
Discrete & Computational Geometry (2024) 71:1021–1056
https://doi.org/10.1007/s00454-023-00589-8

Gorenstein Braid Cones and Crepant Resolutions

Joshua Hallam1 · John Machacek2

Received: 14 January 2022 / Revised: 18 May 2023 / Accepted: 2 July 2023 /
Published online: 5 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
To any poset P , we associate a convex cone called a braid cone.We also associate a fan
and study the toric varieties the cone and fan define. The fan always defines a smooth
toric variety X P , while the toric variety UP of the cone may be singular. We show
that X P ��� UP is a crepant resolution of singularities if and only if P is bounded.
Next, we aim to determine when UP is Q-Gorenstein or Gorenstein. We prove that
whether or not UP is Q-Gorenstein or Gorenstein depends only on the biconnected
components of the Hasse diagram of P . In the case that P has aminimum ormaximum
element, we show that the Gorenstein property of UP is completely determined by the
Möbius function of P . We also provide a recursive method that determines if UP is
Q-Gorenstein or Gorenstein in this case. We conjecture that UP is Gorenstein if and
only if it is Q-Gorenstein. We verify this conjecture for posets of length 1 and also for
posets with a minimum or maximum element.
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1 Introduction

The correspondence between convex cones and toric varieties is well established. We
consider posets as an additional combinatorial layer. Every poset naturally gives rise
to a cone as well as a fan that refines the cone. The cones that arise here are the unions
of certain chambers of the braid arrangement and thus called braid cones. We use the
combinatorics of the underlying posets and their Hasse diagrams to study affine toric
varieties associated to braid cones. We also study a resolution of singularities for such
a toric variety coming from another toric variety associated to a fan.

Our main focus is to be able to efficiently decide when the variety associated to
a braid cone is Gorenstein and when the aforementioned resolution is crepant. Since
we are working with affine toric varieties, this algebro-geometric decision problem
ends up being equivalent to the discrete geometry problem of deciding if there exists
a hyperplane containing certain lattice points. We find and use properties of posets
which are equivalent to the desired resolutions of singularities being crepant and the
Gorenstein property.

Crepant resolutions and the Gorenstein property are important in studying singu-
larities in toric geometry (see e.g. [4]). Crepant resolutions have no discrepancy in the
canonical class and play a role in the minimal model program. The class of Goren-
stein varieties consists of varieties that are at worse “not too singular”. It properly sits
between the class of smooth varieties and Cohen–Macaulay varieties. That is,

smooth varieties � Gorenstein varieties � Cohen–Macaulay varieties.

All toric varieties coming fromfans are normal andhenceby [11] areCohen–Macaulay.
Moreover, in [18], a classification1 of smoothness for toric varieties arising from braid
cones is given.

Recent works in a similar spirit towhat we study here include [13, 15], and [14]. The
smoothness of generic torus orbits inside Schubert varieties is studied in [15], and the
maximal cones involved are each made from chambers of the braid arrangement fan.
In [10] the authors give graph-theoretic characterizations of Gorensteinness for the
toric variety associated to the base polytope of a graphic matroid arising from (simple)
graphs. The work in [13] does the same in the case of graphic matroids coming from
multigraphs. In [14], a matroid-theoretic characterization for Gorensteinness of the
varieties associated to the base polytopes of general matroids is given. Also, we refer
the reader to [25] which studies singularities for another construction from posets
where one obtains a projective toric vartiety from a distributive lattice.

Cones corresponding to posets have been considered in a generalized setting of
root systems for Coxeter groups under the names parsets [19] and Coxeter cones [24].
The case of posets is the Type A case. The cones we consider recently appeared in
[16] where star subdivisions which correspond to toric blow-ups were studied. Recent
work on closely related cones include [5], which focuses on their Whitney numbers.

1 This characterization can be obtained by combining Proposition 3.5 (9), which characterizes which cones
are simplicial, along Corollary 3.10 of [18], which shows that simplicial implies smoothness. Simplicial is
a necessary condition for smoothness.

123



Discrete & Computational Geometry (2024) 71:1021–1056 1023

In the remainder of this section, we review posets and braid cones. Afterwards, we
discuss the necessary background on toric varieties. In Sect. 2 we introduce labelings
of posets which will determine when a poset defines a Q-Gorenstein or Gorenstein
toric variety as well as when a particular fan associated to a poset gives a crepant
resolution of singularities. Our main result on crepant resolutions is in Sect. 3. In The-
orem 3.3, we show there is a certain crepant resolution of singularities respecting
Weyl chambers precisely for toric varieties coming from bounded posets (i.e. posets
with both a minimum and maximum). In Sect. 4 we deal with the Gorenstein prop-
erty and find, in Theorem 4.3, that Gorensteinness depends only on the biconnected
components of the Hasse diagram. We consider posets with a minimum or a maxi-
mum element in Sect. 5. There, we are able to characterize when such posets give rise
to a Gorenstein variety (Theorem 5.19) in a way which gives a recursive algorithm
(Algorithm 5.20) to do this. In terms of parameterized complexity, this algorithm is an
XP-algorithm (i.e. “slicewise polynomial”) implying it runs efficiently for small values
of the parameter. The parameter used is a new parameter on posets which depends
only on the minimal elements as well as those elements which cover only minimal
elements. The Möbius function plays a significant role in developing the ideas in this
section. We then look at posets of length 1 in Sect. 6 and conclude with a discussion
on some open problems in Sect. 7.

Our main result on crepant resolutions is stated as follows

Theorem (Theorem 3.3) Let P be a poset. X P ��� UP is crepant if and only if P is
bounded.

HereUP is an affine toric variety coming from a braid cone defined in the next subsec-
tion while X P is an abstract toric variety coming from the fan obtain by subdiving the
aforementioned cone with Weyl chambers. This result implies bounded posets give
Gorenstein toric varieties. Table 1 contains a summary of our results giving various
sufficient conditions for a toric variety from a braid cone to be Gorenstein. In the table,
when we say a poset is Gorenstein, we mean the corresponding variety is Gorenstein.
Moreover, the “also necessary condition" column refers to if the conditions are also
necessary when restricting to the type of poset described in that row. In all the cases
described in the table, Gorenstein can also be replaced with Q-Gorenstein without
changing the results.

1.1 Posets, Connectedness, and Braid Cones

A much fuller treatment of braid cones can be found in [18]. Here we only discuss
what is needed for our purposes. We write [n] = {1, 2, . . . , n} and have the lattice
Zn ⊆ Rn with standard basis denoted {ei | i ∈ [n]} and coordinates (x1, . . . , xn). For
each A ⊆ [n], we define eA = ∑

i∈A ei . Our focus will be on the lattice N = Zn/Ze[n]
with corresponding vector space NR = R ⊗Z N . The dual lattice and vector space
will be denoted by M and MR respectively.

We will assume that the reader is familiar with basic properties of posets. For more
information on posets or any undefined terms, the reader may consult [20, Chap. 5]
and [23, Chap. 3]. We will often need to refer to graph-theoretic aspects of the Hasse
diagram of a poset. Unless otherwise noted, when we apply graph-theoretic adjectives
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4

2 3

1

+ 1

0 0

− 1

e{2,3,4} e{3,4}e{2,4} e{4}

Fig. 1 The Hasse diagram of a poset P along with the cone σP . The values in red give a chamber crepant
labeling of P

to a poset or its Hasse diagram, we are viewing the Hasse diagram as an undirected
graph. For example, when we say a poset P is connected or biconnected, we mean
that the underlying undirected Hasse diagram of P is connected or biconnected.

The length of a chain in a poset is one less the number of elements in the chain. For
example, the chain x0 < x1 < · · · < x� has length �. The length of a poset P is the
maximum among all lengths of chains in P . We will use �(P) to denote the length of
a poset. Note that in the case that P is ranked, the length is the rank of the poset.

Let P be a connected poset with underlying set [n]. The braid cone associated to
P , denoted by σP , is given by the intersection of the half-spaces xi ≤ x j for each
pair (i, j) with i <P j . Note that, by [18, Prop. 3.5 (8)], it suffices to only use the
half-spaces xi ≤ x j when i �P j . In Fig. 1 we have an example of a poset P and the
cone σP . In this example, the cone is the intersection of the four half-spaces x1 ≤ x2,
x1 ≤ x3, x2 ≤ x4, and x3 ≤ x4. One can check that σP is also given by the positive
span of the vectors e{4}, e{2,4}, e{3,4}, and e{2,3,4}. We will give a general way to find
these generating vectors in Lemma 2.3.

In [18, Prop. 3.5] it is shown that for any poset P , the cone σP is full dimensional
and rational. The connectedness of P guarantees that σP is strongly convex (which
the authors call pointed in [18]). We will assume throughout the article that all posets
are connected and also assume that all cones encountered are strongly convex, rational
polyhedral cones. We will also assume that |P| ≥ 2 to avoid issues with triviality. It
is often convenient to assume our posets have [n] as their underlying set. However, if
P is any poset with an underlying set of cardinality n, we may pick some bijection
to [n] and use this bijection to define σP . None of the properties of σP that we are
interested in are influenced in any way by this choice of bijection. This will allow us
to consider multiple posets with disjoint underlying sets.

The braid arrangement is the hyperplane arrangement in NR consisting of the
hyperplanes xi = x j for 1 ≤ i < j ≤ n. This is the Coxeter arrangement of type
An−1. The regions of the braid arrangement are the Weyl chambers of type An−1 and
are σL for each linear order L on the elements of [n]. We use |�| to denote the support
of a fan � which consists of all points of NR that are contained any cone the fan �.
A single cone together with its faces can be considered as a fan. In general |σP | is the
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union of |σL | over all linear extensions L of P . For any poset P , we write �P for the
fan consisting of the cones σL and its faces for each linear extension L of P . Thus
|�P | = |σP | as subsets of NR though generally �P contains additional faces which
subdivide σP .

