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Relative motion of structured optical illumination with respect to an object and far-field mea-
surement of intensity are presented as a means to obtain far-subwavelength spatial resolution with
a direct imaging arrangement. The principle behind this approach is that the variable interac-
tion of an object with a background field generates information about nanometer-scale features
that is encoded in the propagating plane wave spectrum, allowing far-field data that is modulated
with motion according to the nanostructure. Information theory supports this new super-resolution
mechanism and illustrates sensitivity with respect to the illumination and detection arrangements.
Simulations indicate that available lasers and detectors would enable a resolution of λ/1000 with
modest signal-to-noise requirements and single-pixel detection. Relative motion in structured fields
is shown to enhance spatial resolution achievable using data inversion with constraints. Impor-
tantly, far-subwavelength sensitivity is shown to be achievable even when the illuminating field is
unknown. These results suggest applications that include material defect detection and unlabeled
protein sensing, and direct extensions to estimating geometrical features at unprecedented spatial
resolution become possible.

I. INTRODUCTION

Achieving high lateral spatial resolution is critical in
science and technology, and the infrared through ultra-
violet wavelength range is of great importance for innu-
merable domains. A common physical measure is dis-
tinguishing the separation between two small objects,
two apertures, for example. The Abbe diffraction limit
constrains conventional far-field imaging methods to a
maximum achievable resolution of λ0/2n, with λ0 the
free-space wavelength and n the refractive index of the
background medium. This can loosely be understood
by loss of the evanescent field portion of the plane wave
spectrum, leaving the propagating spectrum. Signifi-
cant scientific insights and technological developments
are locked behind this link between wavelength and res-
olution. We present the physical basis for achieving vir-
tually unlimited spatial resolution using relative motion
in structured illumination, where either the object or the
field is scanned and far-field intensity measurements are
made. In this situation, relative motion between the
field and the object encodes nanostructure information
in the propagating plane waves, allowing intensity mea-
surements to be sensitive to far-subwavelength transverse
geometries. In an experiment using a laser, nanometer-
scale object features should be resolvable without the
need for fluorescent labeling. In the examples presented,
an interfering beam and speckle fields are considered,
with a view to implementation strategies and the pos-
sible suite of applications.
One approach to access high-spatial-frequency infor-

mation is near-field scanning of a tip (to directly measure
or scatter). However, such methods may not be practi-
cally feasible, and they are generally slow and obtrusive.
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Another method makes use of structured illumination
and Moiré fringes and grants an increase in resolution
by a factor of 2 by extending the range of spatial fre-
quencies that can be accessed [1, 2], an approach that is
known as structured illumination microscopy (SIM). It
has also been established that random speckle fields can
be used to access this factor of two in resolution improve-
ment without the requirement of knowing the fields [3].
Structured fields are also the basis of a nanometer-scale
optical ruler using a Pancharatnam-Berry phase meta-
surface, where singularities can be revealed with interfer-
ometry [4].
In quantum optics, the two-fold de Broglie wavelength

reduction of entangled photon pairs [5], relative to that
for the individual photons, can be, in principle, ex-
tended to a larger number of photons. Exploiting this in
practice requires a commensurate multi-photon detection
method. However, the spatial resolution is that associ-
ated with the total energy, and hence the parent photon.
Higher-order photon-counting correlations, in a configu-
ration that extends the Hanbury Brown and Twiss in-
terferometer measurement from two detectors, provide
opportunities for higher spatial resolution with the ob-
servation of multiphoton interference patterns from sta-
tistically independent light sources [6, 7]. In fluorescence
microscopy, higher-order photon correlations have been
presented as a means to reduce the width of the point
spread function of a microscope [8, 9], offering an avenue
for improved spatial resolution. By combining structured
illumination with these higher-order correlations, an even
greater resolution enhancement has been shown for quan-
tum emitters [10].
In the biosciences, fluorescent labeling has become per-

vasive as a means to obtain information through various
forms of microscopy, such as fluorescent lifetime imaging
microscopy (FLIM). At the single-molecule level, fluc-
tuation correlation spectroscopy (FCS) has been com-
monly used [11]. Importantly, with the constraint of the
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point spread function of a microscope, and when it is
possible to ascribe a single point emitter in space, that
point can be located to a precision far greater than the
visible wavelengths used in microscopy. For example,
fluorescence-based techniques such as STED (stimulated
emission depletion microscopy), PALM (photoactivated
localization microscopy), and STORM (stochastic optical
reconstruction microscopy) demonstrate subwavelength
resolution [12–14] with use of the point spread function
of a microscope as a constraint. While these techniques
extract the equivalent point location of a fluorophore,
this may or may not provide underlying information on
the host material, a cell, for example, and fluorescent
labeling is not always desirable or feasible.

Single-pixel imaging encompasses a range of techniques
for reconstructing the scene with a single-pixel camera.
This is accomplished through spatial modulation of ei-
ther the illumination or detection light [15]. Reconstruc-
tion using these measurements is done with the addition
of prior information of some kind, for example, within
a compressed sensing framework [16] or with use of ma-
chine learning [17].

Relative motion has been used in various imaging ap-
proaches that do not access subwavelength spatial infor-
mation. In x-ray microscopy, relative motion between
the beam and the specimen forms the basis of multi-
ple techniques, such as scanning transmission x-ray mi-
croscopy [18] or x-ray ptychography [19]. Ptychography
recovers an image of the specimen by measuring diffrac-
tion patterns that occur when the coherent beam and
specimen are moved relative to each other. The compu-
tational inversion process uses a phase-retrieval method
that requires significant overlap of these relative posi-
tions [20]. Ptychography has been used to image weakly
scattering specimens, such as biological samples [21].
“Super-resolution” methods from digital image process-
ing [22] have been used to increase the resolution of ob-
tained ptychographic images [23]; it should be noted that
this usage of the term “super-resolution” is in the context
of image processing and exploits sub-pixel shifts during
acquisition, and does not imply breaking the Abbe limit.

Prior simulation studies have demonstrated sensitivity
to far-subwavelength object features using relative mo-
tion in structured illumination [24, 25]. These studies
consider object motion relative to a known, determinis-
tic illumination pattern, and demonstrate sensitivity to
changes in feature geometry on the order of λ/100. Ad-
ditionally, these results rely either partially [24] or com-
pletely [25] on information from detectors that are per-
pendicular to the plane of the object feature of interest,
and thus provide high sensitivity due to phase differences
between scatter from different parts of the object at the
detector plane. The direct imaging arrangement, where
the object lies in a plane parallel to the detector, is impor-
tant in microscopy because it allows the straightforward
use of lens systems to focus light, and limits the deleteri-
ous effect of optical scatter from the object (see Ref. [26],
for example: p. 281 for an introduction to the microscope

and pp. 465-471 for the resolving power of a microscope
and the Abbe limit). Almost all common methods in op-
tical microscopy utilize this arrangement. Thus, further
analysis that considers the direct imaging arrangement
is of substantial practical interest. Fundamentally, these
studies demonstrate that far-subwavelength object infor-
mation can be encoded in the propagating plane wave
spectrum and measured in the far-field. The roles of
relative motion in structured illumination, measurement
geometry, prior information, and multiple scatter in en-
coding this information are not completely understood,
however.

We present the physical basis for achieving far-
subwavelength spatial resolution in a direct imaging con-
figuration using far-field intensity data and either motion
of an incident structured field over an object or motion
of the object in a background field. Information theory
provides an understanding of the underlying phenomena
that allow access to nanostructure information with vis-
ible laser light. New results clarify the role of relative
motion in structured illumination, interferometric infor-
mation due to the geometry of the object and detector,
prior information, and multiple scatter in achieving high
spatial resolution. The arrangement considered in a set
of simulations is illustrated in Fig. 1. The field could be
scanned by various means, including the use of a spa-
tial light modulator. The object may also be scanned
in space, such as with a piezoelectric transducer [24].
Changes in optical intensity are measured in the far field
as these relative positions change, and these are sensitive
to far-subwavelength changes in the object’s geometry.
Numerical simulations and information theory support
the opportunity spaces presented. Far-subwavelength
sensitivity is possible, even if no forward model is avail-
able to connect these geometric changes and intensity
measurements, i.e., when the incident field is unknown.
However, if such a forward model does exist, then it can
be used for inversion with suitable constraints.

