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ABSTRACT

Hyperspectral remote sensing has emerged as an efficient tool to quantify the spatial and temporal variations in
crop foliar nutrients, thus reducing the burden on in-situ tissue sampling and traditional chemical assays.
However, the physical mechanism of hyperspectral remote sensing of foliar nutrients is under-explored, espe-
cially for those lacking absorption features. Using four-year data collected from a cranberry farm, we demon-
strate the capacity of leaf and imaging spectroscopy to quantify a comprehensive set of crop foliar nutrients,
including seven macronutrients (N, P, K, Mg, Ca, S, Na) and five micronutrients (Fe, Mn, B, Cu, Zn). Specifically,
we: 1) compared the performance of four data-driven approaches to estimate foliar nutrients at both leaf and
canopy scales, including partial least square regression (PLSR), support vector regression (SVR), Gaussian process
regression (GPR) and random forest regression (RFR); and 2) explored the physical basis of hyperspectral remote
sensing of foliar nutrients. Our results showed that: 1) at leaf scales linear approaches PLSR and SVR performed
best for nine nutrients (P, Mg, Ca, S, Na, Fe, B, Cu and Zn), whereas nonlinear approaches GPR and RFR per-
formed best only for three nutrients (N, K and Mn); 2) at canopy scales no data-driven approach significantly
outperformed others; 3) the best modelling accuracy varied with foliar nutrients (leaf scales: R? from 0.30 to 0.93
and RRMSE from 9 to 51%; canopy scales: R? from 0.15 to 0.81 and RRMSE from 7 to 37%). The physical basis of
hyperspectral remote sensing of foliar nutrients was mainly attributed to their strong correlations with leaf
compounds that have apparent absorption features. More specifically, at leaf scales the correlation between foliar
nutrients and LMA (leaf mass per area) was leveraged by models to predict foliar nutrients from leaf spectra; at
canopy scales the correlation of foliar nutrients with leaf chlorophyll and canopy LAI (Leaf area index) was
leveraged by models to predict foliar nutrients from canopy spectra. This study revealed the importance of trait
correlations in predicting foliar nutrients, and improved our understanding of the physical mechanisms in
hyperspectral remotes sensing of foliar nutrients.

1. Introduction

2006), whereas an overapplication of nitrogen leads to plant crowding,
impedes pollinators and decreases yield (De Moranville and Ghantous,

The American cranberry (Vaccinium macrocarpon Ait.) is a short,
woody and evergreen perennial plant that is grown as a commercial crop
in North America. Commercial cranberries are typically grown in
marshes or bogs and their crop quality and production are greatly
impacted by nutrient management, including the timing, source and
dosage of fertilizer applications (Davenport, 1996; Jamaly et al., 2021;
Parent et al., 2021). For example, a deficiency in nitrogen supply de-
creases the density and yield of berries (Jamaly et al., 2021; Roper,

* Corresponding author.
E-mail address: liunf3@mail.sysu.edu.cn (N. Liu).

https://doi.org/10.1016/j.isprsjprs.2023.10.003

2018). Phosphorus is important for root development and plant meta-
bolism. However, excess phosphorus may result in the eutrophication of
surface water (De Moranville, 2014; Parent and Marchand, 2006). Some
micronutrients such as aluminum, zinc and copper become toxic when
oversupplied (Roper, 2006). Because cranberries are grown in acidic
soils, management of aluminum and iron, as well as tracking of acid-
sensitive cations such as calcium, is critical to maintaining plant
health and productivity (De Moranville and Ghantous, 2018).
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Plant tissue analysis is conventionally used for assessing the nutrient
status of cranberries (Harbut, 2011). In practice, growers annually
collect leaf samples from a subset of cranberry beds and send them to a
lab for chemical analysis. Lab analysis typically reports the concentra-
tions of 12 foliar nutrients, including seven macronutrients (nitrogen,
phosphorus, potassium, magnesium, calcium, sulfur, sodium) and five
micronutrients (iron, manganese, boron, copper and zinc). Tissue
analysis usually occurs between mid-August and mid-September, a
period when the cranberry growth in the current year is finished and the
nutrient concentrations are relatively stable (Davenport et al., 1995),
thereby informing nutrient management practices for the next year.

Tissue analysis cannot provide spatially complete information about
the nutrient status of cranberries. It is time consuming, costly and labor
intensive. Therefore, tissue samples are often taken at few and widely
separated cranberry beds. In our study site, the growers were able to
sample only 30% of the cranberry beds for tissue analysis, with the
actual tissues collected from a small number of plants in each of their
approximately 50 x 350 m beds. With spatially limited samples, it is
difficult for growers to make management decisions for those cranberry
beds not receiving tissue analysis, and even for unsampled areas of the
beds for which sample collections were made.

Reflectance spectroscopy (i.e., hyperspectral remote sensing) at the
leaf level and from imagery has emerged as an efficient tool to quantify
and map foliar biochemicals (Abdel-Rahman et al., 2017; Abukmeil
et al., 2022; Asner et al., 2015; Axelsson et al., 2013; Bian et al., 2013;
Chen et al., 2022; Cheng et al., 2014; Gao et al., 2019, 2020; Gara et al.,
2022; Garcia-Haro et al., 2020; Li et al., 2017; Pullanagari et al., 2021,
2016; Singh et al., 2022; Van Cleemput et al., 2018; Verrelst et al., 2016,
2021; Wang et al., 2020, 2019; Watt et al., 2020, 2019; Xu et al., 2022;
Zhang et al., 2013), thus reducing the burden on in-situ tissue sampling
and traditional chemical assays (Asner et al., 2015). Chemometric
methods build quantitative linkages between in-situ measured foliar
biochemicals and the narrowband spectra acquired from spectroscopy
using various statistical models, among which partial least squared
regression (PLSR), support vector regression (SVR), Gaussian process
regression (GPR) and random forest regression (RFR) are the most used
(Verrelst et al., 2015). PLSR linearly transforms spectral reflectance to a
small set of orthogonal features (called “latent factors™), and then line-
arly regresses these features against biochemicals (Chlus and Townsend,
2022; Liu et al., 2021). SVR nonlinearly transforms spectral reflectance
to a feature space with a higher dimensionality, and subsequently builds
a linear relationship between the transformed features and biochemicals
(Axelsson et al., 2013; Pullanagari et al., 2016). GPR assumes all data
points to be sampled from a joint multivariate normal distribution, and
infers biochemicals from spectral reflectance using the Bayesian rule
(Verrelst et al., 2016; Wang et al., 2019). RFR utilizes the “bagging”
approach to construct a large number of decision trees, within which
various thresholds are applied to spectral reflectance to estimate bio-
chemicals (Feilhauer et al., 2015; Pullanagari et al., 2016).