Returning to our example of P in Fig. 1, we can obtain �P by adding a wall on the
hyperplane x2 = x3 which is spanned by e{2,3,4} and e{4}. The fan will then have two
maximal cones, each corresponding to one of the two linear extensions of P .

1.2 The Corresponding Toric Varieties

For an in-depth introduction to toric varieties and the Gorenstein property, the reader
can see the text [3], particularly Chapter 8 of the book. Given a cone σ , which is
minimally generated by the positive span of finitely many vectors {vi }i , the set of ray
generators of σ is {wi }i where wi is the first nonzero lattice point on the ray R≥0vi .
Note that the ray generators of a cone are unique. If σ is strongly convex with ray
generators from some lattice, we get an affine toric variety we denote byUσ . Similarly,
given any fan of such cones�, it defines an abstract toric variety denoted X� . We will
write UP for UσP and X P for X�P .

A variety is called Q-Gorenstein if some multiple of its canonical divisor is Cartier.
A variety is Gorenstein if it is Cohen–Macaulay and its canonical divisor is Cartier.
When the variety is toric and defined by a cone, there is an equivalent definition of
being Q-Gorenstein or Gorenstein as we explain next. Let v1, v2, . . . , vk ∈ N be the
ray generators of σ , then Uσ is Q-Gorenstein if and only if the exists u ∈ M and a
positive integer r such that 〈u, vi 〉 = r for all 1 ≤ i ≤ k. The index of a Q-Gorenstein
toric variety is the minimal possible r which can be taken. If the index is r = 1,
then the toric variety is Gorenstein since toric varieties arising from fans are always
Cohen–Macaulay [11].

A cone is smooth if its ray generators can be extended to a basis for the lattice, and
a fan is smooth if it consists of smooth cones. If � is a smooth fan refining a cone σ

then X� ��� Uσ gives a resolution of singularities. Take a Q-Gorenstein toric variety
Uσ of index r and u ∈ M such that 〈u, vi 〉 = r for all ray generators v1, v2, . . . , vk of
σ . If � is a smooth fan refining σ such that any ray generator v of a cone in � also
has 〈u, v〉 = r , then this resolution is called crepant. A crepant resolution does not
change the canonical class.

As we saw earlier, the cone in Fig. 1 is generated by e{4}, e{2,4}, e{3,4}, and e{2,3,4}.
In fact, these are the ray generators of the cone. If we take u = e∗{4} − e∗{1}, then

〈u, e{4}〉 = 〈u, e{2,4}〉 = 〈u, e{3,4}〉 = 〈u, e{2,3,4}〉 = 1.

Moreover,

〈u, e{1,2,3,4}〉 = 0
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which must hold since e{1,2,3,4} = 0 in NR. We conclude that UP is Gorenstein.
Because all the ray generators of the fan�P are also ray generators ofUP , X P ��� UP

is crepant.
At this point the reader may be wondering how one can find a u ∈ M to determine

if UP is Gorenstein or if X P ��� UP is crepant. In the next section we introduce
poset labelings to do this exactly. This allows us to translate our algebraic problem to
a purely combinatorial one

2 Ray Generators, Lattice Points, and Labelings

In this sectionwe describe the ray generators of a braid cone aswell as the lattice points
of the form eA for A ⊆ [n] which are contained in the cone. We use this description to
define labelings of the poset P which capture whenUP isQ-Gorenstein or Gorenstein
as well as when X P ��� UP is crepant.

For a binary relation R, let Rop denote the opposite binary relation where (i, j) ∈
Rop if and only if ( j, i) ∈ R. We define a contraction of a poset P to be the transitive
closure of P ∪ Rop for some R ⊆ P . For example, taking the poset P = {2 <P

1, 2 <P 3} and R = {2 <R 1} we find the transitive closure of P ∪ Rop to be
{1 < 2, 2 < 1, 1 < 3, 2 < 3} which is now not a poset, but is a preposet. A key fact
is that if a poset P corresponds to a cone σ , then preposets P ′ that are contractions of
P are in bijection with faces τ ⊆ σ [18, Prop. 3.5 (2)]. We use the notation τ = σP ′
where the face σP ′ is the face obtained by intersecting σP with the hyperplanes xi = x j

for (i, j) ∈ P ′ such that we also have ( j, i) ∈ P ′.

Remark 2.1 A related notion to the opposite binary relation, is the order dual of a poset
P . This is given by reversing all the inequalities defining P . To avoid confusion, we
will use the notation P∗ when we are dealing with taking the order dual of an entire
partial order P whereas Rop can be used for any binary relation.

Remark 2.2 It can be helpful to visualize the contraction of posets that was just defined
as edge contraction in the Hasse diagram viewed as a graph. For example, this is done
in [16] for the special case of tree posets. However, one needs to keep in mind there
may be extra steps beyond just contracting edges accounting for the transitive closure.
Also, R may include a poset relation which is not a cover relation and hence there
would not be an edge draw in the Hasse diagram.

Given an upset A of P , we define

RA = {(i, j) ∈ P | i, j ∈ A or i, j /∈ A}

and let the contraction PA be the transitive closure of P ∪ Rop
A . The fact that PA is

a preposet means that PA is reflexive and transitive. In particular, PA need not be
antisymmetric. So, PA defines an equivalence relation where i is equivalent to j if
(i, j) ∈ PA and ( j, i) ∈ PA. We also define the dimension of A, denoted dim(A), to
be one less than the number of equivalence classes determined by the preposet PA.
Note the dim(A) depends on the poset P , but A is always taken to be an upset of a
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poset P so the data on the poset is present. The dimension, dim(A), can be computed
by

dim(A) = cc(A) + cc(A) − 1

where cc(A) and cc(A) are the number of connected components of theHasse diagram
of P restricted to A and A respectively. Here A denotes the complement of A in [n]. For
the poset depicted in Fig. 2, we have that dim({1, 3}) = 1 since {1, 3} and {1, 3} = {2}
are both connected, whereas dim({3}) = 2 since {3} is connected and removing it
disconnects the graph into two parts.

Since we are interested in the Gorenstein property and crepant resolutions, we need
to know what the ray generators of a cone σP are as well as which ray generators are
added when refining σP to �P . The next lemma will describe primitive lattice points
on these rays. Let us briefly recall a few definitions from convex geometry. A face of
a cone is a subset of the cone obtained by intersection with a supporting hyperplane.
The dimension of a face is the dimension of its linear span. Lastly, a point is said to
be in the relative interior of a face τ if it is not contained in any proper face τ ′ � τ .

Lemma 2.3 If P is a poset, then the lattice point eA is contained in σP if and only if A
is an upset. Moreover, for an upset A the lattice point eA is contained in the relative
interior of a face σPA ⊆ σP with dim(σPA ) = dim(A). In particular, eA is a ray
generator of σP if and only if A is an upset of dimension 1.

Proof It follows immediately from the definitions that eA ∈ σP if and only if A
is an upset. Now assume that A is an upset so that eA ∈ σP . Then there is a face
σPA ⊆ σP with dim(σPA) = dim(A) indexed by the contraction PA. Furthermore,
we have eA ∈ σPA by construction. It only remains to show that eA is in the relative
interior of σPA . That is, we must show eA is not in any face properly contained in σPA .
Such faces properly contained in σPA will correspond to contractions of PA. Take any
(i, j) ∈ PA. If ( j, i) ∈ PA this relation will not matter in any further contractions. If
( j, i) /∈ PA, then since A is an upset we have that j ∈ A and i /∈ A. For any contraction
which is the transitive closure of PA ∪ Rop with (i, j) ∈ R, we must have x j ≤ xi

in the corresponding cone. However, since j ∈ A and i /∈ A we see that eA does not
satisfy this inequality. Therefore eA is in the relative interior of σPA as desired.

The final assertion now follows since the ray generators that show up in cones of
the braid arrangement fan are precisely all 0-1 vectors except the all 0 vector e∅ and
all the 1 vector e[n] (which is equal to zero is our setting). �

Remark 2.4 One can compare our cone σP and Lemma 2.3 with the cone denoted
Kwt

P in [1, Prop. 5.1]. For the cone Kwt
P , the ray generators are the indicator vectors

of all downsets which are connected (the complement need not be connected). This
difference compared to our case arises because the cone Kwt

P lives in Rn for a poset on
n elements as opposed to Rn/e[n] along with conventions which replace upsets with
downsets. Also [7, Prop. 6.6] shows that for certain choices of P the affine semigroup
rings of Kwt

P are the rings studied in [9]. These latter rings are the ones which gives
rise to the toric varieties in [25] mentioned in the introduction.
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3

1 2

Q

2

1 1

Fig. 2 A poset together and its Gorenstein labeling given in red

Let us now determine if UQ is Gorenstein for Q in Fig. 2. Recall that UQ is Goren-
stein if and only if there is a u ∈ M such that 〈u, eA〉 = 1 for all ray generators eA. Let
u = y1e∗{1} + y2e∗{2} + y3e∗{3}. Using Lemma 2.3, one can verify that the ray generators
of σQ are e{1,3} and e{2,3}. This together with the fact that e{1,2,3} = 0 in NR implies
that if UQ is Gorenstein, then the following system has integer solutions.

y1 + y3 = 1

y2 + y3 = 1

y1 + y2 + y3 = 0

The system does have a solution namely y1 = −1, y2 = −1, y3 = 2, and so UQ is
Gorenstein. Since 1, 2, and 3 are elements of Q, we can “label” the element i of Q
with the value of yi to get a labeling that completely determines if UQ is Gorenstein.
Motivated by the ideas presented in this example, we introduce the following poset
labelings.

Definition 2.5 Given a poset P on [n], an r -Gorenstein labeling is a function φ : P →
Z such that

∑

i∈P

φ(i) = 0

and

∑

i∈A

φ(i) = r

for all upsets A with dim(A) = 1. We call a 1-Gorenstein labeling a Gorenstein
labeling.

