative linkages between in-situ measured foliar 
biochemicals and the narrowband spectra acquired from spectroscopy 
using various statistical models, among which partial least squared 
regression (PLSR), support vector regression (SVR), Gaussian process 
regression (GPR) and random forest regression (RFR) are the most used 
(Verrelst et al., 2015). PLSR linearly transforms spectral reflectance to a 
small set of orthogonal features (called “latent factors”), and then line
arly regresses these features against biochemicals (Chlus and Townsend, 
2022; Liu et al., 2021). SVR nonlinearly transforms spectral reflectance 
to a feature space with a higher dimensionality, and subsequently builds 
a linear relationship between the transformed features and biochemicals 
(Axelsson et al., 2013; Pullanagari et al., 2016). GPR assumes all data 
points to be sampled from a joint multivariate normal distribution, and 
infers biochemicals from spectral reflectance using the Bayesian rule 
(Verrelst et al., 2016; Wang et al., 2019). RFR utilizes the “bagging” 
approach to construct a large number of decision trees, within which 
various thresholds are applied to spectral reflectance to estimate bio
chemicals (Feilhauer et al., 2015; Pullanagari et al., 2016). 

Numerous studies have compared these approaches (Abdel-Rahman 
et al., 2017; Axelsson et al., 2013; Feilhauer et al., 2015; Gökkaya et al., 
2015; Pullanagari et al., 2016; Singh et al., 2022; Wang et al., 2019). 
Feilhauer et al. (2015) examined the performance of PLSR, SVR and RFR 
in predicting leaf chlorophyll, dry matter and water content from leaf 
reflectance. They found that: 1) PLSR and SVR achieved similar pre
diction accuracy whereas RFR produced the poorest accuracy; 2) The 
important spectral bands identified by the three methods were consis
tent with the reported absorption features of leaf biochemicals. Pull
anagari et al. (2016) compared the ability of PLSR, kernel PLSR, SVR and 
RFR to predict 11 pasture foliar nutrients from canopy reflectance, and 
found that RFR produced a better prediction for the majority of nutrients 
than other methods. Wang et al. (2019) evaluated the ability of PLSR 
and GPR to model 15 grassland biochemicals from canopy reflectance. 
They found that the two methods performed comparably with respect to 
both prediction accuracy, uncertainties and the selection of informative 
bands. Our survey of the literature suggests that there is no best data- 

driven approach for foliar nutrient prediction using hyperspectral 
data, and that model selection may depend on the taxa being charac
terized and the specific chemicals of interest. As such, our approach is to 
implement multiple model formulations, with the selection of the actual 
model for mapping based on performance against withheld data or, 
alternatively, using an ensemble approach (Feilhauer et al., 2015). 

The successful retrieval of leaf biochemicals from hyperspectral 
signals is often attributed to their strong absorption features. Examples 
can be found from leaf chlorophyll, dry matters and water that have 
strong absorption features within 400–2500 nm (Feilhauer et al., 2015; 
Verrelst et al., 2015). However, most foliar nutrients except for nitrogen 
do not have strong absorption features related to molecular bonds with 
C, H, N or O within 400–2500 nm (Pandey et al., 2017; Singh et al., 
2022). This is mainly because these elements exist as ions in plants or as 
minor constituents of much larger carbon-based molecules. Previous 
studies have generally attributed the success of foliar nutrient remote 
sensing to the correlation between foliar nutrients and those leaf com
pounds that do have spectral features (Chlus and Townsend, 2022; 
Mutanga et al., 2005; Pandey et al., 2017; Pullanagari et al., 2016). Since 
foliar nutrients correlate with some leaf compounds and these com
pounds can affect reflectance by strong absorptions, an indirect linkage 
exists between foliar nutrients and reflectance, allowing us to statisti
cally relate foliar nutrients to reflectance. However, the physical basis of 
the foliar nutrient models is still under-explored. 

Our main objective of this research is to test the capacity of both leaf 
and imaging spectroscopy to quantify the foliar nutrients in cranberries. 
In application, we: 1) evaluate the performance of leaf and imaging 
spectroscopy in estimating foliar nutrients; and 2) explore the physical 
basis of hyperspectral remote sensing of foliar nutrients at both leaf and 
canopy scales. 

2. Study site and data collection 

2.1. Study site 

Our study site includes 210 50 × 350 m commercial cranberry beds 
in Juneau County, Wisconsin, USA (Fig. 1). Wisconsin is the leading 
cranberry producing state in the US, accounting for half of US cranberry 
production and over 25% of global production (United States Depart
ment of Agriculture, 2022). The beds in our imagery include twelve 
cranberry cultivars: “Ben Lear”, “Bergman”, “Crimson Queen”, 
“Demoranville”, “Grygleski GHI”, “HyRED”, “Le Munyon”, “Mullia 
Queen”, “Ruby Star”, “Stevens”, “Sundance” and “Pilgrim” (Fajardo 
et al., 2013; Roper, 2008). The growing season of cranberries runs from 
mid-May to early September (DeMoranville, 1992; Hagidimitriou and 
Roper, 1995). Bud growth initiates in mid-May with shoot elongation 
and leaf expansion. Flowering begins in late June and continues for 3–4 
weeks into July. Floral induction occurs soon after flowering and fruit 
matures in 60–120 days, depending on cultivars and weather conditions. 
Harvest starts in late September and continues for 2–3 weeks into 
October. 

2.2. Data collection 

Fieldwork was conducted during the growing seasons of 2018–2021, 
and included tissue samples for chemistry analyses, dry leaf spectra from 
an ASD spectroradiometer and canopy spectra from two Hyspex imaging 
spectrometers (Table 1). Foliar nutrients and dry leaf spectra were 
measured for cranberry uprights, the vertical branches originating from 
vines and terminating with a vegetative bud. Canopy spectra were 
collected for cranberry beds using a boresighted Hyspex VNIR-SWIR 
imaging system.  

a) Dry leaf spectra 

Dry leaf spectra were measured from 410 cranberry uprights 
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sampled on four dates (“Dry leaf spectra” in Table 1). The sampling dates 
2018–07-03, 2019–06-26 and 2021–06-22 were chosen to assess the leaf 
characteristics in the early growing season when fruits began to form, 
and 2019–09-04 was to assess the leaf characteristics in the late growing 
season when fruit matured. Each cranberry bed was evenly split into 
halves and ten cranberry uprights were randomly collected within each 
half bed to double the sample size. 

