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A B S T R A C T

We investigate the existence of higher order topological localized modes in moiré lattices of
bilayer elastic plates. Each plate has a hexagonal array of discrete resonators and one of the
plates is rotated at an angle (21.78◦) which results in a periodic moiré lattice with the smallest
area. The two plates are then coupled by inter-layer springs at discrete locations where the
top and bottom plate resonators coincide. Dispersion analysis using the plane wave expansion
method reveals that a bandgap opens on adding the inter-layer springs. The corresponding
topological index, namely fractional corner mode, for bands below the bandgap predicts the
presence of corner localized modes in a finite structure. Numerical simulations of frequency
response show localization at all corners, consistent with the theoretical predictions. The
considered continuous elastic bilayered moiré structures opens opportunities for novel wave
phenomena, with potential applications in tunable energy localization and vibration isolation.

. Introduction

The study of architected two-dimensional (2𝐷) moiré lattice structures has gained a lot of attention, particularly in 2𝐷 materials.
oiré lattices are formed when one periodic lattice is rotated with respect to another identical lattice, see Fig. 1 for an example. At

pecific angles of rotation/twist, a lattice with a larger periodicity results, called the moiré lattice. Their dispersion surfaces have
nique features like flat bands, and nonlinear (interacting) inter-layer coupling effects that enable various exotic phenomena [1–5].
otable examples include recent breakthroughs with twisted bilayer graphene, including high-temperature super-conductivity [6]
nd two-dimensional magnetism [7].

These recent discoveries in quantum mechanics have inspired the quest for novel wave phenomena with moiré structures in
iverse physical domains. The ability to independently engineer the rotation angle and inter-layer interactions, combined with
dvances in fabrication have opened a rich design space. Examples in photonics include flat bands using a hexagonal array on
ilicon nanodisk [8], lasing by semiconductor membrane with a triangular pattern of nanoholes [9], topologically protected corner
odes [10], and localization–delocalization transition of light [11]. These phenomena arise solely due to the relative rotation

etween two lattices, without introducing any structural defect, material discontinuity, or non-linearity. Similarly, in acoustics,
ilayer moiré structure made of coupled acoustic cavities in various lattice configurations has been investigated. It has led to higher-
rder topological states (HOTI) with hexagonal lattice [12], acoustic valley edge modes with triangular [13] and topological Lifshitz
ransition with square lattice [14].

In elastic media, the presence of both longitudinal and shear (transverse) waves offers rich possibilities for novel dynamic
henomena with architected structures. Recent studies have investigated the dynamic properties of moiré lattices comprising of
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Fig. 1. Schematic of periodic moiré lattices and unit cell. The rotation angle is 𝜙1 = 21.78◦ in (a) and 𝜙2 = 13.17◦ in (c). (b,d) Enlarged view of the lattices,
along with lattice vectors. The blue and red shaded hexagons overlap when the two lattices coincide (at 𝜙 = 0). The moiré lattice in (a,b) has the smallest unit
cell. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

elastic plates with arrays of pillars in various configurations. Notable predictions include the existence of non-trivial topological
bandgap supporting edge states [15], chirality-driven flat bands analogous to twisted bilayer graphene [16,17] and localized
modes [18]. Oudich et al. [19] systematically examined the effect of inter-layer coupling in bilayer pillared elastic plates in a
twisted honeycomb arrangement. Their calculations predict that a weak coupling gives a dispersion band structure similar to the
classical bilayer graphene, while a stronger coupling induces the valley Hall effect for elastic wave propagation. Ruzzene and
coworkers studied single-layer elastic plate moiré structures having a square array of pillars with spatial modulation of heights.
They demonstrated a topological transition of isofrequency contour and highly directional wave tunability [20]. A majority of
these studies have been conducted on large lattices which are difficult to fabricate. In addition, the nonlinear properties of these
lattices remain unexplored. The exotic properties of moiré structures in electronic media listed above are associated with non-linear
or interaction effects of spectrally isolated bands and localized modes. Hence similar localized modes may give rise to analogous
nonlinear phenomena in elastic media.

Although localized modes have been extensively investigated in architected structures over the last few decades, recent research
has focused on modes that arise due to nontrivial dispersion band topology. Their topological origin guarantees their existence and
they are immune to structural defects and imperfections. In contrast to accidental or trivial localized modes, topological modes
translate across geometric parameters, length scales and material properties. Hughes and coworkers [21,22] developed the theory
to establish the topological nature of localized modes at corners and point defects in higher dimensional lattice structures and
derived the invariants to systematically infer their presence. Topological localized modes have been observed in diverse physical
domains, including photonic [10,23–29], acoustic [30–34], phononic [35–37], and elastic [38–41]. They have also been predicted
in moiré lattices of twisted bilayer graphene with various inter-layer potentials, however there is disagreement between the various
predictions on their locations. Liu et al. [42] show the localized mode only at the 120◦ corner and provide symmetry-based reasons
for non-existence of such modes at a 60◦ corner, while Wu et al.predict them at both 60◦ and 120◦ corners [12].

Here, we investigate the existence of such topological corner localized modes in bilayer elastic moiré plates. We consider two
elastic thin plates having a hexagonal array of resonators. The plates are rotated at an angle (21.78◦) relative to each other to
generate a moiré pattern. Discrete inter-layer springs are added between the plates at locations where the top and bottom plate
resonators coincide. The dispersion spectrum and fractional corner mode are determined for a unit cell to predict the existence of
corner localized modes. The predictions are verified through numerical simulations of frequency response on a finite plate. The
outline of this paper is as follows: Section 2 presents the lattice configuration and the governing equations, followed by a dispersion
analysis and computation of topological indices for a unit cell in Section 3. The numerical results of mode shapes and frequency
response are presented in Section 4 and the results are summarized in Section 5.
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2. Lattice description and problem setup

We first derive the conditions that result in a periodic hexagonal moiré lattice, determine the smallest such lattice and its lattice
ectors. Then the elastic plate configuration and its governing equations are presented.

.1. Lattice and unit cell: geometric description

Fig. 1 displays examples of hexagonal moiré lattices, along with their unit cells and lattice vectors. They are formed by stacking
wo identical hexagonal lattices with a relative rotation between them. The rotation is about the center of a hexagon with respect
o its out-of-plane axis. The blue and red lattices are identical, but rotated relative to each other about 𝑂. The lattice vectors of the

red hexagonal lattice are 𝒃𝟏, 𝒃𝟐 with 60◦ angle between them, and the unit cell length is 𝑏. For an arbitrary relative rotation, the
resulting pattern is not periodic. At specific rotation angles, a periodic pattern does result. These angles are hereby called moiré
angles.

Let us discuss the conditions under which a periodic moiré lattice arises. We analyze the configuration that results when the blue
lattice, which is initially coincident with the red one, is rotated about 𝑂. Two videos are presented in the supplementary materials
on this rotation, illustrating the formation of the two distinct moiré lattices of Fig. 2(a,c). Let us fix this rotation center 𝑂 as the
origin of our coordinate system. The key observation is that a periodic moiré lattice results when the center of a hexagon in a blue
lattice coincides with the center of another hexagon in a red lattice away from the origin. The distance between the hexagon center
and the rotation center 𝑂 should be identical for a pair of hexagons, one each from the blue and red lattice. Let us consider a
hexagon in the red lattice with center 𝒗1 at

𝒗𝟏 = 𝑚𝒃𝟏 + 𝑛𝒃𝟐, 𝑚, 𝑛 ∈ Z, 𝑚 > 𝑛, gcd(𝑚, 𝑛) = 1. (1)

Its distance from the center is ‖𝒗𝟏‖ = 𝑏
√

𝑚2 + 𝑚𝑛 + 𝑛2. It is the nearest red shaded hexagon from the center in the examples in
ig. 1(b,d). Due to the 𝐶6 (6-fold rotation) symmetry of the hexagonal lattice, there are multiple hexagons in the blue lattice at the
ame distance. A simple choice for a hexagon in the blue lattice is 𝒗𝟐 = 𝑛𝒃𝟏 + 𝑚𝒃𝟐, which satisfies ‖𝒗𝟏‖ = ‖𝒗𝟐‖. The rotation angle

(moiré angle) 𝜙 is thus the angle between 𝒗𝟏 and 𝒗𝟐, given by

cos𝜙 =
𝒗𝟏.𝒗𝟐

‖𝒗1‖‖𝒗2‖
=

𝑚2∕2 + 𝑛2∕2 + 2𝑚𝑛
𝑚2 + 𝑛2 + 𝑚𝑛

. (2)