Remark 2.6 A poset admitting an r -Gorenstein labeling is unrelated to a poset being
Gorenstein*. As the next proposition shows, an r -Gorenstein labeling of a poset P
coincides with the toric variety UP being Q-Gorenstein. Whereas the Gorenstein*
property is related to Gorensteinness of the order complex of P [22].

One can verify that the labelings in Fig. 1 and Fig. 2 are Gorenstein labelings. As
we saw earlier, the varieties associated to these posets are both Gorenstein. This is no
coincidence as we see next.
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Proposition 2.7 Let P be a poset. UP is Q-Gorenstein with index r if and only if P
has an r-Gorenstein labeling but has no s-Gorenstein labeling for any 0 < s < r .

Proof Given a poset P , let

{A1, A2, . . . , Ak} = {A | A is an upset and dim(A) = 1}.

So by Lemma 2.3, the ray generators of σP are eA1 , eA2 , . . . , eAk . We observe that
u ∈ M with 〈u, eA j 〉 = r for 1 ≤ j ≤ k is equivalent to an r -Gorenstein labeling φ

where φ(i) = 〈u, ei 〉 for 1 ≤ i ≤ n. �

Definition 2.8 Let P be a poset forwhichUP isQ-Gorensteinwith index r . A chamber
crepant labeling of P is a function φ : P → Z such that

∑

i∈P

φ(i) = 0

and

∑

i∈A

φ(i) = r

for all upsets A with dim(A) > 0.

One can check that the labeling of the poset in Fig. 1 is a chamber crepant labeling.
Indeed, every upset except the full poset only contains a single element with a nonzero
label and the total sum of values is 0. On the other hand, the labeling of the poset in
Fig. 2 is not a chamber crepant labeling. For example, the sum of the values in the
upset {1, 3} is 1 and the sum of values for {3} is 2. As we will see in Sect. 3, there are
no chamber crepant labelings of the poset in Fig. 2 because it is not bounded.

Proposition 2.9 Let P be a poset for which UP is Q-Gorenstein. The poset P has a
chamber crepant labeling if and only if X P ��� UP is crepant.

Proof Having a chamber crepant labelingmeans there is a u ∈ M such that 〈u, eA〉 = r
for some positive integer r and all upsets A with dim(A) > 0. By Lemma 2.3, we see
that the rays added when refining σP to �P will be exactly eA such that A is an upset
with dim(A) > 0. So, having a chamber crepant labeling is equivalent to Up being
Q-Gorenstein and X P ��� UP being crepant. �


Before we move on, let us note that if P has a r -Gorenstein labeling, then it only
has one such labeling. Indeed, by [18, Prop. 3.5 (4)], σP is a full-dimensional cone.
Thus the set {eA | dim(A) = 0, 1} has full rank and so the linear equations given
in Definition 2.5 have at most one solution. Since the chamber crepant labelings are
special cases of r -Gorenstein labeling (where r is the index of the variety), we see that
if there is a chamber crepant labeling, it is also unique.

As one can see from Lemma 2.3, once we know the upsets of a poset we can
determine the ray generators of the cone. Then determiningwhether the corresponding
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toric variety is Gorenstein or if it has a crepant resolution amounts to solving a system
of linear equations. Proposition 2.7 andProposition 2.9 showwe can alternativelywork
with labelings of the poset to solve this system. Of course solving a linear system is
easy, the real difficulty in these problems stems from the fact that determining the
upsets of a general poset is known to be difficult. The problem of counting upsets has
been shown to be #P-complete [17].

Since the ray generators correspond to dimension 1 upsets, we do not need to
actually know all the upsets to determine if the variety is Gorenstein. However, even
finding the ray generators does not have an easy known solution in general. The
cover relations of P , which are the edges of the Hasse diagram, give the half-space
representation of polyhedron σP . The problem of finding the ray generators of σP is
equivalent to finding the vertex representation of a certain polytope. This polytope is
the projectivization that one obtains by adding the “far face” at infinity to σP . Vertex
enumeration of general polyhedra given by half-space representation is known to be
a hard problem [12].

Despite the difficulties outlined above, we are able to show that under certain
circumstances, there are efficient methods to solve these problems. This is what we
explore in the remainder of the paper.

3 Chamber Crepant Labelings and Bounded Posets

In [16] it was shown that, for any poset P , �P can always be obtained from σP by a
sequence of star subdivisions. This means that X P and UP are related by a sequence
of blow-ups. In this section we further look at the birational map X P ��� UP and
determinewhen it is crepant. First,we explore how theGorenstein and crepant property
behave when taking order duals.

If A is a upset of P , then A is a downset of P . Since the total sum of labels in a r -
Gorenstein labeling must be 0, this means that the sum of the labels of A is completely
determined by the sum of labels of A when A and A are both connected. As result,
we get the following.

Proposition 3.1 Let P be a poset. The map φ : P → Z is a r-Gorenstein (resp. cham-
ber crepant) labeling if and only if

∑

i∈P

φ(i) = 0

and

∑

i∈A

φ(i) = −r

for all downsets A such dim(A) = 1 (resp. dim(A) > 0).

Upsets and downsets reverse roles when taking the order dual of a poset. Thus
the previous proposition implies that if φ is an r -Gorenstein (resp. chamber crepant)

123



1032 Discrete & Computational Geometry (2024) 71:1021–1056

d1

b0 c0

a1

P1

z2

x 1 y1

P2

d 1

b 0 c x 1

a 1

y 1

z 2

(P1, c P2, x)

Fig. 3 Posets P1, P2 and (P1, c)�(P2, x) along with Gorenstein labelings in red

labeling of P , then −φ is a r -Gorenstein (resp. chamber crepant) labeling of the order
dual P∗. This gives the following.

Proposition 3.2 Let P be a poset and let P∗ be its order dual. UP is Q-Gorenstein
if and only if UP∗ is Q-Gorenstein. Similarly, UP is Gorenstein if and only if UP∗ is
Gorenstein. Moreover, X P ��� UP is crepant if and only if X P∗ ��� UP∗ is crepant.

Recall a poset P is bounded if P has a minimal element (denoted by 0̂) and a
maximal element (denoted by 1̂).

Theorem 3.3 Let P be a poset. X P ��� UP is crepant if and only if P is bounded.

Proof (⇒) By Definition 2.5, if φ is an chamber crepant labeling of P and m is a
maximal element of P , then φ(m) = r . Now let A be the set of maximal elements
of P . Then A is an upset and since P is connected and non-trivial, A �= P . So if
X P ��� UP is crepant, the sum of the labels of A must be r and so |A| = 1. It follows
that P has a 1̂. By Proposition 3.2, the crepant property is preserved by taking order
duals. Using the fact that a poset has a 1̂ if and only if its order dual has a 0̂, we get
this direction.

(⇐) Now suppose that P is bounded. Define φ : P → Z by φ(0̂) = −1, φ(1̂) = 1,
and φ(x) = 0 for all x ∈ P \ {0̂, 1̂}. It is straightforward to show that φ is a chamber
crepant labeling and so we have this direction. �


The above theorem immediately gives us the following corollary.

Corollary 3.4 Let P be a bounded poset. Then UP is Gorenstein.

4 Gorensteinness and Biconnected Components

Given any two disjoint posets P1 and P2 with Hasse diagrams H1 and H2 respec-
tively along with x1 ∈ P1 and x2 ∈ P2 we define

(P1, x1)�(P2, x2) = (P1 � P2) /(x1 ∼ x2)

which can be gotten by taking disjoint copies of H1 and H2 and identifying x1 with
x2. Informally, we can think of this as “gluing" together the posets along x1 and x2.
See Fig. 3 for an example.
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In the example depicted in Fig. 3, the labelings of P1 and P2 are Gorenstein label-
ings. The labeling of (P1, c)�(P2, x) is obtained by summing the values of the elements
that were identified and keeping all the other labels the same. One can verify that this
new labeling is a Gorenstein labeling. As we show next, this is no coincidence.

Lemma 4.1 Let P1 and P2 be posets with x1 ∈ P1 and x2 ∈ P2. If both P1 and P2
admit r-Gorenstein labelings, then (P1, x1)�(P2, x2) admits an r-Gorenstein labeling.

Proof Let φ1 and φ2 be r -Gorenstein labelings for P1 and P2 respectively. Also, let
P = (P1, x1)�(P2, x2). Let φ : P → Z given by

φ(z) =

⎧
⎪⎨

⎪⎩

φ1(z) if z ∈ P1 \ {x1},
φ2(z) if z ∈ P2 \ {x2},
φ1(z) + φ2(z) if z = x1 = x2.

We claim that φ is an r -Gorenstein labeling for P . Let A ⊆ P be an upset with
dim(A) = 1. First suppose that A does not contain x1 = x2. Then either A ⊆ P1 and

∑

z∈A

φ(z) =
∑

z∈A

φ1(z) = r

or else A ⊆ P2 and the result follows by same calculation with φ2 in place of φ1.
Otherwise x1 = x2 is in A. Then it must be that P1 ⊆ A or P2 ⊆ A. If not Ā ∩ P1
and Ā ∩ P2 are nonempty and disjoint. However this would imply that dim(A) > 1.
When P1 ⊆ A we have that

∑

z∈A

φ(z) =
∑

z∈A∩(P1\{x1})
φ(z) + φ(x1 = x2) +

∑

z∈A∩(P2\{x2})
φ(z)

=
∑

z∈A∩(P1\{x1})
φ1(z) + φ1(x1) + φ2(x2) +

∑

z∈A∩(P2\{x1})
φ2(z)

=
∑

z∈P1

φ1(z) +
∑

z∈A∩P2

φ2(z)

= 0 + r

= r

where the second to last line holds since A ∩ P2 is an upset of dimension 1 in P2. A
similar calculation also holds in the case that P2 ⊆ A. Thus, the lemma is proven. �


Recall, a graph is biconnected if it is connected and remains connected after the
removal of any single vertex. A biconnected component of a graph is a maximal
biconnected subgraph. For any graph its biconnected components and cut vertices
form the vertex set of the block-cut tree (see e.g. [8, p. 36]). In this tree, we have an
edge between a biconnected component and a cut vertex if and only if the cut vertex is
contained in the biconnected component. The next lemma will be proven by induction
using biconnected components and the block-cut tree of a Hasse diagram.
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Lemma 4.2 If P admits an r-Gorenstein labeling, then each biconnected component
of P admits an r-Gorenstein labeling.