We adopted the procedure to measure dry leaf spectra reported by 
(Serbin et al., 2014; Wang et al., 2020). Leaf samples were oven-dried at 
65 ◦C for at least 48 h. Then, dry leaves were ground to pass through a 
20-mesh sleeve (0.84 mm) and weighed by a digital scale (precision: 
0.0001 g). Finally, ~350 mg dried and ground leaf material was poured 
into a black-painted cup, from which the reflectance of leaf material was 
measured using an ASD spectrometer and a contact probe (Malvern 
Panalytical Inc., Westborough, Massachusetts, USA; see Serbin et al. 
2014). Spectral measurements were made for old and new growth leaves 
separately. This was not done for the late season sampling date 2019–09- 
04, at which time old and new foliage were visually indistinguishable.  

b) Foliar nutrients 

A total of 269 cranberry upright samples were analyzed for 12 foliar 
nutrients, including seven macronutrients (nitrogen (N), phosphorus 
(P), potassium (K), magnesium (Mg), calcium (Ca), sulfur (S), sodium 
(Na)) and five micronutrients (iron (Fe), manganese (Mn), boron (B), 

copper (Cu) and zinc (Zn)) (“Foliar nutrients” in Table 1). The samples 
analyzed at Brookside Laboratories (New Bremen, Ohio, USA) were 
collected by the University of Wisconsin team (sample size: 130), while 
the samples analyzed at Midwest Laboratories (Omaha, Nebraska, USA) 
were collected by our grower cooperators (sample size: 139). The same 
protocol was utilized by two laboratories to analyze samples (Lincoln 
et al., 2019; Mundorf et al., 2015). Tissue samples were dried at 65 ◦C for 
at least 72 h and then ground through a 0.25-mm mesh screen. The 
Dumas combustion method was used to determine foliar nitrogen con
centration. For other nutrients, ground samples were digested with ni
tric acid and hydrogen peroxide, and were then analyzed on inductively 
coupled plasma optimal emission spectrometers.  

c) Canopy spectra 

Canopy spectra were collected on five dates using two co-aligned 
HySpex VNIR-1800 and SWIR-384 imaging spectrometers (Norsk Elek
tro Optikk, Oslo, Norway) (“Canopy spectra” in Table 1). The VNIR- 
1800 measures 186 spectral bands between 400 and 1000 nm with a 
spectral resolution of 3.26 nm. The SWIR-384 measures 288 spectral 
bands between 930 and 2500 nm with a resolution of 5.45 nm. The 
HySpex instruments were flown on a Cessna-180 airplane between 
11:00 a.m. and 13:30p.m. local time at an above-ground height of 2100 
m, generating a pixel size of 0.75 m for VNIR-1800 images and 1.50 m 
for SWIR-384 images. 

HySpex images were pre-processed using two open-source packages: 
HyPro (Liu et al., 2019) and HyTools (Queally et al., 2022; Wang et al., 
2020). The processing steps included: 1) sensor boresighting; 2) radio
metric calibration; 3) smile-effect correction; 4) geometric correction; 5) 

Fig. 1. Cranberry beds from Juneau County, Wisconsin. A NAIP image (Na
tional Agriculture Imagery Program, downloaded from: https://relief.ersc.wisc. 
edu/wisconsinview/form.php) is used as the base map in the black-white color. 
A minimum noise fraction (MNF) transform is performed to the Hyspex spectra 
of cranberry areas to show the spectral variations among cranberry beds. 

Table 1 
Data used in the project.  

A) Dry leaf spectra 

Dates Old 
leaves 

New 
leaves 

Sensor specifications 

2018–07- 
03 

81 81 Sensor: ASD FieldSpec4 
Spectral range: 350–2500 nm 
Interpolated spectral interval: 1 nm 2019–06- 

26 
75 75 

2019–09- 
04 

50 (no leaf 
separation) 

2021–06- 
22 

24 24  

B) Foliar nutrients 
Brookside Laboratories Midwest 

Laboratories 
Foliar nutrients 

Dates Old 
leaves 

New 
leaves 

Dates Samples 

2018–07- 
03 

18 18 2018–08- 
15 

52 N, P, K, Mg, Ca, S, 
Na, Fe, Mn, B, Cu, 
Zn, in mg•g−1 2019–06- 

26 
10 10 2019–08- 

15 
44 

2019–09- 
04 

26 (no leaf 
separation) 

2020–08- 
15 

49 

2021–06- 
22 

24 24 2021–08- 
15 

46  

C) Canopy spectra 
Dates Samples Image specifications 
2018–07- 

02 
80 Sensors: HySpex VNIR-1800, SWIR-384 

Spectral range: 400–1000 nm, 930–2500 nm 
Spectral bands: 186, 288 
Spectral resolution: 3.26 nm, 5.45 nm 
Flying height: 2100 m 
Spatial resolution: 0.75 m, 1.50 m 

2019–06- 
25 

76 

2019–08- 
29 

32 

2020–08- 
20 

42 

2021–06- 
19 

12  
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atmospheric correction; 6) BRDF (Bidirectional Reflectance Distribution 
Function) correction; and 7) vector normalization. For more details, 
please refer to (Liu et al., 2021). Noisy bands and atmospheric water- 
absorption bands at 400–520, 920–1000, 1340–1500, 1800–2020 and 
2300–2500 nm were excluded. 