Simulation results are presented in Sects. II and III,
and these provide the underpinnings of the physical con-
tributions of this work. In the first situation considered
(Sect. II), two plane waves are incident perpendicular
to one another to provide the structured field, and rel-
ative motion in this field is shown to allow super reso-
lution sensing in an imaging arrangement. In the sec-
ond arrangement (Sect. III), a speckle field is used, as
would occur with laser light passing through a randomly
scattering material, being representative of an important
class of problems involving randomly scattering media,
and relative motion with respect to an object investi-
gated. Because the power is integrated over multiple
detector points, the metric is one involving single-pixel
detection with a fixed aperture. In more detail and of di-
rect relevance to the key contributions, Sects. II A – II C
introduce the simulation and noise models; the results in
Sect. II D provide insight into the physical problem, as
well as demonstrating the rough equivalence of field and
object motion for super-resolution; Sect. II E quantifies
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FIG. 1. Concept figure showing relative motion between an
object and a structured electric field. The object could be sta-
tionary in a translated field, as is primarily considered in this
work, or vice-versa. An example speckle field is shown in this
case, for a subset of the simulation region, though other types
of illumination are possible. The figure is to scale with regard
to the object size in relation to the fully-developed speckle
having half-wavelength spatial correlation (speckle size).

the available resolution with this technique and provides
insight into the role of signal to noise ratio (SNR) and
measurement geometry in achieving far-subwavelength
resolution; and Sect. III provides insight into the role
of prior information about the field and object, demon-
strating that sensitivity to nanoscale features exists even
when random speckle illumination is used. Section IV
discusses various aspects of the work and the broader im-
plications. Following the conclusion in Sect. V, where the
contributions of this work are summarized, Appendices A
through C cover numerical accuracy of the simulations,
experimental achievability of the required sensitivity, and
a proposed experimental implementation.

II. PLANE-WAVE ILLUMINATION

A. Simulation Setup

We consider numerical field solutions for the 2D mea-
surement arrangement in Fig. 2(a), where the task is to
resolve the separation D between two square dielectric
rods, each with a dielectric constant of ǫr and 0.05λ0 on
a side, shown in an expanded view in Fig. 2(b). The fi-
nite element method (FEM [27]) was used to solve for
the scattered electric field in the temporal Fourier do-
main. To solve for the scattered fields, the domain was
bounded by a 2λ0-thick perfectly matched layer (PML)
on all sides to simulate unbounded space. The total elec-
tric field was formed as the superposition of this scattered

field solution and the prescribed structured incident field,
and the magnetic field was subsequently determined. The
FEM mesh was configured as described in Appendix A.

The structured background field consisted of two plane
waves of the same frequency (circular frequency ω), prop-
agating perpendicularly to each other. With exp(jωt)
dependence, we have the electric field

E =
{

e−j(k0x+φx) + e−j(k0y+φy)
}

ẑ, (1)

where k0 = 2π/λ0 is the free-space wave number, and
φx and φy are phases that were regulated to scan the
interference fringes over the object.

Two perpendicular detector planes (lines in the 2D
simulations) were used, as indicated by the (red) dotted
lines in Fig. 2(a), and the power flow determined by the
integral of the normal component of the time-averaged
Poynting vector (S = ℜ{E × H

∗}/2), with ℜ the real
part and H the phasor magnetic field intensity. The
Poynting vector is based on the total field (background
plus scattered). By determining this power flow at a set
of points in the detector plane, we simulate power flow
through a series of small apertures, such as those corre-
sponding to camera pixels. Due to the use of the integral
of this power flow over the detector planes, we consider
this method to be fundamentally single-pixel. These de-
tection points were sufficiently far from the object (2.5λ0

from the centerlines of the binary object in question) so
as to consider the intensity data to be in the far field
with respect to the evanescent fields. Since the evanes-
cent fields are negligible at the detectors, similar results
could be achieved with the detector planes positioned
much farther from the objects, so long as a similar solid
angle of light is collected. As a result, this setup could be
accomplished in an experiment using macroscopic optics
that direct the scattered light into a single detector. The
compact simulation domain was used to ensure tractable
simulation times. Each array of detectors was placed a
distance λ0/2 from the nearest boundary. Based on the
FEM mesh density, our simulation generated 503 uni-
formly spaced intensity-detection points along each de-
tector array at which the time-averaged Poynting vector
was calculated.

Although the primary focus of this paper is on lateral
resolution (corresponding to the right detector plane in
these simulations), the top detector plane was included in
order to allow straightforward comparison with prior lit-
erature [24] and to assess the role of measurement geome-
try in resolution. Results presented in Sect. II D integrate
data from both detector planes in order to appraise the
overall sensitivity of the measurement and demonstrate
the equivalence of field and object motion, while results
in Sect. II E are broken down between the two detector
planes in order to demonstrate the role of measurement
geometry and provide a clear metric for lateral resolution.
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FIG. 2. (a) The free-space simulation domain is a square 6λ0

on a side and bounded by a 2λ0-thick PML on all sides. Two
dielectric scatterers are placed in the center, forming an object
with separation D to be resolved. The red arrows indicate
the direction of propagation of the incident plane waves. The
dotted red lines represent the detector arrays, which measure
the normal component of the time-average Poynting vector
(intensity). (b) The central region is enlarged to show the
scatterers of side L = 0.05λ0 and separation D. These figures
are not drawn to scale, in that the object size is larger than
that used in the simulations, given the detector arrangement
presented (with this size of the objects, the detectors would
be located farther away than shown).

B. Noise Model

Independent additive noise at the set of point detectors
along the two orthogonal detector lines (Fig. 2(a)) was
simulated by using a zero-mean Gaussian density func-
tion whose standard deviation (σs) is proportional to the
time-averaged Poynting vector (Sd = n̂ ·S, where n̂ is the
perpendicular unit vector to the detector line in a direc-
tion for Sd > 0) detected at that point. The SNR defines
σs through σs = Sd/SNR. This fixed-SNR noise model is
a computationally simple one meant to facilitate a proof
of concept and allow convenient comparison with related
literature. Here, a conservative SNR of 40 dB was as-
sumed [24] (see Appendix B) for the intensity-detection
points, giving σs = 10−4Sd. Taking into account the 1006
such points gives an additional approximately 14.1 dB
when considering a measurement over the entire detec-
tor, so that the SNR for the final measurement becomes
about 54.1 dB. From here onward, all SNRs discussed in
this section will include this additional 14.1 dB.
This fixed-SNR additive Gaussian noise model is prac-

tically equivalent to both a high-count shot-noise model
and a thermal noise model at the same SNR for these sim-
ulations. The scattered field measured at each detector
plane is small relative to the incident field, so the power
flow through the detectors varies little with D, ǫr, φx,
and φy (< 0.1%). As a result, the SNR would vary lit-
tle between measurements under a thermal or shot-noise
model; the fixed-SNR model is therefore a good approxi-
mation of both noise models. In the strong-signal regime,
the Poisson statistics of shot noise converge to a Gaus-
sian distribution with standard deviation proportional to

√
N , where N is the number of detected photons.
Our simulations model a bright-field measurement, re-

sulting in significant power-flow through the detector;
thus, the use of an additive Gaussian noise model [28, 29]
is appropriate, even if the measurement is shot-noise lim-
ited. Under a shot-noise model, the SNR of 54.1 dB used
in much of this analysis corresponds to 13.2 nW of optical
power flowing through the detector planes, assuming an
integration time of 1 s and a wavelength of 1 µm. This
level of power density in the incident field is reasonable
for a focused laser source, and single-photon detectors
that are essentially shot-noise limited are widely avail-
able. As a result, the chosen SNR of 54.1 dB could be
comfortably achieved in an experimental realization of
this work.

