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Abstract

We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider
a graph G = (V,E). The buffered expansion of a set S ⊆ V with a buffer B ⊆ V \ S is the edge expansion of
S after removing all the edges from set S to its buffer B. An ε-buffered k-partitioning is a partitioning of a
graph into disjoint components Pi and buffers Bi, in which the size of buffer Bi for Pi is small relative to the
size of Pi: |Bi| ≤ ε|Pi|. The buffered expansion of a buffered partition is the maximum of buffered expansions
of the k sets Pi with buffers Bi. Let hk,ε

G be the buffered expansion of the optimal ε-buffered k-partitioning,
then for every δ > 0,

hk,ε
G ≤ Oδ(1) ·

( log k
ε

)
· λ⌊(1+δ)k⌋,

where λ⌊(1+δ)k⌋ is the ⌊(1 + δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G.
Our inequality is constructive and avoids the “square-root loss” that is present in the standard Cheeger

inequalities (even for k = 2). We also provide a complementary lower bound, and a novel generalization to the
setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard
higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017)
involving robust vertex expansion.
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1 Introduction

Cheeger’s inequality is a fundamental result in spectral graph theory that relates the connectivity of a graph
to the eigenvalues of the Laplacian matrix associated with the graph. Consider an undirected d-regular graph
G = (V,E) on n vertices. Let LG be the normalized Laplacian of the graph defined by LG = I − 1

dA, where A
is the adjacency matrix of the graph G. Let 0 = λ1 ≤ λ2 ≤ λ3 · · · ≤ λn ≤ 2 be the eigenvalues of LG. For every
vector z ∈ RV with coordinates z(u) (where u ∈ V ),

(1.1) zTLGz =
1

d

∑
(u,v)∈E

(z(u)− z(v))2.

For a set S ⊆ V , let δG(S, V \S) denote the number of edges in the graph crossing the cut (S, V \S). The Cheeger
constant or expansion of the graph G is

hG := min
S⊆V :|S|≤|V |/2

ϕG(S), where ϕG(S) :=
δG(S, V \ S)

d|S|
,

is called the expansion of the cut S, V \S. Cheeger’s inequality by Alon and Milman [AM85, Alo86, Che69] states
that

(1.2)
λ2
2

≤ hG ≤
√
2λ2.

Similar inequalities also hold for graph partitioning into k parts [LRTV12, LGT14]. Here is a higher order Cheeger
inequality by Lee, Oveis-Gharan and Trevisan [LGT14] (see also the paper [LRTV12] by Louis, Raghavendra,
Tetali and Vempala): For every δ > 0, 1

(1.3)
λk
2

≤ hkG ≤ Oδ

(√
log k

)
·
√
λ⌊(1+δ)k⌋,

where λi is the i-th smallest eigenvalue of the normalized Laplacian LG, and

hkG = min
partitions

P1,...,Pk of V

max
i∈[k]

ϕG(Pi).

The upper bounds in (1.2) and (1.3) are constructive, which means that there is a polynomial-time algorithm
that finds a partitioning P1, . . . , Pk using a spectral embedding of G, an embedding of the graph vertices into Rk′

based on the first k′ = ⌊(1 + δ)⌋k eigenvectors of the Laplacian. Similar spectral algorithms are commonly used
in practice [NJW01, McS01]. We refer the reader to examples of applications of Cheeger’s inequality to spectral
clustering [KVV04, ST07, Spi07], image segmentation [SM00], random sampling and approximate counting [SJ89].
Cheeger’s inequality is widely used in combinatorics and graph theory. Higher-order Cheeger inequalities also
have connections to the small-set expansion conjecture [RS10, RST12], an important problem in the area of
approximation algorithms.

The objective of abovementioned k-way graph partitioning algorithms is to find the Sparsest k-Partition
of the graph i.e., a partition P1, . . . , Pk that minimizes the value of maxi∈[k] ϕG(Pi). Together the lower and
upper bounds (1.3) give a bound on the cost of the algorithmic solution in terms of the optimal solution:

maxi∈[k] ϕG(Pi) ≤ Oδ

(√
log k · h⌊(1+δ)k⌋

G

)
. This bound may be good for large values of h

⌊(1+δ)k⌋
G but can also be

really bad for small values of h
⌊(1+δ)k⌋
G . In fact, the approximation factor of such k-way partitioning algorithm

may be as large as Ω(n) even for k = 2. It can be so large because the upper bound is non-linear – it has a
“square-root loss”. To address this problem, several improved Cheeger inequalities under additional structural
assumptions on the graph G have been presented in the literature [KLL+13, KLL17].

In this work, we introduce a new type of graph partitioning – partitioning with buffers – and prove a higher-
order Cheeger inequality for them. Our inequality avoids the “square-root loss” and provides a constant bi-criteria
approximation algorithm for the problems (see below for details). While being a natural problem, in and of itself,

1The upper bound on hk
G in [LRTV12] is O(

√
log k)

√
λck where c > 1 is an absolute constant.
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our results for buffered partitioning also imply the standard higher-order Cheeger inequality (1.3) and a Cheeger-
type inequality by Kwok, Lau, and Lee [KLL17] for robust vertex expansion (see Section 1.5). Finally, these
Cheeger inequalities can also be extended to a more general setting with arbitrary vertex weights and edge costs:
in contrast, we are not aware of such a generalization for the standard Cheeger inequalities i.e., without buffers.

1.1 Cheeger inequality for Buffered Partitions To simplify the exposition, we first present and discuss
the setting where G is a d-regular graph. Then, in Section 1.2, we consider non-regular graphs G with arbitrary
positive vertex weights and edge costs.

Multi-way Partitioning with Buffers. For every ε ∈ [0, 1), an ε-buffered k-partitioning of an undirected
graph G = (V,E) is a collection of subsets P1, P2, . . . , Pk ⊂ V and B1, B2, . . . , Bk ⊂ V that satisfy the following
conditions:

1. All sets Pi and Bj are pairwise disjoint (i.e., Pi ∩ Pj = ∅, Bi ∩ Bj = ∅, and Pi ∩ Bj = ∅ for all
i, j ∈ {1, . . . , k});

2.
⋃k

i=1(Pi ∪Bi) = V ;

3. Sets Pi are nonempty;

4. |Bi| ≤ ε|Pi| for all i ∈ {1, . . . , k}.

We say that Bi is the buffer for Pi. We denote this buffered partition by (P1, . . . , Pk ∥ B1, . . . , Bk). Now we
define the buffered expansion of a set P with buffer B for d-regular graphs. Later, we will extend this definition
to graphs with arbitrary vertex weights and edge costs. The buffered expansion of a set P with buffer B

ϕG(P ∥ B) =
δG
(
P, V \ (P ∪B)

)
d|P |

.

The definition is similar to that of the standard set expansion except we do not count edges from set S to its
buffer B. Define the cost ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) of a buffered partition:

(1.4) ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) = max
i∈{1,...,k}

ϕG(Pi ∥ Bi).

See Figure 5 on page 38 for an illustration of the edges that contribute towards the expansion ϕG(Pi ∥ Bi).
The ε-buffered expansion of the graph G = (V,E) is defined as the minimum value among all ε-buffered partitions:

(1.5) hk,εG = min
ε-buffered k−partition
(P1,...,Pk∥B1,...,Bk)

ϕG(P1, . . . , Pk ∥ B1, . . . , Bk).

Our main result is a new Cheeger-type inequality that relates buffered expansion to the eigenvalues of the
Laplacian. We first state it for regular graphs. Consider a d-regular graph G. Let LG be its normalized Laplacian
and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be its eigenvalues.

Theorem 1.1. For every δ ∈ (0, 1),

(1.6) hk,εG ≤ c(δ) log k

ε
· λ⌊(1+δ)k⌋,

where c(δ) is a function that depends only on δ. Furthermore, there is a randomized polynomial-time algorithm
that given G finds an ε-buffered k-partitioning (P1, . . . , Pk ∥ B1, . . . , Bk) with ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) ≤
c(δ) log k

ε λ⌊(1+δ)k⌋.

Our algorithm in Theorem 1.1 uses the top ⌊(1 + δ)k⌋ eigenvalues and eigenvectors of the Laplacian matrix LG.
Note that these eigenvalues and eigenvectors can be approximated to the desired precision in polynomial time.
However, we ignore numerical/precision issues in this paper and in the remainder of this paper, assume that the
algorithm has the exact values of eigenvalues and eigenvectors. As in the standard Cheeger-type inequality (1.3),
we upper bound expansion for k-way partitioning in terms of λk′ , where k′ = ⌊(1 + δ)k⌋ may be larger than k
(depending on the value of δ > 0). However, for every fixed k, we can let δ = 1/(k + 1) and get the following
result.
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Corollary 1.1. For every k, hk,εG ≤ ck
ε · λk, where ck depends only on k. Furthermore, there is a randomized

polynomial-time algorithm that given G finds an ε-buffered k-partitioning
(P1, . . . , Pk ∥ B1, . . . , Bk) with ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) ≤ ck

ε λk.

Theorem 1.2 presented later is a novel generalization of Theorem 1.1 to graphs with vertex weights and edge
costs.

Approximation results The spectral graph partitioning algorithm provided by Theorem 1.1 can be seen

as an Oδ

(1
ε
log k

)
-pseudo-approximation algorithm for the k-way sparsest partitioning problem. It finds an ε-

buffered k-partitioning (P1, . . . , Pk, B1, . . . , Bk) with the maximum expansion bounded by Oε,δ(log k) times the
cost of the true optimum solution of the non-buffered ⌊(1 + δ)k⌋-way partitioning problem. That is, the solution
produced by our algorithm has an approximation factor of Oε,δ(log k) but (1) uses ε buffers around each set
Pi, and (2) has fewer sets than the true optimal solution. This pseudo-approximation algorithm also works
for non-regular graphs with vertex weights and edge costs. See Theorem C.1 for details. Applying this pseudo-
approximation algorithm recursively, we get an O(1/ε)-pseudo-approximation algorithm for the Buffered Balanced
Cut problem (see Theorem D.1) and an O(log2 k) pseudo-approximation algorithm for a buffered variant of the
balanced k-partitioning problem (see Corollary D.1).

Let us examine some applications of buffered partitioning and our techniques.
Applications Spectral algorithms are widely used across several application domains because they are very

fast and scalable in practice [PSL90, vL07]. For example, a standard off-the-shelf package finds the first 100
eigenvectors of the Twitter graph [LM12] in less than half a minute. This graph has 81 thousand nodes and 1.3
million edges. In contrast, linear programming and semidefinite programming based methods do not scale well
and cannot handle such large graphs at the present time. This motivates the design of spectral algorithms for
graph partitioning with stronger guarantees. Our work demonstrates that one can achieve very good theoretical
guarantees for Buffered Sparsest k-Partitioning.

As mentioned earlier, the algorithms we present in this paper give an Oε,δ(log k)-pseudo-approximation for
the Buffered Sparsest k-Partitioning problem, and a O(1/ε)-pseudo-approximation for the Buffered Balanced
Cut problem (see Section D). For constant ε, this corresponds to a constant factor approximation with buffers.
For comparison, the best known approximation guarantees for Balanced Cut or Sparsest k-Cut without buffers
incur logarithmic factors in the number of vertices n.2 Similarly, the best known approximation for Sparsest
k-Partitioning is Oδ(

√
log n log k) [LM14]. The caveat is, of course, that our algorithm produces an ε-buffered

partitioning but we compare its cost with the cost of the optimal non-buffered partitioning.
In applications of graph partitioning and clustering, relaxing the partitioning using buffers is often benign

and even natural. Let us consider the following application of graph partitioning. Suppose we have a graph whose
nodes represent user profiles in a social network (like the Twitter graph we mentioned earlier) and edges represent
connections between them (friends, followers, etc). We would like to assign these profiles to two machines so
that each machine is assigned about the same number of profiles and the number of separated connections is
minimized. These are common requirement for graph processing systems. In other words, we need to solve the
Balanced Cut problem for the given graph. If we run our algorithm on this graph, we will get two parts S, T
and buffer B. We can store S and T on the first and second machines, respectively, and replicate nodes in B on
both machines. This way we will separate only nodes located in S and T . Partitioning with buffers can be useful
to obtain better solutions for several other applications such as resource allocation and scheduling, where graph
partitioning is used.

Moreover, in applications like community detection, it is common for the communities to have small
overlaps [YL14, YL12]. Vertices belonging to multiple communities may correspond to influential or well-connected
nodes, that would disproportionately affect the cost in a disjoint partition. While there has been much recent
interest in detecting overlapping communities, it is challenging to obtain algorithmic guarantees in the overlapping
setting (see [KBL16, OATT22] for different formulations and results on this problem); in particular, there are
very few theoretical results for spectral algorithms even in average-case models. An ε-buffered partitioning with
sets S, T and buffer B can be viewed as two overlapping communities S′ = S ∪ B and T ′ = T ∪ B with small
overlap |S ∩ T | ≤ εmin{|S|, |T |}. Hence ε-buffered partitions capture overlapping communities and allow us to

2For Balanced Cut without buffers, the best true approximation factor is O(logn) [AR04, Räc08], and the best pseudo-
approximation is O(

√
logn) [ARV09].
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reason about spectral methods even in the overlapping setting (see also footnote 6).
Finally, buffered partitioning is an interesting problem in its own right, it gives a common, versatile

generalization that captures important results in spectral graph theory including higher-order Cheeger inequalities
and robust vertex expansion as described in the next few sections.

1.2 Graphs with vertex weights and edge costs In the standard Cheeger inequality, the weight of every
vertex must be equal to the total weight of edges incident on it. For instance, in d-regular graphs, the weights of
all vertices are equal to d.3 Surprisingly, we can generalize our variant of Cheeger’s inequality to vertex weighted
graphs. We show that the Cheeger inequality for buffered partitions also holds when graph G = (V,E,w, c) has
vertex weights wu > 0 and edge costs cuv > 0. In that case, we define the non-normalized Laplacian L̃G for G as
follows. L̃G(u, u) is the total cost of all edges incident on u and L̃G(u, v) = −cuv for (u, v) ∈ E; all other entries
are zero. Then, for any vector z ∈ Rn, we have

(1.7) zT L̃Gz =
∑

(u,v)∈E

cuv(z(u)− z(v))2.

Further, we define the weight matrix Dw as follows: Dw(u, u) = wu and Dw(u, v) = 0 if u ̸= v (Dw is a diagonal

matrix). Finally, we define the normalized Laplacian LG = D
−1/2
w L̃GD

−1/2
w . Note that

zTLGz =
∑

(u,v)∈E

cuv

(
z(u)

w
1/2
u

− z(v)

w
1/2
v

)2

.

Denote the weight of a set of vertices A by w(A) =
∑

u∈A wu. We extend the definitions of δG(A,B),

ϕG(P ∥ B), ϕG(P1, . . . , Pk ∥ B1, . . . , Bk), and h
k,ε
G to graphs with vertex weights and edge costs:

δG(A,B) =
∑

u∈A,v∈B
(u,v)∈E

cuv and ϕG(P ∥ B) =
δ(P, V \ (P ∪B))

w(P )

Quantities ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) and h
k,ε
G are given by formulas (1.4) and (1.5), respectively. We say that

partition (P1, . . . , Pk ∥ B1, . . . , Bk) is ε-buffered if w(Bi) ≤ εw(Pi) for every i ∈ [k].

Note that the definitions of LG, δG, ϕG, and h
k,ε
G are consistent with those for regular graphs with unit vertex

weights and unit edge costs. As a side note, we observe that the definition of LG coincides with the definition
of the normalized Laplacian in the standard Cheeger inequality for non-regular graphs with edge costs. Note
that in that inequality, vertex weights are defined as wu =

∑
v:(u,v)∈E cuv. In contrast to the standard Cheeger

inequality, our variant holds for arbitrary vertex weights and edge costs.

Theorem 1.2. Let G = (V,E,w, c) be a graph with positive weights wu > 0 and edge costs cuv > 0, ε ∈ [0, 1),
δ ∈ (0, 1), and k ≥ 2 be an integer. Assume that maxu wu ≤ εw(V )/(3k). Then

(1.8) hk,εG ≤ κ(δ) log k

ε
· λ⌊(1+δ)k⌋(LG),

where κ(δ) is a function that depends only on δ. Furthermore, there is a randomized polynomial-time algorithm
that given G finds an ε-buffered k-partitioning (P1, . . . , Pk ∥ B1, . . . , Bk) with ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) ≤
κ(δ) log k

ε λ⌊(1+δ)k⌋(LG).