Numerous studies have compared these approaches (Abdel-Rahman
et al., 2017; Axelsson et al., 2013; Feilhauer et al., 2015; Gokkaya et al.,
2015; Pullanagari et al., 2016; Singh et al., 2022; Wang et al., 2019).
Feilhauer et al. (2015) examined the performance of PLSR, SVR and RFR
in predicting leaf chlorophyll, dry matter and water content from leaf
reflectance. They found that: 1) PLSR and SVR achieved similar pre-
diction accuracy whereas RFR produced the poorest accuracy; 2) The
important spectral bands identified by the three methods were consis-
tent with the reported absorption features of leaf biochemicals. Pull-
anagari et al. (2016) compared the ability of PLSR, kernel PLSR, SVR and
RFR to predict 11 pasture foliar nutrients from canopy reflectance, and
found that RFR produced a better prediction for the majority of nutrients
than other methods. Wang et al. (2019) evaluated the ability of PLSR
and GPR to model 15 grassland biochemicals from canopy reflectance.
They found that the two methods performed comparably with respect to
both prediction accuracy, uncertainties and the selection of informative
bands. Our survey of the literature suggests that there is no best data-

136

ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 135-146

driven approach for foliar nutrient prediction using hyperspectral
data, and that model selection may depend on the taxa being charac-
terized and the specific chemicals of interest. As such, our approach is to
implement multiple model formulations, with the selection of the actual
model for mapping based on performance against withheld data or,
alternatively, using an ensemble approach (Feilhauer et al., 2015).

The successful retrieval of leaf biochemicals from hyperspectral
signals is often attributed to their strong absorption features. Examples
can be found from leaf chlorophyll, dry matters and water that have
strong absorption features within 400-2500 nm (Feilhauer et al., 2015;
Verrelst et al., 2015). However, most foliar nutrients except for nitrogen
do not have strong absorption features related to molecular bonds with
C, H, N or O within 400-2500 nm (Pandey et al., 2017; Singh et al.,
2022). This is mainly because these elements exist as ions in plants or as
minor constituents of much larger carbon-based molecules. Previous
studies have generally attributed the success of foliar nutrient remote
sensing to the correlation between foliar nutrients and those leaf com-
pounds that do have spectral features (Chlus and Townsend, 2022;
Mutanga et al., 2005; Pandey et al., 2017; Pullanagari et al., 2016). Since
foliar nutrients correlate with some leaf compounds and these com-
pounds can affect reflectance by strong absorptions, an indirect linkage
exists between foliar nutrients and reflectance, allowing us to statisti-
cally relate foliar nutrients to reflectance. However, the physical basis of
the foliar nutrient models is still under-explored.

Our main objective of this research is to test the capacity of both leaf
and imaging spectroscopy to quantify the foliar nutrients in cranberries.
In application, we: 1) evaluate the performance of leaf and imaging
spectroscopy in estimating foliar nutrients; and 2) explore the physical
basis of hyperspectral remote sensing of foliar nutrients at both leaf and
canopy scales.

2. Study site and data collection
2.1. Study site

Our study site includes 210 50 x 350 m commercial cranberry beds
in Juneau County, Wisconsin, USA (Fig. 1). Wisconsin is the leading
cranberry producing state in the US, accounting for half of US cranberry
production and over 25% of global production (United States Depart-
ment of Agriculture, 2022). The beds in our imagery include twelve
cranberry cultivars: “Ben Lear”, “Bergman”, “Crimson Queen”,
“Demoranville”, “Grygleski GHI”, “HyRED”, “Le Munyon”, “Mullia
Queen”, “Ruby Star”, “Stevens”, “Sundance” and “Pilgrim” (Fajardo
et al., 2013; Roper, 2008). The growing season of cranberries runs from
mid-May to early September (DeMoranville, 1992; Hagidimitriou and
Roper, 1995). Bud growth initiates in mid-May with shoot elongation
and leaf expansion. Flowering begins in late June and continues for 3-4
weeks into July. Floral induction occurs soon after flowering and fruit
matures in 60-120 days, depending on cultivars and weather conditions.
Harvest starts in late September and continues for 2-3 weeks into
October.

2.2. Data collection

Fieldwork was conducted during the growing seasons of 2018-2021,
and included tissue samples for chemistry analyses, dry leaf spectra from
an ASD spectroradiometer and canopy spectra from two Hyspex imaging
spectrometers (Table 1). Foliar nutrients and dry leaf spectra were
measured for cranberry uprights, the vertical branches originating from
vines and terminating with a vegetative bud. Canopy spectra were
collected for cranberry beds using a boresighted Hyspex VNIR-SWIR
imaging system.

a) Dry leaf spectra

Dry leaf spectra were measured from 410 cranberry uprights
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Fig. 1. Cranberry beds from Juneau County, Wisconsin. A NAIP image (Na-
tional Agriculture Imagery Program, downloaded from: https://relief.ersc.wisc.
edu/wisconsinview/form.php) is used as the base map in the black-white color.
A minimum noise fraction (MNF) transform is performed to the Hyspex spectra
of cranberry areas to show the spectral variations among cranberry beds.

sampled on four dates (“Dry leaf spectra” in Table 1). The sampling dates
2018-07-03, 2019-06-26 and 2021-06-22 were chosen to assess the leaf
characteristics in the early growing season when fruits began to form,
and 2019-09-04 was to assess the leaf characteristics in the late growing
season when fruit matured. Each cranberry bed was evenly split into
halves and ten cranberry uprights were randomly collected within each
half bed to double the sample size.