Let us see why the resulting bilayered (moiré) lattice is periodic along 2 directions and derive the lattice vectors of its unit cell.
ote that any integer multiple of 𝒗𝟏, i.e., 𝑞𝒗𝟏 is also the center of a hexagon in the red lattice. In addition, this hexagon goes to 𝑞𝒗𝟐
fter rotation, as the angle between 𝑞𝒗𝟏 and 𝑞𝒗𝟐 is also 𝜙. Thus the lattice is periodic along 𝒗𝟐, with periodicity ‖𝒗𝟐‖. Since both
he hexagonal lattices have 𝐶6 (6-fold rotation) symmetry about 𝑂, the combined lattice also has 𝐶6 symmetry about 𝑂. The moiré
attice is thus also periodic along directions at angle 𝜋∕3 from 𝒗𝟐. We take its lattice vectors to be 𝒗2 and a vector at angle −𝜋∕3
rom 𝒗2. In terms of the hexagonal lattice vectors, the moiré lattice vectors (𝒂1,𝒂2) may be expressed as

𝒂1 = 𝑛(𝒃𝟏 − 𝒃𝟐) + 𝑚𝒃𝟏 = (𝑚 + 𝑛)𝒃𝟏 − 𝑛𝒃𝟐, 𝒂𝟐 = 𝑛𝒃𝟏 + 𝑚𝒃𝟐. (3)

Fig. 1(a,c) displays the periodic moiré lattices for (𝑚, 𝑛) = (2, 1) and (3, 2). Their corresponding unit cells and lattice vectors are
indicated in Fig. 1(b,d). The relative angles between the blue and red lattices for these lattices are 𝜙1 = 21.78◦ and 𝜙2 = 13.17◦. The
blue and red shaded hexagons coincide when there is no relative rotation between the two lattices. As the blue lattice is rotated, the
blue shaded hexagons move to the locations illustrated in the figure, and they lie along 𝒗𝟐. The lattice vector 𝒂𝟏 lies along the line
labeled 𝑂𝑃 . Note from these examples that the unit cell size of the resulting lattice is, in general, different for different 𝜙 values.

In this work, we investigate the behavior of the lattice with the smallest moiré unit cell, due to its potential ease of fabrication
with macro-scale components. To determine this unit cell, let us calculate the unit cell area 𝐴 for a lattice with unit vectors given
by Eq. (3). It is given by

𝐴 = ‖𝒂𝟏 × 𝒂𝟐‖ =

√

3𝑏2

2
(

𝑚2 + 𝑚𝑛 + 𝑛2
)

=

√

3𝑏2

4
(

𝑚2 + 𝑛2 + (𝑚 + 𝑛)2
)

. (4)

or 𝑚 and 𝑛 distinct non-zero integers, a direct calculation shows that 𝐴 = 7
√

3𝑏2∕2 is the minimum area for 𝑚 = 2, 𝑛 = 1. The
attice vectors are thus

𝒂𝟏 = 3𝒃𝟏 − 𝒃𝟐, 𝒂𝟐 = 𝒃𝟏 + 2𝒃𝟏. (5)

Let us discuss the key properties of this lattice. The parallelogram with lattice vectors labeled in Fig. 1b displays the chosen
nit cell, with the center of the hexagon at its center. This choice ensures that a finite-sized hexagon-shaped lattice will have 6-fold
otation symmetry. This property will be used later in Section 3.2 to predict localized modes at corners. This unit cell has 14 nodes
f the hexagonal lattice in each layer. Indeed, note that the underlying hexagonal lattice has 2 nodes per unit cell and its area is
3𝑏2∕2. Comparing with the moiré unit cell area, we see that the latter is 7 times larger and it thus has 14 nodes. In addition, there

are two nodes in each unit cell where the red and blue lattices coincide. These nodes are indicated by green circles in the inset of
Fig. 2a. Their locations within the unit cell, with respect to the lower 60◦ in this inset, are given by

𝒑 = 𝒃 +
𝒃𝟏 + 𝒃𝟐 , 𝒑 = 2𝒃 + 2 (

𝒃 + 𝒃
)

. (6)
3
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Fig. 2. Schematic of bilayer elastic plate lattice. (a) Moiré lattice with a unit cell in the inset. Green circles indicate locations of coincident resonators in the
two layers. Lattice has 𝐶2 symmetry with respect to both its diagonals (green dash lines). (b) Top plate with resonators (red) in hexagonal lattice configuration.
Black springs are at the coincident locations indicated in (a). (c) The moiré structure has two plates with resonators, and are coupled by the inter-layer springs,
𝑘𝑖𝑛. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

By checking explicitly, we note that 𝒑𝟏 and 𝒑𝟐 lie at different sub-lattice sites of each hexagonal lattice. In particular, 𝒑𝟏 lies at the
𝛼 (𝛽) site in the red (blue) lattice, while 𝒑𝟐 lies in the 𝛽 (𝛼) site. Thus the 𝛼 (𝛽) site of the red (blue) lattice coincides with the 𝛽 (𝛼)
site of the red lattice at 𝒑𝟏 (𝒑𝟐) in each unit cell.

2.2. Plate configuration and governing equations

We consider two thin infinite homogeneous and isotropic elastic plates supporting flexural (out-of-plane) vibrations. A set of
identical discrete resonators with mass 𝑚 and stiffness 𝑘 are connected to each plate in a hexagonal lattice configuration. The
resonators are located at the nodes of the hexagons. Let 𝒓𝛼𝛽 indicate the position vectors of these resonators in each plate, with
the index 𝛽 taking values in {𝑡, 𝑏} indicating the top and bottom plate, and 𝛼 is an integer that labels the resonators in each plate.
Fig. 2b displays a schematic of the top plate with resonators. The bottom plate is rotated at an angle 𝜙 = 21.78◦ with respect to
the center of a hexagon so that the resonator locations in the two plates resemble the moiré lattice as shown in Fig. 2a. Note that
the edges of the hexagonal lattice in Fig. 2(a,b) do not have any physical meaning and are shown for clarity. The unit cell of the
resulting lattice is indicated by dashed at the bottom left corner in Fig. 2a, along with its expanded view in the inset. Similar to the
hexagonal lattice, the lattice vectors of the moiré lattice are also at 60◦ to each other. As discussed above, it has 14 nodes in each
layer with 2 nodal locations where the top and bottom layers coincide, as indicated by the green circles in the inset. The two plates
are coupled by inter-layer springs of stiffness 𝑘𝑖𝑛 at these coinciding locations. Fig. 2c displays a schematic of the fully assembled
bilayered structure.

As noted earlier, each layer and thus the infinite lattice has 6-fold rotation symmetry about an axis through the unit cell center.
In addition, the lattice also has a 2-fold rotation symmetry about both the short and long in-plane diagonals, as indicated by the
dashed lines in Fig. 2a. Indeed, when the lattice is rotated by 180◦ about a diagonal, the top plate resonators go to the bottom plate
resonators’ locations. The resulting structure is thus identical to that prior to rotation. Note that this operation is not equivalent to
simply interchanging the top and bottom layers, as the latter will result in a different lattice.

Let us now present the governing equations for elastic waves in this bilayered structure. We assume that the out-of-plane modes
are decoupled from the in-plane longitudinal and shear modes. In addition, we assume each resonator has one degree of freedom
and can move out-of-plane. The out-of-plane displacement of a resonator located at 𝒓𝛼𝛽 and the mid-plane section of plate 𝛽 are
denoted by 𝑤𝛼𝛽 and 𝑤𝛽 , respectively. The dynamics of these thin plates are modeled using the Kirchhoff–Love theory. The equation
of motion of the combined structure having 𝑁 moiré unit cells is given by [17,43]

𝐷∇4𝑤𝛽 + 𝜌ℎ𝑤̈𝛽 = −
14𝑁
∑

𝛼=1
𝑘(𝑤𝛽 −𝑤𝛼𝛽 )𝛿(𝒙 − 𝒓𝛼𝛽 ) −

2𝑁
∑

𝛼=1
𝑘𝑖𝑛(𝑤𝛽 −𝑤𝛽′ )𝛿(𝒙 − 𝒓𝛼𝛽 ), (7a)

𝑚𝑤̈𝛼𝛽 = −𝑘(𝑤𝛼𝛽 −𝑤𝛽 (𝒓𝛼𝛽 )). (7b)

Here 𝒙 = (𝑥, 𝑦), which denotes the position vector of a point in the plane of the plates, and the gradient operator ∇ in Eq. (7a)
is with respect to 𝒙. The first term on the right-hand side of Eq. (7a) accounts for force due to the resonators, while the last term
is for the interaction between the two plates. Subscript (𝛽, 𝛽′) in this last term takes values {𝑡, 𝑏} and {𝑏, 𝑡} for the top and bottom
plates, respectively. The plate bending stiffness is 𝐷 = 𝐸ℎ3∕12(1 − 𝜈2), with thickness ℎ, Young’s modulus 𝐸, Poisson’s ratio 𝜈 and
its density is 𝜌. For 𝑁 moiré unit cells, the number of resonators in each plate and the number of inter-layer springs are 14𝑁 and
2𝑁 , respectively. The following dimension and properties are chosen for our numerical calculations: unit cell length 𝑎 = 26.5 mm,
𝑚 = 10−3 kg, 𝑘 = 10 kN/m, 𝑘𝑖𝑛 = 2 kN/m, ℎ = 0.1 mm, 𝐸 = 70 GPa, 𝜈 = 0.33, 𝜌 = 2700 kg/m3. The material properties correspond to
aluminum as the plate material.
4
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Fig. 3. Dispersion diagram of the unit cell along the IBZ boundary (a) without inter-layer springs (𝑘𝑖𝑛 = 0) and (b) with inter-layer springs (𝑘𝑖𝑛 ≠ 0). The shaded
band in (b) indicates a bandgap opening at the 𝐾-point.