This new generalization with vertex weights and edge costs is crucial for the pseudoapproximation guarantees
for the buffered versions of Balanced Cut (Theorem D.1) and Balanced k-way partitioning (Theorem D.1) that
were mentioned earlier.

3Admittedly, if vertex weights wu and edge costs cuv are arbitrary, we can apply the standard Cheeger inequality as follows. First,

let us rescale all wu by letting w′
u = αwu where α = maxu

∑
v:(u,v)∈E cuv

wu
. This ensures that w′

u ≥
∑

v:(u,v)∈E cuv . Then, introduce

loops (u, u) of cost cuu = wu −
∑

v:(u,v)∈E cuv . After this step, w′
u =

∑
v:(u,v)∈E cuv and thus we can apply the standard Cheeger

inequality. While this approach yields a Cheeger-type inequality, we lose a factor of
√
α in the approximation guarantee for hG and

hk
G; e.g., we get hG ≤

√
α ·

√
2λ2 when k = 2. Note that α can be arbitrarily large. Further, if wu ≪

∑
v:(u,v)∈E cuv even for a single

vertex u, then α ≫ 1.
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1.3 Buffered Cheeger’s inequality for k = 2 For k = 2, we provide an alternative slightly simpler variant
of buffered Cheeger’s inequality. We give a polynomial-time algorithm that partitions V into three disjoint sets:
parts S, T , and buffer B, satisfying S ∪ T ∪ B = V and |B| ≤ εmin(|S|, |T |). The buffered expansion of S and
T , defined as δ(S, T )/min(w(S), w(T )) is at most O(λ2/ε) (see Proposition 2.1 for details).

We provide a self-contained proof of this simpler result for k = 2 in Section 2. We remark that this
result coupled with Lemma 5.1 from this paper and Theorem 4.6 from the paper by Lee, Oveis-Gharan, and
Trevisan [LGT14] already yields weak versions of our main results (Theorems 1.1 and 1.2) where O(log k) is
replaced with O(log2 k). This extra logarithmic factor is a large loss in the context of graph partitioning problems,
and this is analogous to the weaker higher order Cheeger inequality obtained in [LGT14] by combining Theorem

4.6 of [LGT14] with the standard Cheeger inequality for k = 2.4 To get a tight bound of O(
1

ε
log k), we design

a new algorithm (see the next section for why our result is tight in both k and ε). We give an overview of new
techniques in Section 1.7.

1.4 Our result generalizes higher-order Cheeger inequalities Our main result (Theorem 1.1) can be
seen as a generalization of Cheeger’s inequality (1.2) and the higher-order Cheeger inequalitiy (1.3). To obtain
these results, we apply Theorem 1.1 with ε =

√
λ⌊(1+δ)k⌋ log k. We find the largest set Pt among P1, . . . , Pk. We

may assume that Pt contains at least Ω(δn) vertices (see Section B for the details). Then we include all buffers
in set Pt; that is, we let P ′

t = Pt ∪
⋃

iBi. We obtain a non-buffered partition of G. Using that |Bi| ≤ ε|Pi| and
δ(Pi, Bi) ≤ d|Bi| (since the graph is d-regular), we get for i ̸= t (here k′ = ⌊(1 + δ)k⌋),

ϕG(Pi) = ϕG(Pi ∥ Bi) +
δ(Pi, Bi)

d|Pi|
≤ c(δ) log k√

λk′ log k
λk′ +

d ·
√
λk′ log k|Pi|
d|Pi|

= (c(δ) + 1)
√
λk′ log k.

We bound ϕG(P
′
t ) (the expansion of the updated set P ′

t ) as follows,

ϕ(P ′
t ) =

∑
i̸=t δ(Pi, P

′
t )

d|P ′
t |

≤
∑

i̸=t ϕG(Pi) · |Pi| · d
δn · d

≤ (c(δ) + 1)
√
λk′ log k

Ω(δn)

∑
i̸=t

|Pi| ≤
c(δ) + 1

Ω(δ)

√
λk′ log k.

Hence Theorem 1.1 provides an alternate proof of (1.3). Furthermore, this proof suggests that the factor of

O(
1

ε
log k) in the upper bound of Theorem 1.1 cannot be improved. It also shows that our inverse dependence on

ε is tight even for k = 2 (as otherwise we would be able to strengthen Cheeger’s inequality, which is known to be
tight).

1.5 Connection to Robust Expansion Theorem 1.1 also generalizes the Cheeger-type inequality by Kwok,
Lau, and Lee [KLL17] that gives a bound for λ2 in terms of robust expansion [KLM06]. Let η ∈ (0, 1). For S ⊆ V ,
define

Nη(S) = min
{
|T | : T ⊆ V \ S, δG(S, T ) ≥ (1− η)δG(S, V \ S)

}
(1.9)

ϕVη (S) =
Nη(S)

|S|
and ϕVη (G) = min

S:|S|≤|V |/2
ϕVη (S)(1.10)

In other words, ϕVη (S) is the vertex expansion of set S after we remove an η fraction of the edges leaving S in the

optimal way (which minimizes the vertex expansion of S in the remaining graph). Quantity ϕVη (S) is less sensitive

to additions of a small number of edges to graph G than the standard vertex expansion. For that reason, ϕVη (S)
is called the robust vertex expansion of G. Kwok, Lau, and Lee [KLL17] proved the following result for η = 1/2.

Theorem 1.3. (see Theorem 1 in [KLL17]) λ2 = Ω
(
hG · ϕV1/2(G)

)
.

The following generalization of Theorem 1.3 is an immediate corollary of Theorem 1.1 (see Appendix A for a
proof).

Corollary 1.2. For every η ∈ (0, 1) we have λ2 = Ω
(
η · hG · ϕVη (G)

)
.

We remark that Theorem 1.3 is related to the case k = 2 in Theorem 1.1.

4The stronger bound of Theorem 4.1 in [LGT14] avoids Theorem 4.6.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



1.6 Lower Bounds We also prove a lower bound on hk,εG , which is linear in λk.

Theorem 1.4. For every d-regular graph G, integer k ≥ 2, and ε > 0, we have,

hk,εG ≥ λk − ε

2
.

We remark that the additive dependence on ε in the above lower bound (Theorem 1.4) is unavoidable even when

k = 2.5 This is useful to derive a lower bound on the optimal buffered expansion hk,εG ; moreover in conjunction
with the upper bound (applied with a larger ε′), one can also get a bicriteria approximation for buffered k-way
partitioning.6

1.7 Overview and Organization We start with proving a weaker version of our main result (Theorem 1.1)
for k = 2 in Section 2. This proof is significantly simpler than the general proof but nevertheless illustrates why
we get a linear dependence on λk rather than a square-root dependence in our Cheeger-type inequality. In the
proof, we use the thresholding idea from the proof of the standard Cheeger inequality but add an extra twist
– use two thresholds instead of one. First, we compute the eigenvector u corresponding to the second smallest
eigenvalue λ2 of the normalized Laplacian LG of G. Let u(i) be the i-th coordinate of u. Recall that in the proof
of Cheeger’s inequality, we put each vertex i either in S or in T , depending on whether u(i)2 ≥ τ or u(i)2 < τ
for an appropriately chosen threshold τ . To prove our inequality for k = 2, we use two thresholds τ and (1 + ε)τ
and, loosely speaking (see Section 2 for the precise description), put i in T , B, S depending on whether u(i)2 lies
in (−∞, τ ], (τ, (1 + ε)τ), or [(1 + ε)τ,∞), respectively.

In the subsequent sections, we prove the main result i.e., Theorem 1.1 for arbitrary k. Recall the definition
of the spectral embedding of graph G, which we use in our proof. Let x1, . . . , xk′ be the eigenvectors of LG

corresponding to the k′ = ⌊(1 + δ)k⌋ smallest eigenvalues. Note that the coordinates of vectors xi are indexed by
vertices u; denote the coordinate with index u by xi(u). The spectral embedding maps vertex u to vector ū ∈ Rk′

with coordinates x1(u), . . . , xk′(u). We compute the spectral embedding. And now our goal is to partition vectors
ū (so that the corresponding buffered partition satisfies the desired properties). To do so, we introduce a new
technical tool – orthogonal separators with buffers – for partitioning sets of vectors.

Given a set of unit vectors, the orthogonal separator procedure generates three (disjoint) random sets – set
X (called an orthogonal separator) and its two buffers Y and Z – such that

1. if u ∈ X and v is close to u then v is in X ∪ Y ∪ Z with high probability

2. if vectors u and v are far apart, then it is unlikely that both of them are in X

3. |Y |, |Z| are at most ε|X| in expectation

(See Theorems 3.1 and 3.2 for details.) Orthogonal separators with buffers provide a basic building block for
constructing buffered partitionings. We repeatedly apply the orthogonal separator procedure to normalized vectors
ψ(ū) = ū

∥ū∥ and obtain subsets Xt and their buffers Yt, Zt. Merging the obtained sets and filtering/thresholding

them based on the lengths of vectors ū, we obtain a partial buffered partitioning. This partitioning has all the
desired properties except that it does not necessarily cover the entire vertex set V . We show the desired properties
of the partial buffered partitioning by using the properties of the orthogonal separator. We use item 1 to argue
that the buffered expansion of each set Pi is small, item 2 to argue that the obtained sets are not too large and
thus there are at least k sets in the partitioning, and item 3 to argue that |Bi| ≤ ε|Pi|.

Note that orthogonal separators with buffers generalize (non-buffered) orthogonal separators introduced by
Chlamtac, Makarychev, and Makarychev [CMM06] and used in a number of SDP-based approximation algorithms
for graph partitioning problems. An analog of Theorem 3.2 for (non-buffered) orthogonal separators was first
proved by Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, and Schwartz [BFK+14] (see also [LM14]).

5For the tight example, consider two cliques on vertex sets A and B of size (1 + ε)n/2 each, with overlap of |A ∩B| = εn vertices
and with no edges between A \B and B \A. Some of the edges incident on A ∩B are resampled to ensure (approximate) regularity.
While h2,ε

G = 0, it is easy to show that λ2 = Ω(ε).
6 Specifically, for any ε ∈ [0, 1), δ ∈ (0, 1), and ε′ > ε, our algorithm given a graph G finds an ε′-buffered k-partitioning

(P1, . . . , Pk ∥ B1, . . . , Bk) with ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) ≤ c(δ) log k ·
(
h
⌊k(1+δ)⌋,ε
G + ε

)
/ε′, where c(δ) > 0 is a constant that

only depends on δ.
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Our high level approach follows the paper by Louis and Makarychev [LM14]. However, our algorithm and its
analysis substantially differ from theirs because we need to use orthogonal separators with buffers and keep track
of the buffers between clusters. Also, our algorithm uses a spectral embedding while the algorithm by Louis and
Makarychev [LM14] uses an embedding obtained from an SDP relaxation, which imposes additional constraints
on vectors.

We prove some useful claims about the spectral embedding in Section 6. We define orthogonal separators
with buffers and present the main theorem about them (Theorem 3.2) in Section 3. We prove Theorem 3.2 in
Section 7. We show how to obtain a partial buffered clustering in Section 4. Finally, in Section 5, we show how
to obtain a true buffered partitioning.

The proof of the Cheeger inequality for graphs with arbitrary vertex weights and edge costs (Theorem 1.2)
is almost identical to that of Theorem 1.1. In order to simplify the exposition, we only present the proof of
Theorem 1.1. The same proof with minimal changes works in the general case. Instead of presenting essentially
the same proof again, we give a black box reduction from Theorem 1.1 to Theorem 1.2 in Appendix E. The
reduction however may significantly increase the running time of the algorithm. We stress that the algorithm
from Theorem 1.1 also works with weighted graphs.

The other sections and appendices are organized as follows. In Section A, we show that Theorem 1.1 implies
Corollary 1.2, which we discussed in Section 1.5. In Section B, we prove a technical claim about ε-buffered
partitions. In Section C, we prove a lower bound on hkG for unbuffered partitions of graphs G with vertex weights
and edge costs. Combining this lower bound with Theorem 1.2, we get a pseudo-approximation algorithm for
the Sparsest k-way Partitioning problem (Theorem C.1). In Section D, we present our pseudo-approximation

algorithm for the Buffered Balanced Cut problem. In Section F, we prove Theorem 1.4 (a lower bound on hk,εG

discussed above). In Section G, we give a few useful estimates on the Gaussian distribution, which we use
throughout the paper.

Other related work. Clustering with vertex deletion and duplication has been studied in other context
as well. We refer the reader to the following recent results: Filtser and Le [FL21], Haeupler, Hershkowitz, and
Zuzic [HHZ21], Filtser [Fil22].

2 Warm up: Cheeger’s Inequality with a Buffer for k = 2

As a warmup, we provide a self-contained proof of a weaker version of Theorem 1.1 for k = 2. Here, we will
consider cuts (S, T ) with a common buffer B (instead of disjoint buffers for S and T ). Such cuts consist of three
disjoint sets S, T , and B that partition the set of vertices V into three groups. We will refer to such a partition as
(S, T ∥ B). While there are many new ideas needed to obtain Theorem 1.1 in full generality, this simpler setting
already demonstrates how one can leverage buffers to obtain an improved upper bound.

Proposition 2.1. Let ε ∈ (0, 1/4). Consider any graph G = (V,E) with positive vertex weights wu > 0 and

edge costs cuv > 0. Let λG be the second smallest eigenvalue of LG = D
−1/2
w L̃GD

−1/2
w , the normalized Laplacian

of G. Then, in polynomial time we can find three disjoint sets S,B, T with S ∪ B ∪ T = V , w(S) ≤ w(T ) and
w(B) ≤ εw(S) such that

ϕG(S, T ∥ B) =
|δ(S, T )|
w(S)

≤ 4
(
1 +

2

ε

)
λG.

Proof. The proof follows the same general strategy as the standard proof of the Cheeger inequality. We show how
to find a distribution over (buffered) partitions (S,B, T ) in the graph G, by thresholding the second eigenvector
of LG, such that:

(I) E |δ(S, T )| ≤ (1 + 1/ε)λG ·E[w(S)] and (II) E[w(B)] ≤ εE[w(S)].

The first condition gives an upper bound on the expected number of (non-buffered) edges crossing the cut, while
the second condition gives a bound on the expected size of the buffer. A simple probabilistic argument (see
Lemma 2.1) allows us to conclude that there exists a single buffered threshold cut that simultaneously satisfies
both the properties (with some slack).

Consider the spectrum of matrix LG = D
−1/2
w L̃GD

−1/2
w . The first eigenvector of the non-normalized Laplacian

L̃G is the vector of all ones denoted by 1. Its eigenvalue is 0. In other words, L̃G1 = 0. Consequently,
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LG(D
1/2
w 1) = D

−1/2
w L̃G1 = 0. Hence, D

1/2
w 1 is the first eigenvector of LG. Let y be an eigenvector of LG

corresponding to the second eigenvalue λG = λ2 of LG. Then, y ⊥ D
1/2
w 1 and

(2.11) ⟨y, LGy⟩ = ⟨y,D−1/2
w L̃GD

−1/2
w y⟩ = λG∥y∥2.

Let v = D
−1/2
w y. Then, we have v ⊥ Dw1 (because ⟨v,Dw1⟩ = ⟨y,D1/2

w 1⟩ = 0) and

(2.12) ⟨v, L̃Gv⟩ = ⟨D−1/2
w y, L̃GD

−1/2
w y⟩ = λG∥y∥2 = λG∥D1/2

w v∥2.

Step 1. Splitting the vector. For technical reasons, we need to split vector v into two vectors v+ and v−
such that the vertex weight of non-zero coordinates in each vector is at most w(V )/2,

w({i : v+(i) > 0}) ≤ w(V )/2; w({i : v−(i) > 0}) ≤ w(V )/2.

We do this by following a standard trick that is often used in the proof of Cheeger’s inequality. Let z denote the
smallest coordinate value in the vector v such that the total vertex weight of coordinates with a value greater
than z in vector v is at most w(V )/2, i.e.

w({i : v(i) > z}) ≤ w(V )/2; w({i : v(i) < z}) ≤ w(V )/2.

Then we shift the entire vector v by z and get v′ = v − z1. Since L̃G1 = 0 and v ⊥ Dw1, we have

⟨v′, L̃Gv
′⟩ = ⟨v, L̃Gv⟩ − 2z⟨v, L̃G1⟩︸ ︷︷ ︸

=0

+ z2⟨1, L̃G1⟩︸ ︷︷ ︸
=0

by (2.12)
= λG∥D1/2

w v∥2 ≤ λG∥D1/2
w v′∥2.