We adopted the procedure to measure dry leaf spectra reported by
(Serbin et al., 2014; Wang et al., 2020). Leaf samples were oven-dried at
65 °C for at least 48 h. Then, dry leaves were ground to pass through a
20-mesh sleeve (0.84 mm) and weighed by a digital scale (precision:
0.0001 g). Finally, ~350 mg dried and ground leaf material was poured
into a black-painted cup, from which the reflectance of leaf material was
measured using an ASD spectrometer and a contact probe (Malvern
Panalytical Inc., Westborough, Massachusetts, USA; see Serbin et al.
2014). Spectral measurements were made for old and new growth leaves
separately. This was not done for the late season sampling date 2019-09-
04, at which time old and new foliage were visually indistinguishable.

b) Foliar nutrients

A total of 269 cranberry upright samples were analyzed for 12 foliar
nutrients, including seven macronutrients (nitrogen (N), phosphorus
(P), potassium (K), magnesium (Mg), calcium (Ca), sulfur (S), sodium
(Na)) and five micronutrients (iron (Fe), manganese (Mn), boron (B),
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Table 1
Data used in the project.
A) Dry leaf spectra
Dates old New Sensor specifications
leaves leaves
2018-07- 81 81 Sensor: ASD FieldSpec4
03 Spectral range: 350-2500 nm
2019-06- 75 75 Interpolated spectral interval: 1 nm
26
2019-09- 50 (no leaf
04 separation)
2021-06- 24 24
22

B) Foliar nutrients

Brookside Laboratories Midwest Foliar nutrients
Laboratories
Dates old New Dates Samples
leaves leaves
2018-07- 18 18 2018-08- 52 N, P, K, Mg, Ca, S,
03 15 Na, Fe, Mn, B, Cu,
2019-06- 10 10 2019-08- 44 Zn, in mgeg !
26 15
2019-09- 26 (no leaf 2020-08- 49
04 separation) 15
2021-06- 24 24 2021-08- 46
22 15
C) Canopy spectra
Dates Samples Image specifications
2018-07- 80 Sensors: HySpex VNIR-1800, SWIR-384
02 Spectral range: 400-1000 nm, 930-2500 nm
2019-06- 76 Spectral bands: 186, 288
25 Spectral resolution: 3.26 nm, 5.45 nm
2019-08- 32 Flying height: 2100 m
29 Spatial resolution: 0.75 m, 1.50 m
2020-08- 42
20
2021-06- 12
19

copper (Cu) and zinc (Zn)) (“Foliar nutrients” in Table 1). The samples
analyzed at Brookside Laboratories (New Bremen, Ohio, USA) were
collected by the University of Wisconsin team (sample size: 130), while
the samples analyzed at Midwest Laboratories (Omaha, Nebraska, USA)
were collected by our grower cooperators (sample size: 139). The same
protocol was utilized by two laboratories to analyze samples (Lincoln
etal., 2019; Mundorf et al., 2015). Tissue samples were dried at 65 °C for
at least 72 h and then ground through a 0.25-mm mesh screen. The
Dumas combustion method was used to determine foliar nitrogen con-
centration. For other nutrients, ground samples were digested with ni-
tric acid and hydrogen peroxide, and were then analyzed on inductively
coupled plasma optimal emission spectrometers.

c) Canopy spectra

Canopy spectra were collected on five dates using two co-aligned
HySpex VNIR-1800 and SWIR-384 imaging spectrometers (Norsk Elek-
tro Optikk, Oslo, Norway) (“Canopy spectra” in Table 1). The VNIR-
1800 measures 186 spectral bands between 400 and 1000 nm with a
spectral resolution of 3.26 nm. The SWIR-384 measures 288 spectral
bands between 930 and 2500 nm with a resolution of 5.45 nm. The
HySpex instruments were flown on a Cessna-180 airplane between
11:00 a.m. and 13:30p.m. local time at an above-ground height of 2100
m, generating a pixel size of 0.75 m for VNIR-1800 images and 1.50 m
for SWIR-384 images.

HySpex images were pre-processed using two open-source packages:
HyPro (Liu et al., 2019) and HyTools (Queally et al., 2022; Wang et al.,
2020). The processing steps included: 1) sensor boresighting; 2) radio-
metric calibration; 3) smile-effect correction; 4) geometric correction; 5)
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atmospheric correction; 6) BRDF (Bidirectional Reflectance Distribution
Function) correction; and 7) vector normalization. For more details,
please refer to (Liu et al., 2021). Noisy bands and atmospheric water-
absorption bands at 400-520, 920-1000, 1340-1500, 1800-2020 and
2300-2500 nm were excluded.

3. Methods
3.1. Foliar nutrient modelling at leaf and canopy scales

Four data-driven regression approaches, including partial least
square regression (PLSR), support vector regression (SVR), Gaussian
process regression (GPR) and random forest regression (RFR), were used
to link foliar nutrients with either ASD dry leaf reflectance or canopy
reflectance from the HySpex imaging spectrometer. These methods have
been used to model foliar biochemistry and select informative spectral
bands (Feilhauer et al., 2015; Pullanagari et al., 2021, 2016; Verrelst
et al.,, 2016; Wang et al., 2020, 2015).

a) Datasets for modelling

At the leaf scale, 130 measurements of foliar nutrients and dry leaf
spectra were used to build models (“Dry leaf spectra” and “Brookside
Laboratories” in Table 1). Only the shortwave infrared reflectance
(wavelength range: 1400-2500 nm) was used for modelling (Wang
et al., 2020). At the canopy scale, 237 measurements of foliar nutrients
and canopy spectra were used to build models (“Brookside Laboratories™
and “Midwest Laboratories” and “Canopy spectra” in Table 1). The foliar
nutrients of old and new leaves on 2018-07-03, 2019-06-26 and
2021-06-22 were averaged using their dry weights (“Brookside Labo-
ratories” in Table 1):

Wo]dcold + Wnewcnew
Wuld + Wnew

Ccramberry upright —

where Wy and W, are the dry weights of old and new leaves
respectively; Coq and Cpey are the nutrient concentrations of old and
new leaves respectively; Ceranberry upright iS the nutrient concentration of a
whole cranberry upright. The original dataset was 3:1 randomly split
into calibration and validation datasets.

b) Parameter optimization and model calibration.