C. Visualization and Forward Model

In order to demonstrate sensitivity to a change of
0.01λ0 in D, we compared noisy data obtained for each
value of D, here D = 0.01λ0 and 0.03λ0, with the noise-
less data for the reference D = D0 = 0.02λ0, for both the
object-motion and the field-scanning scenarios. Data cor-
respond to the difference in the total power flow through
both detector arrays for an ordered pair of parameters
(px, py) relative to their initial values, (0, 0). In the field-
scanning case, the parameters correspond to the change
in the phases of the incident waves, (∆φx,∆φy). For ob-
ject motion, (px, py) corresponds to the position transla-
tion of the object given by (∆x,∆y). The sensitivity was
calculated using the measure

f(px, py;D) =

∫

[S(x, y; px, py, D)− S(x, y; 0, 0, D)]·n̂ ds,

(2)
(where n̂ is the unit vector normal to the detector) as the
difference in the total power flow obtained by integrating
S along both detector arrays for every (px, py), relative to
that for the reference value (0, 0). When noise was added
to the Poynting vector, S → Sn. In order to highlight
the measurable difference in data between two different
separations, D and D0, we define the function

g(px, py;D) = fn(px, py;D)− f(px, py;D0). (3)

In the remainder of this paper, gs is used to refer to this
function in the case where a plane wave field is trans-
lated over an object, gm is used to denote object motion
in a plane wave field, and gp is used to denote transla-
tion of a speckle field over an object. The integration
in (2) and any averaging performed with noisy data to
calculate fn(px, py;D) are commutable. As mentioned
in Sect. II B, calculating g(px, py;D) using power flow
measurements from multiple noisy detectors is therefore
equivalent to doing so from the power flow through a sin-
gle detector, though the summation over noisy measure-
ments in (2) for fn has the effect of partly mitigating the
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FIG. 3. Resolution performance for the arrangement in Fig. 2
with phase scanning of the structured field. The reference
separation is D0 = 0.02λ0. The object in (a) has ǫr = 1.5, and
in (b) has ǫr = 4. The error bars are generated empirically
using an SNR of 54.1 dB. Separation changes of 0.01λ0 are
easily distinguished with far-field data. When ǫr is increased,
this distinguishability increases as well.

noise as it is a sum over independent Gaussian random
variables (as described in Sect. II B).
Care should be taken when considering the implica-

tions of (2) and (3). Equation (2) describes the mea-
sured power through a detector for a given type of ob-
ject and its relative position with the field. It does not
involve any comparison with a model; it only compares
these measurements to each other (specifically, to a refer-
ence position). Therefore, f(px, py;D) describes how the
measured power changes as the relative positions change.
This contains the core mechanism for far-subwavelength
sensitivity that this paper describes, as it will be shown
that fn(px, py;D) is sensitive to small changes in D (for
a structured field). Equation (3) incorporates a noiseless
version, f(px, py;D), which is computed with a model.
This noiseless computed version is subtracted from the
noisy experimental version, but this is done only for the
purpose of visualizing how (2) changes with D. The sym-
metry of this change can be seen in the following figures.

D. Structured Illumination Results

Figure 3 shows the first in a series of simulations that
appraise the resolution of the method. The field was
scanned by varying ∆φx while ∆φy = 0, the object was
fixed at the origin, as in Fig. 2, and gs(∆φx,∆φy;D)
was plotted. The error bars were generated empirically
by using 100 sets of noisy Poynting vector data and an
SNR of 40 dB at each of the intensity-detection points,
for a final SNR of 54.1 dB after taking into account all
such points (see Sect. II B). The length of the error bars
is twice the standard error in estimating the mean value
of gs. A reference value of D0 = 0.02λ0 was used, re-
ferring to (3). The object was subject to the complete
range of the 2π-periodic background electric field, with
differences in D being captured by gs. The dielectric
constant was varied, with Fig. 3(a) showing ǫr = 1.5 and
Fig. 3(b) showing ǫr = 4. At each position of the scatter-
ers, the error bars are negligible relative to the features

(a) (b)

FIG. 4. Similar to Fig. 3, but a stationary field and moving
object are used for comparison. ∆y was varied in steps of
0.1λ0 from −0.5λ0 to, 0.5λ0, while ∆x was fixed at −0.5λ0.
As in Fig. 3, the object in (a) has ǫr = 1.5, and in (b) has
ǫr = 4. Despite the different shapes of the curves, it is still
the case that the separation between the curves increases with
ǫr.

(a) (b)

FIG. 5. Effect of detector noise for the arrangement in Fig. 2
with phase scanning of the field and ǫr = 4. The error bars
were generated using an SNR of (a) 49.1 dB and (b) 54.1 dB.
Other simulation parameters are similar to Fig. 3. The rela-
tionship between SNR and distinguishability is explored fur-
ther in Sect. II E.

in gs, showing that a change of 0.01λ0 in D can be eas-
ily resolved. The larger dielectric contrast in Fig. 3(b)
results in more pronounced variations in gs, both in ab-
solute terms and also with respect to the error bars. The
curves approach zero near ∆φx/2π = 0 because of the
subtraction in (2), and near ∆φx/2π = 1 because of the
periodicity of the illumination. More details are given in
Appendix B.
Figure 4 shows a similar simulation, but with a mov-

ing object and stationary field instead. The object was
scanned along a line parallel to the y-axis, while fixing
∆x = −0.5λ0. In these results, (∆x = 0, ∆y = 0) cor-
responds to the center of the simulation area, where the
scatterers are positioned in the field scanning simulations.
All other aspects of the simulation are similar to Fig. 3.
The dielectric constant was again varied, with Fig. 4(a)
showing ǫr = 1.5 and Fig. 4(b) showing ǫr = 4. Although
the shape of the curves has changed compared to Fig. 3,
the general conclusions remain regarding spatial resolu-
tion and separability as a ǫr is varied. We thus conclude
that object motion over short distances and field scan-
ning are roughly equivalent for super-resolution.
Figure 5 explores the effect of varying detector SNR

on the distinguishability of the different values of D. A
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49.1-dB SNR is shown in Fig. 5(a), compared to the 54.1-
dB SNR in Fig. 5(b). Note that Fig. 3(b) and Fig. 5(b)
show the same data; it is reproduced here for easier com-
parison. A lower SNR resulted in a diminished ability to
sense the small gap, but changes much less than λ/100
can still be detected, demonstrating the robustness of the
technique to increased noise.

E. Information Theory Analysis (Field Motion)

Information theory provides a measure by which one
can estimate the achievable resolution with given exper-
imental parameters and to more rigorously quantify the
resolution achievable with the measurement configura-
tion explored in the previous sections. While we now un-
derstand that nanostructure information is available in
the far field with relative motion in structured illumina-
tion, we have yet to appraise how far we might expect to
move into the subwavelength domain, beyond estimates
from the examples in Figs. 3 – 5. With reference to the
object and detector arrangement in Fig. 2(a), we use in-
formation theory to investigate the trend with reducing
separation between the objects and the relative impor-
tance of the x detector (on the right in Fig. 2(a)) and
the y detector (on the top).
The Cramér-Rao lower bound (CRB) for the variance

of an estimate of scatterer separation from a measure-
ment of the power flow through the detector planes is
computed as a resolution measure. In general, the CRB
is the minimum variance of an unbiased estimator of an
unknown parameter from a random variable with a dis-
tribution which depends on that parameter. It bounds
the performance of inversion techniques [30], such as the
cost function approach explored in Sect. II F. Computing
the CRB provides a more quantitative metric to comple-
ment the physical insight provided by the curves shown
in Figs. 3–5, and also yields information about which field
and detector plane positions provide the most sensitivity
to scatterer separation.
This analysis considers the case of field motion with

the field and object geometries introduced in Sect. II A.
Using the same fixed-SNR Gaussian noise model intro-
duced in Sect. II B, we can express the likelihood function
of a measurement of the power flow through the detector
at N incident field positions, representing N values of
(∆φx,∆φy), as

p(m, D) =
N
∏

i=1

1
√

2πσ2
i

exp

[

− 1

2σ2
i

(mi − Pi(D))2
]

, (4)

where m is a vector of power flow measurements through
the detector, Pi is the noise-free power flow through the
detector at field position i computed from the numerical
field simulations, and σi is the standard deviation of the
power flow measurement at field position i which, with
the chosen fixed SNR noise model, is equal to Pi/SNR.
The Fisher information, which represents the sensitivity

(a) (b)

FIG. 6. Cramér-Rao bound and Fisher information for esti-
mating D from power flow through the detector plane, scaled
in terms of λ. ǫr = 4 for both sub-figures. (a) Square root of

the CRB variance of D̂ as a function of D for three detector
plane configurations, using data corresponding to 11 values of
∆φy. (b) Fisher information as a function of ∆φy for three
detector plane configurations at D = 0.02λ.

to D provided by each measurement, is given by [30]

I(D) = −E

[

∂2 ln p(m, D)

∂D2

]

, (5)

with E[·] the expected value. The CRB can be computed
from the Fisher information using

σ2
D̂

= var(D̂) ≥ 1

I(D)
, (6)

where D̂ is an unbiased estimate of the true value of D.