3. Unit cell analysis

Having introduced the lattice description and presented the governing equations, we now do a dispersion analysis over its unit
cell using the plane wave expansion method. We apply the approach followed in prior works on elastic plates with square and
hexagonal array of resonators [17,44,45]. Then the topological properties of the dispersion bands are determined by computing the
fractional corner mode 𝑄, which is the elastic analogue of the fractional charge in electronic crystals [22]. This quantity is used to
predict the existence of localized modes at the corners of a finite moiré lattice structure.

3.1. Dispersion analysis

We use Floquet–Bloch theory with the plane wave expansion method to determine waves propagating through the bilayered
lattice. For a plane wave propagating with frequency 𝜔 and wave vector 𝜿, the displacement field in the plate may be expressed as

𝑤𝛽 (𝒙, 𝑡) = 𝑒𝑖(𝜔𝑡+𝜿⋅𝒙)𝑊𝛽 (𝒙). (8)

where 𝑊𝛽 (𝒙) is a periodic function with periodicity of the moiré unit cell. This periodic function can be expressed using a Fourier
series as ∑

𝑙1
∑

𝑙2
𝑊𝑙1𝑙2𝛽𝑒

𝑖(𝑙1𝒈𝟏⋅𝒙+𝑙2𝒈𝟐⋅𝒙), with 𝒈𝟏, 𝒈𝟐 being the reciprocal lattice vectors of the moiré lattice. They satisfy 𝒈𝒊 ⋅ 𝒂𝒋 = 2𝜋𝛿𝑖𝑗
and are given by 𝒈𝟏 = 2𝜋(1∕𝑎,−1∕

√

3𝑎) and 𝒈𝟐 = 2𝜋(0, 2∕
√

3𝑎). The summation indices run over all integers, but for computation
purposes, we truncate the summations at 𝑇 terms and use the approximation

𝑤𝛽 (𝒙, 𝑡) = 𝑒𝑖(𝜔𝑡+𝜿.𝒙)
𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖(𝑙1𝒈𝟏+𝑙2𝒈𝟐)⋅𝒙𝑊𝑙1𝑙2𝛽 . (9)

Here, 𝑊𝑙1𝑙2𝛽 denotes the plane wave coefficient subscripted by integers 𝑙1, 𝑙2 and finite number (2𝑇 + 1)2 of terms are considered.
The resonator displacement can be expressed as

𝑤𝛼𝛽 (𝑡) = 𝑒𝑖(𝜔𝑡+𝜿⋅𝒓𝛼𝛽 )𝑊𝛼𝛽 . (10)

Here the index 𝛼 takes values in {1, 2,… , 14} and labels the resonators in a reference unit cell, while the index 𝛼 is an integer that
labels resonators in an arbitrary unit cell in the lattice.

Let us derive the discrete form of the governing equations over the unit cell. Substituting the plate and resonator displacements
into Eq. (7a), multiplying by 𝑒−𝑖(𝒌+𝒈′).𝒙 and integrating over the unit cell gives an equation for each 𝑊𝑙1𝑙2𝛽 . Similarly, substituting the
displacements into Eq. (7b) gives an equation for each 𝑊𝛼̄𝛽 . The detailed derivations are presented in Appendix A.1. The resulting
discretized governing equations are

𝜔2𝑊𝑙′1𝑙
′
2𝛽

= 𝐷
𝜌𝐴ℎ

|𝜿 + 𝒈′|4𝑊𝑙′1𝑙
′
2𝛽

+ 𝑘
𝜌𝐴ℎ

14
∑

𝛼=1
𝑒−𝑖𝒈

′⋅𝒓𝛼𝛽

( 𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖𝒈⋅𝒓𝛼𝛽𝑊𝑙1𝑙2𝛽 −𝑊𝛼𝛽

)

+
𝑘𝑖𝑛
𝜌𝐴ℎ

2
∑

𝛼=1
𝑒−𝑖𝒈

′⋅𝒓𝛼𝛽

( 𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖𝒈⋅𝒓𝛼𝛽 (𝑊𝑙1𝑙2𝛽 −𝑊𝑙1𝑙2𝛽′ )

)

, (11a)

𝜔2𝑊𝛼𝛽 = − 𝑘
𝑚

𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖𝒈.𝒓𝛼𝛽𝑊𝑙1𝑙2𝛽 +

𝑘
𝑚
𝑊𝛼𝛽 . (11b)

Here 𝒈 = 𝑙1𝒈𝟏 + 𝑙2𝒈𝟐, 𝒈′ = 𝑙′1𝒈𝟏 + 𝑙′2𝒈𝟐 and 𝐴 =
√

3𝑎2∕2 is the unit cell area. Eqs. (11a) and (11b) together constitute an eigenvalue
problem and its solution gives the dispersion relation of the unit cell yielding the frequencies 𝜔 at specific wave number, 𝜿. We
5
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Fig. 4. Frequencies of first 14 bands below the bandgap at various high symmetry points of the irreducible Brillouin zone. There are a number of degenerate
modes, which require a Gram Schmidt procedure to determine their rotational eigenvalue 𝜆𝑝.

present results for calculations with 𝑇 = 10. Increasing 𝑇 beyond this value did not result in a noticeable change in the results.
Finally, the frequency 𝜔 is expressed in non-dimensional form using the normalization 𝛺 =

√

𝜌𝑎4ℎ∕𝐷𝜔.
As discussed earlier in Section 2.2, the infinite lattice has 6-fold rotation symmetry about an out of plane axis through the

unit cell center and 2-fold rotation symmetry about its in-plane diagonals. Thus its Brillouin zone is a hexagon and its irreducible
Brillouin zone (IBZ) comprises of a triangle whose corners are the high symmetry points 𝛤 = (0, 0), 𝑀 = (𝜋∕𝑎, 𝜋∕

√

3𝑎) and
𝐾 = (2𝜋∕3𝑎, 2𝜋∕

√

3𝑎). Here, we examine the dispersion surfaces along the boundary of the IBZ.
Fig. 3 displays the dispersion diagram of a unit cell for points along 𝛤 -𝑀-𝐾-𝛤 in the IBZ for two cases: (a) the plates are

uncoupled, 𝑘𝑖𝑛 = 0 and (b) coupled by inter-layer springs, 𝑘𝑖𝑛 ≠ 0. The inset in (a) has a schematic of the Brillouin zone, IBZ,
along with the high symmetry points. Since the spectrum of ∇4 operator in Eq. (7a) is unbounded, the exact solution has an infinite
number of frequencies at each wave vector. There is a huge bandgap above the first 28 dispersion branches in both cases, and we
restrict attention to these branches only. For the uncoupled plate case, the dispersion diagram in Fig. 3(a) has a Dirac cone at 𝐾
point, consistent with a Dirac cone that arises in a hexagonal lattice. A bandgap opens at that 𝐾 point when inter-layer springs
are added, indicated by the shaded rectangle in Fig. 3(b). In addition, two branches become isolated from the remainder of the
dispersion curves, consistent with other studies which find isolated flat bands at much smaller moiré angles [16].

3.2. Localized mode prediction by computing fractional corner mode 𝑄

We use the dispersion analysis to determine if a finite moiré structure has localized modes at its boundary. The bulk edge
correspondence principle relates the symmetry and topological properties of the Bloch modes in an infinite lattice to the modes
localized on the boundaries of a finite lattice [21,46]. The presence of localized modes can be predicted by computing appropriate
topological invariants. Here, we will determine the elastic analog of the fractional corner charge 𝑄, which has been introduced to
predict and demonstrate localized modes in electronic and photonic media [21,22,47].

The fractional corner mode 𝑄 is a topological invariant determining the existence of higher order topological mode in the
bandgap. This quantity measures the change in rotational symmetry of the Bloch modes as we traverse the dispersion surface.
It is expressed in terms of the number of specific rotational symmetry eigenvalues of the Bloch modes at the high symmetry points.
All the dispersion branches below the bandgap are considered to compute 𝑄. There are 14 bands below the band gap shown in
Fig. 3(b) for the moiré lattice. Fig. 4 displays the distribution of these 14 frequencies at the various high symmetry points. We note
that there are several degenerate sets of frequencies.