Model parameters were set or optimized prior to model calibration
(Table 2). The settings or optimization ranges of model parameters were
adopted from previous studies (Feilhauer et al., 2015; Pullanagari et al.,
2021, 2016; Wang et al., 2020, 2015). For PLSR, the number of latent
factors (h) was optimized from 1 to 20 with a step size of one. For SVR,

the kernel function was set to the radial basis function; the
Table 2
The settings and optimization ranges of model parameters.
Models Parameters Setting/Optimization
range
Partial least square Number of latent factors (h) 1,2,...,20
regression
(PLSR)

Radial basis function
915 514 16
2524, 2
10,10, ..., 10*
Radial basis function

Kernel function
Regularization parameter (C)
Kernel coefficient (y)

Penalty coefficient (¢)

Kernel function

Support vector
regression (SVR)

Gaussian process
regression (GPR)

Random forest
regression (RFR)

500

1,6, ...,p/3 (p: the
number of spectral
bands)

Number of decision trees (free)
Number of features randomly
sampled as candidates at each
split (myy)
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regularization parameter (C) was exponentially optimized from 2° to
216; the kernel coefficient (y) was exponentially optimized from 25to0 26;
the penalty coefficient (¢) was exponentially optimized from 10 to 10%.
For GPR, the kernel function was set to the radial basis function. For
RFR, the number of decision trees (ng..) was set to 500 (Belgiu et al.,
2016; Lawrence et al., 2006); the number of features (m,,) was opti-
mized from 1 to p/3 (p: the number of spectral bands) with a step size of
five.

The optimization of model parameters was accomplished using a
repeated k-fold cross-validation strategy: 1) The calibration dataset was
randomly split into 4 folds, with 3 folds randomly chosen for training
and the fourth for testing; 2) The training dataset was used to build
models for a given set of parameter values (e.g., C=2"%, y=22 ande = 102
in SVR); 3) The trained models were applied to the testing dataset to
predict foliar nutrients; 4) Steps 1-3 were repeated 100 times to
generate 100 estimations for each data point for a given set of parameter
values; 5) The set of parameter values that produced the lowest pre-
diction error was chosen as the optimal parameters (Chlus and Town-
send, 2022; Wang et al., 2020).

With the optimal model parameters, foliar nutrient models were
calibrated by applying the repeated k-fold cross-validation (4 folds, 25
repeats) strategy to the calibration dataset again. This was done to
reduce the influence of data sampling on model calibration. Therefore,
there were 100 prediction models for each data-driven approach.

¢) Model evaluation

Calibrated models produced 100 predictions for each data point in
each validation dataset. The average of 100 model predictions was used
as the model estimation of each data point and the standard deviation
was used as the estimation uncertainty. Model performance was evalu-
ated using the coefficient of determination (RZ), root mean squared error
(RMSE, in mgog’l) and relative RMSE (RRMSE, = RMSE/(Max-Min) x
100%, in %).

3.2. Exploration of the physical basis of hyperspectral remote sensing of
foliar nutrients

We explored the physical basis of hyperspectral remote sensing of
foliar nutrients by: 1) selecting and analyzing the spectral bands that are
important for modelling foliar nutrients; and 2) investigating the cor-
relation between foliar nutrients and leaf compounds that have strong
absorption features. Our analysis steps are as follows:

a) Selection and analysis of important spectral bands

We adopted the procedure to select important spectral bands re-
ported by Wang et al. (2019; see also Fig. 2). For each data-driven
approach, the absolute model coefficients, characterizing the relative
importance of each band to the prediction of foliar nutrients, were
ranked in descending order across wavelengths (Table 3). Then, the top
30% ranked bands were selected as important bands (vertical lines in
Fig. 2A). Since there were 100 model runs for each data-driven approach
(see Section 3.1.b), the procedure of band ranking and selection was
repeated 100 times (Fig. 2A). Finally, the frequency of each band being
selected by models was calculated (frequency range: 0-100, Fig. 2B).
The more frequently a spectral band was selected by models, the more
important/informative this band was.

Some spectral bands are located at the absorption features of leaf
compounds such as leaf chlorophyll, water and dry matters (protein,
nitrogen, lignin, cellulose, sugar, starch and oil) (Curran, 1989). Previ-
ous studies have suggested that the absorption features of these leaf
compounds are likely leveraged by models to predict foliar nutrients
(Chlus and Townsend, 2022; Mutanga et al., 2005; Pandey et al., 2017;
Pullanagari et al., 2016). Therefore, the selection frequency (or impor-
tance) at these absorption features was analyzed to explore the physical
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A) Band ranking and selection
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Fig. 2. An example of calculating the selection frequency for each spectra band. In panel A, the prediction model is run 100 times for a foliar nutrient using the
repeated k-fold cross validation (iteration = 1, 2, ..., 100); The top 30% bands (vertical lines) are selected by ranking the absolute model coefficients (green curves) in
each model run. In panel B, vertical bars show the frequency of each band being selected by 100 models; The horizontal bar provides another way to visualize the
selection frequency, with blue colors representing a low frequency, red colors representing a high frequency and the grey color representing no band selection. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
The model coefficients used to rank the importance of spectral bands.
Models Coefficients References
Partial least square Standardized coefficients (Chlus and
regression (PLSR) Townsend, 2022)
Support vector The inner product of spectral (Feilhauer et al.,
regression (SVR) reflectance and the a-vector 2015)

Gaussian process
regression (GPR)

Random forest
regression (RFR)

The inverse of the length-scale
vector
Feature importance coefficients

(Wang et al., 2019)

(Feilhauer et al.,
2015)

basis of foliar nutrient remote sensing in the following analysis. For the
positions of these leaf compound absorption features, please refer to
(Curran, 1989). In summary, there are 12 absorption features within the
visible-to-near infrared (VNIR) wavelength range (400-1200 nm), 30
features within the shortwave infrared (SWIR) wavelength range
(1400-2500 nm).
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b) The correlation between foliar nutrients and leaf compounds

We calculated the Pearson’s correlation between foliar nutrients and
leaf compounds such as leaf chlorophyll, water and dry matters (LMA
(leaf mass per area, in gecm™2), protein, lignin, cellulose, sugar and
starch (in mgeg ™). In this study, we did not measure leaf compounds
due to cost reasons. Alternatively, we used dry leaf spectra to estimate
leaf dry matters, and used vegetation indices as surrogates of leaf
chlorophyll, water and canopy LAI (Leaf Area Index).