1. Cramér-Rao Lower Bound for Structured Illumination

Numerical data for the power flow through the detec-
tor (see Fig. 2(a)) were computed for values of D be-
tween 0 and 0.03λ in increments of 0.001λ with scanned
structured illumination. These data were then used to
compute the Fisher information and Cramér-Rao lower
bound for estimating D. Data were collected for 11
evenly spaced values of ∆φy between 0 and 2π. The CRB
calculation assumes that these 11 measurements are used
together to estimateD. The analysis was performed with
ǫr = 4, and ǫr is assumed to be known when computing
the CRB for D. This was done in order to ascertain the
sensitivity of the measurement to separation alone, pro-
viding a lower-bound on the potential spatial resolution
achievable with the measurement configuration explored
in Sect. II. If the dielectric constant is unknown, and
a two-parameter inversion must be performed, then the
achievable resolution will be reduced. An analysis of the
two-parameter inversion problem could be performed us-
ing a similar approach.
Figure 6(a) shows the square root of the CRB for

estimating D (σ
D̂
) from a measurement of the power

flow through the combined detector plane (top and right
dashed line in Fig. 2(a)) at each value of ∆φy as a func-
tion of D with a 54.1-dB SNR. This metric represents the
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minimum achievable standard deviation for an estimate
of scatterer separation from this measurement, and dou-
bling this value provides a sound statistical measure for
resolution. Three curves are shown in Fig. 6(a), one as-
suming that only the top detector plane in Fig. 2 (referred
to here as the y detector plane) is used, one assuming
that only the right detector plane (the x detector plane)
is used, and one where the sum of the power flow through
both detector planes is measured. A slightly lower SNR
of 52.6 dB is used for the x and y detector planes, corre-
sponding to a factor of

√
2 difference from the SNR for

the combined detector plane (10log10
√
2 ≈ 1.5 dB). This

is done in order to account for the fact that the combined
detector plane measures the sum of the x and y detector
power flows, resulting in a ∼

√
2 improvement in SNR

due to the addition of two Gaussian random variables
with roughly equal means and variances. This difference
can also be thought of in terms of a shot-noise picture,
and the fact that the combined detector receives roughly
double the power compared to the x and y detectors.
From the data shown in Fig. 6(a), it is clear that changes
in separation smaller than λ/1000 can be distinguished
with 2σ certainty. This certainty level of 2σ is commonly
used for statistical confidence intervals, although others
may instead be chosen, with corresponding effect on the
minimum distinguishable change in separation.

The shapes of the curves in Fig. 6(a) are themselves in-
teresting, and provide insight into why resolutions far be-
yond the diffraction limit are available. If we consider the
typical problem of distinguishing point sources or scat-
terers with direct imaging, we would find that as the
distance between the scatterers goes to zero, the CRB
variance of an estimate of their separation will diverge
to infinity. This is because, as the separation of point
“sources” goes to zero, the derivative of the fields with
respect to separation goes to zero. Since we measure
the power flow from the fields, and the CRB variance is
related to the reciprocal of this derivative, the CRB vari-
ance diverges. This behavior is well documented in the
literature [31–35]. The divergence of the CRB as source
separation goes to zero can be thought of as a fundamen-
tal reason for the diffraction limit. We do not see this di-
vergence in Fig. 6(a) because the geometry of the scatter-
ers prevents their center points from being brought closer
together than their width, which effectively windows off
the diverging part of the curves that we would see if we
considered them as point objects. Additionally, the extra
sensitivity provided by relative motion in structured illu-
mination shifts the curves down, which abates the point
at which the curves would diverge. Multiple scatter also
provides provides additional sensitivity which abates the
point at which the CRB diverges, however, this has a
much weaker effect than relative motion in structured il-
lumination. With reducing scatterer size combined with
decreasing D, we would eventually see the CRB diverge,
however, it does not in this case due to the indicated fac-
tors. Importantly in relation to the point of this work,
far-field data with relative motion in structured illumina-

(a) (b)

FIG. 7. Minimum scatterer separation distinguishable with
2σ certainty as a function of combined detector SNR, and
comparison between Cramér-Rao bounds for estimating D
with plane-wave illumination versus standing-wave illumina-
tion. Both sub-figures are scaled in terms of λ, and use ǫr = 4.
(a) Minimum scatterer separation distinguishable from D = 0
with 2σ certainty as a function of SNR for three detector plane
configurations with structured illumination. (b) Square root

of the CRB variance of D̂ as a function of D for plane-wave
illumination (in each direction, and over the corresponding
detector plane) and structured illumination (over the each
detector plane). 52.6-dB SNR. SI: structured illumination,
PW: single-plane-wave illumination, y: y detector plane, x: y
detector plane.

tion provides additional sensitivity to D that moderates
the divergence of the CRB.

Figure 6(b) shows the Fisher information, scaled by λ2,
over a phase scan of 2π, for each detector plane and the
combined data. This provides additional insight into the
difference in sensitivity between the two detector planes
(x and y), and also demonstrates that measurements at
field positions around ∆φy = π provide little or no sen-
sitivity to D. This occurs because ∆φy = π corresponds
to a null in the incident field pattern at the center of the
scatterers, and thus very little scattered power. The y
detector plane provides greater Fisher information, and
thus higher resolution, than the x detector plane, be-
cause the phase difference between scattered fields from
each scatterer is much larger on the y detector plane than
on the x detector plane. This phase difference is one of
the largest factors that causes the power flow through the
detector to change with D, and thus the detector with
more sensitivity to this phase difference provides greater
resolution. Note that the Fisher information [I(D)] over
∆φy is not directly comparable to the difference metric
(gs) over ∆φy, as the subtraction of reference values in
(2) and (3) results in gs containing data from multiple
incident field positions. While gs provides a good metric
for overall sensitivity, it does not explicitly relate to the
sensitivity provided by each field position like the Fisher
information does. Of special note is that the x detector
plane provides a standard resolution metric arrangement.
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2. Other Trends and Illumination Patterns

Consider now resolution as a function of the noise
level. Figure 7(a) shows the minimum scatterer sepa-
ration that can be distinguished from D = 0 with 2σ
certainty (Dmin) as a function of SNR. Dmin is shown to
decrease by about an order of magnitude for every 10-dB
increase in the SNR, which is expected due to the con-
stant CRB variance over the values ofD that were consid-
ered. This trend is expected to continue for SNR beyond
the range shown, so for the situation leading to the re-
sults in Fig. 7(a), the diffraction limit cannot be exceeded
if the SNR falls below about 30 dB. However, based
on the analysis in Sect. II B and the bright-field nature
of the measurement, 30 dB represents a relatively low
SNR (that could easily be exceeded). Naturally, there is
greater sensitivity shown in Fig. 7(a) to D with the y de-
tector, because this directly exploits interference between
the scattering centers of the two particles. Perhaps more
relevant to applications is the far-subwavelength resolu-
tion with only the x detector, conforming to the usual
arrangement for applications related to imaging.

The role of the structured illumination pattern in pro-
viding sensitivity to D is illustrated in Fig. 7(b). This
figure shows σ

D̂
for a measurement of the power flow

through the x and y detector planes (right and top, re-
spectively, in Fig. 2) as a function of D with a 52.6-
dB SNR. Results are shown for the structured illumi-
nation pattern produced from the two interfering plane
waves (Sect. II A) and for a single plane wave with
E = [exp(−jk0y)] ẑ for the y detector plane measurement
or E = [exp(−jk0x)] ẑ for the x detector plane measure-
ment. The combined detector plane is not considered in
this analysis because the single-plane-wave incident fields
only produce significant power flow through one detec-
tor, and thus the data from the non-illuminated detector
plane cannot be reasonably compared to the structured
illumination results with the chosen (fixed-SNR) noise
model. The plane-wave results shown in Fig. 7(b) are
for 11 samples, matching the 11 samples taken at dif-
ferent values of ∆φy in the structured illumination case.
Using a single detector plane, the structured illumina-
tion cases each provide a smaller σD, and hence a higher
spatial resolution, because the spatially varying incident
field causes a measurable change in scatterer excitation
when their separation is varied. The difference in res-
olution between the plane wave and structured illumi-
nation configurations depends on which detector plane
is considered, as the y detector plane exploits interfer-
ometry between the particles while the x detector plane
does not. It is clear from these results that measure-
ment geometry has a significant effect on the degree to
which far-subwavelength object information is encoded
in a far-field measurement, and what factors enable that
encoding.