3. Methods 

3.1. Foliar nutrient modelling at leaf and canopy scales 

Four data-driven regression approaches, including partial least 
square regression (PLSR), support vector regression (SVR), Gaussian 
process regression (GPR) and random forest regression (RFR), were used 
to link foliar nutrients with either ASD dry leaf reflectance or canopy 
reflectance from the HySpex imaging spectrometer. These methods have 
been used to model foliar biochemistry and select informative spectral 
bands (Feilhauer et al., 2015; Pullanagari et al., 2021, 2016; Verrelst 
et al., 2016; Wang et al., 2020, 2015).  

a) Datasets for modelling 

At the leaf scale, 130 measurements of foliar nutrients and dry leaf 
spectra were used to build models (“Dry leaf spectra” and “Brookside 
Laboratories” in Table 1). Only the shortwave infrared reflectance 
(wavelength range: 1400–2500 nm) was used for modelling (Wang 
et al., 2020). At the canopy scale, 237 measurements of foliar nutrients 
and canopy spectra were used to build models (“Brookside Laboratories” 
and “Midwest Laboratories” and “Canopy spectra” in Table 1). The foliar 
nutrients of old and new leaves on 2018–07-03, 2019–06-26 and 
2021–06-22 were averaged using their dry weights (“Brookside Labo
ratories” in Table 1): 

Ccranberry upright =
WoldCold + WnewCnew

Wold + Wnew  

where Wold and Wnew are the dry weights of old and new leaves 
respectively; Cold and Cnew are the nutrient concentrations of old and 
new leaves respectively; Ccranberry upright is the nutrient concentration of a 
whole cranberry upright. The original dataset was 3:1 randomly split 
into calibration and validation datasets.  

b) Parameter optimization and model calibration. 

Model parameters were set or optimized prior to model calibration 
(Table 2). The settings or optimization ranges of model parameters were 
adopted from previous studies (Feilhauer et al., 2015; Pullanagari et al., 
2021, 2016; Wang et al., 2020, 2015). For PLSR, the number of latent 
factors (h) was optimized from 1 to 20 with a step size of one. For SVR, 
the kernel function was set to the radial basis function; the 

regularization parameter (C) was exponentially optimized from 2-15 to 
216; the kernel coefficient (γ) was exponentially optimized from 2-5 to 26; 
the penalty coefficient (ε) was exponentially optimized from 10-5 to 104. 
For GPR, the kernel function was set to the radial basis function. For 
RFR, the number of decision trees (ntree) was set to 500 (Belgiu et al., 
2016; Lawrence et al., 2006); the number of features (mtry) was opti
mized from 1 to p/3 (p: the number of spectral bands) with a step size of 
five. 

The optimization of model parameters was accomplished using a 
repeated k-fold cross-validation strategy: 1) The calibration dataset was 
randomly split into 4 folds, with 3 folds randomly chosen for training 
and the fourth for testing; 2) The training dataset was used to build 
models for a given set of parameter values (e.g., C=2-4, γ=23 andε = 102 

in SVR); 3) The trained models were applied to the testing dataset to 
predict foliar nutrients; 4) Steps 1–3 were repeated 100 times to 
generate 100 estimations for each data point for a given set of parameter 
values; 5) The set of parameter values that produced the lowest pre
diction error was chosen as the optimal parameters (Chlus and Town
send, 2022; Wang et al., 2020). 

With the optimal model parameters, foliar nutrient models were 
calibrated by applying the repeated k-fold cross-validation (4 folds, 25 
repeats) strategy to the calibration dataset again. This was done to 
reduce the influence of data sampling on model calibration. Therefore, 
there were 100 prediction models for each data-driven approach.  

c) Model evaluation 

Calibrated models produced 100 predictions for each data point in 
each validation dataset. The average of 100 model predictions was used 
as the model estimation of each data point and the standard deviation 
was used as the estimation uncertainty. Model performance was evalu
ated using the coefficient of determination (R2), root mean squared error 
(RMSE, in mg•g−1) and relative RMSE (RRMSE, = RMSE/(Max-Min)×
100%, in %). 

3.2. Exploration of the physical basis of hyperspectral remote sensing of 
foliar nutrients 

We explored the physical basis of hyperspectral remote sensing of 
foliar nutrients by: 1) selecting and analyzing the spectral bands that are 
important for modelling foliar nutrients; and 2) investigating the cor
relation between foliar nutrients and leaf compounds that have strong 
absorption features. Our analysis steps are as follows:  

a) Selection and analysis of important spectral bands 

We adopted the procedure to select important spectral bands re
ported by Wang et al. (2019; see also Fig. 2). For each data-driven 
approach, the absolute model coefficients, characterizing the relative 
importance of each band to the prediction of foliar nutrients, were 
ranked in descending order across wavelengths (Table 3). Then, the top 
30% ranked bands were selected as important bands (vertical lines in 
Fig. 2A). Since there were 100 model runs for each data-driven approach 
(see Section 3.1.b), the procedure of band ranking and selection was 
repeated 100 times (Fig. 2A). Finally, the frequency of each band being 
selected by models was calculated (frequency range: 0–100, Fig. 2B). 
The more frequently a spectral band was selected by models, the more 
important/informative this band was. 

Some spectral bands are located at the absorption features of leaf 
compounds such as leaf chlorophyll, water and dry matters (protein, 
nitrogen, lignin, cellulose, sugar, starch and oil) (Curran, 1989). Previ
ous studies have suggested that the absorption features of these leaf 
compounds are likely leveraged by models to predict foliar nutrients 
(Chlus and Townsend, 2022; Mutanga et al., 2005; Pandey et al., 2017; 
Pullanagari et al., 2016). Therefore, the selection frequency (or impor
tance) at these absorption features was analyzed to explore the physical 

Table 2 
The settings and optimization ranges of model parameters.  

Models Parameters Setting/Optimization 
range 

Partial least square 
regression 
(PLSR) 

Number of latent factors (h) 1, 2, …, 20 

Support vector 
regression (SVR) 

Kernel function Radial basis function 
Regularization parameter (C) 2-15, 2-14, …, 216 

Kernel coefficient (γ) 2-5, 2-4, …, 26 

Penalty coefficient (ε) 10-5, 10-4, …, 104 

Gaussian process 
regression (GPR) 

Kernel function Radial basis function 

Random forest 
regression (RFR) 

Number of decision trees (ntree) 500 
Number of features randomly 
sampled as candidates at each 
split (mtry) 

1, 6, …, p/3 (p: the 
number of spectral 
bands)  
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basis of foliar nutrient remote sensing in the following analysis. For the 
positions of these leaf compound absorption features, please refer to 
(Curran, 1989). In summary, there are 12 absorption features within the 
visible-to-near infrared (VNIR) wavelength range (400–1200 nm), 30 
features within the shortwave infrared (SWIR) wavelength range 
(1400–2500 nm).  

b) The correlation between foliar nutrients and leaf compounds 

We calculated the Pearson’s correlation between foliar nutrients and 
leaf compounds such as leaf chlorophyll, water and dry matters (LMA 
(leaf mass per area, in g•cm−2), protein, lignin, cellulose, sugar and 
starch (in mg•g−1)). In this study, we did not measure leaf compounds 
due to cost reasons. Alternatively, we used dry leaf spectra to estimate 
leaf dry matters, and used vegetation indices as surrogates of leaf 
chlorophyll, water and canopy LAI (Leaf Area Index).  