1) Leaf dry matters: In previous studies, we measured leaf dry matters
(LMA, lignin, cellulose, sugar and starch) and dry leaf spectra for 184
plant species sampled from seven NEON (National Ecological Ob-
servatory Network) domains in the US (Wang et al., 2022, 2020).
This dataset covered a wide range of leaf types with ~ 700 samples.
Using this dataset, we built PLSR models to link leaf dry matters with
dry leaf spectra. These models were then applied to our dry leaf
spectra data (“Dry leaf spectra” in Table 1) to estimate leaf dry
matters. Considering that nitrogen is mainly bound within proteins, a
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conversion factor of 4.43 was applied to our nitrogen data to esti-
mate proteins (Berger et al., 2020).

2) Leaf chlorophyll, water and canopy LAI: Two vegetation indices,
TCARI/OSAVI and NDWI calculated from canopy spectra (‘“Canopy
spectra” in Table 1), were used as surrogates of leaf chlorophyll and
water, respectively. The ratio TCARI/OSAVI (TCARI: Transformed
Chlorophyll Absorption in Reflectance Index; OSAVI: Optimized Soil
Adjusted Vegetation Index) has been found to be sensitive to leaf
chlorophyll but resistant to canopy LAI (Leaf Area Index) (Habou-
dane et al., 2002). The NDWI (Normalized Difference Water Index)
has been found to be sensitive to leaf water (Gao, 1996). We also
tested other vegetation indices that were sensitive to leaf chlorophyll
and water (Table S-1). In general, these indices were found to highly
correlate with TCARI/OSAVI and OSAVI (Figure S-1). In addition, we
usegl NDVI as a surrogate of canopy LAI (leaf area index, in m 2e
m ).

At leaf scales, the correlation between foliar nutrients and leaf dry
matters (LMA, lignin, cellulose, sugar and starch) was calculated. At
canopy scales, the correlation of foliar nutrients with dry matters (LMA,
lignin, cellulose, sugar and starch), TCARI/OSAVI (as a surrogate of leaf
chlorophyll), NDWI (leaf water), and NDVI (canopy LAI) was calculated.
The dry matters derived from dry leaf spectra for new and old growth
leaves were upscaled to canopy scales using dry leaf weights before the
canopy-scale correlation analysis.

Table 4

ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 135-146

4. Results

4.1. Comparison of model performance among the four regression
methods

At leaf scales, PLSR and SVR performed better than GPR and RFR for
nutrient predictions (Table 4A). Among the 12 foliar nutrients, PLSR and
SVR showed the best performance for nine nutrients, whereas GPR and
RFR performed best only for three nutrients (highlighted in green). More
specifically, PLSR produced the best results for leaf Mg (validation R? =
0.54, RRMSE = 9%), Ca (R? = 0.85, RRMSE = 10%), Fe (R? = 0.69,
RRMSE = 48%) and Zn (R? = 0.30, RRMSE = 26%); SVR produced the
best results for leaf P (R = 0.93, RRMSE = 11%), S (R? = 0.74, RRMSE
= 10%), Na (R* = 0.58, RRMSE = 32%), B (R* = 0.84, RRMSE = 13%)
and Cu (R? = 0.66, RRMSE = 20%); GPR produced the best results for
leaf N (R? = 0.88, RRMSE = 12%) and K (R® = 0.89, RRMSE = 11%);
RFR produced the best results only for leaf Mn (R? = 0.54, RRMSE =
51%). In general, the poorest results were produced by RFR for most
macronutrients and by GPR for most micronutrients (highlighted in
yellow in Table 4A).

At canopy scales, PLSR performed best in predicting foliar nutrients,
followed by GPR, SVR and RFR (Table 4B). PLSR produced the best
results for seven foliar nutrients, including leaf K ®R? = 0.25, RRMSE =
7%), Ca (R = 0.75, RRMSE = 10%), Na (R? = 0.80, RRMSE = 14%), Fe
(R? = 0.60, RRMSE = 37%), Mn (R* = 0.15, RRMSE = 28%), B (R* =
0.54, RRMSE = 20%) and Zn (R2 = 0.48, RRMSE = 16%). GPR produced

The performance of the four models in predicting cranberry foliar nutrients at leaf and canopy scales. For each foliar nutrient, the best model is highlighted in green,
and the poorest model is in yellow. AR? and ARRMSE are the differences in R> and RRMSE between the best (green) and poorest (yellow) models, respectively. n:
validation dataset size; PLSR: partial least squared regression; SVR: support vector regression; GPR: Gaussian process regression; RFR: random forest regression. For the

scatterplot results of each foliar nutrient, please refer to Figures S-2 and S-3.

A) Model validation at leaf scales (n = 32)

Macronutrients PLSR SVR GPR RFR Best-Poorest

R? RRMSE R? RRMSE R? RRMSE R? RRMSE AR? ARRMSE
N 0.86 12% 0.83 14% 0.88 12% 0.68 19% 0.20 ~7%
p 0.88 11% 0.93 11% 0.89 12% 0.75 16% 0.18 -1%
K 0.85 12% 0.88 11% 0.89 11% 0.83 13% 0.06 —2%
Mg 0.54 9% 0.51 10% 0.26 12% 0.28 12% 0.28 -3%
Ca 0.85 10% 0.82 11% 0.79 12% 0.74 14% 0.11 —4%
S 0.67 11% 0.74 10% 0.74 12% 0.59 14% 0.15 —4%
Na 0.53 33% 0.58 32% 0.52 34% 0.41 35% 0.17 —3%
Micro nutrients PLSR SVR GPR RFR Best-Poorest

R? RRMSE R? RRMSE R? RRMSE R? RRMSE AR? ARRMSE
Fe 0.69 48% 0.68 50% 0.64 55% 0.68 52% 0.05 ~7%
Mn 0.41 64% 0.50 56% 0.53 51% 0.54 51% 0.13 —13%
B 0.78 16% 0.83 13% 0.38 26% 0.46 24% 0.46 —~13%
Cu 0.62 21% 0.66 20% 0.57 23% 0.56 23% 0.10 -3%
Zn 0.30 26% 0.23 27% 0.01 31% 0.03 31% 0.30 —5%

B) Model validation at canopy scales (n = 61)