Before computing 𝑄, let us discuss how a mode shape at the high symmetry points transforms as the lattice is rotated by an
angle about the center of a unit cell. First, let us consider the high symmetry point 𝐾 and the rotation angle is 2𝜋∕3. Under this
rotation, the lattice geometry looks identical to that prior to rotation. Let 𝑹(𝜃) the rotation matrix given by

𝑹(𝜃) =
(

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)

,

and let 𝑹1 = 𝑹(2𝜋∕3). Recall that the bilayered plate has 6-fold rotation symmetry about a unit cell center and thus remains identical
when rotated by 𝜃. Let us indicate a plane wave with wave vector 𝜿 by 𝑤𝛽 (𝒙,𝜿). It is also a function of 𝑡 and 𝜔, these are not indicated
for brevity. Thus for every plane wave 𝑤𝛽 (𝒙,𝜿), there is a corresponding plane wave with wave vector 𝑹𝜿, whose mode shape is
𝑤𝛽 (𝑹𝒙,𝑹𝜿). This condition leads to the relation

𝑤𝛽 (𝒙,𝜿) = 𝑤𝛽
(

𝑹1𝒙,𝑹1𝜿
)

= 𝑤𝛽
(

𝑹1𝒙,𝜿 − 𝒈𝟏 − 𝒈𝟐
)

. (12)

The second equality in the above equation follows by observing that the wave vector at 𝐾 satisfies 𝑹1𝜿 = 𝜿 − (𝒈𝟏 + 𝒈𝟐), i.e., it
translates by −(𝒈𝟏+𝒈𝟐) when rotated by 𝜃 = 2𝜋∕3. The Bloch mode shapes at wave vector 𝜿−𝒈𝟏−𝒈𝟐 are identical to that at 𝜿, as the
term 𝑒−𝑖(𝒈𝟏+𝒈𝟐)⋅𝒙 relating them in Eq. (8) is a periodic function [48]. Each set of corresponding Bloch modes at these two wave vectors
6

may differ by a phase factor 𝜆 as we continuously traverse the reciprocal lattice [49]. Hence, we have 𝑤𝛽 (𝒙,𝜿−𝒈𝟏−𝒈𝟐) = 𝜆𝑤𝛽 (𝒙,𝜿).
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Substituting this relation for a point 𝑹𝟏𝒙 into the right side of Eq. (12), we see that the displacements at 𝒙 and 𝑹1𝒙 in a Bloch mode
shape at the 𝐾 point are related by

𝑤𝛽 (𝒙,𝜿) = 𝜆𝑤𝛽 (𝑹1𝒙,𝜿). (13)

pplying Eq. (13) successively three times, we get the relation 𝑤𝛽 (𝒙,𝜿) = 𝜆3𝑤𝛽 (𝑹3
1𝒙,𝜿). Noting that 𝑹3

1 is the identity matrix, we
have 𝜆3 = 1. Its solutions are

𝜆𝑝 = 𝑒𝑖2𝜋(𝑝−1)∕3, 𝑝 ∈ {1, 2, 3}.

hus each mode shape 𝑤𝛽 (𝒙) at the high symmetry point 𝐾 satisfies Eq. (13) for a specific value of 𝜆𝑝. This 𝜆𝑝 can thus be viewed
as the eigenvalue of the rotational symmetry operator 𝑹1 for the mode shape.

Let us now describe the procedure to find the rotational eigenvalue 𝜆𝑝 for each Bloch mode at the 𝐾 point. We project a mode
shape into the subspace where a function 𝑢(𝒙) satisfies 𝑢(𝑹1𝒙) = 𝜆𝑝𝑢(𝒙). The projected mode is given by

𝑤𝑝
𝛽 (𝒙) =

1
3

(

𝑤𝛽 (𝒙) + 𝜆−1𝑝 𝑤𝛽 (𝑹𝟏𝒙) + 𝜆−2𝑝 𝑤𝛽 (𝑹𝟐
𝟏𝒙)

)

, 𝑝 ∈ {1, 2, 3}.

By direct substitution, we can verify that any mode shape is decomposed into three parts 𝑤𝑝
𝛽 , that satisfy 𝑤𝛽 (𝒙) = 𝑤1

𝛽 (𝒙) +𝑤2
𝛽 (𝒙) +

𝑤3
𝛽 (𝒙). If a mode shape has rotational eigenvalue 𝜆𝑞 , 𝑞 ∈ {1, 2, 3}, then the component 𝑤𝑞

𝛽 is non-zero, while the other two projected
components are zero. For example, if a mode satisfies 𝑤𝛽 (𝒙) = 𝜆1𝑤𝛽 (𝑹𝟏𝒙), then 𝑤1

𝛽 (𝒙) = 𝑤𝛽 (𝒙) and 𝑤2
𝛽 (𝒙) = 𝑤3

𝛽 (𝒙) = 0. Thus
examining the norms or magnitudes of 𝑤𝑝

𝛽 (𝒙) suffices to identify 𝜆𝑝 for a non-degenerate mode. Next, let us discuss how to deal
with a set of modes with degenerate frequencies. Here 𝑤𝑝

𝛽 (𝒙), determined by the above equation, can all be non-zero, as 𝑤𝛽 (𝒙) may
be a linear combination of mode shapes with distinct 𝜆𝑝. To resolve this, we first determine 𝑤𝑝

𝛽 (𝒙) for all the mode shapes, say 𝑛𝑑 ,
at a particular degenerate frequency. Then, for each 𝑝, a Gram–Schmidt procedure is done on the 𝑛𝑑 projected modes 𝑤𝑝

𝛽 (𝒙). The
number of orthogonal modes with non-zero norm gives the number of independent 𝑤𝑝

𝛽 (𝒙), which is equal to the number of modes
with rotational eigenvalue 𝜆𝑝 in this set of 𝑛𝑑 modes.

We follow a similar approach to determine the rotational eigenvalues at the other high symmetry points 𝑀 and 𝛤 . The wave
vector at 𝑀 satisfies 𝑹(𝜋)𝜿 = 𝜿 − 𝒈𝟏 − 𝒈𝟐. Again, we note that the lattice looks identical prior to and after rotation by 𝜃 = 𝜋. Using
the same steps as for the 𝐾 point, the corresponding 𝜆𝑝 are

𝜆𝑝 = 𝑒𝑖2𝜋(𝑝−1)∕2 = (−1)𝑝−1, 𝑝 ∈ {1, 2},

and the projected modes are

𝑤𝑝
𝛽 (𝒙) =

1
2
(

𝑤𝛽 (𝒙) + (−1)𝑝−1𝑤𝛽 (𝑹(𝜋)𝒙)
)

, 𝑝 ∈ {1, 2}.

Examining the norms of 𝑤𝑝
𝛽 or using a Gram Schmidt procedure for the sets with degenerate frequencies allows us to determine 𝜆𝑝

for each mode. The wave vector at 𝛤 point satisfies both 𝑹(2𝜋∕3)𝜿 = 𝜿 and 𝑹(𝜋)𝜿 = 𝜿. For each mode at 𝛤 , we can thus determine
the rotational eigenvalues 𝜆𝑝 for rotations by 2𝜋∕3 and 𝜋. The mode shapes 𝑤𝑝

𝛽 corresponding to each 𝜆𝑝 for all the high symmetry
points are presented in Appendix B, see Figs. 9–12.

The fractional corner mode 𝑄, analogous to its electronic counterpart, is given by [42]

𝑄 =
[𝑀 (2)

1 ]
4

+
[𝐾 (3)

1 ]
6

mod 1. (14)

Here, [𝑀 (2)
1 ] is the difference between the number of modes at 𝑀 and 𝛤 points that have 𝜆𝑝 = 1 under rotation by 𝜃 = 𝜋. Similarly,

[𝐾 (3)
1 ] denotes the difference between the number of mode shapes at 𝐾 and 𝛤 points with 𝜆𝑝 = 1 under rotation by 𝜃 = 2𝜋∕3.

Counting the number of mode shapes with 𝑝 = 1 at the high symmetry points below the bandgap, we have from Eq. (14)

𝑄 =
(6 − 8)

4
+

(4 − 6)
6

= −5
6

= 1
6

mod 1. (15)

A non-zero value of 𝑄 in Eq. (15) confirms the non-trivial topological nature of the bandgap, which in turn, implies the existence
of corner localized modes in a finite structure.

We apply the framework established by Hughes and coworkers [22] in the context of electronic waves and charges to predict the
location of localized modes. This framework allows us to express the stiffness matrix of any 𝐶6 symmetric structure as a direct sum
of copies of the stiffness matrices of primitive generator lattices. The topological invariants, like 𝑄, are a sum of the corresponding
𝑄 values of these primitive generators. We consider two primitive generators: ℎ4𝑏, ℎ3𝑐 that have nontrivial topological properties.
Here, a lattice with notation ℎ𝑚𝑊 has 𝑚 bands below the bandgap and a Wannier center at location 𝑊 [22]. The lattice schematics,
unit cell and dispersion diagrams for these two lattices are presented in Appendix C.