1) Leaf dry matters: In previous studies, we measured leaf dry matters 
(LMA, lignin, cellulose, sugar and starch) and dry leaf spectra for 184 
plant species sampled from seven NEON (National Ecological Ob
servatory Network) domains in the US (Wang et al., 2022, 2020). 
This dataset covered a wide range of leaf types with ~ 700 samples. 
Using this dataset, we built PLSR models to link leaf dry matters with 
dry leaf spectra. These models were then applied to our dry leaf 
spectra data (“Dry leaf spectra” in Table 1) to estimate leaf dry 
matters. Considering that nitrogen is mainly bound within proteins, a 

Fig. 2. An example of calculating the selection frequency for each spectra band. In panel A, the prediction model is run 100 times for a foliar nutrient using the 
repeated k-fold cross validation (iteration = 1, 2, …, 100); The top 30% bands (vertical lines) are selected by ranking the absolute model coefficients (green curves) in 
each model run. In panel B, vertical bars show the frequency of each band being selected by 100 models; The horizontal bar provides another way to visualize the 
selection frequency, with blue colors representing a low frequency, red colors representing a high frequency and the grey color representing no band selection. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
The model coefficients used to rank the importance of spectral bands.  

Models Coefficients References 

Partial least square 
regression (PLSR) 

Standardized coefficients (Chlus and 
Townsend, 2022) 

Support vector 
regression (SVR) 

The inner product of spectral 
reflectance and the α-vector 

(Feilhauer et al., 
2015) 

Gaussian process 
regression (GPR) 

The inverse of the length-scale 
vector 

(Wang et al., 2019) 

Random forest 
regression (RFR) 

Feature importance coefficients (Feilhauer et al., 
2015)  
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conversion factor of 4.43 was applied to our nitrogen data to esti
mate proteins (Berger et al., 2020).  

2) Leaf chlorophyll, water and canopy LAI: Two vegetation indices, 
TCARI/OSAVI and NDWI calculated from canopy spectra (“Canopy 
spectra” in Table 1), were used as surrogates of leaf chlorophyll and 
water, respectively. The ratio TCARI/OSAVI (TCARI: Transformed 
Chlorophyll Absorption in Reflectance Index; OSAVI: Optimized Soil 
Adjusted Vegetation Index) has been found to be sensitive to leaf 
chlorophyll but resistant to canopy LAI (Leaf Area Index) (Habou
dane et al., 2002). The NDWI (Normalized Difference Water Index) 
has been found to be sensitive to leaf water (Gao, 1996). We also 
tested other vegetation indices that were sensitive to leaf chlorophyll 
and water (Table S-1). In general, these indices were found to highly 
correlate with TCARI/OSAVI and OSAVI (Figure S-1). In addition, we 
used NDVI as a surrogate of canopy LAI (leaf area index, in m−2•

m−2). 

At leaf scales, the correlation between foliar nutrients and leaf dry 
matters (LMA, lignin, cellulose, sugar and starch) was calculated. At 
canopy scales, the correlation of foliar nutrients with dry matters (LMA, 
lignin, cellulose, sugar and starch), TCARI/OSAVI (as a surrogate of leaf 
chlorophyll), NDWI (leaf water), and NDVI (canopy LAI) was calculated. 
The dry matters derived from dry leaf spectra for new and old growth 
leaves were upscaled to canopy scales using dry leaf weights before the 
canopy-scale correlation analysis. 

4. Results 

4.1. Comparison of model performance among the four regression 
methods 

At leaf scales, PLSR and SVR performed better than GPR and RFR for 
nutrient predictions (Table 4A). Among the 12 foliar nutrients, PLSR and 
SVR showed the best performance for nine nutrients, whereas GPR and 
RFR performed best only for three nutrients (highlighted in green). More 
specifically, PLSR produced the best results for leaf Mg (validation R2 =

0.54, RRMSE = 9%), Ca (R2 = 0.85, RRMSE = 10%), Fe (R2 = 0.69, 
RRMSE = 48%) and Zn (R2 = 0.30, RRMSE = 26%); SVR produced the 
best results for leaf P (R2 = 0.93, RRMSE = 11%), S (R2 = 0.74, RRMSE 
= 10%), Na (R2 = 0.58, RRMSE = 32%), B (R2 = 0.84, RRMSE = 13%) 
and Cu (R2 = 0.66, RRMSE = 20%); GPR produced the best results for 
leaf N (R2 = 0.88, RRMSE = 12%) and K (R2 = 0.89, RRMSE = 11%); 
RFR produced the best results only for leaf Mn (R2 = 0.54, RRMSE =
51%). In general, the poorest results were produced by RFR for most 
macronutrients and by GPR for most micronutrients (highlighted in 
yellow in Table 4A). 

At canopy scales, PLSR performed best in predicting foliar nutrients, 
followed by GPR, SVR and RFR (Table 4B). PLSR produced the best 
results for seven foliar nutrients, including leaf K (R2 = 0.25, RRMSE =
7%), Ca (R2 = 0.75, RRMSE = 10%), Na (R2 = 0.80, RRMSE = 14%), Fe 
(R2 = 0.60, RRMSE = 37%), Mn (R2 = 0.15, RRMSE = 28%), B (R2 =

0.54, RRMSE = 20%) and Zn (R2 = 0.48, RRMSE = 16%). GPR produced 

Table 4 
The performance of the four models in predicting cranberry foliar nutrients at leaf and canopy scales. For each foliar nutrient, the best model is highlighted in green, 
and the poorest model is in yellow. ΔR2 and ΔRRMSE are the differences in R2 and RRMSE between the best (green) and poorest (yellow) models, respectively. n: 
validation dataset size; PLSR: partial least squared regression; SVR: support vector regression; GPR: Gaussian process regression; RFR: random forest regression. For the 
scatterplot results of each foliar nutrient, please refer to Figures S-2 and S-3.  