Macro nutrients PLSR SVR GPR RFR Best-Poorest

R? RRMSE R? RRMSE R? RRMSE R? RRMSE AR? ARRMSE
N 0.75 13% 0.81 11% 0.79 11% 0.79 11% 0.06 —2%
p 0.45 8% 0.47 7% 0.50 7% 0.44 7% 0.06 0%
K 0.25 7% 0.20 7% 0.20 7% 0.21 7% 0.05 0%
Mg 0.73 10% 0.68 10% 0.73 9% 0.71 9% 0.05 -1%
Ca 0.75 10% 0.70 11% 0.74 10% 0.71 10% 0.05 —1%
S 0.52 14% 0.62 12% 0.63 11% 0.61 12% 0.11 —3%
Na 0.80 14% 0.77 15% 0.75 15% 0.71 17% 0.09 —3%
Micro nutrients PLSR SVR GPR RFR Best-Poorest

R? RRMSE R? RRMSE R? RRMSE R? RRMSE AR? ARRMSE
Fe 0.60 37% 0.46 44% 0.43 44% 0.44 43% 0.17 ~7%
Mn 0.15 28% 0.01 28% 0.08 27% 0.12 26% 0.14 0%
B 0.54 20% 0.45 22% 0.51 20% 0.46 21% 0.09 —2%
Cu 0.46 16% 0.39 17% 0.50 15% 0.39 17% 0.11 —2%
Zn 0.48 16% 0.38 18% 0.45 17% 0.42 17% 0.10 —2%
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the best results for five foliar nutrients, including leaf P (R? = 0.50,
RRMSE = 7%) and Mg (R? = 0.73, RRMSE = 9%), S (R? = 0.63, RRMSE
= 11%) and Cu (R? = 0.50, RRMSE = 15%). SVR produced the best
results only for leaf R%= 0.81, RRMSE = 11%). RFR did not produce the
best results for any foliar nutrient. It should be noted that the
improvement in prediction accuracy from the poorest to the best models
was quite small at canopy scales (AR? and ARRMSE in Table 4B). For
most foliar nutrients, AR? and ARRMSE were<0.1 and 5%, respectively.
Only leaf Fe had a AR%>0.1 (AR? = 0.17) and ARRMSE>5% (ARRMSE
= 7%).

Macronutrients generally had a higher prediction accuracy than
micronutrients. At leaf scales, most macronutrients had a validation
RRMSE<15%, whereas the RRMSE of most micronutrients ranged from
20 to 65% (Table 4A). At canopy scales, all macronutrients had a vali-
dation RRMSE<15%, whereas the RRMSE of all micronutrients ranged
from 15 to 37% (Table 4B). For the scatterplot results, please refer to
Figures S-2 and S-3.

4.2. Selection frequency at the strong absorption features of leaf
compounds

With the exception nitrogen, most nutrients do not have strong ab-
sorption features within 400-2500 nm. For these elements, some of the
frequently selected bands (selection frequency > 50 times) were found
to be around the documented absorption features of leaf compounds
such as chlorophyll, water, and dry matters (nitrogen, protein, lignin,
starch, cellulose and sugar) (Table 5). For example, the leaf-scale SVR
models for phosphorus frequently selected seven absorption features,
with 1420 nm being around the absorption feature of lignin, 1900 nm
around starch, 1980, 2130 and 2240 nm around protein, 2310 nm
around oil, and 2320 nm around sugar (Table 5A). The canopy-scale
PLSR models for calcium frequently selected three absorption features,
with 910 nm being around the absorption feature of nitrogen, 1690 nm
around nitrogen, protein, lignin and starch, and 2320 nm around starch
(Table 5B).

4.3. The correlation between foliar nutrients and leaf compounds

At leaf scales, LMA most correlated with foliar nutrients (Fig. 3A).
With the exception of Mg, S, B and Zn, the absolute Pearson’s correlation
coefficient |r| between LMA and foliar nutrients ranged from 0.63 to
0.87. Negative correlations were observed between LMA and N, P, K,
Mg, S, Cu and Zn (|r| > 0.6 in general), whereas positive correlations
were observed for Ca, Na, Fe, Mn and B (|r| > 0.65). When dry matters
were decomposed into various leaf compounds, protein most correlated
with foliar nutrients (|r| > 0.5), followed by sugar, cellulose, lignin and
starch (|r| < 0.4).

At canopy scales, TCARI/OSAVI (as a surrogate of leaf chlorophyll)
and NDVI (as a surrogate of canopy LAI) most correlated with foliar
nutrients (the absolute Pearson’s correlation value |r| > 0.6 generally),
followed by NDWI (as a surrogate of leaf water, |r| = 0.4-0.55) and LMA
(Jr| < 0.5) (Fig. 3B). Among leaf dry compounds, protein most correlated
with foliar nutrients (|r] = 0.5-0.76), followed by cellulose (|r| =
0.4-0.5), and lignin, sugar and starch (|r| < 0.4). It was also noticed that
the correlation of foliar nutrients with LMA, lignin, sugar and starch was
weakened from leaf to canopy scales. On average, the absolute corre-
lation coefficient |r| was decreased by ~ 0.2 during the upscaling.

4.4. Cranberry nutrient concentration mapping

Spatial variations in foliar nutrients were observed across and within
cranberry beds (Fig. 4). For example, some cranberry beds at locations A
and B had a nitrogen concentration lower than 11 mgeg ™!, whereas the
cranberry beds at location C had a nitrogen concentration higher than
15 mgeg '. At location D, the nitrogen concentration at the edge of
cranberry beds was apparently lower than that in the middle of beds.
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Table 5

The spectral bands with a selection frequency > 50 times by the best leaf- or
canopy-scale models and with a location around the absorption features of leaf
compounds. Letters a-I indicate the leaf compounds that have absorption fea-
tures at each wavelength. PLSR: partial least squared regression; SVR: support
vector regression; GPR: Gaussian process regression; RFR: random forest
regression.