Proof If P is biconnected, we are done. So we may assume it is not biconnected. Let
x0 be a cut vertex such that X ∪ Y = P , X ∩ Y = {x0}, and P|X is a leaf of the
block-cut tree. Let PX = P|X and PY = P|Y both of which are connected posets. We
show both PX and PY have r -Gorenstein labelings.

By assumption P has an r -Gorenstein labeling, φ : P → Z. Define φX : PX → Z

by

φX (x) =
{

φ(x) if x �= x0,
∑

y∈Y φ(y) if x = x0.

We claim this is an r -Gorenstein labeling of PX . Indeed, suppose that A ⊆ PX is
an upset of dimension 1. If x0 /∈ A, then

∑

x∈A

φX (x) =
∑

x∈A

φ(x) = r

since A is also an upset of P with dim(A) = 1. In the case where x0 ∈ A, we let
B = A ∪ Y , which is an upset of P with dim(B) = 1. It follows that

∑

x∈A

φX (x) = φX (x0) +
∑

x∈A\{x0}
φX (x)

=
∑

x∈Y

φ(x) +
∑

x∈A\{x0}
φ(x)

=
∑

x∈B

φ(x)

= r

and so PX has a r -Gorenstein labeling.
The same argument shows that the function φY : PY → Z defined by

φY (x) =
{

φ(x) if x �= x0,
∑

y∈X φ(y) if x = x0.

is an r -Gorenstein labeling of PY . The result now holds by induction on the number
of biconnected components of P . �

Theorem 4.3 A poset P has an r-Gorenstein labeling if and only if each biconnected
component of P has an r-Gorenstein labeling.

Proof The forward direction of the theorem is exactly Lemma 4.2. The backwards
direction follows from Lemma 4.1, noting that P can be built from the operation �

applied to the biconnected components and cut vertices. �
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5 Posets with aMinimum Element or a Maximum Element

In this section we explore when a poset with a 0̂ or a 1̂ has a Gorenstein labeling. We
show that if P has a 0̂ or a 1̂, then UP is Gorenstein if and only if it is Q-Gorenstein
(Theorem 5.2). Moreover, we will see that whether UP is Gorenstein, depends on the
Möbius function of P . For posets P with a 0̂ or a 1̂, we are able to give a charac-
terization of when UP is Gorenstein (Theorem 5.19). Using this characterization, we
give an algorithm to check if UP is Gorenstein in this case (Algorithm 5.20). The
characterization and the algorithm both make use of quotient posets.

A poset has a 0̂ if and only if its order dual has a 1̂. By Proposition 3.2, we know
that UP is Gorenstein if and only if UP∗ is Gorenstein. Therefore we only need to
prove the results when either P has a 0̂ or has a 1̂. We believe the presentation of the
proofs is simpler in the case that the poset has a 1̂ and thus we have chosen to present
the proofs this way.

Throughout this section, we will often need to consider downsets generated by a
single element. We will use the notation 〈x〉↓ to denote the downset generated by x .
Similarly we will use 〈S〉↓ for the downset generated by the set S.

5.1 Q-Gorenstein Implies Gorenstein

For any element x of a poset P we have the principal downset generated by x denoted
〈x〉↓ which contains all elements y so that y ≤ x . If P has a 1̂ then for any proper
downset A �= P , A is connected. Since any principal downset is connected, the next
lemma will show that this forces any possible Gorenstein labeling to be completely
determined by principal downsets. This allows us to give a recursive definition for an
r -Gorenstein labeling.

Lemma 5.1 Let P be a poset with a 1̂. If P has a r-Gorenstein labeling, then this
labeling is given by

∑

y≤x

φ(y) = r(δx,1̂ − 1)

where δx,1̂ is the Kronecker delta function.

Proof Since P has a 1̂, if A is a proper downset, then A is connected. Now suppose
that A = 〈x〉↓ with x �= 1̂. Then since x is the unique maximum element of A, A is
connected. Thus, dim(A) = 1.

Now 〈x〉↓ = P if and only if x = 1̂. It follows that from Proposition 3.1 that

∑

y∈〈x〉↓
φ(y) = r(δx,1̂ − 1)

or equivalently,

∑

y≤x

φ(y) = r(δx,1̂ − 1).
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Thus, the result holds. �

We are now ready to prove one of the main theorems in this section.

Theorem 5.2 Let P be a poset with a 0̂ or a 1̂. Then UP is Gorenstein if and only if
UP is Q-Gorenstein.

Proof We prove the result when P has a 1̂ which suffices by Proposition 3.2. The
forward direction is immediate given the definitions of Gorenstein and Q-Gorenstein.

For the backwards direction, it suffices to show that if φ is the unique r -Gorenstein
labeling given in Lemma 5.1, then r | φ(x) for all x ∈ P . We do this by inducting on
the maximum length of a chain from a minimal element to x . If the length is 0, then x
must be a minimal element. So by Lemma 5.1, φ(x) = −r and so the base case holds.

Now suppose that the maximum length of a chain from x to a minimal element of
P is k and that x �= 1̂. Then by Lemma 5.1,

φ(x) = −
∑

y<x

φ(y) − r .

By the inductive hypothesis, we have that r | φ(y) for all y < x . Thus, r | φ(x) in
this case. Finally, by Lemma 5.1,

φ(1̂) = −
∑

y �=1̂

φ(y).

We have already shown that r | φ(y) for all y �= 1̂ and so r | φ(1̂). It follows that
1

r
φ(x) ∈ Z for all x and so

1

r
φ(x) is a Gorenstein labeling of P . �


5.2 Relationship with theMöbius Function

Given the previous theorem, we will only focus on Gorenstein labelings (as opposed
to r -Gorenstein labelings) in the remainder of this section. In the next proposition, we
show that the labeling described in Lemma 5.1 (when r = 1) is related to the Möbius
function. In this proposition and elsewhere in this section, we will be considering a
new poset, namely, the poset obtained by adding a minimum element 0̂ to P . We
note that we add a 0̂ even if P already has a minimum element. The poset obtained
by adding a 0̂ to P will be denoted by P̂ . We now give the definition of the Möbius
function.

Definition 5.3 Let P be a poset with a 0̂. The (one-variable) Möbius function,μP (x) :
P → Z, is defined recursively by

∑

y≤x

μP (y) = δ0̂,x

where δ0̂,x is Kronecker delta function.
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Fig. 4 Posets P and Q with the elements of MP and MQ colored blue. The values next to an element x
given in red correspond to μP̂ (x)

We will use the notation μP̂ (x) for the Möbius function of x in P̂ . See Fig. 4 for
examples of the Möbius function. From time to time, we will need to consider Möbius
functions of different posets. In these cases, we will use the subscripts to distinguish
them.

Lemma 5.4 Let P be a poset with 1̂ and let φ be the labeling described in Lemma 5.1
when r = 1. Then for all x ∈ P,

φ(x) =
{

μP̂ (x) if x �= 1̂,

μP̂ (x) + 1 if x = 1̂.

Proof We prove the result for x �= 1̂, the argument for x = 1̂ is similar.
We induct on the maximum length of a chain from a minimal element of P to x .

If the length is 0, then x is minimal. Using the definition of the Möbius function, we
have that μP̂ (x) = −1. This agrees with the value given in Lemma 5.1 (with r = 1)
and so the base case holds.

Now suppose that the maximum length is more than 0. Then, by Lemma 5.1 (with
r = 1), we have that

∑

y≤x

φ(y) = −1.
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Rearranging gives us that

φ(x) = −
∑

y<x

φ(y) − 1.

By the inductive hypothesis, φ(y) = μP̂ (y) for all y < x . Moreover, by definition,
μP̂ (0̂) = 1. Thus the previous displayed equation becomes

φ(x) = −
∑

y<x

μP̂ (y) − μP̂ (0̂).

Again using the definition of the Möbius function, we see that the righthand side is
exactly μP̂ (x). Thus the result holds by induction. �


Combining Lemma 5.1 and Lemma 5.4, we get the following characterization of
when UP is Gorenstein in terms of the Möbius function.

Theorem 5.5 Let P be a poset with a 1̂. If φ is a Gorenstein labeling of P, then

φ(x) =
{

μP̂ (x) if x �= 1̂,

μP̂ (x) + 1 if x = 1̂.

Consequently, UP is Gorenstein if and only if

∑

x∈A

μP̂ (x) = −1

for all downsets A of dimension 1.

5.3 A Characterization and Algorithmic Considerations

As we will see when P has a 1̂, the minimal elements of P and the elements covering
them play a crucial role in determining if UP is Gorenstein. Because of this, we
introduce notation for these elements. We will use MP to denote the induced subposet
of elements that are either minimal or cover only minimal elements. That is,

MP = {x ∈ P | if y � x, then y is minimal}.

See Fig. 4 for two examples. Note that in the example, e /∈ MQ . This is because while
e does cover b, it also covers c and d which are not minimal.

If UP is Gorenstein, we must have that the sum of the Möbius values of any
connected downset contained in MP is −1. Thus it is important for us to understand
when this happens. As we show in the next lemma, this forces the connected downsets
of MP to be trees.
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Lemma 5.6 If C is a connected downset of MP , then

∑

x∈C

μP̂ (x) = −1

if and only if C is a tree.