The x detector, which is representative of a direct
imaging arrangement, is the most relevant to optical mi-
croscopy. Notably, the Abbe diffraction limit is only ap-

plicable to this type of geometry, and not to the y detec-
tor measurements [26]. The x detector results are repre-
sentative of a standard resolution metric (distinguishing
laterally spaced point sources) which can be compared
to prior literature. For this detector plane, sensitivity
to far-subwavelength object features is provided primar-
ily by relative motion in structured illumination. While
there is still some sensitivity to D in the plane-wave case,
the sensitivity falls off rapidly as D increases, indicat-
ing that this sensitivity is primarily provided by multiple
scatter. As a result, if D is large, or if a less heavily scat-
tering geometry is considered, then the plane-wave case
will be almost entirely insensitive to small changes in D,
while the structured illumination case will retain its high
sensitivity. We thus conclude, for typical optical mea-
surements representative of microscopy, relative motion
in structured illumination provides a very large increase
in sensitivity.
For the y detector arrangement, which is sensitive to

phase differences between scatter from each object, rela-
tive motion in structured illumination has a much smaller
effect on sensitivity. This is because the geometry of
the measurement in this case already provides very high
sensitivity to D. This is perhaps unsurprising; the y
detector geometry is more representative of an interfer-
ometer than a typical imaging problem, and thus far-
subwavelength sensitivity should be expected with or
without relative motion in structured illumination as-
suming sufficient SNR. With relative motion in struc-
tured illumination, the sensitivity of the x and y detec-
tors is roughly equivalent. Relative motion in structured
illumination can therefore be thought of as a means of
accessing a level of sensitivity commensurate with an in-
terferometric measurement in situations where the mea-
surement geometry does not provide interferometric in-
formation.
While relative motion in a structured illumination pat-

tern provides a significant improvement in sensitivity to
D, as Fig. 7 indicates, it has another important role that
should be addressed. With the single-plane-wave illu-
mination pattern and a single-pixel detector, it is not
possible to invert for more than one parameter of the ob-
ject, as only one unique measurement can be performed.
The structured illumination pattern allows for multiple
unique measurements to be performed corresponding to
different values of (φx, φy), which allows inversion for
multiple parameters of the object, such as the two pa-
rameter inversion for D and ǫr considered below in Sec-
tion II F.

F. Inversion

The focus of this paper is on the far-subwavelength
information available in the type of measurements we
describe, and a variety of inversion techniques could be
used in conjunction. As an example, we present here
a method based on cost-function minimization to deter-
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mine the subwavelength distance between the scatterers
and their relative permittivity. In this approach, simu-
lated noisy data represent data that would be obtained
from an experiment and simulated noiseless data repre-
sent data obtained from the forward model. To show that
these approaches can yield sensitivity to a difference of
0.01λ0 in separation and a difference of 0.5 in relative
permittivity at 54.1-dB SNR, we minimized a cost func-
tion

(D∗, ǫ∗r) = argmin
D,ǫr

∑

∆x,∆y

∣

∣fn,motion(∆x,∆y;D, ǫr)

−fmotion(∆x,∆y;D, ǫr)
∣

∣,

(7)

for the case of object motion in structured illumination.
This cost function uses the function f described in (2),
as opposed to the function g plotted in Sect. II D; this
is because f contains sufficient information for inversion,
while g is merely a visualization tool (see Sect. II C).
Noisy data corresponding to all values of D ∈ [0, 0.05λ0]
and ǫr ∈ [11.9, 14.4] were compared with noiseless data
for (D, ǫr) = (0.02λ0, 12.4). We found that the cost is
minimum for (D∗, ǫ∗r) = (0.02λ0, 12.4), as is shown in
Fig. 8(a). The correct value of (D, ǫr) is denoted by
(D∗, ǫ∗r) and was obtained by minimizing the cost func-
tion. The object was moved in steps of 0.1λ0 over a
square region of side 5λ0. The separation (D) was varied
in steps of 0.01λ0, from 0 to 0.05λ0. The relative permit-
tivity of the object, ǫr, was varied in steps of 0.5, from
11.9 to 14.4. For every value of (∆x,∆y;D), the noisy
data were compared with the noiseless data of a chosen
value of (D, ǫr) = (0.02λ0, 12.4). The logarithm of the
mean cost obtained from the 100 sets of noisy data is
shown in Fig. 8(a). It is evident that the lowest cost is
obtained for the correct value of (D, ǫr) = (0.02λ0, 12.4).
When the background field was scanned over the ob-

ject, rather than the object moving in the field, as in (7),
the phase ∆φx of one of the incident waves was varied
from 0 to π in steps of 0.2π while φy = 0. The separation
D was varied in steps of 0.01λ0 from 0 to 0.05λ0 and the
relative permittivity ǫr was varied in steps of 0.5, from
11.9 to 14.4. For every value of φx between 0 and π, noisy
data were compared with the noiseless data for (D, ǫr) =
(0.02λ0, 12.4). The cost function minimized was

(D∗, ǫ∗r) = argmin
D,ǫr

∑

∆φx

∣

∣fn,scan(∆φx;D, ǫr)

−fscan(∆φx;D, ǫr)
∣

∣.

(8)

The logarithm of the mean cost obtained from 100 noisy
data sets is shown in Fig. 8(b). It is evident that the
minimum cost is obtained at the correct value of (D, ǫr)
= (0.02λ0, 12.4).
The cost function plots in Fig. 8 show that both motion

in structured illumination and scanning of structured il-
lumination can yield information in the far-field scattered
field intensity that is sensitive to a change of 0.01λ0 in
scatterer separation and a change of 0.5 in relative per-

(a) (b)

FIG. 8. Logarithm of mean value of the cost function com-
paring noisy data for D = 0.02λ0 and ǫr = 12.4 and noiseless
data for (a) object translation and (b) phase scanning of the
structured field. Cost function minimum was obtained at the
correct value of separation and dielectric constant within a
margin of λ0/100 for separation and 0.5 for dielectric con-
stant.

mittivity of the scatterers, despite the presence of signif-
icant detector noise. This is the case even when D and
ǫr are being simultaneously estimated, rather than the
one-parameter inversion analyzed in Sect. II E.

III. SPECKLE ILLUMINATION

In many applications, coherent light from a laser forms
speckle because of the random scatter involved when
the light interacts with surface or bulk scattering fea-
tures, and various fundamental and applied aspects of
statistical optics have received substantial recent atten-
tion. For instance, a means to access the transmis-
sion matrix, and hence focus through scattering me-
dia, has been found [36]. Also, speckle correlations
over frequency provide information about the random
medium [37, 38], and correlations over object position
offer a way to image an object in a heavily scattering
random background [39, 40]. More generally, interest-
ing transport physics has been found with coherent fields
in randomly scattering media, including the role of par-
ticipating modes on the eigenvalue distribution [41] and
in relation to localization [42] and quantum transport
[43, 44]. We show that speckle can provide the struc-
tured illumination that allows for super-resolution sen-
sitivity and inversion with relative motion between this
field and the object. As in Sect. II, this was achieved
using a stationary object and translating the field.
The notation for this section is similar to that of

Sect. II, where appropriate, but the differing inci-
dent field necessitates some changes. The function
g(px, py;D), defined in (3), represents the difference be-
tween a noisy single-pixel measurement and a noise-
free reference value, which is generated using the for-
ward model. To address the speckle case, we define
gp(∆γy;D). This gp corresponds to the motion of a
speckle field (which will only be moved in the y direction),
and this spatial translation is described by the variable
∆γy (and not ∆y, which was used in Sect. II in relation
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to object motion using gp(∆γy;D)). Another difference
between gp and gs (or gm) is that, when calculating gp,
the integration over the detector array occurs before any
noise is added, rather than after. This corresponds to
noise being added to the measurement from the entire
array, rather than individually to the measurement from
each pixel, or to noise being added to f in (2) and (3), as
opposed to S. While the same fundamental information
is gathered in both cases, the difference slightly affects
the noise, as is discussed in Sect. II B. In particular, the
additional 14.1 dB no longer applies. This was done so
that the measurement corresponds more directly to the
single-pixel situation, demonstrating that the averaging
done in Sect. II is not critical to the resolution. It also re-
sults in a lower SNR (40 dB instead of 54.1 dB), allowing
us to show good performance at this SNR.