A) Leaf-scale models

Foliar Best Wavelengths (nm) Leaf
nutrients model compounds
N GPR 1420°, 1450%%f 1490%¢ a: nitrogen
P SVR 1420¢, 19009, 1980°, 2130, 2240°, b: protein
2310 &, 2320° c: lignin
K GPR 1420¢ d: starch
Mg SVR 1690*>4, 19009, 1940%><4< 1980°, e: cellulose
20009, 2130P, 2240°, 2270%¢f, 2280°f,  f: sugar
2350%b¢ g: oil
Ca PLSR 19009, 1940*><%¢ 20009, 2240°,
225094, 2270%f, 22809¢, 2310 8, 2350
be
S SVR 1420, 1450%%f, 1580%f, 2130°, 2240°
Na SVR 1420, 1820¢, 1960%f, 1980°, 2060*"
Fe PLSR 1420¢, 1820¢, 2130°, 2180*°, 2240°,
22509, 2310 &, 23209, 2350%>¢
Mn RFR 1580%, 1690%P%4, 1780%<f, 1820°
B SVR 1960%f, 20009, 2240, 2270%f, 23209,
2350%P¢
Cu SVR 1420, 1580%f, 1980°, 2060*°, 2080%,
2100%¢, 2130P, 2240°, 22509
Zn PLSR  1420% 1900% 1960, 1980°, 20007,
2130°
B) Canopy-scale models
Foliar Best Wavelengths (nm) Leaf
nutrients  model compounds
N SVR 910° 1020°, 1120° a: nitrogen
P GPR None b: protein
K PLSR 910% 1120°, 2100%¢ c: lignin
Mg GPR 2320¢ d: starch
Ca PLSR 910°, 1690%>%4, 23201 e: cellulose
S GPR 2080%f, 2100%¢, 2130, 2180*" f: sugar
Na PLSR 1020°, 10401, 1690%>4, 178041, g: oil
2310 &, 23209 h: chlorophyll
Fe PLSR 1020°, 20607, 2080%f, 2310 & i: water
Mn PLSR 1120°, 1510®%, 15309, 1690%P4,
2080%f, 2280%¢, 2310 &
B PLSR 910, 1780%<f, 2270%<f, 23201
Cu GPR 2080%f, 2130°
Zn PLSR 660 ", 1020°, 1040 8, 1120°

Negative predictions at low concentrations were produced by the
models for leaf Fe and B (blank cranberry beds at location A for iron and
boron, Figures S-4 and S-5). Similar spatial distribution patterns were
observed among some nutrients (e.g., N, Mg, Ca, S and B) due to their
strong intercorrelations (Pearson’s correlation range: 0.70-0.80).

It should also be noted that the foliar nutrient maps presented here
were produced using the range of model predictions. Therefore, a low
(or high) concentration value on maps does not necessarily indicate that
cranberry plants are under nutrient deficiency (or excess). To diagnose
the nutrient status of cranberries, normal nutrient ranges need to be
applied to these maps (Davenport et al., 1995). For example, all the
cranberry beds mapped here actually had a nitrogen concentration
above normal (=7.5 mgeg 1), and were classified as “High-to-Excessive”
by Midwest Laboratories, suggesting that the amount of nitrogen fer-
tilizer should be reduced next year.
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A) Leaf-scale correlation
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Fig. 3. The Pearson’s correlation coefficient between foliar nutrients and leaf compounds. Panel A shows the correlation between foliar nutrients and leaf dry matters
(LMA, protein, lignin, cellulose, sugar and starch) at leaf scales. Panel B shows the correlation of foliar nutrients with dry matters (LMA, lignin, cellulose, sugar and
starch, derived from dry leaf spectra), TCARI/OSAVI (as a surrogate of leaf chlorophyll), NDWI (leaf water), and NDVI (canopy LAI) at canopy scales. Correlations
with an absolute value>0.3 were highlighted in blue. The correlation between leaf protein and nitrogen is always one because Protein = 4.43 x leaf N. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Discussion

5.1. Selecting appropriate data-driven approaches for modelling foliar
nutrients

The observation that linear approaches (PLSR and SVR) out-
performed nonlinear approaches (GPR and RFR) at leaf scales (Table 4A)
has also been noted by Feilhauer et al. (2015) who attempted to estimate
leaf chlorophyll, water and dry matter contents from leaf reflectance.
The less encouraging results of GPR and RFR could be attributed to over-
fitting, which is most commonly diagnosed when models performed
much better with the calibration dataset than the validation dataset. In
general, SVR performed slightly better than PLSR. Among the 12 foliar
nutrients, SVR had a higher R? for eight nutrients. This was likely
because a nonlinear relationship between foliar nutrients and spectra is
embedded in the RBF (radial basis function) transformation of raw
spectra in SVR (Feilhauer et al., 2015; Zhai et al., 2013). In our case, it

appears that SVR and PLSR are best suited to model foliar nutrients at
leaf scales.

Nonlinear approaches did not significantly improve the prediction
accuracy at canopy scales, which was a surprise. Being affected by many
confounding factors (e.g., canopy structures and soil background), the
relationship between leaf biochemicals and canopy reflectance tends to
be complicated and nonlinear (Verrelst et al., 2015, 2012). Therefore,
nonlinear approaches generally outperformed linear approaches at
canopy scales in previous studies (Axelsson et al., 2013; Pullanagari
etal., 2016; Ramoelo et al., 2013). However, in our case the difference in
prediction accuracy between linear and nonlinear approaches was quite
small (AR2 < 0.1 and ARRMSE < 5%, Table 4B). Considering that PLSR
has a low complexity but a comparative performance, this approach
appears to be the optimal choice for modelling cranberry foliar nutrients
at canopy scales.
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Fig. 4. Cranberry nutrient concentration maps of 2020-08-20 derived from canopy reflectance acquired by Hyspex imaging spectroscopy. Only nutrients nitrogen,
phosphorus, potassium and magnesium are shown here. For the mapping results of other nutrients, please refer to Figures S-4 and S-5.

5.2. The physical basis of hyperspectral remote sensing of foliar nutrients Asner, 2016; Pullanagari et al., 2016). LMA was negatively correlated to
nitrogen and phosphorus mainly due to the strategy of resource acqui-

The correlations between foliar nutrients and leaf compounds were sition and storage in plants (Wright et al., 2004; Asner et al., 2016; Dana

in general agreement with previous studies (Reich 2012; Homolova Chadwick & Asner, 2016). Magnesium and nitrogen are important ele-

et al., 2013; Wright et al., 2004; Asner et al., 2016; Dana Chadwick & ments in chlorophyll, and therefore were strongly correlated with the
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chlorophyll indices TCARI/OSAVI and NDVI. Furthermore, the inter-
correlation of nitrogen with other nutrients (i.e., the correlation of
protein with other nutrients in Fig. 3) was also noticed in previous
studies (Axelsson et al., 2013; Pullanagari et al., 2016; Abdel-Rahman
et al., 2017).