The last inequality holds because

∥D1/2
w v′∥2 = ∥D1/2

w v∥2 + z2∥D1/2
w 1∥2 − 2z⟨D1/2

w v,D1/2
w 1⟩ = ∥D1/2

w v∥2 + z2 ∥D1/2
w 1∥2︸ ︷︷ ︸
≥0

−2z ⟨v,Dw1⟩︸ ︷︷ ︸
=0

.

We now split the vector v′ into two vectors v+, v− with disjoint supports as follows:

v+(i) =

{
v(i)− z, if v(i) ≥ z;

0, otherwise,
v−(i) =

{
0, if v(i) ≥ z;

v(i)− z, otherwise.

Claim 2.1. For u = v+ or u = v−, we have u ̸= 0 and ⟨u, L̃Gu⟩ ≤ λG∥D1/2
w u∥2.

Proof. Vectors D
1/2
w v+ and D

1/2
w v− are orthogonal because their supports are disjoint (note: D

1/2
w is a diagonal

matrix). All coordinates of D
1/2
w v+ are non-negative, and all coordinates of D

1/2
w v− are non-positive. Thus,

∥D1/2
w v+∥2 + ∥D1/2

w v−∥2 = ∥D1/2
w (v+ + v−)∥2 = ∥D1/2

w v′∥2 and

⟨v′, L̃Gv
′⟩ = ⟨v+, L̃Gv+⟩+ ⟨v−, L̃Gv−⟩+ 2⟨v−, L̃Gv+⟩︸ ︷︷ ︸

≥0

≥ ⟨v+, L̃Gv+⟩+ ⟨v−, L̃Gv−⟩.

The last inequality holds because all off diagonal entries in L̃G are non-positive; v+(i)v−(j) ≤ 0 for all i ̸= j; and
v+(i)v−(i) = 0. We have

⟨v+, L̃Gv+⟩+ ⟨v−, L̃Gv−⟩ ≤ ⟨v′, L̃Gv
′⟩ ≤ λG∥D1/2

w v′∥2 = λG(∥D1/2
w v+∥2 + ∥D1/2

w v−∥2).

Thus, for u = v+ or u = v− the desired inequality holds.

Let u be as above. We assume without loss of generality that ∥u∥∞ = maxu |u(i)| = 1 (if ∥u∥∞ ̸= 1, we
divide u by ∥u∥∞). Next, we show that there exists an ε-buffered partition with small expansion by thresholding
on this vector u.
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Step 2. Random Thresholding with Buffers. Pick a random threshold t ∈ [0, 1] uniformly distributed
in [0, 1] and define sets S, T , and buffer B as follows:

S = {i : u(i)2 > t}(2.13)

T =
{
i : u(i)2 ≤ t/(1 + ε)

}
,(2.14)

B = V \ (S ∪ T ) =
{
i : t/(1 + ε) < u(i)2 ≤ t

}
.(2.15)

Note that B ∪ S = {i : u(i)2 > t/(1 + ε)}. Since t is picked uniformly from [0, 1] and ∥u∥∞ = 1, we have

E[w(S)] =
n∑

i=1

wi Pr{i ∈ S} =
n∑

i=1

wi · u(i)2 = ∥D1/2
w u∥2,

and

E[w(B ∪ S)] =
n∑

i=1

wi ·min((1 + ε)|u(i)|2, 1) ≤ (1 + ε)∥D1/2
w u∥2.(2.16)

Thus, E[w(B)] ≤ ε∥D1/2
w u∥2 = εE[w(S)], as stated in Equation (II).

By our choice of z, the weight of vertices with positive values in u is at most w(V )/2. Since S contains a
subset of vertices with positive values in u, we have w(S) ≤ w(V )/2.

Note that for every edge (i, j) from S to T , we have u(i)2 > t > t/(1 + ε) ≥ u(j)2. Thus, for all edges
(i, j) ∈ δ(S, T ), we have: (a) i ∈ S, j ∈ T if u(i)2 > u(j)2 and (b) i ∈ T, j ∈ S if u(i)2 < u(j)2. Now consider an
edge (i, j) ∈ E with u(i)2 > u(j)2. The probability that (i, j) ∈ δ(S, T ) equals

Pr{(i, j) ∈ δ(S, T )} = Pr{i ∈ S; j ∈ T} = Pr{t ≤ u(i)2 & t ≥ (1 + ε)u(j)2}
= max{u(i)2 − (1 + ε)u(j)2, 0}.

To bound the right side, we use the following simple claim.

Claim 2.2. For all ε > 0 and all real numbers a and b, we have

a2 − (1 + ε)b2 ≤ (1 + 1/ε)(a− b)2.

Proof. If b = 0, then the inequality holds. Assume, that b ̸= 0. Divide both sides by b2 and denote λ = a/b. We
need to show that (1 + 1/ε)(λ− 1)2 −

(
λ2 − (1 + ε)

)
≥ 0. Write,

(1 + 1/ε)(λ− 1)2 −
(
λ2 − (1 + ε)

)
= 1/ελ2 − 2(1 + 1/ε)λ+ (

√
ε+ 1/

√
ε)2

= (λ/
√
ε − (

√
ε+ 1/

√
ε))2 ≥ 0.

Hence from the above Claim 2.2, we have

Pr{i ∈ S; j ∈ T} ≤ (1 + 1/ε)(u(i)− u(j))2.

By linearity of expectation,

E |δ(S, T )| ≤ (1 + 1/ε)
∑

(i,j)∈E

u(i)2>u(j)2

cij(u(i)− u(j))2
by (1.7)
= (1 + 1/ε)⟨u, L̃Gu⟩ ≤

≤ (1 + 1/ε)λG∥D1/2
w u∥2 ≤ (1 + 1/ε)λG ·E[w(S)].

We bounded ⟨u, L̃Gu⟩ using Claim 2.1 (cf. Equation (2.12)). Thus, this distribution over buffered partitions
(S, T ∥ B) satisfies Equation (I). Since (I) and (II) both hold, we can use Lemma 2.1 (see below) to conclude that
there exists a cut (Ŝ, T̂ ) with buffer B̂ for which

|δ(Ŝ, T̂ )| ≤ 2(1 + 1/ε)λG · w(Ŝ), and w(B̂) ≤ 2ε · w(Ŝ).
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For this cut (Ŝ, T̂ ) with buffer B̂, we have

|δ(Ŝ, T̂ )|
w(Ŝ)

≤ 2(1 + 1/ε)λG · w(Ŝ)
w(Ŝ)

= 2(1 + 1/ε)λG.

By (2.13) and (2.14), we have Ŝ ⊆ {i : u(i)2 > 0} and T̂ ⊇ {i : u(i)2 = 0}. Thus w(T̂ ) ≤ w({i : u(i)2 > 0}) ≤
w(V )/2 and w(T̂ ) ≥ w({i : u(i)2 = 0}) = w(V ) − w({i : u(i)2 > 0}) ≥ w(V )/2. Therefore, w(T̂ ) ≤ w(Ŝ). We
conclude that

|δ(Ŝ, T̂ )|
w(T̂ )

≤ |δ(Ŝ, T̂ )|
w(Ŝ)

≤ 2(1 + 1/ε)λG.

We obtain the desired result for ε′ = 2ε. To finish the proof, it remains to show Lemma 2.1.

Lemma 2.1. For anym ≥ 2, considerm arbitrary jointly distributed non-negative random variables X1, . . . , Xm−1

and Y . Suppose that for every i = 1, . . . ,m− 1, E[Xi] ≤ αi E[Z]. Then,

(2.17) Pr{Xi ≤ (m− 1)αiY, ∀i ∈ [m− 1]} > 0.

Proof. Consider a new random variable Z =
∑m−1

i=1
Xi

(m−1)αi
. By the linearity of expectation, we have

E[Y ] ≥ 1

m− 1

m−1∑
i=1

E[Xi]

αi
= E[Z].

This implies that Pr{Y ≥ Z} > 0; otherwise we would have E[Y ] < E[Z]. If Y ≥ Z, then we have for every
i = 1, . . . ,m− 1, Xi ≤ (m− 1)αiY . Therefore, inequality (2.17) holds.

3 Orthogonal Separators with Buffers

In this section, we introduce orthogonal separators with buffers. We will prove Theorems 3.1, 3.2, and 3.3 in
Section 7. In these theorems, we provide randomized procedures to generate orthogonal separators with buffers
in a set of unit vectors U in Rd. In the next section, we will use the procedure in Theorem 3.3 to create a partial
partitioning. We first use spectral embedding to map each vertex u ∈ V to a vector ū ∈ Rk. We will run this
procedure on normalized vectors ψ(ū) = ū/∥ū∥ for all vertices u ∈ V . We first give the definition of the orthogonal
separator with one buffer.

Definition 3.1. Consider a finite set U of unit vectors in Rd. A distribution over two disjoint subsets of U
is an m-orthogonal separator with an ε-buffer, distortion D, separation radius R, and probability scale α if the
following conditions hold for two subsets X,Y ⊆ U chosen according to this distribution:

1. For all ū ∈ U , Pr{ū ∈ X} = α.

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα.

3. For all ū, v̄ ∈ U with ∥ū− v̄∥ ≥ R, Pr{v̄ ∈ X | ū ∈ X} ≤ 1
m .

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2.

We call X an orthogonal separator and Y its buffer.

In this definition, conditions 1 and 2 restrict the size of an orthogonal separator and its buffer respectively.
Condition 3 requires that for every pair of vectors ū, v̄ ∈ U , if ū, v̄ are almost orthogonal, then vectors ū, v̄ are
separated by X with high probability. Condition 4 upper bounds the probability that vectors ū, v̄ are separated
by the orthogonal separator X with a buffer Y . In the following theorem, we show there exists such an orthogonal
separator with one buffer. The construction of the orthogonal separator with one buffer and its proof is in
Section 7.
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Theorem 3.1. There exists a randomized polynomial-time procedure that given a finite set U of unit vectors in
Rd and positive parameters ε ∈ (0, 1),m ≥ 3, R ∈ (0, 2), returns an m-orthogonal separator with an ε-buffer with
distortion D = OR(1/ε logm), separation radius R, and probability scale α ≥ OR(1/poly(m)).

In the above theorem, we show that if vectors ū and v̄ are far apart, then they are both contained in X with
a small probability. Suppose that every point ū has a certain weight or measure µ(ū). We now show that by
slightly altering the distribution of X and Y , we can guarantee that the measure of every X is not much larger
than the measure of the heaviest ball of radius R (see item 3 below for details).

Definition 3.2. Consider a finite set U of unit vectors in Rd equipped with a measure µ. A distribution over
two disjoint subsets of U is an δ-orthogonal separator with an ε-buffer, distortion D, separation radius R, and
probability scale α if the following conditions hold for two subsets X,Y ⊆ U chosen according to this distribution:

1. For all ū ∈ U , Pr{ū ∈ X} = α.

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα.

3. minū∈X µ(X \ Ball(ū, R)) ≤ δµ(U) (always).

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2.

Theorem 3.2. There exists a randomized procedure that given a finite set U of unit vectors in Rd equipped with
a measure µ and positive parameters ε ∈ (0, 1), δ ≤ 2/3, R ∈ (0, 2), returns an δ-orthogonal separator with an
ε-buffer with distortion D = OR(1/ε log 1/δ), separation radius R, and probability scale α ≥ OR(1/poly(m)).

By using the orthogonal separator with one buffer above, we can find a buffered partitioning of the graph
with buffered expansion in Theorem 1.1, but buffers Bi may overlap. To get disjoint buffers as in Theorem 1.1,
we use the orthogonal separator with two buffers defined as follows.

Definition 3.3. Consider a finite set U of unit vectors in Rd equipped with a measure µ. A distribution over
three disjoint subsets of U is an δ-orthogonal separator with two ε-buffers, distortion D, separation radius R, and
probability scale α if the following conditions hold for three disjoint subsets X,Y, Z ⊆ U chosen according to this
distribution:

1. For all ū ∈ U , Pr{ū ∈ X} = α.

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα and Pr{ū ∈ Z} ≤ εα.

3. minū∈X µ(X \ Ball(ū, R)) ≤ δµ(U) (always).

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2, and
Pr{v̄ /∈ X ∪ Y ∪ Z | ū ∈ X ∪ Y } ≤ D ∥ū− v̄∥2.

In the following theorem, we slightly modify the procedure above to get orthogonal separators with two
buffers.

Theorem 3.3. There exists a randomized procedure that given a finite set U of unit vectors in Rd equipped with
a measure µ and positive parameters ε ∈ (0, 1), δ ≤ 2/3, R ∈ (0, 2), returns an δ-orthogonal separator with two
ε-buffers with distortion D = OR(1/ε log 1/δ), separation radius R, and probability scale α ≥ OR(1/poly(m)).

4 Partial Partitioning Algorithm

In this section, we give an algorithm for finding a partial ε-buffered partitioning (P1, B1), . . . , (Pk′ , Bk′) of G.
This partitioning satisfies all the properties of the partitioning from Theorem 1.1 except the union of sets Pi does
not necessarily cover the entire vertex set of G. For notational convenience, we will use k to denote the index of
the eigenvalue that we compare the cost to. Eventually this theorem will be applied with k = (1+O(δ))k̂, where

k̂ is the desired number of clusters (which we denoted by k in Theorem 1.1). We obtain this partial partitioning
using the Partial Partitioning Algorithm which consists of Steps 1, 2, 3, and 4 provided in Figures 1, 2, 3, and 4.
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The Partial Partitioning Algorithm generates this partial partitioning (P1, B1), . . . , (Pk′ , Bk′) with k′ ≥
(1−2δ)k and partitions the uncovered vertices V \

⋃
i∈[k′] Pi∪Bi into disjoint subsets A

′
i, A

′′
i for i ∈ [k′] and R′

B , R
′
P .

We prove that these subsets Pi, Bi, A
′
i, A

′′
i for i ∈ [k′] and R′

B , R
′
P satisfy six properties given in Theorem 4.1

(see below). The first three properties show subsets Pi, Bi forms a partial ε-buffered partitioning. In Section 5,

we show how to transform this partial partitioning with k′ clusters into a true buffered partitioning of G with k̂
clusters. We combine those additional sets A′

i, A
′′
i , R

′
P , R

′
B to get a true buffered partitioning. The properties 4,

5, and 6 in Theorem 4.1 are used in Section 5.

Find a spectral embedding for graph G:

• Let LG be the normalized Laplacian matrix for G.

• Find the top k eigenvalues of LG and corresponding orthogonal unit eigenvectors x1, . . . , xk ∈ RV .
Denote coordinate u ∈ V of xi by xi(u).

• Embed each vertex u ∈ V into k-dimensional vector ū defined as follows: the i-th coodinate of ū is
xi(u).

Figure 1: Step 1 of the Partial Partitioning Algorithm. At this step, the algorithm maps vertices of G into vectors
using the standard spectral embedding.

Let R =
√

δ/6, δ′ = δ/2k, and T = 2/α ln 1/δ.
Set Σ0 = ∅ and Γ0 = ∅.
For t = 1, . . . , T :

• Sample an orthogonal separator Xt with buffers Yt, Zt using Theorem 3.3 with parameters ε, R,
and δ′. For convenience, we assume that Xt, Yt, and Zt contain not vectors but the corresponding
vertices of G.

• Let P̃t = Xt \ (
⋃

i<tXi ∪ Yi ∪ Zi) and Σt = Σt−1 ∪ P̃t.

• Let B̃t = (Xt ∪ Yt) \ (Σt ∪ Γt−1) and Γt = Γt−1 ∪ B̃t.

• Let RP = V \ (
⋃T

t=1Xt ∪ Yt ∪ Zt) and RB = V \ (ΣT ∪ ΓT ∪RP ).