A) Model validation at leaf scales (n ¼ 32) 

Macronutrients PLSR SVR GPR RFR Best-Poorest 

R2 RRMSE R2 RRMSE R2 RRMSE R2 RRMSE ΔR2 ΔRRMSE 

N 0.86 12% 0.83 14% 0.88 12% 0.68 19% 0.20 −7% 
P 0.88 11% 0.93 11% 0.89 12% 0.75 16% 0.18 −1% 
K 0.85 12% 0.88 11% 0.89 11% 0.83 13% 0.06 −2% 
Mg 0.54 9% 0.51 10% 0.26 12% 0.28 12% 0.28 −3% 
Ca 0.85 10% 0.82 11% 0.79 12% 0.74 14% 0.11 −4% 
S 0.67 11% 0.74 10% 0.74 12% 0.59 14% 0.15 −4% 
Na 0.53 33% 0.58 32% 0.52 34% 0.41 35% 0.17 −3%  

Micro nutrients PLSR SVR GPR RFR Best-Poorest 
R2 RRMSE R2 RRMSE R2 RRMSE R2 RRMSE ΔR2 ΔRRMSE 

Fe 0.69 48% 0.68 50% 0.64 55% 0.68 52% 0.05 −7% 
Mn 0.41 64% 0.50 56% 0.53 51% 0.54 51% 0.13 −13% 
B 0.78 16% 0.83 13% 0.38 26% 0.46 24% 0.46 −13% 
Cu 0.62 21% 0.66 20% 0.57 23% 0.56 23% 0.10 −3% 
Zn 0.30 26% 0.23 27% 0.01 31% 0.03 31% 0.30 −5%  

B) Model validation at canopy scales (n ¼ 61) 
Macro nutrients PLSR SVR GPR RFR Best-Poorest 

R2 RRMSE R2 RRMSE R2 RRMSE R2 RRMSE ΔR2 ΔRRMSE 
N 0.75 13% 0.81 11% 0.79 11% 0.79 11% 0.06 −2% 
P 0.45 8% 0.47 7% 0.50 7% 0.44 7% 0.06 0% 
K 0.25 7% 0.20 7% 0.20 7% 0.21 7% 0.05 0% 
Mg 0.73 10% 0.68 10% 0.73 9% 0.71 9% 0.05 −1% 
Ca 0.75 10% 0.70 11% 0.74 10% 0.71 10% 0.05 −1% 
S 0.52 14% 0.62 12% 0.63 11% 0.61 12% 0.11 −3% 
Na 0.80 14% 0.77 15% 0.75 15% 0.71 17% 0.09 −3%  

Micro nutrients PLSR SVR GPR RFR Best-Poorest 
R2 RRMSE R2 RRMSE R2 RRMSE R2 RRMSE ΔR2 ΔRRMSE 

Fe 0.60 37% 0.46 44% 0.43 44% 0.44 43% 0.17 −7% 
Mn 0.15 28% 0.01 28% 0.08 27% 0.12 26% 0.14 0% 
B 0.54 20% 0.45 22% 0.51 20% 0.46 21% 0.09 −2% 
Cu 0.46 16% 0.39 17% 0.50 15% 0.39 17% 0.11 −2% 
Zn 0.48 16% 0.38 18% 0.45 17% 0.42 17% 0.10 −2%  
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the best results for five foliar nutrients, including leaf P (R2 = 0.50, 
RRMSE = 7%) and Mg (R2 = 0.73, RRMSE = 9%), S (R2 = 0.63, RRMSE 
= 11%) and Cu (R2 = 0.50, RRMSE = 15%). SVR produced the best 
results only for leaf (R2 = 0.81, RRMSE = 11%). RFR did not produce the 
best results for any foliar nutrient. It should be noted that the 
improvement in prediction accuracy from the poorest to the best models 
was quite small at canopy scales (ΔR2 and ΔRRMSE in Table 4B). For 
most foliar nutrients, ΔR2 and ΔRRMSE were<0.1 and 5%, respectively. 
Only leaf Fe had a ΔR2>0.1 (ΔR2 = 0.17) and ΔRRMSE>5% (ΔRRMSE 
= 7%). 

Macronutrients generally had a higher prediction accuracy than 
micronutrients. At leaf scales, most macronutrients had a validation 
RRMSE<15%, whereas the RRMSE of most micronutrients ranged from 
20 to 65% (Table 4A). At canopy scales, all macronutrients had a vali
dation RRMSE<15%, whereas the RRMSE of all micronutrients ranged 
from 15 to 37% (Table 4B). For the scatterplot results, please refer to 
Figures S-2 and S-3. 

4.2. Selection frequency at the strong absorption features of leaf 
compounds 

With the exception nitrogen, most nutrients do not have strong ab
sorption features within 400–2500 nm. For these elements, some of the 
frequently selected bands (selection frequency ≥ 50 times) were found 
to be around the documented absorption features of leaf compounds 
such as chlorophyll, water, and dry matters (nitrogen, protein, lignin, 
starch, cellulose and sugar) (Table 5). For example, the leaf-scale SVR 
models for phosphorus frequently selected seven absorption features, 
with 1420 nm being around the absorption feature of lignin, 1900 nm 
around starch, 1980, 2130 and 2240 nm around protein, 2310 nm 
around oil, and 2320 nm around sugar (Table 5A). The canopy-scale 
PLSR models for calcium frequently selected three absorption features, 
with 910 nm being around the absorption feature of nitrogen, 1690 nm 
around nitrogen, protein, lignin and starch, and 2320 nm around starch 
(Table 5B). 

4.3. The correlation between foliar nutrients and leaf compounds 

At leaf scales, LMA most correlated with foliar nutrients (Fig. 3A). 
With the exception of Mg, S, B and Zn, the absolute Pearson’s correlation 
coefficient |r| between LMA and foliar nutrients ranged from 0.63 to 
0.87. Negative correlations were observed between LMA and N, P, K, 
Mg, S, Cu and Zn (|r| > 0.6 in general), whereas positive correlations 
were observed for Ca, Na, Fe, Mn and B (|r| > 0.65). When dry matters 
were decomposed into various leaf compounds, protein most correlated 
with foliar nutrients (|r| > 0.5), followed by sugar, cellulose, lignin and 
starch (|r| < 0.4). 