Proof A direct calculation using the definition of the Möbius function shows that for
x ∈ MP ,

μP̂ (x) =
{

−1 if x is minimal in P

degMP
(x) − 1 otherwise

where degMP
(x) refers to the degree of x considered as a vertex in the Hasse diagram

of MP . Let C ′ be the minimal elements of C and let C ′′ be the non-minimal elements
of C . Then

∑

x∈C

μP̂ (x) =
∑

x∈C ′
μP̂ (x) +

∑

x∈C ′′
μP̂ (x)

=
∑

x∈C ′
(−1) +

∑

x∈C ′′
(degMP

(x) − 1)

= −|C ′| +
∑

x∈C ′′
degMP

(x) − |C ′′|

= −|C | +
∑

x∈C ′′
degMP

(x)

Now C is bipartite with partite sets C ′ and C ′′. It follows that
∑

x∈C ′′
degMP

(x) is the

number of edges in C . Combining this fact with the above equations shows that

∑

x∈C

μP̂ (x) = |E(C)| − |V (C)|

where E(C) is the set of edges of C and V (C) is the set of vertices in C . Since C is
connected, |E(C)| − |V (C)| = −1 if and only if C is tree and so the result holds. �


Lemma 5.6 along with Theorem 5.5, imply that MP must be acyclic for UP to
be Gorenstein. However, this is not enough to guarantee that UP is Gorenstein. For
example, consider the poset P in Fig. 4. The sum of the Möbius values of MP is −1
and the same is true for 〈g〉↓. However, if we consider the downset R ∪ 〈g〉↓, where
R = {a, b, d} is the path in MP connecting a and b, we see that the sum of the Möbius
values is 0. However, it needs to be−1 forUP to be Gorenstein. It turns out the reason
this arises is because while a and b are in the same tree of MP , they are not in the
same tree of MP ∩ 〈g〉↓. This allows one to add in the vertices of this “missing" a − b
path in MP ∩〈g〉↓ and keep the downset connected. However, by adding this path, we
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change the sum of the Möbius values. It turns out that this issue is not unique to this
example. To describe what is happening, we need a definition. In the next definition
and elsewhere, we will need to count the number of connected components in a poset.
As before, we will use the notation cc(P) for the number of connected components
of the Hasse diagram of P .

Definition 5.7 Let P be a poset with a 1̂ and let C be a connected downset of P .
We say C satisfies the connected component condition (or simply the cc condition)
if the number of connected components of MP that have nonempty intersection with
C is equal to cc(C ∩ MP ). We say P satisfies the cc condition if all of its connected
downsets satisfy it.

The downset 〈g〉↓ in the poset P of Fig. 4 does not satisfy the cc condition. Indeed,
the number of connected components of MP that have nonempty intersection with
〈g〉↓ is 1 since MP is connected. However, 〈g〉↓ ∩ MP has two connected components,
namely {a, c} and {b, e}. On the other hand, one can check that all connected downsets
in Q of Fig. 4 satisfy the cc condition. And so Q satisfies the cc condition.

Lemma 5.8 Let P be a poset with a 1̂. If UP is Gorenstein, then the following hold.

(1) MP is acyclic.
(2) P satisfies the cc condition.

Proof First note that if (1) did not hold, then there would be a connected downset
containing a cycle. But then by Lemma 5.6, the sum of the Möbius values in this
downset would not be −1, contradicting Theorem 5.5.

Now suppose that (2) did not hold and let C be a connected downset that does not
satisfy the cc condition. Each connected component of C ∩ MP must be contained
in a connected component of MP . Thus, the number of components of MP that have
nonempty intersection with C is less than cc(C ∩ MP ). It follows that there is a path
completely contained in MP that connects two connected components in C ∩ MP .
Let C ′ be the downset generated by C and this path. Then C ′ is a connected downset.
By construction, C \ MP = C ′ \ MP and cc(C ∩ MP ) �= cc(C ′ ∩ MP ). But then
by Lemma 5.6, C and C ′ have different sums of Möbius values since each connected
component ofC ∩ MP andC ′ ∩ MP contributes−1 to the total sum. This is impossible
as dim(C) = 1 = dim(C ′) and UP is Gorenstein. �


While the two conditions in Lemma 5.8 are necessary for UP to be Gorenstein,
they are not sufficient. To see why, consider the poset P in Fig. 5. Both conditions of
Lemma 5.8 hold. However, UP is not Gorenstein since the sum of the Möbius values
of the downset {a, b, c, d, e, f , g} is 0. Even though the two conditions in Lemma 5.8
are not sufficient, we will see that when they hold, we can modify P in a way that
reduces the number of elements of P and does not change the Gorensteinness of the
corresponding variety. Before we explain this in detail, let us return to P given in
Fig. 5. As noted before, MP is acyclic. Consider a new poset obtained by collapsing
the elements of each tree of MP to a single element. That is, collapse the elements,
a, b and d to a single element and c and e to a single element. This new poset we get is
labeled as P/∼ in Fig. 5. Note that MP/∼ is not acyclic and so by Lemma 5.8, UP/∼
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Fig. 5 Posets P and P/∼ with the elements of MP and MP/∼ colored blue. The values next to an element
x given in red correspond to μP̂ (x)

is not Gorenstein. As we will see, the fact that UP/∼ is not Gorenstein can be used to
explain why UP is not Gorenstein.

We now turn our attention to providing a characterization and an algorithm to
determine when a poset with a 0̂ or 1̂ has variety that is Gorenstein. This will formalize
the ideas we discussed in the previous paragraph. We have already discussed one of
the main tools in this characterization, the Möbius function. The other main tool is
quotient posets, which we now examine.

Definition 5.9 Let P be a poset and let∼ be an equivalence relation on P . The quotient,
P/∼, is the set of equivalence classes with the binary relation ≤ given by X ≤ Y in
P/∼ if and only if x ≤ y in P for some x ∈ X and y ∈ Y . If P/∼ is a poset, we call
P/∼ the quotient poset.

Remark 5.10 Whenever we are using quotient posets, we will use uppercase letters for
elements of the quotient poset and lowercase letters for the original poset. We will use
≤ for both orders, despite the fact that they are not the same.

In general, the quotient described inDefinition 5.9 need not be a poset. For example,
take a chain of length 2 and identify the bottom and top elements. The corresponding≤
relation defined for the quotient is reflexive and is transitive, but it is not antisymmetric.
However, the relation that we use here will produce a poset.

Definition 5.11 Let P be a poset such that MP is acyclic. The tree relation ∼ is the
relation such that x ∼ y if and only if x = y or x and y are in the same connected
component of MP .
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See Fig. 5 for an example of a poset P and the quotient poset P/∼ where ∼ is the
tree relation. We will now show the tree relation produces a quotient that is indeed a
poset. Note that we assume that MP is acyclic. Although this is not necessary for the
quotient to be a poset, whenever we apply the relation, it will always be acyclic. This
also explains the use of the word “tree" in “tree relation".

Lemma 5.12 Let P be a poset such that MP is acyclic. Let ∼ be the tree relation. Then
P/∼ is a poset.

Proof First note that it is trivial to verify that ≤ is reflexive.
To show that ≤ is antisymmetric, suppose on the contrary that there exists X , Y ∈

P/∼ such that X ≤ Y and Y ≤ X , but X �= Y . Since X ≤ Y , there is a x ∈ X and
a y ∈ Y such that x ≤ y. Since X �= Y , we know that x and y are not in the same
equivalence class. We claim that this means that y /∈ MP . Indeed, if y ∈ MP , then
x ≤ y would imply that x ∈ MP . However, if x, y ∈ MP and x ≤ y, then x and y are
in the same tree of MP and this would imply that X = Y . Now since Y ≤ X , we have
that there is an element in Y below an element of X . Since y /∈ MP , Y only has one
element and this element must be y. So there exists a x ′ ∈ X such that y ≤ x ′. The
fact that y /∈ MP and y ≤ x ′ implies that x ′ /∈ MP . But then this means that X must
contain a single element and so x = x ′. This together with x ≤ y ≤ x ′ implies that
x = y and so X = Y , a contradiction.

Finally, we show that ≤ is transitive. Suppose that X ≤ Y and Y ≤ Z . If X = Y or
Y = Z , we immediately get that X ≤ Z . So we may assume that X < Y and Y < Z .
Since X < Y , there is a x ∈ X , y ∈ Y such that x < y. Using the same argument
from the previous paragraph, we can see that y /∈ MP . This implies that Y = {y}. So
Y < Z implies that there is a z ∈ Z such that y < z. So we have x < y < z, implying
that x < z. Thus X < Z and so ≤ is transitive. �


By Theorem 5.5 whether or not a poset with a 1̂ corresponds to a Gorenstein variety
depends on the Möbius function. Because of this, it is prudent to understand how the
Möbius function behaves when using the tree relation. If we return to our example
poset P in Fig. 5, we see that when we took the quotient, none of the Möbius values
of the elements outside of MP changed. This is because when the trees collapsed to a
single element, the Möbius value (in the quotient) of the single element is −1 which
is the same as the sum of the Möbius values in the tree before it was collapsed. As we
see in the next lemma, this property is not a unique to our example.

Lemma 5.13 Let P be a poset with a 1̂. Suppose that

(1) MP is acyclic.
(2) P satisfies the cc condition.

Let ∼ be the tree relation on P. Then for all x ∈ P \ MP

μP̂ (x) = μP̂/∼(X),

where X is the equivalence class containing x.
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Proof We induct on the number of elements strictly below x not in MP . Suppose that
this number is 0. In other words, x is only above elements of MP . Let T1, T2, . . . , Tk

be the connected components of 〈x〉↓ ∩ MP . By Lemma 5.6 the sum of Möbius values
of a tree is −1 and so

μP̂ (x) = k − 1.