Figure 2: Step 2 of the Partial Partitioning Algorithm. At this step, the algorithm finds a crude partial partitioning
{(P̃t, B̃t)}t of V .
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Let R′
P = RP and R′

B = RB .
For t = 1, · · · , T :

• Find rt that minimizes ϕG(Pt ∥ Bt) subject to the constraints |Bt| ≤ C ′
4.1(δ)ε|Pt|, |A′′

t | ≤ 10ε|Pt|,
δ(A′

t, Pt ∪ Bt) ≤ C′′
4.1(δ)/ε · λk log k · d|Pt| , and δG(Pt ∪ Bt, (ΣT ∪ RP ) \ P̃t) ≤ C′′

4.1(δ)/ε λk log k · d|Pt|
where

Pt = {u ∈ P̃t : ∥ū∥2 ≥ rt}

Bt = {u ∈ B̃t : ∥ū∥2 ≥ rt/(1 + ε)} ∪ {u ∈ P̃t : ∥ū∥2 ∈ [rt/(1 + ε), rt]}

A′
t = {u ∈ P̃t : ∥ū∥2 ≤ rt/(1 + ε)2}

A′′
t = {u ∈ P̃t : ∥ū∥2 ∈ (rt/(1 + ε)2, rt/(1 + ε))}

Note that it suffices to consider r in {∥ū∥2 : u ∈ P̃t∪ B̃t}. If no such rt exists, we let Pt = ∅, Bt = ∅,
A′

t = ∅, and A′′
t = ∅.

• If no such rt exists, then add P̃t to R
′
P and add B̃t to R

′
B . Otherwise, add B̃T \Bt to R

′
B .

Figure 3: Step 3 of the Partial Partitioning Algorithm. At this step, the algorithm refines the crude partial
partitioning {(P̃t, B̃t)}t of V and obtains sets {(Pt, Bt, A

′
t, A

′′
t )}t.

For t = 1, · · · , T :

• Discard all sets Pt, Bt, A
′
t, A

′′
t if Pt = ∅, or

ϕG(Pt ∥ Bt) >
C ′′

4.1(δ)

ε
λk log k,

where C ′′
4.1(δ) is some function that depends only on δ (see Theorem 4.1).

• If sets Pt, Bt, A
′
t, A

′′
t are discarded, then add P̃t to R

′
P and add B̃t to R

′
B .

Figure 4: Step 4 of the Partial Partitioning Algorithm. At this step, the algorithm discards all sets (Pt, Bt) that
do not satisfy the conditions of Theorem 4.1.

Theorem 4.1. The Partial Partitioning Algorithm is a polynomial-time randomized algorithm that given a d-
regular graph G = (V,E), natural k > 1, and positive parameters ε, δ ∈ (0, 1/80), finds subsets R′

P , R
′
B and

Pi, Bi, A
′
i, A

′′
i of V for i ∈ [k′] with k′ ≥ (1− 2δ)k such that

1. All sets Pi, Bi, A
′
i, A

′′
i and R′

P , R
′
B are disjoint and all sets Pi are nonempty, and

R′
P ∪R′

B ∪
k′⋃
i=1

Pi ∪Bi ∪A′
i ∪A′′

i = V ;

2. |Bi| ≤ C ′
4.1(δ) ε|Pi| for all i ∈ {1, . . . , k′}; and

3. ϕG(Pi ∥ Bi) ≤
C ′′

4.1(δ)

ε
λk log k, for all i ∈ [k′],

4. |A′′
i | ≤ 10ε|Pi|, for all i ∈ [k′];

5. |R′
B | ≤ 16εn;
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6.
∑k′

j=1 δG(A
′
j , Pi ∪Bi) + δG(R

′
P , Pi ∪Bi) ≤

2C ′′
4.1(δ)

ε
λk log k · d|Pi|, for all i ∈ [k′].

Remark: We will assume that ε ≤ δ. If that is not the case, we can replace ε with ε′ = δ and hide the additional

factor of ε/ε′ in the bound on ϕG(Pi ∥ Bi) and
∑k′

j=1 δG(A
′
j , Pi ∪ Bi) + δG(R

′
P , Pi ∪ Bi) in the constant C ′′

4.1(δ).
We will also assume that δ ≥ 1/(3k): indeed if δ < 1/(3k), we can increase it to 1/(3k) and we will still have
k′ ≥ ⌈(1− 2/(3k))k⌉ = k, as for the original value of δ.

Proof. Our algorithm consists of four steps. First, we embed the vertex set V into a k dimensional space using
the standard spectral embedding (see Section 6 for details). We denote the image of vertex u by ū. We also let
ψ(ū) = ū/∥ū∥ (that is, ψ(ū) is the normalized ū) and µ(u) = ∥ū∥2 (note: ū ̸= 0 by Claim 6.1). At the second step,

we obtain a crude partial partitioning P̃1, . . . , P̃k′′ with buffers B̃1, . . . , B̃k′′ using a new technical tool, which we
introduced in Section 3. We call this tool orthogonal separators with buffers (see Theorem 3.3). Finally, we refine
the crude partitioning at the third step and discard some sets at the fourth step. We get subsets Pi, Bi, A

′
i, A

′′
i

for i ∈ [k′] and two extra subsets R′
P , R

′
B . We provide the pseudocode for Steps 1, 2, 3 and 4 in Figures 1, 2, 3,

and 4. We now analyze our algorithm.
Before we proceed to the proof, we set some notation. Let Ball(u,R) be the ball of radius R around u in the

metric ρ(u, v) = ∥ψ(ū)− ψ(v̄)∥:

Ball(u,R) = {v ∈ V : ∥ψ(ū)− ψ(v̄)∥ ≤ R}.

We define measure µ on V as follows: for every S ⊆ V ,

µ(S) =
∑
u∈S

µ(u).

Step 1: Spectral Embedding. In Section 6, we remind the reader the standard definition of a spectral
embedding of G into Rk. We then prove two claims about this embedding. First, we note that µ(V ) = k. This is
a known fact (see e.g., [LRTV12]). Then, in Lemma 6.1, we show that for R < 1/

√
2, for any vertex u ∈ V ,

(4.18) µ(Ball(u,R)) ≤ 1

1− 2R2
.

We will use this bound with R =
√

δ/6.

Step 2: Crude Partial Partitioning. We now analyze the second step of the algorithm described in Figure 2.
Let {(P̃t, B̃t)}Tt=1 be the crude partial partitioning obtained at this step. Define function

(4.19) η(u, v) =


∥ū∥2, if u ∈ P̃t, v /∈ P̃t ∪ B̃t for some t;
1/ε ∥ū− v̄∥2, if u ∈ P̃t, v ∈ P̃t ∪ B̃t for some t;

0, otherwise.

Later, we will use the following sum as an estimate of the size of the edge boundary of set Pt:

(4.20) η(P̃t) =
∑

u∈P̃t; v∈V ;
s.t.(u,v)∈E

η(u, v).

Note that function η(u, v) is not symmetric. If u and v are in P̃t, then the sum above includes both terms η(u, v)
and η(v, u). Depending on the argument, we will use η to denote the cost of an edge as in Equation (4.19) or the

cost of all edges incident on vertices in P̃t as in Equation (4.20).

Note that sets P̃t, B̃t are contained in Xt ∪ Yt ∪ Zt \ Σt−1, where Xt, Yt, Zt are orthogonal separator and its

two buffers and Σt−1 are vertices covered by previous P̃i for i < t. We define another cost function as follows:

(4.21) η̃(u, v) =

{
∥ū∥2, if u ∈ P̃t ∪ B̃t, v /∈ (Xt ∪ Yt ∪ Zt) \ Σt−1 for some i;

0, otherwise.
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We will use this cost function to bound the total cost of edges from each part in the partial partitioning Pi and Bi

to the uncovered part R′
B and R′

P . The cost of all edges incident on vertices in P̃t ∪ B̃t for function η̃ is denoted
as

(4.22) η̃(P̃t ∪ B̃t) =
∑

u∈P̃t∪B̃t; v∈V ;
s.t.(u,v)∈E

η̃(u, v).

We prove the following lemma for all sets generated after Step 2.

Lemma 4.1. The crude partial partitioning {(P̃t, B̃t)}Tt=1 and subsets RB , RP obtained at Step 2 of the algorithm
satisfies the following properties:

1. µ(P̃t) ≤ 1 + δ for all t;

2.
1

k

∑T
t=1 E[µ(P̃t)] ≥ 1− 5δ;

3.
1

k

∑T
t=1 E[µ(B̃t)] ≤ 4ε;

4.
1

k

∑T
t=1 E[η(P̃t)] ≤

Cδ

ε
· λkd log k;

5.
∑T

t=1 E |B̃t|+E |RB | ≤ 4εn;

6.
1

k

∑T
t=1 E[η̃(P̃t ∪ B̃t)] ≤

Cδ

ε
· λkd log k.

Here, the expectation is taken over the random decisions made by the algorithm at Step 2 (all other steps of the
algorithm are deterministic).

Proof. We will use Theorem 3.3 to analyze Step 2 of the algorithm. We first show item (1). Observe that P̃t ⊂ Xt

and for every u ∈ Xt, Xt = Ball(u,R) ∪ (Xt \ Ball(u,R)). Thus,

µ(P̃t) ≤ µ(Ball(u,R)) + µ(Xt \ Ball(u,R)).

By Lemma 6.1 (see Equation (4.18)), µ(Ball(u,R)) ≤ 1/(1− δ/3) ≤ 1 + δ/2 for all u. By Theorem 3.3,

min
u∈Xt

µ(Xt \ Ball(u,R)) ≤
δµ(V )

2k
=
δ

2
.

Thus, µ(P̃t) ≤ 1 + δ.
We now prove item (2). Consider a vertex u. Observe that if u gets assigned to set Σt at iteration t, then

it remains in the set Σt′ in the future iterations t′ > t. That is, Σt ⊂ Σt+1. Let Ξt =
⋃

i<tXi ∪ Yi ∪ Zi. Then,

similarly, we have Ξt ⊂ Ξt+1. If u is not in Ξt, then at step (t+1), it is assigned to P̃t+1 with probability at least

α/2 and to Ξt+1 \ P̃t+1 with probability at most 2εα (see Theorem 3.3). Thus,

Pr{u ∈ Σt | u ∈ Ξt} ≥ α/2

α/2 + 2εα
=

1

1 + 4ε
.

Also,
1− (1− α(1 + 2ε))t ≥ Pr{u ∈ Ξt} ≥ 1− (1− α/2)t.

Therefore (since T = ⌈2/α ln 1/δ⌉ and ε < δ < 1/48),

(4.23) Pr{u ∈ ΣT } ≥ 1− (1− α/2)T

1 + 4ε
≥ 1− δ

1 + 4δ
≥ 1− 5δ.

Item (2) follows from the bound above because sets P̃t are disjoint and ΣT =
⋃T

t=1 P̃t.
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We then prove items (3) and (5). Note that the remaining parts RP = V \ΞT and RB = V \(RP ∪ΣT ∪ΓT ) =

ΞT \ (ΣT ∪ ΓT ). Since all sets B̃t are disjoint and ΓT = ∪T
t=1B̃t, we upper bound probabilities Pr{u ∈ ΓT } and

Pr{u ∈ ΓT ∪RB}. Since RB = ΞT \ (ΣT ∪ ΓT ), we have ΓT ∪RB = ΞT \ ΣT . Similar to bound (4.23), we have

(4.24) Pr{u ∈ ΓT } ≤ Pr{u ∈ ΓT ∪RB} ≤ Pr{u ∈ ΞT \ ΣT } ≤ 4ε

1 + 4ε
·
(
1− (1− α(1 + 2ε))T

)
≤ 4ε,

where the last inequality is due to Pr{u ∈ ΞT \ΣT | u ∈ ΞT } ≤ 4ε/(1+4ε) and Pr{u ∈ ΞT } ≤ 1−(1−α(1+2ε))T .
Then, item (3) follows from Pr{u ∈ ΓT } ≤ 4ε and item (5) follows from Pr{u ∈ ΓT ∪RB} ≤ 4ε.

We now prove the item (4). Consider an edge (u, v). We bound the probability of the event
{
η(u, v) = ∥ū∥2

}
.

If η(u, v) = ∥ū∥2, then u ∈ P̃t, and v /∈ P̃t ∪ B̃t for some t. We first assume that v /∈ Σt′ ∪ Γt′ with t′ ≤ t − 1
or, in other words, v /∈ Σt−1 ∪ Γt−1. Then, u ∈ Xt \ Ξt−1 and v /∈ Xt ∪ Yt for some t (otherwise, if v was

in (Xt ∪ Yt) \ Σt−1 ∪ Γt−1, v would also be in P̃t or B̃t). If v ∈ P̃t′ ∪ B̃t′ and u ∈ P̃t with t′ < t, then
v ∈ (Xt′ ∪ Yt′) \ (Σt′−1 ∪ Γt′−1) and u /∈ Xt′ ∪ Yt′ ∪ Zt′ for some t′. Write,

Pr
{
η(u, v) = ∥ū∥2

}
≤

T∑
t=1

Pr
{
u ∈ Xt \ Ξt−1 and v /∈ Xt ∪ Yt}︸ ︷︷ ︸

(∗)

(4.25)

+
T∑

t=1

Pr
{
v ∈ (Xt ∪ Yt) \ (Σt−1 ∪ Γt−1) and u /∈ Xt ∪ Yt ∪ Zt}︸ ︷︷ ︸

(∗∗)

.(4.26)

We upper bound the first term. Two events {u ∈ Xt; v /∈ Xt ∪ Yt} and {u /∈ Ξt−1} are independent for every t.
Thus,

(∗) ≤
T∑

t=1

Pr
{
u ∈ Xt and v /∈ Xt ∪ Yt} · Pr{u /∈ Ξt−1}

=
T∑

t=1

Pr
{
v /∈ Xt ∪ Yt | u ∈ Xt} · Pr{u ∈ Xt} · Pr{u /∈ Ξt−1}

=
T∑

t=1

Pr
{
v /∈ Xt ∪ Yt | u ∈ Xt} · Pr{u ∈ Xt \ Ξt−1}.

By Theorem 3.3,
Pr{v /∈ Xt ∪ Yt | u ∈ Xt} ≤ D ∥ψ(ū)− ψ(v̄)∥2,

where D = O(1/ε log k/δ) = Oδ(1/ε log k). Observe that events {u ∈ Xt \ Ξt−1} for t ∈ {1, . . . , T} are mutually
exclusive. Thus,

(∗) ≤ D ∥ψ(ū)− ψ(v̄)∥2 ·
T∑

t=1

Pr{u ∈ Xt \ Ξt−1}︸ ︷︷ ︸
≤1

≤ D ∥ψ(ū)− ψ(v̄)∥2.

The same bound holds for (∗∗) in Equation (4.26). We now bound E[η(u, v)]:

E
[
η(u, v)

]
= Pr

{
η(u, v) = ∥ū∥2

}
· ∥ū∥2 + Pr

{
η(u, v) = 1/ε∥ū− v̄∥2

}
· 1/ε∥ū− v̄∥2

≤ 2D ∥ψ(ū)− ψ̄(v̄)∥2 · ∥ū∥2 + 1/ε∥ū− v̄∥2.

By Claim 4.1 (see below), E
[
η(u, v)] ≤ 8D∥ū− v̄∥2 + 1/ε∥ū− v̄∥2 = Oδ(1/ε log k) ∥ū− v̄∥2.

Claim 4.1. Consider two vertices u, v ∈ V and the corresponding nonzero vectors ū, v̄. We have

∥ū∥2 · ∥ψ(ū)− ψ(v̄)∥2 ≤ 4∥ū− v̄∥2.
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Remark: This is a known inequality. See e.g., [CMM06] and [LGT14].

Proof. Write,

∥ū∥2 · ∥ψ(ū)− ψ(v̄)∥2 = ∥ū∥2 ·
∥∥∥ ū

∥ū∥
− v̄

∥v̄∥

∥∥∥2 =
∥∥∥ū− ∥ū∥

∥v̄∥
v̄
∥∥∥2.

We now use the relaxed triangle inequality for squared Euclidean distance ∥x− z∥2 ≤ 2∥x− y∥2 + 2∥y − z∥2. We
have

∥ū∥2 · ∥ψ(ū)− ψ(v̄)∥2 ≤ 2∥ū− v̄∥2 + 2
∥∥∥v̄ − ∥ū∥

∥v̄ ∥
v̄
∥∥∥2 ≤ 4∥ū− v̄∥2.

Here, we used that v̄ and ∥ū∥
∥v̄ ∥ v̄ are collinear vectors and, thus,∥∥∥ ∥ū∥∥v̄ ∥

v̄ − v̄
∥∥∥ =

∣∣∣∣∥∥∥ ∥ū∥∥v̄ ∥
v̄
∥∥∥− ∥v̄∥

∣∣∣∣ = ∣∣∥ū∥ − ∥v̄∥
∣∣ ≤ ∥ū− v̄∥.

We can now finish the proof of Lemma 4.1,

1

k

T∑
t=1

E[η(P̃t)] =
1

k

∑
(u,v)∈E

E[η(u, v)] +E[η(v, u)] = Oδ(1/ε log k)
1

k

∑
(u,v)∈E

∥ū− v̄∥2.