At canopy scales, TCARI/OSAVI (as a surrogate of leaf chlorophyll) 
and NDVI (as a surrogate of canopy LAI) most correlated with foliar 
nutrients (the absolute Pearson’s correlation value |r| > 0.6 generally), 
followed by NDWI (as a surrogate of leaf water, |r| = 0.4–0.55) and LMA 
(|r| < 0.5) (Fig. 3B). Among leaf dry compounds, protein most correlated 
with foliar nutrients (|r| = 0.5–0.76), followed by cellulose (|r| =

0.4–0.5), and lignin, sugar and starch (|r| < 0.4). It was also noticed that 
the correlation of foliar nutrients with LMA, lignin, sugar and starch was 
weakened from leaf to canopy scales. On average, the absolute corre
lation coefficient |r| was decreased by ~ 0.2 during the upscaling. 

4.4. Cranberry nutrient concentration mapping 

Spatial variations in foliar nutrients were observed across and within 
cranberry beds (Fig. 4). For example, some cranberry beds at locations A 
and B had a nitrogen concentration lower than 11 mg•g−1, whereas the 
cranberry beds at location C had a nitrogen concentration higher than 
15 mg•g−1. At location D, the nitrogen concentration at the edge of 
cranberry beds was apparently lower than that in the middle of beds. 

Negative predictions at low concentrations were produced by the 
models for leaf Fe and B (blank cranberry beds at location A for iron and 
boron, Figures S-4 and S-5). Similar spatial distribution patterns were 
observed among some nutrients (e.g., N, Mg, Ca, S and B) due to their 
strong intercorrelations (Pearson’s correlation range: 0.70–0.80). 

It should also be noted that the foliar nutrient maps presented here 
were produced using the range of model predictions. Therefore, a low 
(or high) concentration value on maps does not necessarily indicate that 
cranberry plants are under nutrient deficiency (or excess). To diagnose 
the nutrient status of cranberries, normal nutrient ranges need to be 
applied to these maps (Davenport et al., 1995). For example, all the 
cranberry beds mapped here actually had a nitrogen concentration 
above normal (=7.5 mg•g−1), and were classified as “High-to-Excessive” 
by Midwest Laboratories, suggesting that the amount of nitrogen fer
tilizer should be reduced next year. 

Table 5 
The spectral bands with a selection frequency ≥ 50 times by the best leaf- or 
canopy-scale models and with a location around the absorption features of leaf 
compounds. Letters a-I indicate the leaf compounds that have absorption fea
tures at each wavelength. PLSR: partial least squared regression; SVR: support 
vector regression; GPR: Gaussian process regression; RFR: random forest 
regression.  

A) Leaf-scale models 

Foliar 
nutrients 

Best 
model 

Wavelengths (nm) Leaf 
compounds 

N GPR 1420c, 1450c,d,f, 1490e,f a: nitrogen 
b: protein 
c: lignin 
d: starch 
e: cellulose 
f: sugar 
g: oil 

P SVR 1420c, 1900d, 1980b, 2130b, 2240b, 
2310 g, 2320f 

K GPR 1420c 

Mg SVR 1690a,b,c,d, 1900d, 1940a,b,c,d,e, 1980b, 
2000d, 2130b, 2240b, 2270d,e,f, 2280e,f, 
2350a,b,e 

Ca PLSR 1900d, 1940a,b,c,d,e, 2000d, 2240b, 
2250d, 2270d,e,f, 2280d,e, 2310 g, 2350a, 

b,e 

S SVR 1420c, 1450c,d,f, 1580d,f, 2130b, 2240b 

Na SVR 1420c, 1820e, 1960d,f, 1980b, 2060a,b 

Fe PLSR 1420c, 1820e, 2130b, 2180a,b, 2240b, 
2250d, 2310 g, 2320d, 2350a,b,e 

Mn RFR 1580d,f, 1690a,b,c,d, 1780d,e,f, 1820e 

B SVR 1960d,f, 2000d, 2240b, 2270d,e,f, 2320d, 
2350a,b,e 

Cu SVR 1420c, 1580d,f, 1980b, 2060a,b, 2080d,f, 
2100d,e, 2130b, 2240b, 2250d 

Zn PLSR 1420c, 1900d, 1960d,f, 1980b, 2000d, 
2130b   

B) Canopy-scale models 
Foliar 

nutrients 
Best 

model 
Wavelengths (nm) Leaf 

compounds 
N SVR 910b, 1020b, 1120c a: nitrogen 

b: protein 
c: lignin 
d: starch 
e: cellulose 
f: sugar 
g: oil 
h: chlorophyll 
i: water 

P GPR None 
K PLSR 910b, 1120c, 2100d,e 

Mg GPR 2320d 

Ca PLSR 910b, 1690a,b,c,d, 2320d 

S GPR 2080d,f, 2100d,e, 2130b, 2180a,b 

Na PLSR 1020b, 1040i, 1690a,b,c,d, 1780d,e,f, 
2310 g, 2320d 

Fe PLSR 1020b, 2060a, 2080d,f, 2310 g 

Mn PLSR 1120b, 1510a,b, 1530d, 1690a,b,c,d, 
2080d,f, 2280d,e, 2310 g 

B PLSR 910b, 1780d,e,f, 2270d,e,f, 2320d 

Cu GPR 2080d,f, 2130b 

Zn PLSR 660 h, 1020b, 1040 g, 1120c  
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5. Discussion 

5.1. Selecting appropriate data-driven approaches for modelling foliar 
nutrients 

The observation that linear approaches (PLSR and SVR) out
performed nonlinear approaches (GPR and RFR) at leaf scales (Table 4A) 
has also been noted by Feilhauer et al. (2015) who attempted to estimate 
leaf chlorophyll, water and dry matter contents from leaf reflectance. 
The less encouraging results of GPR and RFR could be attributed to over- 
fitting, which is most commonly diagnosed when models performed 
much better with the calibration dataset than the validation dataset. In 
general, SVR performed slightly better than PLSR. Among the 12 foliar 
nutrients, SVR had a higher R2 for eight nutrients. This was likely 
because a nonlinear relationship between foliar nutrients and spectra is 
embedded in the RBF (radial basis function) transformation of raw 
spectra in SVR (Feilhauer et al., 2015; Zhai et al., 2013). In our case, it 

appears that SVR and PLSR are best suited to model foliar nutrients at 
leaf scales. 