Since x /∈ MP , we know that x is in its own equivalence class, X . In P/∼, each
tree Ti has been collapsed to a single element and these elements are minimal in P/∼.
Moreover because of the assumption (2) applied to the connected downset 〈x〉↓ and
the definition of a quotient poset, 〈X〉↓ \ X = {T1, T2, . . . , Tk}. Since the Ti ’s are
minimal in P/∼, we have that

μP̂/∼(Ti ) = −1

and so

μP̂/∼(X) = k − 1

Thus, in this case, μP̂ (x) = μP̂/∼(X) and so the base case holds.
Now suppose that the number of elements below x outside of MP is nonzero. As

before, let X = {x}. By the inductive hypothesis, if Y < X and Y contains no elements
of MP , then

μP̂ (y) = μP̂/∼(Y )

where Y = {y}. Moreover, by the definition of the quotient poset, if Y = {y} then
Y < X if and only if y < x . Using these facts, the definition of the Möbius function,
and condition (2), we see that

μP̂ (x) = μP̂/∼(X)

and so the result holds by induction. �

By Lemma 5.6, we know that when T is a tree, the sum of the Möbius values is−1.

This agrees with theMöbius value of the tree (as a single element) in the P/∼. In other
words, the sum of the Möbius values in that equivalence class is the Möbius value of
the equivalence class in the quotient. Every other equivalence class only contains a
single element. By Lemma 5.13, under the conditions given in that lemma, the same
summation property holds for these other elements in the quotient. Thus, we have the
following.

Corollary 5.14 Let P be a poset with a 1̂. Suppose that

(1) MP is acyclic.
(2) P satisfies the cc condition.
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Let ∼ be the tree relation on P. Then for all X ∈ P/∼,

μP̂/∼(X) =
∑

x∈X

μP̂ (x).

Now that we have an understanding of how the Möbius function behaves when
taking quotients, we move to understanding how connected downsets behave. As we
will see in the following technical lemma, there is a mapping between connected
downsets of P and P/∼ that preserves the sum of the Möbius values.

Lemma 5.15 Let P be a poset with a 1̂. Suppose that

(1) MP is acyclic.
(2) P satisfies the cc condition.

Let ∼ be the tree relation on P and let C(P) and C(P/∼) be the set of connected
downsets of P and P/∼. Define a map ψ : C(P) → C(P/∼) by ψ(A) = {X ∈
P/∼ | X ∩ A �= ∅}. Then the following hold.

(a) ψ is a well-defined surjection.
(b) If A, B ∈ ψ−1(D), then

∑

x∈A

μP̂ (x) =
∑

x∈B

μP̂ (x).

(c) For all A ∈ C(P),

∑

x∈A

μP̂ (x) =
∑

X∈ψ(A)

μP̂/∼(X).

Proof First, let us prove (a). We start by showing ψ is well-defined. Suppose that A
is a connected downset of P . Let X , Y ∈ ψ(A) and let x ∈ X ∩ A, y ∈ Y ∩ A. Since
x, y ∈ A and A is connected, there exists an x − y path in A, sayw0w1w2 . . . wkwk+1
where x = w0 and y = wk+1. Let Wi be the equivalence class containing wi . Since
wi ∈ A, Wi ∈ ψ(A). Since wi is comparable to wi+1 in P , Wi and Wi+1 are com-
parable or equal in P/∼. In any case, after removing repeated vertices, we see that
X W1W2 . . . WkY is a path in P/∼ whose vertices are in ψ(A). It follows that ψ(A)

is connected.
Next, let us show that ψ(A) is a downset. Suppose that Y ∈ ψ(A) and let X < Y

in P/∼. Then since X � Y , it must be the case that Y is not minimal in P/∼. Then
by definition of the tree relation, Y = {y} for some y ∈ P . Since Y ∈ ψ(A) and Y
only has one element, this element must be in A. That is, y ∈ A. Now X < Y implies
that there is a x ∈ X below an element of Y . Since Y only has one element, we have
that x < y. Since A is a downset, x ∈ A. Thus, X ∈ ψ(A) and so ψ(A) is a downset.
We conclude that ψ is well-defined.

Let us now show that ψ is a surjection. Let D be a connected downset of P/∼. Let
A = {a ∈ P | a ∈ Z for some Z ∈ D}. In other words, A is the union of the equiva-
lence classes contained in D. Clearly, if A ∈ C(P), then ψ(A) = D, so it suffices to
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show A is connected and a downset. First, we show A is connected. Let x, y ∈ A and
let X , Y be the corresponding equivalence classes containing x and y. Then we have
that X , Y ∈ D. Since D is connected, there exists a path W0W1W2 . . . Wk Wk+1 in D
where X = W0 and Y = Wk+1. For each i , if Wi and Wi+1 are both not minimal in
P/∼, then Wi = {wi } and Wi+1 = {wi+1} for some elements wi and wi+1. The fact
that Wi and Wi+1 are comparable in P/∼ implies that wi and wi+1 are comparable in
P . Thus there is a path fromwi towi+1. If W j isminimal in P/∼, then W j corresponds
to a tree in MP . Moreover, the fact that W j−1W j W j+1 is a path in D implies that W j−1
and W j+1 are not minimal. It follows that W j−1 = {w j−1} and W j+1 = {w j+1} for
some elementsw j−1 andw j+1. Since W j−1 and W j are comparable in P/∼, we know
that there is an element w ∈ W j comparable to w j−1. Similarly, there is an element
w′ ∈ W j comparable to w j+1. Now all the elements of W j are in A and since W j is a
tree and thus connected, there is a path from w to w′ in A. Thus, there is a path from
w j−1 tow j+1 in A. By applying these ideas to the elements in W0W1W2 . . . Wk Wk+1,
we see that we can find a path from x to y in A. Thus A is connected.

Next, we show that A is a downset. Let y ∈ A and let x < y with x ∈ X , y ∈ Y .
Then Y ∈ D. Since x < y in P , X ≤ Y in P/∼. Since D is a downset this implies
that X ∈ D. It follows that x ∈ A and so A is a downset. Thus ψ is a surjection and
so (a) holds.

Now we prove (b). Let A, B ∈ ψ−1(D). We claim that A and B can only differ in
values of MP . To see why, suppose that there is an x /∈ MP such that x ∈ A. Let X be
the equivalence class containing x . Then X ∈ ψ(A) and so ψ(A) = ψ(B), implies
that X ∈ ψ(B). Since x /∈ MP , X = {x} and so x must be in B.

We now break into two cases depending on if A ⊆ MP or not. If A ⊆ MP , then
since A is connected, A is a tree completely contained in MP and so by Lemma 5.6
the sum of the Möbius values of A is −1. Since the A and B agree except possibly for
elements of MP and since B is connected, the sum of the Möbius values of B is −1
as well. Thus (b) holds in this case.

Now suppose that A is not contained in MP and suppose that there are k connected
components of MP that have nontrivial intersection with A. Since A is connected, for
each such connected component, there is an element of A\ MP above some element of
the component. Since A and B agree except possibly for elements of MP , we see that
there must also be k connected components of MP that intersect nontrivially with B.
By the cc condition, cc(A ∩ MP ) = k = cc(B ∩ MP ). By Lemma 5.6 each connected
component of A ∩ MP and B ∩ MP contributes −1 to the total sum of Möbius values
for A and B. Since the two sets agree except possibly at MP , we see that (b) holds in
this case too.

Lastly let us prove (c). By (b), the sum ofMöbius values of any preimage ofψ(A) is
the same. Thus it suffices to show the result when A = {a ∈ P | a ∈ X for some X ∈
ψ(A)}. Then A contains all the elements of the equivalence classes of ψ(A). Thus,

∑

x∈A

μP̂ (x) =
∑

X∈ψ(A)

∑

x∈X

μP̂ (x) =
∑

X∈ψ(A)

μP̂/∼(X)

where the last equality holds by Corollary 5.14. �
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The surjection ψ described in Lemma 5.15, provides a mapping between con-
nected downsets of P and P/∼ that preserves the sum of the Möbius values. Thus we
immediately get the following.

Lemma 5.16 Let P be a poset with a 1̂. Suppose that

(1) MP is acyclic.
(2) P satisfies the cc condition.

Let∼be the tree relation on P. Then UP is Gorenstein if and only if UP/∼ is Gorenstein.

We will use the previous lemma to provide a characterization and an algorithm to
determine whenUP is Gorenstein provided P has a 0̂ or 1̂. However, before we do that,
we need to further discuss the cc condition. Clearly we do not want to actually check
all connected downsets for the cc condition, since if we already knew all the connected
downsets, we could just sum the Möbius values in these downsets to determine if UP

is Gorenstein. Instead, we will show the cc condition is equivalent to a condition that,
when the number of connected components of MP is small compared to the number
of elements of P , can be checked efficiently.

Definition 5.17 Let P be a poset with a 1̂ and suppose that MP is acyclic and con-
tains k connected components. For all sets S ⊆ P\MP such that 1 ≤ |S| ≤ k, let
T1, T2, . . . , Tm be the connected components of MP such that 〈S〉↓ ∩ Ti �= ∅. Let
A j = 〈S, T1, T2, . . . , Tj−1, Tj+1, . . . , Tm〉↓. We say that P satisfies the tree downset
condition if whenever A j is connected we have that cc(A j ∩ MP ) = m.

Clearly, the cc condition implies the tree downset condition. However, as we will
see, the tree downset condition is actually equivalent to it. This equivalence means that
if MP has k connected components, we only need to look at downsets generated by
k elements and the connected components of MP below them. This can significantly
improve the efficiency of checking the cc condition. For example, if MP is connected,
the tree downset condition says we need to only check principal downsets for the cc
condition.

In the proof of the next lemma we will need some new terminology. Given a path
in the Hasse diagram of P , v1v2 . . . v�, we say vi is a peak if vi > vi−1, vi+1. We
say that a v j is a valley if v j < v j−1, vv j +1. See Fig. 6 for an example of peaks and
valleys.

Lemma 5.18 Let P be a poset with a 1̂ such that MP is acyclic. Then P satisfies the
cc condition if and only if P satisfies the tree downset condition.