By Claim 6.2, the right hand side is upper bounded by Oδ(1/ε log k) dλk.
Finally, we prove item (6). Similar to the analysis of item (4), for any edge (u, v), we bound the probability

that η̃(u, v) = ∥ū∥2. If η̃(u, v) = ∥ū∥2, then we have u ∈ P̃t ∪ B̃t and v ̸∈ (Xt ∪ Yt ∪ Zt) \ Σt−1 for some t. We

also first assume that when u is contained in P̃t ∪ B̃t, vertex v is not contained in Σt−1. Then, we must have

v /∈ Xt ∪ Yt ∪ Zt. If v is covered by P̃t for some t before u is covered, then we must have u /∈ Xt ∪ Yt (otherwise
u is contained in P̃t ∪ B̃t). Thus, we have

Pr{η̃(u, v) = ∥ū∥2} ≤
T∑

t=1

Pr{u ∈ (Xt ∪ Yt) \ Ξt−1 and v /∈ Xt ∪ Yt ∪ Zt}

+
T∑

t=1

Pr{v ∈ Xt \ Ξt−1 and u /∈ Xt ∪ Yt}.

By Theorem 3.3, we have Pr{η̃(u, v) = ∥ū∥2} ≤ 2D ∥ψ(ū)− ψ(v̄)∥2. By Claim 6.2, we get

1

k

T∑
t=1

E[η̃(P̃t ∪ B̃t)] =
1

k

∑
(u,v)∈E

E[η̃(u, v)] +E[η̃(v, u)] = Oδ(1/ε log k) dλk.

By item (5) in Lemma 4.1 and Markov’s inequality, we have |RB |+
∑T

t=1 |B̃t| ≤ 16εn holds with probability
at least 3/4. In the following analysis, we assume this always holds.

Steps 3 & 4. Our algorithm (the Partial Partitioning Algorithm) refines the crude partial partitioning {P̃t, B̃t}Tt=1

at Step 3 and obtains a set of tuples {(Pt, Bt, A
′
t, A

′′
t )}Tt=1. Then, it removes some of the sets (Pt, Bt, A

′
t, A

′′
t ) from

the partial partitioning at Step 4. In the analysis of the algorithm, it will be more convenient for us to identify
those sets (P̃t, B̃t) that remain in the solution first and only then find their refinements (Pt, Bt, A

′
t, A

′′
t ). Let

(4.27) I =
{
i : P̃i ̸= ∅, µ(B̃i) ≤ C ′

δ εµ(P̃i), and max{η(P̃i), η̃(P̃i ∪ B̃i)} ≤ C ′′
δ /ε · λkd log k µ(P̃i)

}
,

where C ′
δ = 192/δ and C ′′

δ = 48Cδ/δ. We will now prove that Pr{|I| ≥ (1 − 2δ)|k|} ≥ 1/2. In the next section,
we show that for each i ∈ I, the tuple (Pi, Bi, A

′
i, A

′′
i ) satisfies all constraints at Step 3 and 4. Thus, all sets
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(Pi, Bi, A
′
i, A

′′
i ) with i ∈ I remain in the solution after Step 4 and, consequently, the algorithm succeeds with

probability at least 1/4 (We assume |RB | +
∑T

t=1 |B̃t| ≤ 16εn at Step 2, which holds with probability at least
3/4).

Lemma 4.1 gives us upper bounds on the expected values of k −
∑

t µ(P̃t),
∑

t µ(B̃t),
∑

t η(P̃t), and∑
t η̃(P̃t ∪ B̃t). These four random variables are non-negative. Thus, by Markov’s inequality, with probability at

least 1/2, the following four inequalities hold simultaneously:

1

k

T∑
t=1

µ(P̃t) ≥ 1− 40δ;

1

k

T∑
t=1

µ(B̃t) ≤ 32ε;

1

k

T∑
t=1

η(P̃t) ≤ 8Cδ/ε λkd log k.

1

k

T∑
t=1

η̃(P̃t ∪ B̃t) ≤ 8Cδ/ε λkd log k.

Denote the event that all above inequalities hold by E . We know that Pr(E) ≥ 1/2. Let us assume that E occurs.
Since δ < 1/80, we have

T∑
t=1

µ(B̃t) ≤ 64ε
T∑

t=1

µ(P̃t);

T∑
t=1

η(P̃t) ≤ 16Cδ/ελkd log k

T∑
t=1

µ(P̃t);

T∑
t=1

η̃(P̃t ∪ B̃t) ≤ 16Cδ/ε λkd log k
T∑

t=1

µ(P̃t).

Let wi = µ(P̃i)
/∑T

t=1 µ(P̃t) . We rewrite the inequalities above as follows:

T∑
i=1

wi
µ(B̃i)

µ(P̃i)
≤ 64ε;

T∑
i=1

wi
η(P̃i)

µ(P̃i)
≤ 16Cδ/ελkd log k;

T∑
i=1

wi
η̃(P̃i ∪ B̃i)

µ(P̃i)
≤ 16Cδ/ελkd log k.

In the expressions above, we ignore the terms with wi = 0. Note that
∑

i wi = 1. Suppose that we pick i in
{1, . . . , T} randomly with probability wi. Then, the above inequalities give bounds on the expected values of

µ(B̃i)/µ(P̃i) and η(P̃i)/µ(P̃i). By Markov’s inequality,

Pr
i∼w

{i ∈ I} = Pr
i∼w

{
µ(B̃i) ≤ C ′

δ εµ(P̃i) and max{η(P̃i), η̃(P̃i ∪ B̃i)} ≤ C ′′
δ /ε λkd log k µ(P̃i)

}
≥ 1− δ,

where C ′
δ = 192/δ and C ′′

δ = 48Cδ/δ. Therefore,
∑

i∈I wi ≥ 1− δ. We have

∑
i∈I

µ(P̃i) ≥ (1− δ)
T∑

i=1

µ(P̃i) ≥ (1− δ)k.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



We now recall that µ(P̃i) ≤ 1 + δ. Consequently,

|I| ≥ 1− δ

1 + δ
k ≥ (1− 2δ)k.

We just showed that if event E occurs, then |I| ≥ (1− 2δ)k and Pr(E) ≥ 1/2. Hence, Pr{|I| ≥ (1− 2δ)k} ≥ 1/2.

Step 3: Refined Partial Partitioning. At Step 3 of the algorithm, we refine the crude partitioning obtained
at Step 2. To this end, we pick a threshold ri ∈ (0, 1) for every pair (P̃i, B̃i) with i ∈ I. We define the refined
partitioning sets to be

• Pi = {u ∈ P̃i : µ(u) ≥ ri},

• Bi = {u ∈ B̃i : µ(u) ≥ ri/(1 + ε)} ∪ {u ∈ P̃i : µ(u) ∈ [ri/(1 + ε), ri)},

• A′
i = {u ∈ P̃i : µ(u) ≤ ri/(1 + ε)2},

• A′′
i = {u ∈ P̃i : µ(u) ∈ (ri/(1 + ε)2, ri/(1 + ε))}.

The threshold ri must satisfy five conditions: (1) |Bi| ≤ C ′
4.1(δ)ε|Pi|; (2) ϕG(Pi ∥ Bi) ≤ C′′

4.1(δ)/ε λk log k;

(3) |A′′
i | ≤ 10ε|Pi|, and (4) δG(A

′
i, Pi ∪ Bi) ≤ C′′

4.1(δ)/ε λk log k · d|Pi|; (5) δG(Pi ∪ Bi, (ΣT ∪ RP ) \ P̃i) ≤
C′′

4.1(δ)/ε λk log k · d|Pi|. At Step 4, we drop sets (Pi, Bi, A
′
i, A

′′
i ) for which we could not find such threshold.

We now show that for every i ∈ I such threshold ri exists (set I is defined in Equation (4.27)). We use the
probabilistic method.

Lemma 4.2. Consider i ∈ I. Suppose, we select elements in sets Pi and Bi using a random threshold ri, which
is uniformly distributed in (0, 1). Then

1. Eri |Bi| ≤ 2C ′
δ εEri |Pi|;

2. Eri

[
δG(Pi, V \ (Pi ∪Bi))

]
≤ C′′

δ

ε λk log k · dEri |Pi|;

3. Eri |A′′
i | ≤ 2εEri |Pi|;

4. Eri

[
δG(A

′
i, Pi ∪Bi)

]
≤ C′′

δ

ε λk log k · dEri |Pi|.

5. Eri

[
δG(Pi ∪Bi, (ΣT ∪RP ) \ P̃i)

]
≤ C′′

δ

ε λk log k · dEri |Pi|.

Proof. Denote

B′
i = {u ∈ B̃i : µ(u) ≥ ri/(1 + ε)} and B′′

i = {u ∈ P̃i : µ(u) ∈ [ri/(1 + ε), ri)}.

Then, Bi = B′
i ∪B′′

i . Write,

Eri |Pi| =
∑
u∈P̃i

Pr
ri
{u ∈ Pi} =

∑
u∈P̃i

Pr
ri
{ri ≤ µ(u)} = µ(P̃i).

Here, we used that µ(u) ≤ 1 for all u (see Claim 6.1). Similarly, E |B′
i| ≤ (1 + ε)µ(B̃i). Then,

E |B′′
i | =

∑
u∈P̃i

Pr
ri

{
µ(i) ∈ [ri/(1 + ε), ri]

}
=
∑
u∈P̃i

Pr
ri

{
ri ∈ [µ(i), (1 + ε)µ(i)]

}
≤ εµ(P̃i).

Thus, using the definition of set I, we get

E |Bi| ≤ E |B′
i|+E |B′′

i | = (1 + ε)µ(B̃i) + εµ(P̃i) ≤ ((1 + ε)C ′
δ + 1)εµ(P̃i) = 2C ′

δ εE |Pi|.

This proves the first claim of Lemma 4.2.
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We assign all vertices u ∈ P̃i with µ(u) ∈ (ri/(1 + ε)2, ri/(1 + ε)) to set A′′
i . Then, we have

E |A′′
i | =

∑
u∈P̃i

Pr
ri

{
µ(i) ∈ (ri/(1 + ε)2, ri/(1 + ε))

}
=

=
∑
u∈P̃i

Pr
ri

{
ri ∈ [(1 + ε)µ(i), (1 + ε)2µ(i)]

}
=
∑
u∈P̃i

(ε+ ε2)µ(i) < 2εµ(P̃i).

Since µ(P̃i) = Eri |Pi|, we get the third claim.
To show claims 2 and 4 of Lemma 4.2, we bound the expected number of edges from set Pi to set V \(Pi∪Bi),

and the expected number of edges from set A′
i to set Pi ∪Bi.

Claim 4.2. Consider an edge (u, v) ∈ E with u ∈ P̃i. We have

Pr{u ∈ Pi; v /∈ Pi ∪Bi} ≤ 2η(u, v),

and
Pr{u ∈ A′

i; v ∈ Pi ∪Bi} ≤ 2η(u, v).

Proof. Consider two cases. If v ∈ P̃i ∪ B̃i, then

Pr{u ∈ Pi, v /∈ Pi ∪Bi} = Pr{µ(u) ≥ ri and µ(v) < ri/(1 + ε)}
≤ Pr

{
ri ∈

[
(1 + ε)µ(v), µ(u)

]}
≤ µ(u)− (1 + ε)µ(v).

By Claim 2.2,

µ(u)− (1 + ε)µ(v) = ∥ū∥2 − (1 + ε)∥v̄∥2 ≤ (1 + 1/ε)(∥ū∥ − ∥v̄∥)2 ≤ 2(∥ū∥ − ∥v̄∥)2/ε.

Using the triangle inequality ∥ū∥ − ∥v̄∥ ≤ ∥ū− v̄∥, we conclude that

Pr{u ∈ Pi, v /∈ Pi ∪Bi} ≤ 2η(u, v).

Similarly, we have

Pr{u ∈ A′
i and v ∈ Pi ∪Bi} = Pr{µ(u) ≤ ri/(1 + ε)2 and µ(v) ≥ ri/(1 + ε)}

≤ Pr
{
ri ∈

[
(1 + ε)2µ(u), (1 + ε)µ(v)

]}
≤ (1 + ε)(µ(v)− (1 + ε)µ(u)) ≤ 2(∥ū∥ − ∥v̄∥)2/ε.

Therefore, we have
Pr{u ∈ A′

i, v ∈ Pi ∪Bi} ≤ 2η(u, v).

If v /∈ P̃i ∪ B̃i, then Pr{u ∈ A′
i, v ∈ P̃i ∪ B̃i} = 0, and

Pr{u ∈ Pi, v ∈ Pi ∪Bi} = Pr{u ∈ Pi} = ∥ū∥2 = η(u, v).

By Claim 4.2, the expected number of edges from set Pi to set V \(Pi∪Bi) is at most 2η(P̃i). Also, the expected

number of edges from set A′
i to set Pi∪Bi is at most 2η(P̃i). In other words, E

[
δG(Pi, V \(Pi∪Bi))

]
≤ 2η(P̃i) and

E
[
δG(A

′
i, Pi ∪Bi

]
≤ 2η(P̃i). Using the definition of set I (see (4.27)), we get the claims 2 and 4 of Lemma 4.2.

Finally, we prove claim 5 of Lemma 4.2. We have for any edge (u, v) with u ∈ P̃i ∪ B̃i,

Pr{u ∈ Pi ∪Bi, v ∈ (ΣT ∪RP ) \ P̃i} ≤ Pr{u ∈ Pi ∪Bi} = (1 + ε)∥ū∥2 ≤ 2η̃(u, v).

Thus, the expected number of edges from Pi ∪Bi to (ΣT ∪RP ) \ P̃i is at most 2η̃(P̃i ∪ B̃i). By the definition of
set I (see (4.27)), we get the conclusion.
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Using Lemma 2.1 with six random variables, we conclude that there exists ri ∈ (0, 1) such that inequalities
(1) |Bi| ≤ 10C ′

δ ε|Pi|, (2) δG(Pi, V \ (Pi ∪ Bi)) ≤ 5C′′
δ/ε λk log k · d|Pi|, (3) |A′′

i | ≤ 10ε|Pi|, (4) δG(A′
i, Pi ∪ Bi) ≤

5C′′
δ/ε λk log k · d|Pi|, and (5) δG(Pi ∪Bi, (ΣT ∪RP ) \ P̃i) ≤ 5C′′

δ/ε λk log k · d|Pi| hold simultaneously. The second
inequality is equivalent to ϕ(Pi ∥ Bi) ≤ 5C′′

δ/ε λk log k. In this theorem, we use the following functions C ′
4.1 and

C ′′
4.1: C

′
4.1(δ) = 10C ′

δ and C ′′
4.1(δ) = 5C ′′

δ . Combining the inequalities (4) and (5), we get the property (6) in
Theorem 4.1. In the Partial Partitioning Algorithm, all sets Pi, Bi, A

′
i, A

′′
i for i ∈ [k′] and R′

B , R
′
P are disjoint

and cover the entire graph. Since all tuples (Pi, Bi, A
′
i, A

′′
i ) with Pi = ∅ are discarded at Step 4, all sets Pi

returned by the Partial Partitioning Algorithm are nonempty. Note that R′
B ⊆ RB ∪

⋃T
i=1 B̃i. Since we assume

|RB | +
∑T

i=1 |B̃i| ≤ 16εn at Step 2 (This condition holds with probability at least 3/4), we have |R′
B | ≤ 16εn.

This finishes the proof of Theorem 4.1.

5 From Disjoint Sets to Partitioning

We now show how to use the partial partitioning given by the Partial Partitioning Algorithm in Section 4 to
obtain a true ε-buffered partitioning. We prove the following lemma.

Lemma 5.1. Consider a d-regular graph G. Let {(Pi, Bi, A
′
i, A

′′
i )}i∈[k′] and R′

P , R
′
B be a partial ε-buffered

partitioning of G given by the Partial Partitioning Algorithm. Then, for every k ∈ {1, · · · , k′} and δ′ =
(k′−k+1)/k′, we can convert this partial partitioning into a true 54ε/δ′-buffered partitioning P ′

1, . . . , P
′
k, B

′
1, . . . , B

′
k

of G such that

ϕG(P
′
1, . . . , P

′
k ∥ B′

1, . . . , B
′
k) ≤

4C ′′
4.1(δ)

δ′
· log k

ε
λk.