We computed the fractional corner modes for these primitive generator lattices by considering both 6-fold and 3-fold rotation
symmetry. The values are 𝑄6 = 2∕3, 𝑄3 = 1∕3 for the ℎ4𝑏 lattice and 𝑄6 = 1∕2, 𝑄3 = 0 for the ℎ3𝑐 lattice. Here, the subscripts
of 𝑄 indicate the rotation symmetry of the finite structure. Thus 𝑄6 and 𝑄3 determine localized modes at 120◦ and 60◦ corners,
respectively. These values show that the ℎ4𝑏 lattice has a localized mode at 60◦ corner, while both lattices have at 120◦ corner.
Noting that 𝑄 of the moiré lattice may be expressed as 𝑄 = 1∕6 = 2∕3 + 1∕2 ( mod 1), we infer that the moiré lattice is equivalent
to stacking a copy of each of these two primitive generators, along with copies of a lattice (𝑡) that has trivial topological properties.
7
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Fig. 5. Mode shapes of a finite plate with simply-supported boundary conditions. Displacement contours of top plate for (a) a typical bulk mode (𝛺 = 0.70), (b)
an edge mode (𝛺 = 13.71), corner modes at (c) 120◦ corner (𝛺 = 2.34) and (d) 60◦ corner (𝛺 = 8.19).

In other words, the stiffness matrix of the moiré lattice, expressed in the basis of the first 28 dispersion bands, is equivalent to the
direct sum ℎ4𝑏 ⊕ ℎ3𝑐 ⊕ 7𝑡. This direct sum, along with the 𝑄 values of the primitive generators, indicates the existence of corner
localized modes at both 120◦ and 60◦ corners in our moiré structure. Indeed, the latter case of 60◦ corner localized mode is inferred
by noting that the 𝑄3 value of our moiré lattice is 1∕3 + 0 = 1∕3.

4. Numerical results of finite plate

In this section, the predictions of corner localized modes in Section 3.2 are verified by determining the mode shapes and frequency
response under external excitation on a finite plate. We show that these localized modes are excited even when an external force is
applied far from the corner.

4.1. Bulk and localized mode shapes

We consider a finite plate of 𝑛1 × 𝑛2 = 6 × 6 moiré unit cells along 𝒂𝟏, 𝒂𝟐 directions. The sides of the plate are of lengths 𝐿1 and
𝐿2, both equal to 6𝑎. The four sides of the plate are simply supported, implying zero displacement and zero bending moment about
an axis along the boundary. At each boundary point, these conditions may be expressed as [50]

𝑤𝛽 = 0, 𝑀𝜂 =
𝜕2𝑤𝛽

𝜕𝜂2
+ 𝜈

𝜕2𝑤𝛽

𝜕𝜏2
= 0,

with 𝜂 and 𝜏 being coordinates normal to and along the boundary.
We introduce and work with a coordinate system whose axes (𝑥1, 𝑥2) are aligned with the lattice vectors of the moiré lattice. The

boundary conditions and solution basis functions are conveniently expressed in this coordinate system. To determine the governing
equations in this coordinate system, let us determine its relation with the Cartesian coordinate system having axes (𝑥, 𝑦). Let us
consider an arbitrary point with position vector 𝒙 in the two coordinate systems. It is given by 𝒙 = 𝑥𝒆𝒙 + 𝑦𝒆𝒚 = 𝑥1𝒆𝟏 + 𝑥2𝒆𝟐,
with (𝒆𝒙, 𝒆𝒚) and (𝒆𝟏, 𝒆𝟐) being unit vectors in the two coordinate systems. Taking dot products with 𝒆𝒙 and 𝒆𝒚 gives the relations
𝑥 = 𝑥1 + 𝑥2∕2 and 𝑦 =

√

3𝑥2∕2. They can be inverted to get 𝑥1 = 𝑥 − 𝑦∕
√

3 and 𝑥2 = 2𝑦∕
√

3.
The boundary conditions in the new coordinate system become

𝑤𝛽 (𝑥1 = 0, 𝑥2) = 𝑤𝛽 (𝑥1 = 𝐿1, 𝑥2) = 𝑤𝛽 (𝑥1, 𝑥2 = 0) = 𝑤𝛽 (𝑥1, 𝑥2 = 𝐿2) = 0,
𝜕2𝑤𝛽

𝜕𝑥21

|

|

|

|(𝑥1=0)
=

𝜕2𝑤𝛽

𝜕𝑥21

|

|

|

|(𝑥1=𝐿1)
=

𝜕2𝑤𝛽

𝜕𝑥22

|

|

|

|(𝑥2=0)
=

𝜕2𝑤𝛽

𝜕𝑥22

|

|

|

|(𝑥2=𝐿2)
= 0.

The plate displacement, 𝑤𝛽 (𝒙, 𝑡) is approximated using a set of harmonic basis functions as

𝑤𝛽 (𝒙, 𝑡) = 𝑒𝑖𝜔𝑡
𝑁1
∑

𝑁2
∑

sin
𝑝𝜋𝑥1
𝐿

sin
𝑞𝜋𝑥2
𝐿

𝑊𝑝𝑞𝛽 . (16)
8
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Table 1
Symmetry property of the modes in Fig. 5 under 180◦ rotation about its short and long diagonals.
– Bulk Edge Corner(120◦) Corner(60◦)

Short diagonal Odd Even Odd Odd
Long diagonal Odd Odd Even Even

Note that these basis functions satisfy all the above boundary conditions. Similarly, the resonator displacements, 𝑤𝛼𝛽 (𝑡) can be
ritten as

𝑤𝛼𝛽 (𝑡) = 𝑒𝑖𝜔𝑡𝑊𝛼𝛽 , (17)

ith the index 𝛼 ranging from 1 to 14 × 𝑛1 × 𝑛2.
Let us now derive the discrete approximations of the governing equations for vibration at frequency 𝜔. Substituting the above

isplacements into Eq. (7a), multiplying by sin (𝑝′𝜋𝑥1∕𝐿1) sin (𝑞′𝜋𝑥2∕𝐿2) and integrating over the finite plate leads to an equation
or each basis function. Similarly, substituting the displacements into Eq. (7b) gives an equation for each resonator displacement
mplitude 𝑊𝛼𝛽 . The detailed derivations are presented in Appendix A.2. The discretized governing equations thus obtained are

𝜔2𝑊𝑝′𝑞′𝛽 = 16𝜋4𝐷
9𝜌ℎ𝐿4

1𝐿
4
2

(

𝑝′4𝐿4
2 + 3𝑝′2𝑞′2𝐿2

1𝐿
2
2 + 𝑞′4𝐿4

1
)

𝑊𝑝′𝑞′𝛽

+
32𝑝′𝑞′𝐷
9𝜌ℎ

𝑁1
∑

𝑝=1
𝑝≠𝑝′

𝑁2
∑

𝑞=1
𝑞≠𝑞′

𝑝𝑞
𝐿1𝐿2

{

(
𝑝𝜋
𝐿1

)2 + (
𝑞𝜋
𝐿2

)2
}

[

(−1)𝑝+𝑝′ − 1
𝑝2 − 𝑝′2

][

(−1)𝑞+𝑞′ − 1
𝑞2 − 𝑞′2

]

𝑊𝑝𝑞𝛽

+ 8𝑘
√

3𝜌ℎ𝐿1𝐿2

14𝑛1𝑛2
∑

𝛼=1
sin

𝑝′𝜋𝑟𝛼𝛽1
𝐿1

sin
𝑞′𝜋𝑟𝛼𝛽2
𝐿2

[𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
sin

𝑝𝜋𝑟𝛼𝛽1
𝐿1

sin
𝑞𝜋𝑟𝛼𝛽2
𝐿2

𝑊𝑝𝑞𝛽 −𝑊𝛼𝛽

]

+
8𝑘𝑖𝑛

√

3𝜌ℎ𝐿1𝐿2

2𝑛1𝑛2
∑

𝛼=1
sin

𝑝′𝜋𝑟𝛼1
𝐿1

sin
𝑞′𝜋𝑟𝛼2
𝐿2

[𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
sin

𝑝𝜋𝑟𝛼1
𝐿1

sin
𝑞𝜋𝑟𝛼2
𝐿2

(𝑊𝑝𝑞𝛽 −𝑊𝑝𝑞𝛽′ )

]

, (18a)

𝜔2𝑊𝛼𝛽 = 𝑘
𝑚
𝑊𝛼𝛽 −

𝑘
𝑚

𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
sin

𝑝𝜋𝑟𝛼𝛽1
𝐿1

sin
𝑞𝜋𝑟𝛼𝛽2
𝐿2

𝑊𝑝𝑞𝛽 . (18b)

Here 𝒓𝛼𝛽 = 𝑟𝛼𝛽1𝒆1 + 𝑟𝛼𝛽2𝒆2 and 𝒓𝛼 = 𝑟𝛼1𝒆1 + 𝑟𝛼2𝒆2 are the position vectors of resonators and inter-layer springs expressed in the
𝑥1, 𝑥2) coordinate system. Here, Eqs. (18a) and (18b) together constitute an eigenvalue problem of the form 𝜔2𝒗 = 𝑲𝒗, with
= [𝑾 𝒑𝒒𝒕;𝑾 𝒑𝒒𝒃;𝑾 𝜶𝒕;𝑾 𝜶𝒃] being the vector whose components are coefficients of basis functions for both the plate and resonator
isplacements. 𝑲 is the stiffness matrix containing the right-hand side terms in Eqs. (18a) and (18b). The solution of the eigenvalue
roblem provides the mode shapes at the corresponding frequencies, 𝜔. Each mode shape has 4 parts: displacement fields of the top
nd bottom plates 𝑤𝛽 , and the vector of resonator displacements 𝑊𝛼𝛽 in each plate.