A. Speckle Setup

In the numerical FEM simulations with speckle, we
considered the geometry shown in Fig. 9, which is trans-
versely periodic and hence has a discrete plane-wave ex-
pansion. The geometry used for the speckle simulations
corresponds to direct imaging, and is roughly equivalent
to the x detector of Sect II. Only a single detector geom-
etry is considered, in order to clearly isolate the effect of
the speckle illumination pattern from other factors. The
detectors on the right measured the intensity, but these
data were only used to calculate the total power flow.
Noise was then added to this single-pixel detector data.
A speckle field was generated that illuminates the sample
from the left side, propagating in the positive x direction
and spanning the full breadth of the y dimension. Let
the size of the domain in the y direction be Ly. In order
for the speckle field to be periodic in the y dimension,
the y components of the wave numbers of its plane-wave
components, ky, must each be integer multiples of Ly,
i.e., ky(m) = 2πm/Ly, for some integers m. Also, in
order to ensure that there are no evanescent field com-
ponents in this speckle field, we must limit m such that

kx(m) =
√

k20 − ky(m)
2
is real, or |m| ≤ Ly/λ0. The

speckle field is composed of a superposition of such plane
waves.

The complex amplitudes of these plane waves are ran-
domly distributed, resulting in random speckle. The
real and imaginary components should be independent
and identically distributed zero-mean Gaussian random
variables [45]. Therefore, if the maximum allowable
value of m (as described in the preceding paragraph)
is M = ⌊Ly/λ0⌋, then 2M + 1 random complex ampli-
tudes should be generated (including the m = 0 mode),
or 2(2M + 1) independent samples drawn from a zero-
mean Gaussian distribution. Let these amplitudes be
denoted as αm. This process was repeated for each ran-
dom speckle field that was generated. The speckle field

x

PMLPML

y

FIG. 9. Adaptation of the geometry shown in Fig. 2 for use
with a speckle field, which is incident from the left. The
left and right boundaries are still 2λ0-thick PMLs, but the
top and bottom boundaries (green) have been replaced with
continuous periodic boundary conditions.

can therefore be written as

Ep =

{

M
∑

m=−M

αme

(

−jxkx(m)−j(y+∆γy)ky(m)
)

}

ẑ. (9)

Comparing (9) to (1), ∆γy has units of distance, whereas
φx and φy have units of phase. The translation in (9)
along the y direction is accomplished by the phase ramp
with slope ∆γy.

B. Speckle Illumination Results

Figure 10 shows the speckle results. The speckle field
was translated across a stationary object; in this case,
referring to (3), the parameter py corresponds to the dis-
tance by which the speckle is shifted, ∆γy, while px goes
unused because the field is unshifted in the x direction.
When a single random speckle field was used, Fig. 10(a)
shows distinguishability among different separations D,
demonstrating that the far-subwavelength resolution ob-
tained with this method does not rely solely on the type
of field described in Sect. II. The shape of the curves
differs from those in Sect. II D due to the relative ir-
regularity of the speckle field compared to the standing
wave, though this has not detracted from distinguisha-
bility. The inversion approach described by (8) assumes
the ability to construct a forward model, and this requires
knowledge of the speckle field that is used. Such informa-
tion would be difficult to attain if the speckle field were
generated by passing coherent light through a scattering
medium. However, using a spatial light modulator (SLM)
would allow such a forward model to be constructed and
D to be estimated.
If the speckle pattern is not known, then inversion for

D becomes more challenging. Figure 10(b) shows the re-
sult for gp with averaging over 20 random speckle fields.
While the curves from a single speckle field are distin-
guishable, the averaged curves are not for the three sep-
aration values. This is because there was no consistent
relationship between gp(∆γy ;D) and the separation D
when different speckle fields were used. The different in-
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(a) (b)

FIG. 10. Speckle results, with ǫr = 4 and 100 samples at
40-dB SNR. (a) 1 speckle field. (b) Average over 20 speckle
fields.

tensity patterns produced by each of the speckle fields
causes gp to behave differently as a function of D and γy
for each speckle field, and over a large number of speckle
fields, gp averages out to approximately zero. As a result,
gp cannot reliably be used to invert for D if the speckle
pattern is unknown.

1. Model-Free Far-Subwavelength Resolution

A distinction between two goals must be recalled: es-
tablishing sensitivity to far-subwavelength changes in D,
and using this sensitivity to estimate the separation D.
While the above discussion of the relationship between
Figs. 10(a) and (b) involves limitations on inversion, it
does not comment on the basic question of sensitivity.
This section shows that, if the goal is to distinguish be-
tween two values of D, then some benefit could still be
gained from using multiple speckle fields. To distinguish
between D = D1 and D = D2, the mean absolute differ-
ence

hp(∆γy ;D1, D2) = 〈|fn(∆γy;D1)− fn(∆γy;D2)|〉 (10)

can be calculated, where the brackets 〈·〉 indicate aver-
aging over the random speckle fields, and fn again repre-
sents a noisy measurement of power flow across the entire
detector plane. This metric is adapted from (7), where
the mean absolute difference is used to compare a noisy
measurement to a noiseless simulation. Here, it instead
compares two noisy measurements. The calculated result
using (10) is plotted in Fig. 11 using the same 20 speckle
fields as in Fig. 10(b).
The distinguishability in Fig. 11 was accomplished

without using the forward model f(px, py;D), meaning
that the far-subwavelength changes in D can be sensed
without prior knowledge of either the background field
or the geometry. This is a core result of the paper, as it
shows that this far-subwavelength sensitivity results from
relative motion with structured illumination, not merely
from prior knowledge.
Because Fig. 11 shows the mean absolute distance

between noisy measurements, rather than the measure-
ments themselves, an overlap between two curves does

FIG. 11. Mean absolute difference hp(∆γy;D1, D2) for two
different values of D, averaged over 20 random speckle fields.
This allows many random fields to be averaged over without
resulting in the significant overlap shown in Fig. 10(b) and
demonstrates distinguishability (but not reconstruction) ofD.

not indicate a lack of distinguishability. Rather, the dis-
tance from zero of each curve indicates the ability to dis-
cern between a separate pair of values of D. A tentative
pattern is suggested that, when the difference between
D1 and D2 is doubled, the mean absolute difference is
also doubled, though more work is required to establish
this pattern. The overlap of the blue and green curves in
Fig. 11 shows that gp changed about the same amount
when D increased from 0.01λ to 0.02λ as it did when in-
creasing from 0.02λ to 0.03λ. This would explain why the
red curve in Fig. 11 is about twice either the green or blue
curve, as well as why the curves in Figs. 3, 4, 5, and 10 are
symmetric about D = 0.02λ. More generally, (10) can be
thought of as measuring the possible level of sensitivity
available if a forward model is available for the incident
field, as is assumed in (7) and (8). However, if these gp
are not averaged together, then a more elaborate cost-
function-based inversion method could be used. Taking
into account the gp due to each random speckle field may
improve inversion performance, as Fig. 11 shows that
many such speckle fields contain information that can be
used for distinguishing different values of D. While the
effect of the speckle correlation length (speckle size) or
contrast ratio is not explored, it is reasonable to assume
that optimal performance occurs with small speckle (of
size λ/2) that is fully developed (speckle contrast ratio
of 1).

IV. DISCUSSION

We have shown that either a moving background field
with a stationary object or object motion in a struc-
tured field can yield far-subwavelength spatial resolution
information appropriate for imaging. Despite the loss
of evanescent fields, and thus high-spatial-frequency in-
formation in the far field, information about nanoscale
features is still available in the propagating plane wave
spectrum. This is because nanoscale changes in object
geometry have a small effect on the propagating spec-
trum, which is greatly enhanced by relative motion in
structured illumination. With the use of a sufficiently
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constrained forward model, the approach presented is
equivalent to estimating the high-frequency components
of the plane-wave spectrum from measurements of its
low-frequency components, modulated by motion in the
structured field. While it is well known that modifying
a structure changes the complete plane-wave spectrum,
the degree to which far-subwavelength information can be
extracted from the propagating spectrum and the role of
relative motion in structured illumination in enhancing
sensitivity to this information was not well understood
until now. We should note that this is different from
an interferometer, where counter-propagating waves pro-
vide interference fringes that are very sensitive to mirror
placement [46]. While interferometry can also provide
sensitivity to nanoscale features from an optical mea-
surement, as demonstrated in Sect. II E, our approach
provides access to nanometer scale object information
even with measurement geometries that are not sensi-
tive to phase differences across the object. Additionally,
our approach allows unique inversion for multiple fea-
tures from a single measurement, further distinguishing
it from traditional interferometry. Our work has shown
that, by using the standard imaging arrangement, hence
the x detector plane in Fig. 2(a), available equipment will
allow a spatial resolution of about one-thousandth of a
wavelength.