Proof. Let us sort all pairs (Pi, Bi, A
′
i, A

′′
i ) by size and assume |P1| ≤ · · · ≤ |Pk′ |. Now, we generate the true

buffered partitioning of the graph. The true buffered partitioning (P ′
i , B

′
i) contains the pairs (Pi, Bi) for i ∈ [k−1]

in the partial partitioning and a pair of new sets (P ′
k, B

′
k). Specifically, we let P ′

i = Pi and B
′
i = Bi for i ∈ [k− 1]

and

P ′
k = R′

P ∪
k′⋃
j=1

A′
j ∪

k′⋃
j=k

Pj ; B′
k = R′

B ∪
k′⋃
j=1

A′′
j ∪

k′⋃
j=k

Bj .

We can think of each set A′′
i is the buffer for the set A′

i for i ∈ [k′], and the set R′
B is the buffer for the set R′

P .
We also combine these sets and buffers with the largest k′ − k + 1 pairs (Pi, Bi) for i = k, k + 1, · · · , k′ in the
partial partitioning, respectively.

By Theorem 4.1, all sets Pi, Bi, A
′
i, A

′′
i and R′

P , R
′
B are disjoint and cover the entire graph. Also, all sets Pi

and R′
P are nonempty. Thus, all sets P ′

i are disjoint and nonempty, and
⋃k

i=1 P
′
i ∪B′

i = V . Also, for all i ∈ [k−1],
we have |Bi| ≤ ε|Pi| and

(5.28) ϕG(P
′
i , B

′
i) = ϕG(Pi, Bi) ≤

C ′′
4.1(δ)

ε
λk log k.

It remains to verify that the last pair of sets P ′
k and B′

k satisfy the required conditions. By items 4 and 5 of
Theorem 4.1, we have

|B′
k| ≤ |R′

B |+
k′∑
j=1

|A′′
j |+

k′∑
j=1

|Bj | ≤ 16εn+ 11ε
k′∑
j=1

|Pi| ≤ 27εn.

Since |P1| ≤ · · · ≤ |Pk′ |, we have
∑k−1

i=1 |Pi| ≤ k−1/k′
∑k′

i=1 |Pi|. Thus, we have

|P ′
k| = |V | − |R′

B | −
k′∑
i=1

|A′′
i |+ |Bi| −

k−1∑
i=1

|Pi| ≥

≥
(
1− k − 1

k′

)
·

|V | − |R′
B | −

k′∑
i=1

|A′′
i |+ |Bi|

 ≥ δ′(n− 27εn) ≥ δ′n/2.
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Hence, we have |B′
k| ≤ 54ε/δ′|P ′

k|.
We now bound the buffered expansion of this last part. By items (3) and (6) of Theorem 4.1, we have

ϕG(P
′
k ∥ B′

k) ≤
∑k−1

i=1 δG(P
′
k, Pi ∪Bi)

d|P ′
k|

≤
∑k−1

i=1

∑k′

j=1 δG(A
′
j , Pi ∪Bi) + δG(R

′
P , Pi ∪Bi) +

∑k′

j=k δG(Pj , Pi ∪Bi)

d · δ′n/2

≤
2C ′′

4.1(δ)/ε · λk log k · d
∑k−1

i=1 |Pi|+
∑k′

j=k δG(Pj , V \ (Pj ∪Bj))

d · δ′n/2

≤ 4C ′′
4.1(δ)/δ

′

ε
· λk log k.

This concludes the proof of Lemma 5.1.

We now prove the main result of the paper, Theorem 1.1.

Proof. [Proof of Theorem 1.1] Let k̂ = ⌊(1 + δ)k⌋ and δ̂ = min{(1−1/
√
1+δ)/2, 1/80}. Let k′ = ⌈(1 − 2δ̂)k̂⌉ and

δ′ = (k′−k+1)/k′. We first use the Partial Partitioning Algorithm from Section 4 with parameters k̂, ε̂ = εδ′/54,

and δ̂ to obtain a partial ε̂-buffered partitioning (P1, B1, A
′
1, A

′′
1), . . . , (Pk′ , Bk′ , A′

k′ , A′′
k′). By Theorem 4.1, the

buffered expansion of each set Pi with buffer set Bi is at most C′′
4.1(δ)/ε̂ λk̂ log k̂. Then, we apply Lemma 5.1 to

transform this partial partitioning into a true k partitioning. Since k′ = ⌈(1− 2δ̂)k̂⌉, we have k′ ≥
√
1 + δk − 1.

Then, we have δ′ ≥ 1 − 1/
√
1 + δ. By Lemma 5.1, the expansion of this ε-buffered k partitioning is at most

c(δ)/ε λk̂ log k̂, where c(δ) =
4C′′

4.1(δ)/δ′ is a function that only depends on δ.

6 Spectral Embedding

Consider a d-regular graph G. Let LG be its normalized Laplacian. Let x1, . . . , xn be an orthonormal eigenbasis
for LG and λi be the eigenvalue of xi. Without loss of generality, we assume that λ1 ≤ · · · ≤ λn. Note that
λ1 = 0, so we may assume that x1 = 1/

√
n. Define an k× n matrix U = (x1, . . . , xk)

T ; that is, the (i, u) entry of
U equals U(i, u) = xi(u) where i ∈ [k] and u ∈ V . Rows of U are indexed by integers from 1 to k and columns
by vertices u ∈ V of the graph (to simplify notation, we may assume that V = [n]). Note that UUT = Ik, since
vectors x1, . . . , xk are orthonormal. Let {eu}u∈V be the standard orthonormal basis in RV .

We are ready to define the spectral embedding of G. Let ū be the column of U indexed by vertex u. The
spectral embedding maps vertex u to vector ū.

Define ψ(u) = ui/∥ui∥. For a subset of vertices S ⊆ V , let µ(S) =
∑

u∈S ∥ū∥2 be the measure of set S. Now
we will state and prove basic properties of the spectral embedding.

Claim 6.1. For all u ∈ V , we have 0 < ∥ū∥ ≤ 1.

Proof. Since x1 = 1/
√
n, for all u ∈ V , we have ū(1) = 1/

√
n and ∥ū∥ ≥ 1/

√
n > 0. Further,

∥ū∥2 =
k∑

i=1

ū(i)2 =
k∑

i=1

xi(u)
2 =

k∑
i=1

⟨xi, eu⟩2 ≤
n∑

i=1

⟨xi, eu⟩2 = ∥eu∥2 = 1.

Claim 6.2. We have

1.
∑

u∈V ∥ū∥2 = k

2.
∑

(u,v)∈E ∥ū− v̄∥2 ≤ kdλk

Proof. Note that the (u, v) entry of matrix UTU equals ⟨ū, v̄⟩, since U has columns ū for u ∈ V .

1. We have,
∑

u∈V ∥ū∥2 = tr(UTU) = tr(UUT ) = tr Ik = k, as required.
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2. We have,

∑
(u,v)∈E

∥ū− v̄∥2 =
∑

(u,v)∈E

k∑
i=1

∥ū(i)− v̄(i)∥2 =
k∑

i=1

∑
(u,v)∈E

∥xi(u)− xi(v)∥2

by (1.1)
= d

k∑
i=1

xTi LGxi = d
k∑

i=1

λi ≤ dkλk,

where we used that λ1 ≤ · · · ≤ λk in the last inequality.

We show that the spectral embedding vectors {ψ(v̄)} satisfy the following spreading property. It is a variant
of Lemma 3.2 from the paper by Lee, Oveis-Gharan and Trevisan [LGT14].

Lemma 6.1. Assume that we are given a parameter R ∈ [0, 1/
√
2]. For every vertex u, consider the ball of radius

R around u, Ball(u,R) = {v : ∥ψ(ū)− ψ(v̄)∥ ≤ R}. Then µ(Ball(u,R)) ≤ 1/(1− 2R2) for every u.

Proof. Consider a vertex u ∈ V and C = Ball(u,R). Let av = ∥v̄∥ for v ∈ C. Then, v̄ = avψ(v̄) for v ∈ C. We
have, µ(C) =

∑
v∈C a

2
v. By the definition of C, ∥ψ(ū)− ψ(v̄)∥ ≤ R for v ∈ C and hence ∥ψ(v̄)− ψ(w̄)∥ ≤ 2R for

all pairs v, w ∈ C. Therefore,

(6.29) ⟨ψ(v̄), ψ(w̄)⟩ = 1− ∥ψ(v̄)− ψ(w̄)∥2

2
≥ 1− 2R2 for all v, w ∈ C.

Write,

µ(C) =
∑
v∈C

a2v =
1∑

v∈C a
2
v

∑
v,w∈C

a2va
2
w.

By inequality (6.29),

avaw ≤ avaw⟨ψ(v̄), ψ(w̄)⟩
1− 2R2

=
⟨v̄, w̄⟩
1− 2R2

.

Thus,

µ(C) ≤ 1∑
v∈C a

2
v

∑
v,w∈C

avaw ⟨v̄, w̄⟩
1− 2R2

.

For any vertex v ∈ V , let ev ∈ RV be the standard basis vector where ev(v) = 1 and ev(u) = 0 for all u ̸= v. Let

z =

∑
v∈C avev√∑

v∈C a
2
v

.

For any standard basis vector ev, we have Uev = v̄. Therefore,

Uz =
1√∑
v∈C a

2
v

∑
v∈C

av v̄,

and

µ(C) ≤ zT (UTU)z

(1− 2R2)
.

We prove that ∥Uz∥2 = zT (UTU)z ≤ 1. To this end, note that z is a unit vector and ∥Uz∥2 ≤ σmax(U)2 =
σmax(U

T )2, where σmax(U) and σmax(U
T ) are the largest singular values of U and UT , respectively (here, we

used the definition of singular values and the fact that matrices U and UT have the same non-zero singular values).
Since UUT = Id, all singular values of U

T are equal to 1. We conclude that ∥Uz∥2 ≤ 1.
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7 Orthogonal Separators with Buffers – Proofs

In this section, we show the algorithm that generates orthogonal separators with buffers. We prove Theorem 3.1,
Theorem 3.2, and Theorem 3.3.

Theorem 3.1 . There exists a randomized polynomial-time procedure that given a finite set U of unit vectors in
Rd and positive parameters ε ∈ (0, 1),m ≥ 3, R ∈ (0, 2), returns an m-orthogonal separator with an ε-buffer with
distortion D = OR(1/ε logm), separation radius R, and probability scale α ≥ OR(1/poly(m)).

For two disjoint random sets X,Y ⊂ U chosen from this orthogonal separator distribution, we have the
following properties:

1. For all ū ∈ U , Pr{ū ∈ X} = α; (for some α that depends on m and R).

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα.

3. For all ū, v̄ ∈ U with ∥ū− v̄∥ ≥ R, Pr{v̄ ∈ X | ū ∈ X} ≤ 1
m .

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2, where D = OR(1/ε logm).

Proof. We use the following procedure to generate orthogonal separators with buffers. We sample a d-dimensional
Gaussian vector g ∼ N (0, Id). For every vector ū in U , we let gu = ⟨ū, g⟩ be the projection of vector ū on the
direction g. For a standard gaussian random variable Z ∼ N (0, 1), we use Φ̄(t) = Pr{Z ≥ t} to denote the
probability that Z ≥ t. We pick a threshold t such that Φ̄(t) = α for some α that we will specify later; our choice
of α will guarantee that t ≤ 1. Let ε′ = ε/(e(t + 1/t)). Then, we construct the orthogonal separator X and the
buffer Y as follows:

X = {ū : gu ≥ t}; Y = {ū : t− ε′ < gu < t}.

Now we show that this procedure satisfies the required properties.
1. For every vector ū ∈ U , we have

Pr{ū ∈ X} = Pr{gu ≥ t} = Φ̄(t) = α.

2. For every vector ū ∈ U , we have

Pr{ū ∈ Y } = Pr{t− ε′ < gu < t} ≤ 1√
2π
e−

(t−ε′)2
2 · ε′ ≤

≤ ε′eε
′t

√
2π

e−
t2

2 =
εeε

e
√
2π(t+ 1/t)

e−
t2

2 ≤ eε

e
· εΦ̄(t) ≤ εα,

where the third inequality is due to Lemma G.1.
3. For every ū, v̄ ∈ U , we have

Pr{ū ∈ X, v̄ ∈ X} = Pr{gu ≥ t, gv ≥ t} ≤ Pr{(gu + gv)/2 ≥ t}.

We know that gu, gv are both random Gaussian variables from N (0, 1). Thus, we have (gu + gv)/2 is also a
Gaussian variable with variance

Var

[
gu + gv

2

]
=

1

4
E[(gu + gv)

2] =
1

4
(2 + 2⟨ū, v̄⟩) = 1− ∥ū− v̄∥2

4
,

where the second equality is due to E[gugv] = ⟨ū, v̄⟩ and the third equality used ū, v̄ are unit vectors. Thus for
every ū, v̄ ∈ U with ∥ū− v̄∥ ≥ R, we have Var [(gu + gv)/2] ≤ 1− R2/4. From Lemma G.2 we get that there exists
a constant C such that

Pr

{
gu + gv

2
≥ t

}
≤ Φ̄

(
t√

1−R2/4

)
≤ 1

t
(CtΦ̄(t))

1√
1−R2/4 .
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Since Φ̄(t) = α, we have

Pr{ū ∈ X, v̄ ∈ X} ≤ Pr

{
gu + gv

2
≥ t

}
≤ α · C(Ctα)

1√
1−R2/4

−1
.

By Lemma G.1, we have t = Θ(
√
log 1/α). Then we can find some α ≥ 1/poly(m) (for a fixed R) that depends

on m and R such that Pr{ū ∈ X, v̄ ∈ X} ≤ α/m. Since Pr{ū ∈ X} = α, we have

Pr{v̄ ∈ X | ū ∈ X} ≤ 1

m
.

4. For every ū, v̄ ∈ U , we have

Pr{ū ∈ X, v̄ /∈ X ∪ Y } = Pr{gu ≥ t, gv ≤ t− ε′}.

Since g is a standard Gaussian random vector, we have gu and gv are jointly Gaussian random variables with
distribution N (0, 1). Since ε ≤ 1 and t = Θ(

√
logm), we have ε′ = ε/(e(t+1/t)) < t. Using Lemma G.3 on gu, gv

with parameters m̂ = 1/α and ε̂ = ε′, we get

Pr{gu ≥ t, gv ≤ t− ε′} ≤ O

(√
log m̂

ε′m̂

)
· ∥ū− v̄∥2 ≤ αD∥ū− v̄∥2,

where D = OR(1/ε logm).

Theorem 3.2 . There exists a randomized procedure that given a finite set U of unit vectors in Rd equipped with
a measure µ and positive parameters ε ∈ (0, 1), δ ≤ 2/3, R ∈ (0, 2), returns an δ-orthogonal separator with an
ε-buffer with distortion D = OR(1/ε log 1/δ), separation radius R, and probability scale α ≥ OR(1/poly(m)).

For two disjoint random sets X,Y ⊂ U chosen from this orthogonal separator distribution, we have the
following properties:

1. For all ū ∈ U , Pr{ū ∈ X} ∈ [α/2, α].

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα.

3. minū∈X µ(X \ Ball(ū, R)) ≤ δµ(U) (always).

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2, where D = OR(1/ε log 1/δ).

Proof. We first run the algorithm from Theorem 3.1 with m = 2/δ and obtain sets X ′ and Y ′. If set X ′ satisfies
the third condition: minū∈X′ µ(X ′ \Ball(ū, R)) ≤ δµ(U), we return sets (X,Y ) = (X ′, Y ′). Otherwise, we return
empty sets, (X,Y ) = (∅,∅). By Theorem 3.1, Pr{ū ∈ X} ≤ α and Pr{ū ∈ Y } ≤ εα for all ū ∈ X. Also,
condition (3) always holds (because if X ′ does not satisfy it, we return ∅). We now lower bound Pr{ū ∈ X}:

Pr{ū ∈ X} = Pr{ū ∈ X ′} − Pr{ū ∈ X ′ and X = ∅}
= Pr{ū ∈ X ′} · (1− Pr{X = ∅ | ū ∈ X ′}
= α(1− Pr{X = ∅ | ū ∈ X ′}).

If X = ∅, then
µ(X ′ \ Ball(ū, R)) ≥ min

v̄∈X′
µ(X ′ \ Ball(v̄, R)) > δµ(U).

Thus,

Pr{X = ∅ | ū ∈ X ′} ≤ Pr
{
µ(X ′ \ Ball(ū, R)) > δµ(U) | ū ∈ X ′

}
.