Proof First, note that the forward direction is immediate given the definition of the cc
condition and the tree downset condition. Thus, we may now focus on the backwards
direction. Suppose that P satisfies the tree downset condition, but there is a connected
downset C where the number of connected components of MP that intersect non-
trivially with C is not cc(C ∩ MP ). Then it must be the case that there are elements
a, b ∈ C ∩ MP which are connected in MP , but not connected in C ∩ MP .

Since C is connected, we know that there is an a − b path in C . Among all such
a − b paths, let Q be a path which uses the minimal number of peaks outside of MP .
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Fig. 6 Peaks are given in blue and valleys are given in red

We claim that Q has at most k − 1 peaks that are not in MP . To see why, suppose this
was not the case and let w1, w2, . . . , wk be the first k peaks of Q not in MP .

For each i , let Ti be a tree of MP that has an element below the left valley of the
peak wi . Moreover, let Tk+1 be a tree of MP that has an element below the right
valley of wk . Since MP has k trees, the sequence T1, T2, . . . , Tk, Tk+1 has a repeated
element. Call this repeated element T . By definition, T is below a left valley of a peak
in {w1, w2, . . . , wk}. Moreover, we claim that T is also below a right valley of a peak
in {w1, w2, . . . , wk}. If T = Tk+1, this is true by definition of Tk+1. If not, then T is
below a left valley of a peak say v. We claim that T must be below the right valley of
the peak immediately preceding v in the list w1, w2, . . . , wk . Call this peak u. Clearly
if the left valley of v is the right valley of u this is true. If not, it is because the left
valley of v and the right valley of u are in MP and the portion of the path between
these valleys stay in MP . But then this means that both these valleys are in T . See
Fig. 6 for a visualization. We conclude that T is below the right valley of some peak
in w1, w2, . . . , wk .

Let wi and w j be such that T is below the left valley of wi and T is below
the right valley of w j and such that wi and w j chosen so that they are closest
in the list w1, w2, . . . , wk, wk+1 with this property. Let A be downset generated
by {wi , wi+1, . . . , w j } together with all the trees of MP below an element of
{wi , wi+1, . . . , w j } except for T . We will show that all the peaks (including those
in MP ) of the portion of Q between wi and w j are in A. Since the path between wi

and w j is connected, the downset the path generates is connected. Moreover since
the path is generated by its peaks and since the additional trees added to A are below
elements of the path and the trees are connected themselves, we see that A will be
connected if we can show all the peaks are in A.
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By definition, all the peaks outside of MP on the portion of Q from wi to w j are
in A. Now suppose that p is a peak in MP in the portion of Q between wi and w j .
Any time the path goes out of MP , it create a peak outside of MP to go back down
into MP . Since the trees of MP are connected components this means that once the
path goes into MP it stays in the same tree of MP until the path leaves MP . Thus any
peak in MP is in a tree that was below a peak outside of MP . Since all the trees except
for T are completely contained in A, as long as these peaks in MP are not in T , they
are in A. Because we chose wi and w j to be as close as possible, the peaks in MP on
this portion of Q cannot be in T . Thus, all the peaks of Q between wi and w j are in
A and so A is connected.

Let t1 be an element of T that is below the left valley of wi and let t2 be an element
of T that is below the right valley of w j . A is generated by no more than k elements
together with all but one tree of MP below it. We claim that there is a t1 − t2 path
completely contained in 〈wi , wi+1, . . . , w j 〉↓ ∩ MP . If this was not the case, then this
would contradict the tree downset condition. Since wi , wi+1, . . . , w j ∈ C , this path
is completely contained in C ∩ MP . However, we claim this allows us to modify Q to
get a new path from a to b that has less peaks outside of MP . Let Q′ be the path from
a to b which follows along Q until we reach the left valley of wi , then travels down
to t1, takes the path in MP from t1 to t2, then goes up to the right valley of w j . Note
that this new path Q does not contain any of the peaks in wi , wi+1, . . . , w j . When we
descend from the left valley of wi to t1 we do not create any new peaks. Similarly we
do not create new peaks when ascending from t2 to the right valley of w j . We may
create new peaks between t1 and t2, but these peaks are wholly contained in MP . As
a result, Q′ has less peaks outside of MP than Q does, contradicting the minimality
of peaks outside of MP of Q. We conclude that Q has at most k − 1 peaks.

To finish, apply the same reasoning we did before to Q. Since Q has at most k − 1
peaks outside of MP , wee see that this allows us to find an a − b path in C ∩ MP ,
contradicting our original assumption. �


In the next theorem, we provide a characterization of when the variety associated
to a poset with a 1̂ is Gorenstein. To do this, we need some new notation. Let ∼ be the
tree relation on P . We define P/∼k recursively as

P/∼k =
{

P if k = 0,

(P/∼k−1)/∼ for k > 0.

In other words, P/∼k is the poset obtained by applying the tree relation k times to P .
See Fig. 7 for an example of a poset and its successive quotients. We are now ready to
give one of the main theorems of this section. Recall that �(P) denotes the length of
P .

Theorem 5.19 Let P be a poset with a 1̂. UP is Gorenstein if and only for all 0 ≤ k ≤
�(P) − 1 the following hold

(1) MP/∼k is acyclic.

(2) P/ ∼k satisfies the tree downset condition.
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P P/ P/ 2 P/ 3

Fig. 7 Poset P and its successive quotients

Proof (⇒) Suppose that UP is Gorenstein. We prove assumptions (1) and (2) hold for
all 0 ≤ k ≤ �(P) − 1 by using strong induction on k. When k = 0, the result holds
by Lemma 5.8 and Lemma 5.18.

Now suppose that k > 0. By the inductive hypothesis, assumptions (1) and (2) hold
for P/∼ j for all 0 ≤ j ≤ k − 1. By Lemma 5.18, (2) implies that P/∼ j satisfies
the cc condition for all 0 ≤ j ≤ k − 1. Thus, we can repeatedly apply Lemma 5.16
to get that UP Gorenstein implies that UP/∼k−1 is Gorenstein. Applying the lemma
to P/∼k−1 implies that UP/∼k is Gorenstein. Then assumptions (1) and (2) hold for
P/∼k by Lemma 5.8.

(⇐) Now suppose assumptions (1) and (2) hold for all 0 ≤ k ≤ �(P)−1. Then we
can repeatedly apply Lemma 5.16 to see that UP is Gorenstein if and only UP/∼�(P)−1

is Gorenstein. Now every time we apply the tree relation to poset its length drops by
1. Thus, applying the quotient �(P) − 1 times, we are left with a poset consisting of a
1̂ and minimal elements. Clearly such a poset gives rise of a Gorenstein variety. Thus,
UP/∼�(P)−1 is Gorenstein and so UP is Gorenstein as well. �


The previous theorem allows us to give an algorithm to determine if a poset with a
0̂ or 1̂ gives rise to a Gorenstein variety.

Algorithm 5.20 Algorithm to determine if UP is Gorenstein
Input: P a poset with a 0̂ or 1̂.
Output: A Yes/No decision if UP is Gorenstein.
Method:

(1) If P has a 0̂, set P to be P�.
(2) While �(P) > 1

(a) Check the truth value of the following statement.

MP is acyclic.

If the statement is false, terminate algorithm and return “No".
(b) Check the truth value of the following statement.

123



1050 Discrete & Computational Geometry (2024) 71:1021–1056

P satisfies the tree downset condition.

If the statement is false, terminate algorithm and return “No".
(c) Set P to be P/∼, where ∼ is the tree relation.

(3) Return “Yes”.

At each step of the algorithm, we need to check the tree downset condition. Since
this condition depends on the number of connected components in MP , it is important
to understand how the number of connected components change as we take quotients.

Lemma 5.21 Let P be a poset with k trees in MP . Then MP/∼ has at most k trees.

Proof Let T1, T2, . . . , Tk be the trees of MP . Then T1, T2, . . . , Tk are the minimal
elements of P/∼. Every connected component of MP/∼ must contain a minimum
element of P/∼. So every connected component of MP/∼ contains some tree in
T1, T2, . . . , Tk . Moreover, each Ti is in exactly one connected component of MP/∼.
It follows that there are at most k trees in MP/∼. �


In the next theorem, we give a bound on the complexity of Algorithm 5.20. Note
that, the brute force method which would require first enumerating all downsets is
known to be #P-complete as we have previously remarked. So, if the number of con-
nected components of MP is small compared to |P|, the algorithm can be significantly
quicker than the brute force approach (assuming #P-complete problems are not actually
easy). Toward formalizing this, we analyze Algorithm 5.20 in terms of parameterized
complexity [6]. The parameterized complexity class XP (see e.g. [2, p. 7]) consists of
problems such that given a pair of a problem instance and a parameter k there is an
algorithm solving the problem with time bounded by f (k) · N g(k) where N is the size
of the problem instance and both f and g are computable functions. These problems
are sometimes called “slice-wise polynomial” since for a fixed k the runtime is poly-
nomial in N . We call an algorithm demonstrating membership in XP an XP-algorithm.
In our situation, a problem instance will be given by a poset P on n elements. The
parameter k we use is the number of connected components of MP . We note that this
parameter can be efficiently computed from the poset.

Theorem 5.22 Algorithm 5.20 is a valid XP-algorithm which can be made to run in
O(knk+3) time where n = |P| and k is the number of connected components of MP .

Proof The validity of the algorithm follows from Theorem 5.19 and the fact that if
P = MP , then UP is Gorenstein.

Now we show the result concerning the time complexity. First, the algorithm needs
to determine MP . This can be done by first finding all theminimal elements of P which
can be done in O(n2) time by comparing elements. Then one must find the elements
that cover only minimal elements. This too can be done in O(n2) time. Because we
will need it later, we can also find the connected components of MP again in O(n2)

time using a depth first search. Next, the algorithm needs to determine if MP is acyclic.
Since we know the number of connected components of MP , we can just count the
number of edges in MP to decide this.
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After determining if MP is acyclic, the algorithm must check the tree downset
condition of P (Definition 5.17). Let S ⊆ P\MP with |S| ≤ k where k is the number
of connected components of MP . To check the tree downset condition for S, we
must find all the connected components that intersect nontrivially with 〈S〉↓. We can
compute 〈S〉↓ in O(kn) time by comparing each element of P with each element of S
and from these comparisons we can also determine which connected components of
MP intersect nontrivially with 〈S〉↓.