It was previously shown that the level of granularity
accessible in material is related to the plane wave spec-
trum extent, relevant for homogenization in an imaging
system [47]. Now we know that essentially unlimited
and fine granularity in condensed matter is accessible
with relative motion in a structured field. We have also
demonstrated that the achieved spatial resolution is not
limited to an illumination pattern composed of two inter-
fering plane-waves, but can be obtained using a speckle
pattern as well. This further implies that a wide vari-
ety of illumination patterns could potentially be used, so
long as the spatial variation of the pattern is sufficiently
high. Finally, we have shown that, while prior knowl-
edge of the field and geometry allow the reconstruction
of nanometer-scale features, changes on this scale can be
detected even without such knowledge.

Analysis using information theory provides insight into
the role of key factors including the illumination pattern,
a constrained forward model, and the object geometry in
achieving far-subwavelength resolution. While all three
are important to resolution, structured illumination can
be considered more critical than the forward model in
the situations considered: relaxing the one-parameter in-
version to two-parameter still results in high resolution
(Sect. II F), but using single-plane-wave illumination re-
duces resolution and does not allow multi-parameter in-
version. Further, the fact that σ

D̂
does not have a limit-

ing asymptote as D → 0 in Fig. 6(b) implies that the res-
olution at which D can be estimated can be increased ar-
bitrarily by increasing the SNR. These insights are likely
also applicable to the measurement problems explored
in earlier work [24, 25]. While it is not explicitly con-

sidered in our analysis, utilizing a multi-pixel detector
or a spatially distributed detector network with relative
motion in structured illumination would provide more
unique measurements, enabling inversion for additional
far-subwavelength object features.

This work has provided the physical basis for super-
resolution sensing with relative motion in structured il-
lumination and an assessment of the expected possible
resolution. The results also break several key require-
ments that were previously assumed necessary for far-
subwavelength sensing and inversion using relative mo-
tion in structured illumination [24], notably the need for
object motion in a known structured illumination pat-
tern. Motion of the fields, rather than the object, allows
for measurements that are both faster and more robust,
and the extension to arbitrary illumination patterns pro-
vides significant additional flexibility in the experimen-
tal implementation. Being able to access such unprece-
dented resolution without a forward model utilizing a
known incident field also opens substantial new applica-
tion domains, such as photonics in biophysical studies, in-
cluding of the brain. The unprecedented resolution avail-
able with this approach presents a variety of important
application domains, such as unlabeled protein sensing
and material defect detection. Because this work moti-
vates an experimental study, we have proposed a possible
implementation in Appendix C.

While unique inversion for nano-scale object features
with our approach requires prior information in the form
of a forward model, there are many applications for which
this information would be readily accessible. For exam-
ple, constraints on the object may be available during
material inspection, where subwavelength defects must
be detected, or in protein imaging, where the typical
structure of a protein can be known. While the sim-
ulated object in this paper has been of sub-wavelength
size, this is a choice made for computational simplicity,
and the results shown here should extend naturally to far-
subwavelength features of larger objects as well. Objects
that interact more strongly with each other should pro-
vide more information as well; this has been exploited by,
for example, tomographic diffraction microscopy [48, 49],
which can also utilize inversion constraints on the dielec-
tric constant of the object based on prior knowledge of
the sample in order to improve resolution (as has been
used in Sect. II E).

This line of work can be understood as a special case
of single-pixel imaging [15, 16] (SPI), and it reveals the
framework’s power to extract far-subwavelength features
when combined with a suitable forward model. Some
approaches make only a random subset of measurements
and use compressive-sensing-based reconstruction tech-
niques [16], and some use light sources that produce cor-
related photon pairs [50]. While these approaches typi-
cally attempt to accommodate a general class of images,
the forward model employed here incorporates specifics
from the imaging target, similar to how the camera itself
is modeled in image-processing-based super-resolution re-
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construction methods [51]. Compressive sensing gener-
ally involves assuming that the image is sparse under a
particular basis or other set of functions [52–54], and the
forward model used in this paper can be considered a fur-
ther degree of prior knowledge. This work demonstrates
that the resolving power of such structured illumination
methods can be greatly improved if a forward model is
specifically tailored to the object being imaged, or if rel-
ative motion is introduced. Some SPI methods modulate
the light at the detector instead of the illumination, and
are correspondingly referred to as “structured detection”
rather than “structured illumination” [15]. The place-
ment of a scattering analyzer between the object and
detector [55] can be considered a form of structured de-
tection that enables sub-wavelength far-field sensitivity
by leveraging relative motion with structured illumina-
tion [56], but the randomness of the scattering medium
may be difficult to precisely characterize using a non-
random forward model of the type used in this paper.

Outside of SPI, phase-translated standing-wave pat-
terns have been used for increased axial resolu-
tion [57] (standing wave fluorescence microscopy) and
sub-Rayleigh lateral resolution [1] (structured illumina-
tion microscopy, or SIM). SIM has been adapted for the
use of random speckle illumination [3, 58], with image
reconstruction being done using either cost-function in-
version [3] or second-order image statistics [58], or with
single-pixel detection and spatiotemporally modulated il-
lumination [59]. All of these methods exploit structured
illumination for improved resolution, but are limited by
the number of unknowns involved in reconstructing arbi-
trary images. Our results suggest that the resolution of
some of these methods may be improved with the inclu-
sion of a highly constrained forward model and relative
motion between the sample and the illumination.

While our results with random speckle illumina-
tion only show sensitivity to far-subwavelength features,
rather than full invertibility, unique inversion for object
features may be possible in this case with an appropri-
ate measurement strategy and forward model. As noted
in the previous paragraph, second-order image statistics
have been used to replicate the resolution benefit of SIM
using random speckle illumination [58] without relative
motion. Additionally, speckle intensity correlations over
object position have been demonstrated as a basis for ex-
tracting object information from a speckle image without
knowledge of the underlying speckle pattern [60]. Either
of these strategies could likely be combined with our ap-
proach to invert for far-subwavelength object features.
This would still require a highly constrained model for
object geometry, but would allow inversion with random
speckle illumination. Both of these approaches to inver-
sion would probably necessitate measurements using a
multi pixel detector or camera, as opposed to the single
pixel detector used in this paper. Inverting for features
using image statistics would additionally require collect-
ing data over a sufficient statistical sample of random
illumination patterns, which could be achieved by trans-

lating the object over many speckle correlation lengths.
The results presented in this paper consider the case

of perfectly coherent illumination and scatter; however,
they could likely be extended to situations with lim-
ited coherence, although with reduced sensitivity. By
way of example, a similar information-theory analysis to
Sect. II E has been performed for a measurement of the
separation of two fluorophores [61], and found a max-
imum resolution of around 10 nm (∼ λ/50) without
structured illumination. In the x-ray regime, it has been
demonstrated that the positions of a set of scatterers can
be imaged with comparable or improved resolution com-
pared to coherent approaches using incoherent measure-
ments of intensity correlations over wave-vector [62]. As a
result, far-subwavelength resolution may still be achiev-
able even if coherence requirements are relaxed signifi-
cantly. The problem of distinguishing incoherent point
sources with various approaches has received substantial
attention [6, 7, 31–35], and it has been shown that par-
tial coherence results in a looser bound on resolution [63].
Partially coherent structured illumination may arise, for
example, when broadband light is passed through an op-
tical bandpass filter. For speckle illumination, reducing
the coherence also reduces the speckle contrast ratio [45],
and exploration may be done into the relationship be-
tween the speckle contrast ratio and the sensitivity using
relative motion in a speckle field. Prior studies on the
statistical properties of broadband speckle [64] would be
useful in such an effort.