Let us remark on the relation between the displacement fields in the plates based on symmetry considerations. Note that the
inite bilayer structure also has 𝐶2 symmetry about each of its diagonals, similar to the infinite lattice (see Fig. 2a). The mode
hapes of the finite plate are thus eigenvectors of this symmetry operator. Since the 𝐶2 rotation operator has eigenvalues 𝜆 = ±1,

each mode shape remains the same or changes sign under a rotation by 𝜋 along a diagonal. We observe that this symmetry operation
is equivalent to reflecting each plate in its plane about a diagonal, followed by interchanging the two plates. Thus, an equivalent
way to express the above symmetry condition is the following: for each mode shape, if the top plate displacement field is reflected
about a diagonal, it will be same (𝜆 = +1) or negative (𝜆 = −1) of the bottom plate displacement field. Note that the 𝜆 values can
be distinct when reflected about the short and long diagonals for a mode shape.

The results are reported for calculations with 𝑁1 = 𝑁2 = 50 terms. We also did calculations with 𝑁1 = 𝑁2 = 60, and did
not observe a noticeable difference in the mode shapes. Displacement contours at the top plate are illustrated in Fig. 5 for a few
representative mode shapes. The bottom plate displacement field, top and bottom resonator displacements for these mode shapes are
presented in Appendix D, see Figs. 14 and 15. We find that the resonator displacements are in phase with their plate displacements
for all of these modes. As discussed above, a mode shape may change sign or remain unchanged under rotation by 𝜋 about a diagonal.
This relation may be determined by examining the displacement fields of top and bottom plates. They are tabulated below for each
mode in Fig. 5 and for each diagonal rotation axis. The modes that remain identical and that change sign under rotation are labeled
even and odd, respectively (see Table 1).

The edge localized mode in Fig. 5b has a counterpart at the same frequency, that is localized at the other edges. The mode
shape of this counterpart is included in Appendix D. These edge modes lie in the bandgap above the first 28 dispersion branches.
They do not have a topological origin and may become bulk modes when boundary conditions or material properties are varied. In
contrast, the corner localized modes shown in Fig. 5(c–d) arise due to the symmetry and topological properties of dispersion bands.
The mode localized at the 120◦ lies in the bulk band frequency, while the 60◦ corner localized mode lies in the bandgap. These
9

localized modes verify the prediction of higher order topological mode at both corners as discussed in Section 3.2.
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Fig. 6. Schematic of the finite lattice showing different excitation and response locations. (a) Responses are evaluated over the unit cell indicated by parallelogram
at 120◦ corner, interior and 60◦ corner. Excitations are given at a resonator in the top plate indicated by arrow in (b) 120◦ corner, (c) interior and (d) 60◦

corner.

4.2. Frequency response under harmonic excitation

Finally, let us analyze the effect of these topological corner localized modes on the steady-state dynamic response under external
excitation. To this end, we determine the frequency response by applying a harmonic force and measuring the steady state response
at various locations (see Fig. 6) in the finite lattice. An excitation 𝑓𝑒𝑖𝜔𝑡 is applied at one resonator in the top plate, indicated by
an arrow in Fig. 6(b–d). We choose the excitation points at the 120◦ and 60◦ corners such that the resonators there have a higher
magnitude in the respective mode shapes localized at those corners in Fig. 15(d,e). The excitation point for interior excitation in
Fig. 6(c) is chosen arbitrarily, to be the same resonator in the unit cell in Fig. 6(d). The equations for solving the frequency response
is 𝜔2𝒗 − 𝑲𝒗 = 𝒇 , where 𝒇 is the external force vector. It takes 1 associated to the excitation point and rest values are 0. The
considered frequency spacing in the calculation is 𝛥𝜔 = 1.0 × 10−2 rad/s, or in non-dimensional units, 𝛥𝛺 = 4.50 × 10−5. For each
ase, responses are also observed at the 120◦ corner, interior and 60◦ corner region over a unit cell indicated by parallelogram in
ig. 6a. The response is computed using the expression

|𝑢|
𝑓

=

√

√

√

√

√

∑

𝛽={𝑡,𝑏}

14
∑

𝛼=1

|

|

|

𝑤𝛼𝛽
|

|

|

2
. (19)

To illustrate the effect of corner localized modes in Fig. 5(c–d) on the frequency response function of a finite plate, we excite
t in a range of frequencies around these natural frequencies. Recall that the 120◦ and 60◦ corner localized mode frequencies are
.34 and 8.19, respectively. At each frequency, we excite the lattice at 3 locations: at a 60◦ and a 120◦ corner, and in the interior,

and determine the response of the unit cells at these locations using Eq. (19). These locations are indicated in Fig. 6.
Fig. 7(a–c) displays the frequency response near 𝛺 = 2.34, with each sub-figure for a different excitation location. For the 120◦

corner excitation, Fig. 7a displays the response at various locations in the finite plate indicated in Fig. 6a. The peak responses at all
locations happen at frequency 2.34, as indicated by a ‘‘star’’ in the figure. The response of the 120◦ corner unit cell is higher than at
other locations, since it is close to the excitation point. Similarly, Fig. 7(b–c) displays the response for excitations at the interior and
60◦ corner locations. Even when the excitation is far from the 120◦ corner, the peak response at the localized mode frequency is the
highest at this corner. This peak response shows that the corner localized mode gets excited regardless of the excitation location in
the plate. In contrast, away from the localized mode frequency, we note that the response is higher close to the excitation location.
See for example, the response to 60◦ corner excitation in Fig. 7c. Fig. 7d displays the displacement contours of the top plate for
an excitation 𝛺 = 2.34 at 120◦ corner, which is similar to the mode shape in Fig. 5c. The displacement contours for excitation at
interior and 60◦ corner locations have similar profile, but with lower peak magnitudes of 7.96 × 103 and 4.95 × 101, respectively.

Similarly, Fig. 8(a–c) displays the frequency response around 𝛺 = 8.19 for various excitation locations. Again, the peak response
happens at the localized mode frequency and the 60◦ corner has the highest displacement magnitude |𝑢|∕𝑓 , regardless of the
excitation location. Fig. 8d illustrates the displacement contour of top plate for excitation at 60◦ corner, confirming that the steady-
state response is localized at the 60◦ corner. The displacement contours for excitation at the 120◦ corner and interior have a similar
profile, but with different maximum magnitudes of 9.87 × 103 and 2.66 × 103, respectively. These calculations verify the presence of
corner localized modes at both corners of the finite moiré plates.

5. Conclusions

We investigated corner localized modes that arise due to higher order topology in moiré lattices of bilayer elastic plates. Each
plate has a hexagonal array of resonators and one of the plates is rotated at an angle (21.78◦) which results in a periodic moiré lattice
with the smallest area. The resulting structure opens a band gap when inter-layer springs are added. The fractional corner mode
𝑄 is found to be 1∕6 for dispersion bands below the bandgap. The non-zero value of 𝑄 indicates the non-trivial topological nature
of the bandgap and predicts the existence of localized modes at all corners in the finite structure. Modal analysis on a finite plate
showed the existence of these corner localized modes at both 60◦ and 120◦ corners. The first one lies in the bulk band frequency
10

and the later one lies in the bandgap frequency. Finally, the frequency response under external excitation at various locations shows
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Fig. 7. Frequency response and displacement contour near the 120◦ corner localized frequency. Excitation is given at (a) 120◦ corner, (b) interior and (c) 60◦

corner and response are also shown at 120◦ corner, interior and 60◦ corner. (d) Top plate displacement contour for 120◦ corner excitation at frequency 2.34.

Fig. 8. Frequency response and displacement contour near the 60◦ corner localized frequency. Excitation is given at (a) 120◦ corner, (b) interior and (c) 60◦

corner and response are also shown at 120◦ corner, interior and 60◦ corner. (d) Top plate displacement contour for 60◦ corner excitation at frequency 8.19.
11
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mode localization at these frequencies, consistent with the theoretical predictions. The considered continuous elastic moiré lattice
structures open opportunities for seeking novel wave phenomena with potential applications in tunable energy localization, vibration
isolation, and energy harvesting.
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Appendix A. Derivation of discrete governing equations

The detailed derivation of the discrete form of the governing equations in terms of the Fourier coefficients 𝑊𝑙1𝑙2𝛽 are presented
for dispersion analysis and 𝑊𝑝𝑞𝛽 for finite plate analysis.