However, by item (3) of Theorem 3.1,

E
[
µ(X ′ \ Ball(ū, R)) | ū ∈ X ′

]
≤ µ(U)

m
=
δµ(U)

2
.
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By Markov’s inequality,

Pr{X = ∅ | ū ∈ X ′} ≤ 1

2
.

Therefore, Pr{ū ∈ X} ≥ α(1− 1/2) = α/2. Finally,

Pr{v̄ /∈ X ∪ Y | ū ∈ X} =
Pr{v̄ /∈ X ∪ Y and ū ∈ X}

Pr{ū ∈ X}

=
Pr{v̄ /∈ X ′ ∪ Y ′ and ū ∈ X ′}

Pr{ū ∈ X ′}
· Pr{ū ∈ X ′}
Pr{ū ∈ X}

≤ 2Pr{v̄ /∈ X ′ ∪ Y ′ | ū ∈ X ′} ≤ 2D ∥ū− v̄∥2.

Theorem 3.3 . There exists a randomized procedure that given a finite set U of unit vectors in Rd equipped with
a measure µ and positive parameters ε ∈ (0, 1), δ ≤ 2/3, R ∈ (0, 2), returns an δ-orthogonal separator with two
ε-buffers with distortion D = OR(1/ε log 1/δ), separation radius R, and probability scale α ≥ OR(1/poly(m)).

For three disjoint random sets X,Y, Z ⊂ U chosen from this orthogonal separator distribution, we have the
following properties:

1. For all ū ∈ U , Pr{ū ∈ X} ∈ [α/2, α].

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα, and Pr{ū ∈ Z} ≤ εα.

3. minū∈X µ(X \ Ball(ū, R)) ≤ δµ(U) (always).

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2, and
Pr{v̄ /∈ X ∪ Y ∪ Z | ū ∈ X ∪ Y } ≤ D ∥ū− v̄∥2, where D = OR(1/ε log 1/δ).

Proof. We modify the algorithm in Theorem 3.1 to generate three disjoint sets X ′, Y ′, Z ′ as follows. We sample
a d-dimensional Gaussian vector g ∼ N (0, Id). For every vector ū in U , we let gu = ⟨ū, g⟩ be the projection of
vector ū on the direction g. We use Φ̄(t) to denote the probability that a standard gaussian random variable is
at least t. We pick a threshold t such that Φ̄(t) = α for some α that we will specify later; our choice of α will
guarantee that t ≤ 1. Let ε′ = ε/(e(t + 1/t)). Then, we construct the orthogonal separator X ′ and two buffers
Y ′, Z ′ as follows:

X = {ū : gu ≥ t}; Y = {ū : t− ε′ < gu < t}; Z = {ū : t− 2ε′ < gu < t− ε′}.

If set X ′ satisfies the third condition: minū∈X′ µ(X ′ \Ball(ū, R)) ≤ δµ(U), we return sets (X,Y, Z) = (X ′, Y ′, Z ′).
Otherwise, we return empty sets, (X,Y, Z) = (∅,∅,∅).

By the similar analysis in Theorem 3.1, we have for all ū ∈ U , it holds that Pr{ū ∈ X} ≤ α, Pr{ū ∈ Y } ≤ εα,
and Pr{ū ∈ Z} ≤ εα. By Theorem 3.2, we have for all ū ∈ U , Pr{ū ∈ X} ≥ α/2 and condition (3) always holds.
Then, we show that condition (4) holds. The first part of condition (4) is the same as Theorem 3.2. Note that
α ≤ Φ̄(t− ε′) ≤ (1 + ε)α. Using Lemma G.3 on gu, gv with parameters m̂ = 1/Φ̄(t− ε′) and ε̂ = ε′, we have

Pr{gu ≥ t, gv ≤ t− ε′} ≤ O

(√
log m̂

ε′m̂

)
· ∥ū− v̄∥2 ≤ αD∥ū− v̄∥2,

where D = OR(1/ε logm).
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[KLM06] Ravi Kannan, László Lovász, and Ravi Montenegro. Blocking conductance and mixing in random walks.
Combinatorics, Probability and Computing, 15(4):541–570, 2006.

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral. Journal of the
ACM (JACM), 51(3):497–515, 2004.

[LGT14] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-order Cheeger
inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

[LM12] Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. Advances in neural
information processing systems, 25, 2012.

[LM14] Anand Louis and Konstantin Makarychev. Approximation algorithm for sparsest k-partitioning. In Proceedings
of the Symposium on Discrete Algorithms, pages 1244–1255, 2014.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms. Journal of the ACM (JACM), 46(6):787–832, 1999.

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many sparse cuts via higher
eigenvalues. In Proceedings of the Symposium on Theory of Computing, pages 1131–1140, 2012.

[McS01] Frank McSherry. Spectral partitioning of random graphs. In Proceedings of the Symposium on Foundations of
Computer Science, pages 529–537. IEEE, 2001.

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In
Proceedings of NeurIPS, pages 8490–856, 2001.

[OATT22] Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, and Kunal Talwar. Practical almost-
linear-time approximation algorithms for hybrid and overlapping graph clustering. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 17071–17093.
PMLR, 17–23 Jul 2022.

[PSL90] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM
Journal on Matrix Analysis and Applications, 11(3):430–452, 1990.
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A Connection to Robust Expansion

In this section, we prove Corollary 1.2.

Proof. [Proof of Corollary 1.2] Let ε∗ = ϕVη (G) be the robust vertex expansion of G. If ε∗ = 0, then the claim
is trivial, because λ2 ≥ 0. So we assume below that ε∗ > 0. Then for every disjoint subsets S, T ⊂ V with
0 < |S| ≤ |V |/2 and |T | < ε∗|S|, we have

(A.1) δ(S, T ) < (1− η)δ(S, V \ S),

as otherwise, we would have a contradiction

ε∗ = ϕVη (G) ≤ ϕVη (S) =
Nη(S)

|S|
≤ |T |

|S|
< ε∗.

Now we apply Corollary 1.1 of Theorem 1.1 with k = 2 and ε′ = ε∗/2. We get an ε′-buffered partition
(P1, P2||B1, B2) with ϕG(P1, P2||B1, B2) ≤ O(λ2/ε

′). Assume without loss of generality that |P1| ≤ n/2. Note
that |B1| ≤ ε′|P1| < ε∗|P1| and thus by (A.1),

δ(P1, B1) < (1− η)δ(P1, V \ P1).

Therefore,

δ(P1, V \ (P1 ∪B1)) = δ(P1, V \ P1)− δ(P1, B1) > η δ(P1, V \ P1).

On the other hand,

δ(P1, V \ (P1 ∪B1)) ≤ d · ϕG(P1, P2||B1, B2) · |P1| ≤ O

(
dλ2|P1|
ε∗

)
.

We conclude that

λ2 ≥ Ω(η) · ε∗ · δ(P1, V \ P1)

d|P1|
= Ω(η · ϕVη (G) · ϕG(P1)) ≥ Ω(η · ϕVη (G) · hG).

B Heavy Set Pt in a Buffered Partition

In this section, we argue why we may assume that one of the sets Pt in the buffered partitioning
(P1, . . . , Pk||B1, . . . , Bk) contains at least Ω(δn) vertices (where n = |V |).

Corollary B.1. There exists a buffered partitioning as in Theorem 1.1 (possibly with a different function c(δ)
such that |Pt| = Ω(δn) for some t.
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Proof. Let δ′ =
√
1 + δ − 1 = Θ(δ) and k′ = ⌊(1 + δ′)k⌋. Apply Theorem 1.1 with parameters k′ and δ′. We get

an ε-buffered partitioning (P1, . . . , Pk′ ∥ B1, . . . , Bk′) with

ϕ0 = ϕG(P1, . . . , Pk′ ∥ B1, . . . , Bk′) ≤ c(δ′) log k′

ε
λ⌊(1+δ)k⌋.

Assume without loss of generality that |P1| ≤ |P2| ≤ · · · ≤ |Pk′ |. Merge sets Pk, . . . , Pk′ and sets Bk, . . . , Bk′ . That

is, let P ′
k =

⋃k′

i=k Pi and B
′
k =

⋃k′

i=k Bi. We obtain a buffered partitioning (P1, . . . , Pk−1, P
′
k ∥ B1, . . . , Bk−1, B

′
k).

We show that it is ε-buffered and that its buffered expansion is at most ϕ0. Clearly, merging does not change
the value of ϕG(Pi ∥ Bi) for i ∈ [k − 1], as it does not change sets Pi and Bi. So it is sufficient to verify that
|B′

k| ≤ ε|P ′
k| and ϕG(P ′

k ∥ B′
k) ≤ ϕ0. Indeed,

|B′
k| ≤

k′∑
i=k

|Bi| ≤
k′∑
i=k

ε|Pi| = ε|P ′
k|.

ϕG(P
′
k ∥ B′

k) =
δG(P

′
k, V \ (P ′

k ∪B′
k))

|P ′
k|

≤
∑k′

i=k δG(Pi, V \ (Pi ∪Bi))

|P ′
k|

≤
∑k′

i=k ϕ0|Pi|
|P ′

k|
= ϕ0.

We used that sets Pk, . . . , Pk′ are disjoint and thus |P ′
k| = |Pk| + · · · + |Pk′ |. Finally, we observe that P ′

k is the
union of k′ − k + 1 = Ω(δk) largest sets out of k′ sets that together cover at least (1 − ε)n vertices. Thus,

|P ′
k| ≥ k′−k+1

k′ (1− ε)n = Ω(δn).

C Lower Bound for k-way Expansion and Pseudo-approximation Algorithm for Sparsest k-way
Partitioning

In this section, we present the lower bound for non-buffered k-way expansion hkG of graphs with vertex weights and
edge costs. The proof is similar to that for graphs without vertex weights shown in [LRTV12, LGT14]. Combined
with Theorem 1.2, it gives a pseudo-approximation alghorithm for the Sparsest k-way Partitioning problem.

Proposition C.1. Given any graph G = (V,E,w, c) with vertex weights wu > 0 and edge costs cuv > 0, for any
integer k > 1, the k-way expansion is at least

hkG ≥ λk
2
.

Proof. Let P1, P2, . . . , Pk be the optimal solution for k-way expansion. Then, we have for any i ∈ [k]

ϕG(Pi) =
|δ(Pi, V \ Pi)|

w(Pi)
≤ hkG.

Let 1Pi be the indicator vector of set Pi for all i ∈ [k], i.e. 1Pi(u) = 1 if u ∈ Pi, otherwise 1Pi(u) = 0. Then, we

use xPi
= D

1/2
w 1Pi

to denote the weighted indicator vector. Let X = {xPi
: i ∈ [k]}. Since all vectors in X are

orthogonal to each other, the span of X has dimension k. By the Courant-Fischer Theorem, we have

(C.2) λk = min
S⊂Rn:dim(S)=k

max
x∈S

xTD
−1/2
w LGD

−1/2
w x

xTx
≤ max

x∈span(X)

xTD
−1/2
w LGD

−1/2
w x

xTx
.

Suppose x ∈ span(X) is the maximizer of the right-hand side of Equation (C.2). We can write x =
∑k

i=1 αixSi

for αi ∈ R. Then, we have

xTD−1/2
w LGD

−1/2
w x =

(
k∑

i=1

αi1Si

)T

LG

(
k∑

i=1

αi1Si

)
=

=
∑

(u,v)∈E

cuv

(
k∑

i=1

αi1Si
(u)−

k∑
i=1

αi1Si
(v)

)2

≤ 2
k∑

i=1

α2
i

∑
(u,v)∈E

cuv(1Si
(u)− 1Si

(v))2,
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where the last inequality is due to the relaxed triangle inequality, for any edge (u, v) ∈ E with u ∈ Si and v ∈ Sj ,
(αi1Si

(u)− αj1Sj
(v))2 ≤ 2α2

i1Si
(u)2 + 2α2

j1Sj
(v)2. Taking it into Equation (C.2), we have

λk ≤
2
∑k

i=1 α
2
i

∑
(u,v)∈E cuv(1Si

(u)− 1Si
(v))2∑k

i=1 α
2
i

∑
u∈V wu1Si(u)

=
2
∑k

i=1 α
2
i |δ(Pi, V \ Pi)|∑k

i=1 α
2
iw(Pi)

≤ 2hkG.

Plugging the bound on λ⌊(1+δ)k⌋(LG) from Proposition C.1 into Theorem 1.2, we get the following Oε,δ(log k)
pseudo-approximation algorithm for the Sparsest K-Partitioning problem from

Theorem C.1. There exists a polynomial-time algorithm that given a graph G = (V,E,w, c) with vertex weights
wu > 0 and edge costs cuv > 0, ε > 0, δ > 0, and k > 1 such that maxu∈V wu ≤ εw(V )/(3k), finds a ε-buffered
partition (P1, . . . , Pk ∥ B1, . . . , Bk) with

ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) ≤
κ(δ) log k

ε
h
⌊(1+δ)k⌋
G .

Note that in this theorem, we compare the cost of our ε-buffered k-partition to that of the optimal non-buffered
⌊(1 + δ)k⌋-partition.

D Buffered Balanced Cut

In this section, we present our results for the buffered balanced cut. Consider any graph G(V,E,w, c) with vertex
weight wu > 0 and edge cost cuv > 0. For any 0 < γ ≤ 1/2, the γ-balanced cut of graph G is a partition
of graph (L,R) such that w(L), w(R) ∈ [γw(V ), (1 − γ)w(V )]. The γ-balanced cut problem asks to find a γ-
balanced cut of a graph to minimize the cut size δ(L,R). We consider the ε-buffered γ-balanced cut. Given
a weighted graph G(V,E,w, c), the ε-buffered γ-balanced cut is a partition of graph G, (L,R ∥ B) such that
w(L), w(R) ∈ [γw(V ), (1− γ)w(V )] and w(B) ≤ εmin(w(L), w(R)). We show a bi-criteria approximation for the
balanced cut problem with an ε-buffered balanced cut.

Theorem D.1. Let ε ∈ (0, 1/4). Consider any weighted graph G = (V,E,w, c) with vertex weight wu > 0
and cuv > 0. There is a polynomial-time algorithm that finds three disjoint sets L,B,R with L ∪ B ∪ R = V ,
w(L), w(R) ∈ [1/4 · w(V ), 3/4 · w(V )], and w(B) ≤ 3εmin(w(L), w(R)) such that

δ(L,R) ≤ O(1/ε) · δ(L∗, R∗),

where (L∗, R∗) is the optimal 1/3-balanced cut. (L,R ∥ B) is a (3ε)-buffered 1/4-balanced cut with cut size at
most O(1/ε) times the size of the optimal 1/3-balanced cut.

Proof. We first describe our algorithm for buffered balanced cut, which is inspired by the approximation algorithm
for balanced cut in [LR99]. The algorithm recursively partitions the graph by using the buffered spectral
partitioning algorithm in Section 2. At the beginning, we set the graph G1 = G. Then, we run the ε-
buffered spectral partitioning to find a partition (L1, R1 ∥ B1) of the graph G1. Suppose w(L1) ≤ w(R1).
If w(L1) < w(V )/4, then we recursively run the ε-buffered spectral partitioning on the subgraph G2 of G on the
set of vertices R1. For each call of buffered spectral partitioning, we label the partition (Lt, Rt ∥ Bt) such that

w(Lt) ≤ w(Rt). We recursively call the ε-buffered spectral partitioning until
∑T

t=1 w(Lt) ≥ w(V )/4. Then, the

algorithm returns the partition (L,R,B) of G, where L =
⋃T

t=1 Lt, B =
⋃T

t=1Bt, and R = V \ (L ∪B).
Then, we show that the partition (L,R ∥ B) returned by this algorithm is a 3ε-buffered 1/4-balanced cut. Let

(Lt, Rt ∥ Bt) be the buffered partition of graph Gt returned by the t-th call of the buffered spectral partitioning.
Then, we have w(Lt) ≤ w(Vt)/2 and w(Bt) ≤ εw(Lt). Suppose the algorithm calls the buffered spectral

partitioning for T times. Then, we have w(L) =
∑T

t=1 w(Lt) ≥ w(V )/4 and
∑T−1

t=1 w(Lt) < w(V )/4. Since
w(VT ) ≤ w(V ), we have

w(L) =
T∑

t=1

w(Lt) ≤
T−1∑
t=1

w(Lt) + w(LT ) ≤ w(V )/4 + w(VT )/2 ≤ 3/4 · w(V ).
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Since w(L) ≥ w(V )/4, we have w(R) ≤ 3/4 · w(V ). Since w(LT ) ≤ w(VT )/2 and w(BT ) ≤ εw(LT ), we have

w(R) = w(VT )− w(LT )− w(BT ) ≥
(
1− 1 + ε

2

)
w(VT ).