V. CONCLUSION

We have shown that relative motion between struc-
tured illumination and an object provides sensitivity to
far-subwavelength object features using far-field mea-
surements, despite the presence of realistic detector noise.
There are three primary contributions in this work. (i)
Intensity measurements in the far-field with either struc-
tured field scanning over an object or motion of the ob-
ject in a stationary field provide access to virtually un-
limited lateral spatial resolution. (ii) Our understand-
ing is that super-resolution sensitivity exists with rela-
tive motion because motion in a structured field greatly
enhances changes to the propagating spectrum induced
by the nanostructure, and information theory supports
this position. (iii) The far-subwavelength information is
available with a known forward model, and, importantly,
even when the specific incident fields are unknown. If
suitable constraints on the geometry are available, then
inversion for parameters of the object is possible and an
image could thus be formed. The advantage of using the
field-scanning approach is that it can be faster and more
robust than spatial scanning (which needs a nanometer-
precision mechanical stage with good repeatability), po-
tentially important in some applications. Instead of two
plane waves incident on the object, a spatial light mod-
ulator would allow a complex set of incident fields to be
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realized and scanned over the object, such as the demon-
strated speckle field. Adequate temporal coherence for
the laser light is required, and, while maintaining low
noise is important, there are inexpensive lasers that fulfill
this requirement. The performance should be enhanced
with multiple detector data, so that higher spatial reso-
lution becomes available.
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Appendix A: Numerical Accuracy

This appendix describes details of the simulation re-
lated to numerical accuracy. The accuracy of an FEM
simulation depends on the size of the mesh elements, and
this is therefore a critical parameter. For plane-wave il-
lumination, it was determined that satisfactory accuracy
was achieved using a mesh composed of triangular ele-
ments with a maximum side length of 0.02λ0 and a mini-
mum size of 0.001λ0. At this level of discretization, there
were at least eight layers of mesh elements between the
two scatterers at every value of D. These values were also
judged to provide sufficient accuracy in Ref. [24]. The
process by which these mesh sizes were decided upon is
the same for the plane-wave-illumination case as for the
speckle-illumination case, and it is presented in more de-
tail for the latter.

For speckle illumination, the maximum element size
was λ/20 in the PML (where less sensitivity to the mesh
element size was found), λ/40 in the background, and
λ/(40n) in the dielectric material (where n is the refrac-
tive index of this material). Values between the mesh
element points were interpolated using a cubic interpo-
lation method, instead of the quadratic method used for
plane-wave illumination, allowing a coarser mesh. The
minimum element sizes were smaller than the maximums
by a factor of 10, with an additional factor of 10 near nar-
row regions.

In order to verify the numerical accuracy of our re-
sults, the maximum FEM element size was varied until
convergence in the results was achieved, and the result
of this process are shown in Fig. 12. The first speckle
field (the same one used in Fig. 10(a)) was repeatedly
applied to the geometry, while the maximum element
size (for the background, and dielectric correspondingly)
was iteratively reduced. The change between successive
resulting gp(∆γy ;D) curves was compared using an ab-
solute percentage error metric, with parameter values of
D = 0.01λ0 and ǫr = 4. This was calculated at each value

FIG. 12. Mean absolute percent error (MAPE) in gp(∆γy;D)
when decreasing the maximum mesh element size, calculated
one speckle field (the same one used in Fig. 10(a)). Parameter
values of D = 0.01λ0 and ǫr = 4 were used. Any decrease in
the maximum mesh element size beyond λ/25 resulted in a
MAPE less than 0.0001%, so our chosen maximum size of
λ/40 is clearly sufficient for numerical convergence.

of ∆γy, and then averaged together, yielding a mean ab-
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MAPE

(

λ

da
→ λ

db

)

=
100%

N

×
N
∑

i=1

∣

∣

∣

∣

∣

∣

Gi

(

λ
db

)

−Gi

(

λ
da

)

Gi

(

λ
da

)

∣

∣

∣

∣

∣

∣

,

(A1)

where N is the number of different values of ∆γy calcu-
lated (N = 11, in this case), and Gi(λ/d) = gp(∆γy;D)
for the ith value of ∆γy and a maximum mesh element
size of λ/d.
As shown in Fig. 12, decreasing the maximum mesh

element size of the background from λ/20 to λ/25 (and of
the dielectric to λ/(25n), accordingly) resulted in a mean
absolute change in gp(∆γy;D) of less than 0.0001%, as
did any further decrease. We therefore expect no issues
of numerical accuracy with our chosen maximum element
size of λ/40 (and λ/(40n) for the dielectric).

Appendix B: Normalized Sensitivity

For the plane-wave illumination, the intensity incident
upon the system was on the order 10−3 W/m, using units
corresponding to the 2D geometry. Equivalently, this in-
tensity could be described as 10−3 W/m2 if 3D geom-
etry is considered where one dimension is non-spatially-
varying. Such will be the convention used here, for famil-
iarity with units of 3D space. This intensity is approx-
imately equal to that incident upon the detector plane,
because the object has a small scattering cross section.
The change in intensity depended on the setup, but was
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typically on the order 10−7 W/m2, as measured by aver-
aging over intensity-detector points in (2). Normalizing
this intensity change with respect to the intensity inci-
dent upon the system gives a factor of 10−4; to detect the
specified changes in D, a detector sensitivity to changes
of 1 part in 10,000 is necessary. For the speckle illumina-
tion, the intensity incident upon the system was on the
order 10−1 W/m2, but the sensitivity requirement was
similar. This sensitivity requirement corresponds to an
SNR of 40 dB. Using modern avalanche photodiodes [65],
this SNR is achievable [24]. An experimental evaluation
of one CCD camera found an SNR of about 30 dB per
pixel [66], and averaging over its 400 pixels increases this
SNR to over 40 dB. Section II B discusses this issue fur-
ther.
Figure 13(a) and (b) show plots of the Poynting vector

over the top detector plane (y detector) for the plane
wave illumination case of Sect. II at various values of (a)
D and (b) φy, with φx = 0 and ǫr = 4. Figure 13(c)
shows an example normalized version of the difference
signal gs as a function of D. The normalized difference
is given by

g̃s(φx, φy , D) =
gs(φx, φy, D)

∫

S(x, y;φx, φy , D) · ds (B1)

and represents the ratio of the difference signal to the
total power flow through the detector plane.

Appendix C: Considerations for Experimental
Adaptation

An experimental realization of this work would be rela-
tively straightforward to implement and a general frame-
work for a possible experimental adaptation is presented
in Fig. 14. Although the scale of the detector arrays
and the distances used in the simulations are too small
to realistically implement in an experiment, an appropri-
ate set of lenses should provide comparable performance.
Figure 6 demonstrates that only one detector orientation
is necessary to access far-subwavelength sensitivity, so
a more complicated experimental arrangement with two
perpendicular detector planes (as in Fig. 2) would not
be needed. Our results also demonstrate that nanoscale
information is accessible with a wide variety of illumina-
tion patterns, allowing for one to be chosen based on the
desired geometry of the experiment, potentially further
simplifying the required setup. Experimental realization
of this approach could enable applications in material de-
fect detection and protein imaging (where contrast might
be provided with a fluorophore, if the coherence require-
ments can be met using a bandpass filter).
The potential noise due to errors in mechanical posi-

tioning and electronic phase control in corresponding ex-
perimental realizations of these concepts has not been in-
corporated. The results from beam motion in Fig. 3, and
object motion in Fig. 4, have relatively similar features.
We attribute differences to the specific object geometry

(a) (b)

(c)

FIG. 13. Detailed information about the measurements un-
derlying Sect. II. (a) Poynting vector incident upon the y
detector at different positions, for varying D. The change
in intensity is small compared to the background. yd/λ rep-
resents the position on the y detector plane normalized in
terms of wavelength. (b) Similar, but for a changing field po-
sition instead. The measurement is laterally translated. (c)
Measured power difference for a fixed field position, but more
separation values D, and having been divided by the back-
ground intensity according to (B1). This illustrates required
detector sensitivity.
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FIG. 14. Conceptual diagram for a possible experimental
adaptation. A laser is focused onto a structured sample, and
an electro-optic modulator translates the field along one di-
rection by modulating its phase.

and scan ranges in relation to the detection arrangement.
For the geometry considered, a larger dielectric constant
provides greater sensitivity, as of course does higher SNR
(from longer integration time or reduced detector noise).
Technically, beam scanning could be achieved with high
speed. This makes the phase-scanning approach or, more
generally, electronic control of the incident field as a
means of relative motion with respect to the object, of
substantial practical utility.
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