Nonlinear approaches did not significantly improve the prediction 
accuracy at canopy scales, which was a surprise. Being affected by many 
confounding factors (e.g., canopy structures and soil background), the 
relationship between leaf biochemicals and canopy reflectance tends to 
be complicated and nonlinear (Verrelst et al., 2015, 2012). Therefore, 
nonlinear approaches generally outperformed linear approaches at 
canopy scales in previous studies (Axelsson et al., 2013; Pullanagari 
et al., 2016; Ramoelo et al., 2013). However, in our case the difference in 
prediction accuracy between linear and nonlinear approaches was quite 
small (ΔR2 < 0.1 and ΔRRMSE < 5%, Table 4B). Considering that PLSR 
has a low complexity but a comparative performance, this approach 
appears to be the optimal choice for modelling cranberry foliar nutrients 
at canopy scales. 

Fig. 3. The Pearson’s correlation coefficient between foliar nutrients and leaf compounds. Panel A shows the correlation between foliar nutrients and leaf dry matters 
(LMA, protein, lignin, cellulose, sugar and starch) at leaf scales. Panel B shows the correlation of foliar nutrients with dry matters (LMA, lignin, cellulose, sugar and 
starch, derived from dry leaf spectra), TCARI/OSAVI (as a surrogate of leaf chlorophyll), NDWI (leaf water), and NDVI (canopy LAI) at canopy scales. Correlations 
with an absolute value>0.3 were highlighted in blue. The correlation between leaf protein and nitrogen is always one because Protein = 4.43 × leaf N. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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5.2. The physical basis of hyperspectral remote sensing of foliar nutrients 

The correlations between foliar nutrients and leaf compounds were 
in general agreement with previous studies (Reich 2012; Homolová 
et al., 2013; Wright et al., 2004; Asner et al., 2016; Dana Chadwick & 

Asner, 2016; Pullanagari et al., 2016). LMA was negatively correlated to 
nitrogen and phosphorus mainly due to the strategy of resource acqui
sition and storage in plants (Wright et al., 2004; Asner et al., 2016; Dana 
Chadwick & Asner, 2016). Magnesium and nitrogen are important ele
ments in chlorophyll, and therefore were strongly correlated with the 

Fig. 4. Cranberry nutrient concentration maps of 2020–08-20 derived from canopy reflectance acquired by Hyspex imaging spectroscopy. Only nutrients nitrogen, 
phosphorus, potassium and magnesium are shown here. For the mapping results of other nutrients, please refer to Figures S-4 and S-5. 
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chlorophyll indices TCARI/OSAVI and NDVI. Furthermore, the inter
correlation of nitrogen with other nutrients (i.e., the correlation of 
protein with other nutrients in Fig. 3) was also noticed in previous 
studies (Axelsson et al., 2013; Pullanagari et al., 2016; Abdel-Rahman 
et al., 2017). 

The feasibility of leaf and imaging spectroscopy in estimating foliar 
nutrients can be explained by their correlations with leaf compounds 
that have strong absorption features. At leaf scales, the strong correla
tion of foliar nutrients with LMA (Fig. 3A) was the main reason why the 
absorption features of dry leaf compounds were frequently selected by 
models (Table 5A). For example, since phosphorus was strongly corre
lated with LMA (r = -0.82, Fig. 3A), its prediction models frequently 
leveraged the absorption features of five dry leaf compounds, including 
protein (1980, 2130 and 2240 nm), lignin (1420 nm), sugar (2320 nm), 
starch (1900 nm) and oil (2310 nm) (Table 5A). Furthermore, we found 
a strong positive correlation relationship (r = 0.62, Fig. 5A) between the 
performance of foliar nutrient models (R2 in Fig. 3A) and the absolute 
correlation (|r| in Fig. 5A) of foliar nutrients with LMA, indicating that 
the more a specific foliar nutrient was correlated with LMA, the better 
the performance of prediction models would be. 

At canopy scales, the strong correlation of foliar nutrients with leaf 
chlorophyll and canopy LAI (TCARI/OSAVI and NDVI in Fig. 3B) 
explained why foliar nutrients could be estimated from canopy spectra. 
We found that the performance of canopy-scale nutrient models (R2 in 
Fig. 5B) was positively correlated with the correlation (|r| in Fig. 5B) 
between foliar nutrients and leaf chlorophyll (r = 0.71, TCARI/OSAVI in 
Fig. 5B) and canopy LAI (r = 0.67, NDVI in Fig. 5B). This finding indi
cated that the more a specific foliar nutrient was correlated with leaf 
chlorophyll or canopy LAI, the better the performance of prediction 
models would be. The insignificant correlation between R2 and |r| for 
leaf water (r = 0.46, P = 0.13, NDWI in Fig. 5B) and LMA (r = 0.08, P =
0.79, LMA in Fig. 5B) suggested that at canopy scales the absorption 
features of leaf water and dry matters were not as important as that of 

leaf chlorophyll and canopy LAI in modelling foliar nutrients. 

5.3. Challenges in hyperspectral mapping of foliar nutrients 

Some challenges remain in utilizing imaging spectroscopy to quan
tify foliar nutrients at canopy scales. Canopy reflectance is affected by 
many other factors such as the sun-view geometry, atmosphere condi
tions and substrate background reflectance. In cranberries, this includes 
varying irrigation practices, both seasonally and among varieties. The 
sun-view geometry can induce the BRDF (Bidirectional Reflectance 
Distribution Function) effect, that is, the observed canopy reflectance 
changes with the positions of the sun and sensors (Queally et al., 2022; 
Song et al., 2016). Atmospheric scattering and absorption affect the 
radiance received by sensors, and may result in systematic differences in 
canopy reflectance across dates (Liu et al., 2021). Cranberries require 
large amounts of water under hot, dry or windy weather conditions 
(Caron et al., 2017). An irrigation practice can substantially decrease the 
short infrared wavelength reflectance (1400–2500 nm) due to the strong 
absorption of surface water. Addressing these confounding factors 
imperfectly can lead to a discrepancy in canopy reflectance, thereby 
influencing the canopy-scale modelling, especially by incorporating the 
effects of these factors into the model. For example, we examined the 
transferability of canopy-scale models across dates using subsets of data 
from four dates for model calibration and the remaining date for vali
dation. The models performed poorly in predicting foliar nutrients on 
the missing date (results not shown), which indicates that these data- 
driven approaches must utilize data covering all possible conditions 
for mapping to be robust for application to new dates. In this case, the 
effects of imperfect image preprocessing likely propagated to the foliar 
nutrient modelling. 