A.1. Dispersion analysis

We start by substituting the displacements in Eqs. (9) and (10) into the governing equation for the plate (7a), which leads to

(𝐷|𝜿 + 𝒈|4 − 𝜌ℎ𝜔2)
𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖(𝒌+𝒈).𝒙𝑊𝑙1𝑙2𝛽 = −𝑘

14𝑁
∑

𝛼=1

[ 𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖(𝒌+𝒈).𝒙𝑊𝑙1𝑙2𝛽 − 𝑒𝑖𝜿.𝒓𝛼𝛽𝑊𝛼𝛽

]

𝛿(𝒙 − 𝒓𝛼𝛽 )

− 𝑘𝑖𝑛
2𝑁
∑

𝛼=1

[ 𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖(𝒌+𝒈).𝒙(𝑊𝑙1𝑙2𝛽 −𝑊𝑙1𝑙2𝛽′ )

]

𝛿(𝒙 − 𝒓𝛼𝛽 ). (20)

We work in the (𝑥1, 𝑥2) coordinate system, whose unit vectors are aligned with the moiré lattice vectors (𝒂𝟏,𝒂𝟐). It is related to the
Cartesian coordinate system by 𝑥1 = 𝑥 − 𝑦∕

√

3 and 𝑥2 = 2𝑦∕
√

3. Multiplying by 𝑒−𝑖(𝒌+𝒈′).𝒙, rearranging and integrating over a unit
ell  gives

∫

𝑇
∑

𝑙1 ,𝑙2=−𝑇
(𝐷|𝜿 + 𝒈|4 − 𝜌ℎ𝜔2)𝑒𝑖(𝒈−𝒈

′).𝒙𝑊𝑙1𝑙2𝛽𝑑𝑥1 ∧ 𝑑𝑥2

= −𝑘∫

14𝑁
∑

𝛼=1

[

𝑒−𝑖𝒈
′ .𝒙

{ 𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖𝒈.𝒙𝑊𝑙1𝑙2𝛽 − 𝑒𝑖𝜿.(𝒓𝜶𝜷−𝒙)𝑊𝛼𝛽

}]

𝛿(𝒙 − 𝒓𝛼𝛽 )𝑑𝑥1 ∧ 𝑑𝑥2

−𝑘𝑖𝑛 ∫

2𝑁
∑

𝛼=1

[

𝑒−𝑖𝒈
′ .𝒙

{ 𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖𝒈.𝒙(𝑊𝑙1𝑙2𝛽 −𝑊𝑙1𝑙2𝛽′ )

}]

𝛿(𝒙 − 𝒓𝛼𝛽 )𝑑𝑥1 ∧ 𝑑𝑥2. (21)

ote that 𝑑𝑥1 ∧ 𝑑𝑥2 = (
√

3∕2)𝑑𝑥1𝑑𝑥2 is the area of an infinitesimal parallelogram in . Using orthogonality of the functions 𝑒𝑖𝒈⋅𝒙,
we get

(𝐷|𝜿 + 𝒈′|4 − 𝜌ℎ𝜔2)𝐴𝑊𝑙′1𝑙
′
2𝛽

= −𝑘
14𝑁
∑

𝛼=1

[

𝑒−𝑖𝒈
′ .𝒓𝛼𝛽

{ 𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖𝒈.𝒓𝛼𝛽𝑊𝑙1𝑙2𝛽 −𝑊𝛼𝛽

}]

− 𝑘𝑖𝑛
2𝑁
∑

𝛼=1

[

𝑒−𝑖𝒈
′ .𝒓𝛼𝛽

{ 𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖𝒈.𝒓𝛼𝛽 (𝑊𝑙1𝑙2𝛽 −𝑊𝑙1𝑙2𝛽′ )

}]

.

ere 𝐴 =
√

3𝑎2∕2 is the area of the moiré unit cell. Dividing both sides of the above equation by 𝜌𝐴ℎ and rearranging gives Eq. (11a).
For the resonator, substituting the displacements in Eqs. (9) and (10) into their governing equations (7b) gives

−𝑚𝜔2𝑒𝑖𝜿.𝒓𝜶𝜷𝑊𝛼𝛽 = −𝑘𝑒𝑖𝜿.𝒓𝜶𝜷𝑊𝛼𝛽 + 𝑘
𝑇
∑

𝑙1 ,𝑙2=−𝑇
𝑒𝑖(𝒌+𝒈).𝒓𝜶𝜷𝑊𝑙1𝑙2𝛽 .

−𝑖𝜿.𝒓𝜶𝜷
12

Multiplying by −𝑒 ∕𝑚 gives Eq. (11b).
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Fig. 9. Nonzero projected Bloch mode shapes under rotation by 𝜃 = 𝜋 in the top plate at 𝛤 point. Subfigures (a - n) correspond to modes (1–14). Modes having
rotational eigenvalue 𝜆1(𝑝 = 1): 1–7, 13 and 𝜆2(𝑝 = 2): 8–12, 14. (4 × 4) unit cells are shown for clarity of rotational symmetry.

A.2. Derivation for finite plate frequencies and mode shapes

Let us derive the discrete equations that are used to determine the mode shapes and frequency response of a finite plate.
Substituting the assumed displacement fields in Eqs. (16) and (17) into the governing equation Eq. (7a) for a plate gives

𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1

[

1
sin4 𝜃

(
𝑝𝜋
𝐿1

)4 + 6
sin2 𝜃 tan2 𝜃

(
𝑝𝜋
𝐿1

)2(
𝑞𝜋
𝐿2

)2 + 1
sin4 𝜃

(
𝑞𝜋
𝐿2

)4 + 2
sin2 𝜃

(
𝑝𝜋
𝐿1

)2(
𝑞𝜋
𝐿2

)2 −
𝜌ℎ𝜔2

𝐷

]

⋅

𝑊𝑝𝑞𝛽 sin
𝑝𝜋𝑥1
𝐿1

sin
𝑞𝜋𝑥2
𝐿2

+ 4
tan 𝜃 sin3 𝜃

𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1

𝑝𝜋
𝐿1

𝑞𝜋
𝐿2

{

(
𝑝𝜋
𝐿1

)2 + (
𝑞𝜋
𝐿2

)2
}

𝑊𝑝𝑞𝛽 cos
𝑝𝜋𝑥1
𝐿1

cos
𝑞𝜋𝑥2
𝐿2

= − 𝑘
𝐷

14𝑁
∑

𝛼=1

[𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
𝑊𝑝𝑞𝛽 sin

𝑝𝜋𝑥1
𝐿1

sin
𝑞𝜋𝑥2
𝐿2

−𝑊𝛼𝛽

]

𝛿(𝒙 − 𝒓𝛼𝛽 )

−
𝑘𝑖𝑛
𝐷

2𝑁
∑

𝛼=1

[𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
(𝑊𝑝𝑞𝛽 −𝑊𝑝𝑞𝛽′ ) sin

𝑝𝜋𝑥1
𝐿1

sin
𝑞𝜋𝑥2
𝐿2

]

𝛿(𝒙 − 𝒓𝛼𝛽 ). (22)

Here, 𝜃 = 60◦ is the angle between the two lattice vectors. Multiplying by sin (𝑝′𝜋𝑥1∕𝐿1) sin (𝑞′𝜋𝑥2∕𝐿2) and integrating over the
lattice gives

𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1

[

1
sin4 𝜃

(
𝑝𝜋
𝐿1

)4 + 6
sin2 𝜃 tan2 𝜃

(
𝑝𝜋
𝐿1

)2(
𝑞𝜋
𝐿2

)2 + 1
sin4 𝜃

(
𝑞𝜋
𝐿2

)4 + 2
sin2 𝜃

(
𝑝𝜋
𝐿1

)2(
𝑞𝜋
𝐿2

)2 −
𝜌ℎ𝜔2

𝐷

]

sin 𝜃𝑊𝑝𝑞𝛽

∫

𝐿1
sin

𝑝𝜋𝑥1
𝐿

sin
𝑝′𝜋𝑥1
𝐿

𝑑𝑥1 ∫

𝐿2
sin

𝑞𝜋𝑥2
𝐿

sin
𝑞′𝜋𝑥2
𝐿

𝑑𝑥2 +
4

3

𝑁1
∑

𝑁2
∑ 𝑝𝜋

𝐿
𝑞𝜋
𝐿

{

(
𝑝𝜋
𝐿1

)2 + (
𝑞𝜋
𝐿2

)2
}

sin 𝜃𝑊𝑝𝑞𝛽
13

0 1 1 0 2 2 tan 𝜃 sin 𝜃 𝑝=1 𝑞=1 1 2
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Fig. 10. Nonzero projected Bloch mode shapes under rotation by 𝜃 = 𝜋 in the top plate at 𝑀 point. Subfigures (a - n) correspond to modes (1–14). Modes
having rotational eigenvalue 𝜆1(𝑝 = 1): 1, 3, 5, 8, 11, 13 and 𝜆2(𝑝 = 2): 2, 4, 6, 7, 9, 10, 12, 14. (4 × 4) unit cells are shown for clarity of rotational symmetry.