Next, for each j we will compute A j given in Definition 5.17 and check if it is
connected. Computing A j can be done in linear time given that we have already
computed 〈S〉↓. Again, using a depth first search, determining connectedness of A j

can be done in O(n2) time. For those that are connected, we need to count the number
of connected components of A j ∩ MP . This can be done in O(n2) time. Since there
at most k possible A j ’s to check, we see that for each set S, checking the tree downset
condition for S, can be done in O(kn2) time. Now there are O(nk) sets to check,
so this step can be done in O(knk+2) time. Lastly, if the tree downset condition
is satisfied we must compute P/∼. This can be handled by recording some of the
computations performed above since P/∼ is determined by comparing elements of
MP with elements of P \ MP .

We conclude that one iteration of steps (1) and (2) of the algorithm can be run in
O(knk+2) time. By Lemma 5.21, the number of connected components of MP/∼ j is
at most k and so each iteration can be run in O(knk+2) time. Since the algorithm runs
no more than n times, we see that the full algorithm can run in O(knk+3) time as
claimed. �


We finish this section by noting that when MP is connected, we can easily check if
UP is Gorenstein. The main reason for the simplicity is that if we quotient out by the
tree relation and MP is connected, P/∼ is bounded and so UP/∼ is Gorenstein. We
leave the details of the proof for the following theorem to the reader.

Theorem 5.23 Let P be a poset with a 1̂ such that MP is connected. Then the following
are equivalent.

(a) UP is Gorenstein.
(b) For all x ∈ P, 〈x〉↓ ∩ MP is a tree.
(c) For all x ∈ P\MP , μP̂ (x) = 0.

6 Length 1 Posets

In this section we restrict our attention to posets of length 1. That is, posets in which
every element is either minimal or maximal.

6.1 Q-Gorenstein Implies Gorenstein

We start with a lemma which determines the values an r -Gorenstein labeling must
take on any biconnected length 1 poset.
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1 2 3 4

5 6 7 8

Fig. 8 A biconnected poset of length 1 which has the same number of minimal and maximal elements but
is not Gorenstein

Lemma 6.1 If P is a length 1 biconnected poset and φ : P → Z is an r-Gorenstein
labeling, then φ(x) = r for all maximal elements x ∈ P and φ(y) = −r for all
minimal elements y ∈ P.

Proof For each maximal element x ∈ P we have that A = {x} is an upset. Since
P is biconnected, dim(A) = 1 so φ(x) = r because φ is an r -Gorenstein labeling.
Similarly, by Proposition 3.1, for any minimal y ∈ P , we must have that φ(y) = −r

�

Proposition 6.2 If P is a length 1 biconnected poset with an r-Gorenstein labeling,
then P has the same number of minimal and maximal elements.

Proof For a length 1 poset each element is either a minimal or maximal element and
cannot be both since the poset is connected. Thus if φ is an r -Gorenstein labeling its
values are completely determined by Lemma 6.1. Let α be the number of maximal
elements of P and β denote the number of minimal elements. Then we have that

0 =
∑

z∈P

φ(z) = αr − βr .

So α = β and the result is proven. �

Let us give an example which shows that the converse of Proposition 6.2 is false.

The length 1 poset in Fig. 8 is biconnected with the same number of minimal and
maximal elements, but is not r -Gorenstein. To see why, note that all the maximal
elements would have to have to be labeled with a value of r . Now let A be the upset
generated by 2, then cc(A) = 1 = cc(A) and so it follows that 2 must be labeled by
−2r . Thus by Lemma 6.1, the poset cannot be r -Gorenstein.

We now give one of the main theorems of this section.

Theorem 6.3 Let P be a length 1 poset. Then UP is Gorenstein if and only if UP is
Q-Gorenstein.

Proof The backwards direction is trivial given the definitions of Q-Gorenstein and
Gorenstein. By Theorem 4.3 we may assume that P is biconnected. So by Lemma 6.1,

the r -Gorenstein labeling is given by φ(x) = ±r . It follows that the labeling
1

r
φ(x)

is a Gorenstein labeling of P . �
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6.2 Some Infinite Families

By Theorem 6.3 we need to only look at Gorenstein labelings. We will now give some
infinite families of length 1 posets admitting Gorenstein labelings.

Proposition 6.4 Let P be a length 1 poset which is 2-regular and 2-connected. Then
UP is Gorenstein.

Proof For such a poset P , it must be that P is a 2k-cycle. This is a balanced bipartite
graph with k elements in each part of the bipartition. The bipartition splits P into its
minimal elements and its maximal elements. Let φ : P → Z be defined by

φ(x) =
{
1 if x is maximal

−1 if x is minimal

which is the only possibility for a Gorenstein labeling by Lemma 6.1. First, note that
since there are k minimal elements and k maximal elements, we have that

∑

x∈P

φ(x) = k − k = 0.

Now suppose that A is an upset such that A �= P and dim(A) = 1. Then A is
connected. The only proper connected subgraphs of a cycle are paths and so A is a
path. Since A is an upset and a path, it must be that there are j minimal elements in the
path and j + 1 maximal elements. It follows that for any upset A which is connected,

∑

x∈A

φ(x) = ( j + 1) − j = 1.

Thus UP is Gorenstein. �

As one can see from the poset in Fig. 8, we cannot just replace 2-regular with

3-regular in the previous proposition. However, there are n-regular length 1 posets
which give rise to Gorenstein varieties as we see next. Throughout the remainder of
this section, we use Kn,n to denote the poset whose Hasse diagram is the complete
bipartite graph with n minimal elements and n maximal elements.

Proposition 6.5 If P is Kn,n, then UP is Gorenstein.

Proof First note that P has n minimal elements each of which is less than each of the
n maximal elements. Let the minimal elements of P be a1, a2, . . . , an . Also, let the
maximal elements of P be b1, b2, . . . , bn . Let φ : P → Z be given by φ(ai ) = −1
and φ(bi ) = 1 for all 1 ≤ i ≤ n which is the only possibility for a Gorenstein labeling
by Lemma 6.1. It is clear that

∑
x∈P φ(x) = 0. Now if A ⊆ P is an upset with

dim(A) = 1, then either A = {bi } for some 1 ≤ i ≤ n or else A = {ai } again for
some 1 ≤ i ≤ n. In any case

∑
x∈A φ(x) = 1 for any upset A ⊆ P with dim(A) = 1.

Therefore UP is Gorenstein. �
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By Proposition 6.5, we know that there are n-regular, n-connected posets which
have Gorenstein labelings, namely Kn,n . Additionally, by Proposition 6.4, we know
that there are 2-regular, 2-connected posetswhichgive rise toGorenstein varieties other
than K2,2. This naturally brings up the question of if there are n-regular, n-connected
posets, other than Kn,n , whose variety is Gorenstein when n ≥ 3. We have been able
verify that K3,3 is the only 3-regular, 3-connected length 1 poset whose variety is
Gorenstein. However, at this time our methods do not need seem to generalize when
n ≥ 4 and thus this case remains open.

7 Conclusion

We now conclude with some discussion of open problems. First we have the following
question on recognizing when an r -Gorenstein labeling exists.

Question 7.1 Is there a good characterization in terms of P of when UP is Gorenstein
or Q-Gorenstein?

In Question 7.1 the word “good” means a characterization which is not simply the
definition of beingQ-Gorenstein or Gorenstein and preferably gives an efficient means
of recognizing the Gorenstein property from the poset like is done in Algorithm 5.20
for posets with 0̂ or 1̂ when the number of connected components of MP is small. A
braid cone is smooth if and only if theHasse diagram of the poset is a tree [18, Prop. 3.5
(9) and Corollary 3.10]. Since smooth implies Gorenstein, tree posets will be included
in any characterization that answers Question 7.1. Another easy to describe class of
posets we know have a Gorenstein labeling is bounded posets from Theorem 3.3. The
largest class we understand, which contains tree posets and bounded posets, comes
from the characterization in Theorem 5.19 combinedwith the reduction to biconnected
components from Theorem 4.3. A question, possibly more approachable than in the
general case, is the following for which we treated some cases of in Sect. 6.

Question 7.2 Is there an efficient way to decide if UP is Gorenstein when P is a length
1 poset?

By Proposition 6.2 and reduction to the biconnected case previously mentioned, we
see that Question 7.2 becomes a problem about neighborhoods in balanced bipartite
graphs with a “top” and “bottom” set of vertices corresponding to maximal and min-
imal elements respectively. Approaches to this question could be to look for a clever
algorithm or look for a reduction with an NP-complete problem.

Whether it is the length 1 case or the general case, in order to decide if UP is
Gorenstein, we need understand the ray generators of σP . As we mentioned before,
doing this may be difficult since the ray generators come from upsets which are known
to be hard to enumerate [17]. This makes the problem of deciding Gorensteinness
potentially difficult for generic posets.

In Sect. 5 and Sect. 6 we showed that Q-Gorenstein implies Gorenstein for posets
with a 0̂ or a 1̂ and for length 1 posets. Moreover, using SageMath [21], we have been
able to verify that for all posets on up to 10 elements,Q-Gorenstein impliesGorenstein.
This supporting data is available from the corresponding author on reasonable request.
This leads us to the following conjecture.
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Conjecture 7.3 Let P be a poset, then UP is Gorenstein if and only if UP is Q-
Gorenstein.

We note that braid cones have a nice property related to smoothness of a similar
flavor to this conjecture. In particular, a braid cone is simplicial (i.e. ray generators are
a basis of NR) if and only if it is smooth (i.e ray generators are a basis of N ) [18, Cor.
3.10]. Geometrically this means that the corresponding toric variety is an orbifold if
and only if it is smooth.
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