It is suggested to improve the transferability of foliar nutrient models 
via transfer learning and active learning in the future. Transfer learning 
aims to reuse the knowledge gained from tasks for which a large amount 

Fig. 5. The relation between the best model performance for foliar nutrients (i.e., R2s highlighted in green in Table 4) and the absolute Pearson’s correlation of foliar 
nutrients with leaf compounds (|r| in Fig. 3). In panel A, the absolute Pearson’s correlation |r| is calculated between foliar nutrients and LMA at leaf scales (i.e., |r| for 
LMA in Fig. 3A). In panel B, |r| values are calculated between foliar nutrients and TCARI/OSAVI (a surrogate of chlorophyll), NDVI (LAI), NDWI (water) and LMA at 
canopy scales, respectively (i.e., |r| for TCARI/OSAVI, NDVI, NDWI and LMA in Fig. 3B). The r value in each panel shows the Pearson’s correlation between R2 and | 
r|. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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of labelled data is available in tasks where only little labelled data is 
available (Kganyago et al., 2022; Pan and Yang, 2010; Wan et al., 2022; 
Zhang et al., 2021). Active learning aims to intelligently select a small 
set of representative samples for model calibration (Berger et al., 2021; 
Settles, 2010; Upreti et al., 2019; Verrelst et al., 2021). In order to 
improve the transferability of foliar nutrient models across dates (or 
sites), it is suggested to: 1) apply transfer learning techniques to transfer 
the foliar nutrient models learned from previous years (or sites) to the 
current year (or site) so that the effects of confounding factors on the 
canopy-scale modelling can be reduced; 2) apply active learning tech
niques to select a small set of representative samples from the current 
year (or site) for tissue analysis, and then add these new samples into the 
existing calibration dataset (from previous years or sites) to recalibrate/ 
update foliar nutrient models so that the transferability of foliar nutrient 
models can be improved. 

6. Conclusion 

We evaluated the potential of leaf and imaging spectroscopy to 
quantify a full range of cranberry foliar nutrients. Our results show that 
both leaf and imaging spectroscopies can predict cranberry foliar nu
trients with a reasonable accuracy. The feasibility of leaf and imaging 
spectroscopy in estimating foliar nutrients was mainly due to their 
correlations with leaf compounds that have strong absorption features. 
Future efforts can be made to improve the transferability via transfer 
learning and active learning techniques. 
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2014. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of 
plant species using continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 
87, 28–38. https://doi.org/10.1016/j.isprsjprs.2013.10.009. 

Chlus, A., Townsend, P.A., 2022. Characterizing seasonal variation in foliar biochemistry 
with airborne imaging spectroscopy. Remote Sens. Environ. 275, 113023 https:// 
doi.org/10.1016/j.rse.2022.113023. 

Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote Sens. Environ. 30, 
271–278. https://doi.org/10.1016/0034-4257(89)90069-2. 

Dana Chadwick, K., Asner, G.P., 2016. Organismic-scale remote sensing of canopy foliar 
traits in lowland tropical forests. Remote Sens 8, 87. https://doi.org/10.3390/ 
rs8020087. 

Davenport, J.R., 1996. The effect of nitrogen fertilizer rates and timing on cranberry 
yield and fruit quality. J. Am. Soc. Hort. Sci. 121, 1089–1094. https://doi.org/ 
10.21273/JASHS.121.6.1089. 

Davenport, J., Demoranville, C., Hart, J., Patten, K., Peterson, L., Planer, T., Poole, A., 
Roper, T., Smith, J., 1995. Cranberry tissue testing for producing beds in North 
America. Oregon State University Extension. 

De Moranville, C., 2014. Reducing phosphorus use in cranberry production: 
Horticultural and environmental implications. Acta Hortic. 447–453. https://doi. 
org/10.17660/ActaHortic.2014.1017.55. 

De Moranville, C.J., Ghantous, K., 2018. 2018–2020 Chart Book: Nutrition Management. 
Amherst, Massachusetts, USA.  

DeMoranville, C., 1992. Canberry nutrients, phenology, and N-P-K fertilization. 
University of Massachusetts Amherst. 

Fajardo, D., Morales, J., Zhu, H., Steffan, S., Harbut, R., Bassil, N., Hummer, K., 
Polashock, J., Vorsa, N., Zalapa, J., 2013. Discrimination of American cranberry 
cultivars and assessment of clonal heterogeneity using microsatellite markers. Plant 
Mol. Biol. Report. 31, 264–271. https://doi.org/10.1007/s11105-012-0497-4. 

Feilhauer, H., Asner, G.P., Martin, R.E., 2015. Multi-method ensemble selection of 
spectral bands related to leaf biochemistry. Remote Sens. Environ. 164, 57–65. 
https://doi.org/10.1016/j.rse.2015.03.033. 

Gao, B., 1996. NDWI—A normalized difference water index for remote sensing of 
vegetation liquid water from space. Remote Sens. Environ. 58, 257–266. https://doi. 
org/10.1016/S0034-4257(96)00067-3. 

Gara, T.W., Rahimzadeh-Bajgiran, P., Weiskittel, A., 2022. Determination of foliar traits 
in an ecologically distinct conifer species in Maine using Sentinel-2 imagery and site 
variables: Assessing the effect of leaf trait expression and upscaling approach on 
prediction accuracy. ISPRS J. Photogramm. Remote Sens. 193, 150–163. https://doi. 
org/10.1016/j.isprsjprs.2022.09.012. 

García-Haro, F.J., Campos-Taberner, M., Moreno, Á., Tagesson, H.T., Camacho, F., 
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