∫

𝐿1

0
cos

𝑝𝜋𝑥1
𝐿1

sin
𝑝′𝜋𝑥1
𝐿1

𝑑𝑥1 ∫

𝐿2

0
cos

𝑞𝜋𝑥2
𝐿2

sin
𝑞′𝜋𝑥2
𝐿2

𝑑𝑥2

= − 𝑘
𝐷

14𝑁
∑

𝛼=1
sin

𝑝′𝜋𝑥1
𝐿1

sin
𝑞′𝜋𝑥2
𝐿2

[𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
𝑊𝑝𝑞𝛽 sin

𝑝𝜋𝑥1
𝐿1

sin
𝑞𝜋𝑥2
𝐿2

−𝑊𝛼𝛽

]

∬ 𝛿(𝒙 − 𝒓𝛼𝛽 )𝑑𝑥1𝑑𝑥2

−
𝑘𝑖𝑛
𝐷

2𝑁
∑

𝛼=1
sin

𝑝′𝜋𝑥1
𝐿1

sin
𝑞′𝜋𝑥2
𝐿2

[𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
(𝑊𝑝𝑞𝛽 −𝑊𝑝𝑞𝛽′ ) sin

𝑝𝜋𝑥1
𝐿1

sin
𝑞𝜋𝑥2
𝐿2

]

∬ 𝛿(𝒙 − 𝒓𝛼𝛽 )𝑑𝑥1𝑑𝑥2

Using orthogonality of the basis functions and evaluating the integrals in the above equation, we get
[

1
sin4 𝜃

(
𝑝′𝜋
𝐿1

)4 + 6
sin2 𝜃 tan2 𝜃

(
𝑝′𝜋
𝐿1

)2(
𝑞′𝜋
𝐿2

)2 + 1
sin4 𝜃

(
𝑞′𝜋
𝐿2

)4 + 2
sin2 𝜃

(
𝑝′𝜋
𝐿1

)2(
𝑞′𝜋
𝐿2

)2 −
𝜌ℎ𝜔2

𝐷

]

sin 𝜃𝑊𝑝′𝑞′𝛽
𝐿1𝐿2
4

+ 4
tan 𝜃 sin2 𝜃

𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1

𝑝𝜋
𝐿1

𝑞𝜋
𝐿2

{

(
𝑝𝜋
𝐿1

)2 + (
𝑞𝜋
𝐿2

)2
}

𝑊𝑝𝑞𝛽

𝐿1𝐿2

𝜋2

[

cos (𝑝 − 𝑝′)𝜋
𝑞 − 𝑞′

−
cos (𝑞 + 𝑞′)𝜋

𝑞 + 𝑞′

] [

cos (𝑞 − 𝑞′)𝜋
𝑞 − 𝑞′

−
cos (𝑞 + 𝑞′)𝜋

𝑞 + 𝑞′

]

= −
14𝑁
∑

𝛼=1

𝑘
𝐷

sin
𝑞′𝜋𝑟𝛼𝛽1
𝐿1

sin
𝑞′𝜋𝑟𝛼𝛽2
𝐿2

[𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
𝑊𝑝𝑞𝛽 sin

𝑝𝜋𝑟𝛼𝛽1
𝐿1

sin
𝑞𝜋𝑟𝛼𝛽2
𝐿2

−𝑊𝛼𝛽

]

−
2𝑁
∑

𝛼=1

𝑘𝑖𝑛
𝐷

sin
𝑝′𝜋𝑟𝛼1
𝐿1

sin
𝑞′𝜋𝑟𝛼2
𝐿2

[𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
(𝑊𝑝𝑞𝛽 −𝑊𝑝𝑞𝛽′ ) sin

𝑝𝜋𝑟𝛼1
𝐿1

sin
𝑞𝜋𝑟𝛼2
𝐿2

]

.

Rearranging the terms in the above equation and substituting 𝜃 = 60◦ gives Eq. (18a).
14
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Fig. 11. Nonzero projected Bloch mode shapes under rotation by 𝜃 = 2𝜋∕3 in the top plate at 𝛤 point. Subfigures (a - n) correspond to modes (1–14). Modes
having rotational eigenvalue 𝜆1(𝑝 = 1): 1 − 4, 13, 14, 𝜆2(𝑝 = 2): 5, 7, 9, 11 and 𝜆3(𝑝 = 3): 6, 8, 10, 12. (4 × 4) unit cells are shown for clarity of rotational symmetry.

For the resonators, substituting the displacements in Eqs. (16) and (17) into their governing equations (7b) gives

−𝑚𝜔2𝑊𝛼𝛽 = −𝑘𝑊𝛼𝛽 + 𝑘
𝑁1
∑

𝑝=1

𝑁2
∑

𝑞=1
𝑊𝑝𝑞𝛽 sin

𝑝𝜋𝑟𝛼𝛽1
𝐿1

sin
𝑞𝜋𝑟𝛼𝛽2
𝐿2

. (23)

Dividing both sides by −𝑚 gives Eq. (18b)

Appendix B. Bloch mode shapes

Using the procedure in Section 3.2, the projected Bloch mode shapes 𝑤𝑝
𝛽 (𝒙) for the 14 modes below the band gap are determined

at each of the high symmetry points. The non-zero projected mode shapes (real component) are presented in Figs. 9–12. Only the top
plate is shown although both plates are considered for determining the rotational eigenvalue 𝜆𝑝 for each mode. The corresponding 𝜆𝑝
for each mode are listed in the captions. Here, multiple unit cells are illustrated for clarity of the rotational symmetry. The rotation
axis passes through the center, where the dashed lines intersect. For rotation about this axis by 𝜃 = 𝜋, modes with rotational
eigenvalue 𝜆1 will be symmetric. Similarly, for rotation by 𝜃 = 2𝜋∕3, the mode shapes with 𝜆1 will be unchanged after rotation.

Appendix C. Primitive generators and their fractional corner modes

We consider two primitive generators, identical to the ones introduced by Hughes and coworkers [22]. Fig. 13(a,c) displays
schematics of these lattices. The nodes have point masses with one degree of freedom and can move out-of-plane. The edges have
linear springs with stiffness values either 𝑘1 or 𝑘2 as indicated. In both lattices, a nontrivial topological bandgap opens when 𝑘1 < 𝑘2.
The dispersion diagrams for these lattices, computed for 𝑘1 = 0.1, 𝑘2 = 1.0 and all unit masses, are displayed in Fig. 13(b,d).

The fractional corner modes at the corners of domains with 6-fold and 3-fold rotation symmetry are given by [22]

𝑄 =
[𝑀 (2)

1 ]
+

[𝐾 (3)
1 ]

mod 1 (24a)
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Fig. 12. Nonzero projected Bloch mode shapes under rotation by 𝜃 = 2𝜋∕3 in the top plate at 𝐾 point. Subfigures (a - n) correspond to modes (1–14). Modes
having rotational eigenvalue 𝜆1(𝑝 = 1): 1, 2, 7, 8, 𝜆2(𝑝 = 2): 3, 5, 9, 11, 13 and 𝜆3(𝑝 = 3): 4, 6, 10, 12, 14. (4 × 4) unit cells are shown for clarity of rotational symmetry.

Fig. 13. Schematic and dispersion diagram of the primitive generators. Schematic of (a) ℎ4𝑏 and (d) ℎ3𝑐 lattices. Unit cells are indicated by black dashed lines.
Dispersion diagrams are shown along the IBZ boundary for (c) ℎ4𝑏 and (d) ℎ3𝑐 lattices.
16
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Fig. 14. Displacement contours of top and bottom plate for (a, f) a typical bulk mode (𝛺 = 0.70), (b, c, g, h) an edge mode (𝛺 = 13.71), (d, i) corner mode at
120◦ corner (𝛺 = 2.34) and (e, j) 60◦ corner (𝛺 = 8.19). Top and bottom rows correspond to the top and bottom plate displacement contours, respectively.

Fig. 15. Displacement contours of top and bottom resonator for the same modes presented in Fig. 14. Top and bottom rows correspond to the top and bottom
resonator displacement contours, respectively.

𝑄3 =
[𝐾 (3)

2 ]
3

mod 1. (24b)

Here [𝐾3
2 ] is the difference between the number of modes at 𝐾 and 𝛤 points that have rotational eigenvalue 𝜆2. For each mode at the

high symmetry points below the bandgap, the rotational eigenvalues are determined using the procedure discussed in Section 3.2.
For ℎ4𝑏 lattice, the fractional corner mode values are

𝑄6 =
(1 − 1)

4
+

(0 − 2)
6

= −1
3

mod 1 = 2
3

mod 1, (25a)

𝑄3 =
(1 − 0)

3
= 1

3
mod 1, (25b)

while for ℎ3𝑐 lattice, they are

𝑄6 =
(1 − 3)

4
+

(1 − 1)
6

= −1
2

mod 1 = 1
2

mod 1 (26a)

𝑄3 =
(1 − 1)

3
= 0. (26b)

Appendix D. Bulk and localized mode shapes

The complete mode shapes for the modes in Fig. 5 are presented. These include the top and bottom plate displacement contours,
top and bottom layer resonator displacement contours. Note that there are two edge modes at the same frequency. Both mode shapes
are illustrated below: subfigures (b, g) for one mode and (c, h) for the other.

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jsv.2024.118268.
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