The feasibility of leaf and imaging spectroscopy in estimating foliar
nutrients can be explained by their correlations with leaf compounds
that have strong absorption features. At leaf scales, the strong correla-
tion of foliar nutrients with LMA (Fig. 3A) was the main reason why the
absorption features of dry leaf compounds were frequently selected by
models (Table 5A). For example, since phosphorus was strongly corre-
lated with LMA (r = -0.82, Fig. 3A), its prediction models frequently
leveraged the absorption features of five dry leaf compounds, including
protein (1980, 2130 and 2240 nm), lignin (1420 nm), sugar (2320 nm),
starch (1900 nm) and oil (2310 nm) (Table 5A). Furthermore, we found
a strong positive correlation relationship (r = 0.62, Fig. 5A) between the
performance of foliar nutrient models (R? in Fi g. 3A) and the absolute
correlation (|r| in Fig. 5A) of foliar nutrients with LMA, indicating that
the more a specific foliar nutrient was correlated with LMA, the better
the performance of prediction models would be.

At canopy scales, the strong correlation of foliar nutrients with leaf
chlorophyll and canopy LAI (TCARI/OSAVI and NDVI in Fig. 3B)
explained why foliar nutrients could be estimated from canopy spectra.
We found that the performance of canopy-scale nutrient models (R? in
Fig. 5B) was positively correlated with the correlation (|r| in Fig. 5B)
between foliar nutrients and leaf chlorophyll (r = 0.71, TCARI/OSAVI in
Fig. 5B) and canopy LAI (r = 0.67, NDVI in Fig. 5B). This finding indi-
cated that the more a specific foliar nutrient was correlated with leaf
chlorophyll or canopy LAI, the better the performance of prediction
models would be. The insignificant correlation between R? and |r| for
leaf water (r = 0.46, P = 0.13, NDWI in Fig. 5B) and LMA (r = 0.08, P =
0.79, LMA in Fig. 5B) suggested that at canopy scales the absorption
features of leaf water and dry matters were not as important as that of

1.0
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leaf chlorophyll and canopy LAI in modelling foliar nutrients.

5.3. Challenges in hyperspectral mapping of foliar nutrients

Some challenges remain in utilizing imaging spectroscopy to quan-
tify foliar nutrients at canopy scales. Canopy reflectance is affected by
many other factors such as the sun-view geometry, atmosphere condi-
tions and substrate background reflectance. In cranberries, this includes
varying irrigation practices, both seasonally and among varieties. The
sun-view geometry can induce the BRDF (Bidirectional Reflectance
Distribution Function) effect, that is, the observed canopy reflectance
changes with the positions of the sun and sensors (Queally et al., 2022;
Song et al., 2016). Atmospheric scattering and absorption affect the
radiance received by sensors, and may result in systematic differences in
canopy reflectance across dates (Liu et al., 2021). Cranberries require
large amounts of water under hot, dry or windy weather conditions
(Caron et al., 2017). An irrigation practice can substantially decrease the
short infrared wavelength reflectance (1400-2500 nm) due to the strong
absorption of surface water. Addressing these confounding factors
imperfectly can lead to a discrepancy in canopy reflectance, thereby
influencing the canopy-scale modelling, especially by incorporating the
effects of these factors into the model. For example, we examined the
transferability of canopy-scale models across dates using subsets of data
from four dates for model calibration and the remaining date for vali-
dation. The models performed poorly in predicting foliar nutrients on
the missing date (results not shown), which indicates that these data-
driven approaches must utilize data covering all possible conditions
for mapping to be robust for application to new dates. In this case, the
effects of imperfect image preprocessing likely propagated to the foliar
nutrient modelling.

It is suggested to improve the transferability of foliar nutrient models
via transfer learning and active learning in the future. Transfer learning
aims to reuse the knowledge gained from tasks for which a large amount
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Fig. 5. The relation between the best model performance for foliar nutrients (i.e., R?s highlighted in green in Table 4) and the absolute Pearson’s correlation of foliar
nutrients with leaf compounds (|r| in Fig. 3). In panel A, the absolute Pearson’s correlation |r| is calculated between foliar nutrients and LMA at leaf scales (i.e., |r| for
LMA in Fig. 3A). In panel B, |r| values are calculated between foliar nutrients and TCARI/OSAVI (a surrogate of chlorophyll), NDVI (LAI), NDWI (water) and LMA at
canopy scales, respectively (i.e., |r| for TCARI/OSAVI, NDVI, NDWI and LMA in Fig. 3B). The r value in each panel shows the Pearson’s correlation between R? and |
r|. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of labelled data is available in tasks where only little labelled data is
available (Kganyago et al., 2022; Pan and Yang, 2010; Wan et al., 2022;
Zhang et al., 2021). Active learning aims to intelligently select a small
set of representative samples for model calibration (Berger et al., 2021;
Settles, 2010; Upreti et al., 2019; Verrelst et al., 2021). In order to
improve the transferability of foliar nutrient models across dates (or
sites), it is suggested to: 1) apply transfer learning techniques to transfer
the foliar nutrient models learned from previous years (or sites) to the
current year (or site) so that the effects of confounding factors on the
canopy-scale modelling can be reduced; 2) apply active learning tech-
niques to select a small set of representative samples from the current
year (or site) for tissue analysis, and then add these new samples into the
existing calibration dataset (from previous years or sites) to recalibrate/
update foliar nutrient models so that the transferability of foliar nutrient
models can be improved.

6. Conclusion

We evaluated the potential of leaf and imaging spectroscopy to
quantify a full range of cranberry foliar nutrients. Our results show that
both leaf and imaging spectroscopies can predict cranberry foliar nu-
trients with a reasonable accuracy. The feasibility of leaf and imaging
spectroscopy in estimating foliar nutrients was mainly due to their
correlations with leaf compounds that have strong absorption features.
Future efforts can be made to improve the transferability via transfer
learning and active learning techniques.
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