Note that w(VT ) = w(V )−
∑T−1

t=1 w(Lt) + w(Bt) ≥
(
1− 1+ε

4

)
w(V ). Since ε ≤ 1/4, we have

w(R) ≥
(
1− 1 + ε

2

)(
1− 1 + ε

4

)
w(V ) ≥ w(V )

4
.

Thus, we have both w(L) and w(R) are in [w(V )/4, 3w(V )/4]. Since w(Bt) ≤ εw(Lt) for all t, we have
w(B) ≤ εw(L) and

w(B) ≤ εw(L) ≤ ε · 3
4
w(V ) ≤ 3ε · w(R).

Hence, we have w(B) ≤ 3ε ·min{w(L), w(R)}.
Next, we bound the size of buffered cut (L,B,R). For each call of the buffered spectral partitioning, we bound

the cut size δ(Lt, Rt) for the buffered partition (Lt, Bt, Rt) of graph Gt. Let (L
∗, R∗) be the optimal non-buffered

1/3-balanced partition of graph G. Let L∗
t = L∗ ∩ Vt and R∗

t = R∗ ∩ Vt. Then, we have δ(L∗
t , R

∗
t ) ≤ δ(L∗, R∗).

Note that the weight of vertices in V \ Vt is at most

w(V \ Vt) =
t−1∑
i=1

w(Li) + w(Bi) ≤ (1 + ε) · w(V )

4
.

Suppose w(L∗
t ) ≥ w(R∗

t ). Since w(L
∗) ≥ w(V )/3 and ε ≤ 1/4, we have

w(L∗
t ) ≥ w(L∗)− w(V \ Vt) ≥

(
1

3
− 1 + ε

4

)
w(V ) ≥ 1

48
w(V ).

By Proposition C.1, we have

λ2(LGt
)

2
≤ min

S⊂Vt:w(S)≤w(Vt)/2

δ(S, Vt \ S)
w(S)

≤ δ(L∗
t , R

∗
t )

w(L∗
t )

.

By Proposition 2.1, we have

δ(Lt, Rt) ≤ 4

(
1 +

8

ε

)
λ2(LGt

) · w(Lt) ≤

≤ 8

(
1 +

8

ε

)
· w(Lt)

w(L∗
t )

· δ(L∗
t , R

∗
t ) ≤ O

(
1

ε

)
· w(Lt)

w(V )
· δ(L∗

t , R
∗
t ).

Combining all cuts edges in δ(Lt, Rt) for T calls of buffered spectral partitioning, we have

δ(L,R) ≤
T∑

t=1

δ(Lt, Rt) ≤ O

(
1

ε

)
·

T∑
t=1

w(Lt)

w(V )
· δ(L∗

t , R
∗
t ) ≤ O

(
1

ε

)
δ(L∗

t , R
∗
t ),

where the last inequality is due to w(L) ≤ 3/4 · w(V ).

We also consider the k-way balanced partition problem. Given a graph G(V,E,w, c), for any γ ≥ 1, we say
that P1, P2, . . . , Pk is a (γ, k)-balanced partition of G if w(Pi) ≤ γw(V )/k for all i ∈ [k]. The (γ, k)-balanced
partition problem aims to find a (γ, k) balanced partition to minimize the total cost of edges with two endpoints
in different parts. By using the buffered balanced cut algorithm in Theorem D.1 and the recursive bi-section
algorithm in [ST97], we show a bi-criteria approximation for the k-way balanced partition.

Corollary D.1. Let ε ∈ (0, 1/4). Consider any weighted graph G = (V,E,w, c) with vertex weight wu > 0 and
cuv > 0. There is a polynomial-time algorithm that finds a ε-buffered (6, k)-balanced partition P1, P2, . . . , Pk, B
such that P1, P2, . . . , Pk and B are disjoint, w(B) ≤ O(ε)w(V ), and∑

i<j

δ(Pi, Pj) ≤ O(1/ε · log2 k) ·OPT,

where OPT is the optimal cost for (1, k)-balanced partition.
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E Graphs with Vertex Weights and Edge Costs

In this section, we prove our main results for graphs G = (V,E,w, c) with vertex weights wu > 0 and edge costs
cuv > 0.

Theorem 1.1 holds for regular graphs with parallel edges but without edge costs and vertex weights. Assume
that we have a graph G with edge costs cuv and with vertex weights wu = 1 such that the total cost of all
edges incident on a vertex does not depend on the vertex; that is, C0 =

∑
v:(u,v)∈E cuv does not depend on u.

If all edge costs are integers, we can simulate edge costs by adding parallel edges – we replace each edge (u, v)
with cuv parallel edges. We obtain a C0-regular graph G′. Let LG′ = I − 1

C0
AG′ be the normalized Laplacian

of G′. Let LG = D
−1/2
w L̃GD

−1/2
w be the normalized Laplacian of G. It is immediate that LG = C0LG′ and

δG(A,B) = δG′(A,B) for every A,B ⊆ V . Let k′ = ⌊(1 + δ)k⌋. Then, λk′(LG′) = λk′(LG)/C0.
By Theorem 1.1, there exists an ε-buffered partition (P1, . . . , Pk ∥ B1, . . . , Bk) such that

ϕG′(Pi ∥ Bi) =
δG′(Pi, V \ (Pi ∪Bi))

C0|Pi|
≤ c(δ) log k

ε
· λk′(LG′)

for every i ∈ [k]. Since λk′(LG′) = λk′(LG)/C0 and w(Pi) = |Pi|, we have for all i,

(E.3) ϕG(Pi ∥ Bi) =
δG(Pi, V \ (Pi ∪Bi))

w(Pi)
≤ c(δ) log k

ε
· λk′(LG).

Now if we multiply all edge costs by the same positive number ρ, both the left and right hand side will get
multiplied by ρ. Therefore, the inequality holds not only for integer edge costs but also for arbitrary positive
rational costs. By continuity, it holds for arbitrary positive edge costs. We get the following corollary.

Corollary E.1. Let G be a graph with positive edge costs cuv and unit vertex weights such that C0 =∑
v:(u,v)∈E cuv is the same for all vertices u. Then there exists an ε-balanced partition (P1, . . . , Pk ∥ B1, . . . , Bk)

such that inequality (E.3) holds for all i.

Now we present a black-box reduction that proves Theorem 1.2. We note that the reduction can significantly
increase the running time of the algorithm. However, in fact, we can use the algorithm from Theorem 1.1 to find
(P1, . . . , Pk ∥ B1, . . . , Bk) (the proof of this fact essentially repeats that of Theorem 1.1, and we do not present it
here).

Theorem E.1. Let G = (V,E,w, c) be a graph with positive weights wu > 0 and edge costs cuv > 0, ε ∈ [0, 1),

δ ∈ (0, 1), and k ≥ 2 be an integer. Assume that maxu wu ≤ εw(V )/(3k). Let LG = D
−1/2
w L̃GD

−1/2
w be the

normalized Laplacian of G. Then

(E.4) hk,εG ≤ κ(δ) log k

ε
· λ⌊(1+δ)k⌋(LG),

where κ(δ) is a function that depends only on δ.

Proof. Assume first that all vertex weights are integers greater than or equal to 2. Let W =
∑

u∈V wu be the
total weight of all vertices. Let C =

∑
(u,v)∈E cuv be the total cost of all edges and B = C ·W 2.

We construct an auxiliary graph G′ with unit vertex weights as follows. For each vertex u of G, we create
its own “cloud of vertices” Qu of size wu; all vertices q ∈ Qu have unit weights. For (u, v) ∈ E, we connect every
q ∈ Qu with every q′ ∈ Qv by an edge (q, q′) with cost c′qq′ = cuv

|Qu||Qv| . Note that the total cost of all edges

between Qu and Qv equals cuv. Let bu =
∑

v:(u,v)∈E
cuv

|Qu| be the total cost of edges incident on vertex q ∈ Qu (so

far). Now we connect every two vertices q, q′ ∈ Qu by an edge of cost c′qq′ =
B−bu
|Qu|−1 . After this step, the total

cost of all edges incident on q ∈ Qu is exactly B, since q has |Qu| − 1 neighbors in Qu. We denote the obtained
graph by G′.

Properties of G′ = (V ′, E′) that we established.

• |Qu| = wu; all vertices have unit weights in G′.

• The total cost of all the edges between Qu and Qv is cuv.
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• The total cost of all edges incident on every vertex equals B (and does not depend on u).

• G′[Qu] is a clique, in which all edges have cost c′qq′ =
B−bu
|Qu|−1 ≥ B−C

W−1 > CW .

Now we upper bound λk′(LG′) in terms of λk′(LG).

Lemma E.1. λk′(LG′) ≤ λk′(LG)

Proof. Let x1, . . . , xk′ be the first k′ orthogonal unit eigenvectors of LG. Define vectors z1, . . . , zk′ ∈ R|V ′| as

follows: for q ∈ Qu, we let zi(q) =
xi(u)√

wu
. First, observe that z1, . . . , zk′ are pairwise orthogonal unit vectors:

⟨zi, zj⟩ =
∑
q∈V ′

zi(q)zj(q) =
∑
u∈V

∑
q∈Qu

zi(q)zj(q) =
∑
u∈V

|Qu|
xi(u)xj(u)

wu
= ⟨xi, xj⟩ =

{
0, if i ̸= j

1, if i = j

Further,

zTi LG′zj =
∑

(q,q′)∈E′

c′qq′(zi(q)− zi(q
′)) · (zj(q)− zj(q

′))

=
∑

(u,v)∈E

∑
q∈Qu

q′∈Qv

(q,q′)∈E′

cuv
|Qu||Qv|

(zi(q)− zi(q
′)) · (zj(q)− zj(q

′))

+
∑
u∈V

B − bu
|Qu| − 1

∑
q,q′∈Qu

(q,q′)∈E′

(zi(q)− zi(q
′)) · (zj(q)− zj(q

′))

=
∑

(u,v)∈E

cuv

(
xi(u)

w
1/2
u

− xi(v)

w
1/2
v

)
·
(
xj(u)

w
1/2
u

− xj(v)

w
1/2
v

)
= xTi LGxj .

We conclude that zTi LG′zj = λi(LG) if i = j, and zTi LG′zj = 0, otherwise.
Finally, we use the Courant–Fischer theorem to upper bound λk′(LG). Let H be the linear span of vectors

z1, . . . , zk′ . By the Courant–Fischer theorem,

λk′(LG′) ≤ max
z∈H\{0}

zTLG′z

∥z∥2
= max

z=
∑

i αizi

α∈Rk′
\{0}

zTLG′z

∥z∥2
= max

α∈Rk′\{0}

∑
i,j(αiαj)z

T
i LG′zj

∥α∥2

= max
α∈Rk′\{0}

∑
i α

2
iλi(LG)

∥α∥2
= λk′(LG).

Let ε′ = ε/10. We apply Theorem 1.1 to G′ and obtain an ε′-buffered partition (P ′
1, . . . , P

′
k ∥ B′

1, . . . , B
′
k) of

G′ with ϕG′(P ′
1, . . . , P

′
k ∥ B′

1, . . . , B
′
k) ≤

c(δ) log k
ε′ λk′(LG′) ≤ c(δ) log k

ε′ λk′(LG). Observe that if some set Qu contains
a vertex q ∈ P ′

i and a vertex q′ ∈ P ′
j ∪B′

j with j ̸= i then ϕG′(P ′
i ∥ B′

i) is very large

ϕG′(P ′
i ∥ B′

i) ≥
δG′(P ′

i , P
′
j ∪B′

j)

w(P ′
i )

≥ cqq′

W
> C.

Then, any partition (P1, . . . , Pk ∥ ∅, . . . ,∅) of G satisfies the condition of the theorem:

ϕG(Pi ∥ ∅) ≤ C/2 < ϕG′(P ′
i ∥ B′

i) ≤
c(δ) log k

ε′
λk′(LG),

as required. So we assume below that if P ′
i ∩ Qu ̸= ∅ then (P ′

j ∪ B′
j) ∩ Qu = ∅ for every u, i, and j ̸= i. Then

for every u, there are two possibilities: either
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1. Qu ⊆ P ′
i ∪B′

i for some i, or

2. Qu ⊆
⋃

iB
′
i.

Depending on which of the possibilities takes place, we say that u is a vertex of the first or second type,
respectively7. Now we define an ε-buffered partition (P1, . . . , Pk ∥ B1, . . . , Bk) of G. First, we assign every
vertex u to one of the sets P1, . . . , Pk, B1, . . . , Bk and U , where U is a special set that will be partitioned among
B1, . . . Bk later. We do that as follows:

1. if |Qu ∩ P ′
i | ≥ |Qu|/2, we assign u to Pi;

2. otherwise, if |Qu ∩B′
i| ≥ |Qu|/2, we assign u to Bi;

3. otherwise, we assign u to U .

Note that each vertex of the first type is necessarily assigned to some Pi or Bi. Each vertex of the second type is
assigned to some Bi or U .

Since U consists of the vertices of the second type, we have
⋃

u∈U Qu ⊂
⋃

iB
′
i and thus

w(U) =
∣∣∣ ⋃
u∈U

Qu

∣∣∣ ≤ ∣∣∣⋃
i

B′
i

∣∣∣ ≤ ε′
∣∣∣⋃

i

P ′
i

∣∣∣.
Here we used that that partition (P ′

1, . . . , P
′
k ∥ B′

1, . . . , B
′
k) is ε′-buffered. We create sets B′′

1 , . . . , B
′′
k , which are

initially empty, and set the capacity of B′′
i to

ε|P ′
i |

2 . We distribute vertices from U one-by-one among B′′
1 , . . . , B

′′
k

so that the total weight assigned to B′
i does not exceed its capacity. We stop when we either assign all the vertices

from U or no unassigned vertex in U can be assigned to any B′′
i , without violating the capacity requirement for

B′′
i . We now show that this procedure assigns all the vertices from U . Indeed, assume that some vertex u is not

assigned. Then, wu is greater than the the remaining capacity of every B′′
i ; that is, wu >

ε|P ′
i |

2 −w(B′′
i ) for every

i. Adding up these inequalities over all i, we get

kwu >

k∑
i=1

(
ε|P ′

i |
2

− w(B′′
i )

)
≥ ε

2

∣∣∣⋃
i

P ′
i

∣∣∣− w(U) ≥ ε

2

∣∣∣⋃
i

P ′
i

∣∣∣− ∣∣∣⋃
i

B′
i

∣∣∣
≥ ε

2

∣∣∣⋃
i

P ′
i

∣∣∣− ε′
∣∣∣⋃

i

P ′
i

∣∣∣ ≥ 2ε

5

∣∣∣⋃
i

P ′
i

∣∣∣ ⋆
≥ 2ε(1− ε′)

5
w(V ) ≥ εw(V )

3

Inequality ⋆
≥ above follows from two inequalities: |

⋃
i P

′
i |+ |

⋃
iB

′
i| = w(V ) and |

⋃
iB

′
i| ≤ ε′|

⋃
i P

′
i |. We get that

wu >
εw(V )

3k , which contradicts to the assumption of the theorem. We conclude that
⋃

iB
′′
i = U . Finally, we add

vertices from B′′
i to Bi for every i. We obtain the desired partition (P1, . . . , Pk ∥ B1, . . . , Bk).

Now we prove that (P1, . . . , Pk ∥ B1, . . . , Bk) satisfies the desired requirements. Fix i. We upper bound
δG(Pi, V \ (Pi ∪Bi)). Note that if edge (u, v) goes from Pi to V \ (Pi ∪Bi) then u is a vertex of the first type and
|Qu ∩ P ′

i | ≥ |Qu|/2 and either

• v is a vertex of the first type and Qv ⊆ Pj ∪Bj for some j ̸= i, or

• v is a vertex of the second type and at least one half of the vertices in Qv are not in Bi (and none of them
are in Pi).

To summarize, in either case at least a half of the vertices in Qu lie in P ′
i and at least half of vertices in Qv do

not lie in P ′
i ∪B′

i. Thus, at least one quarter of all edges from Qu to Qv contribute to δG′(P ′
i , V

′ \ (P ′
i , B

′
i)), and

their total contribution is at least cuv/4. We conclude that

δG(Pi, V \ (Pi ∪Bi)) ≤ 4δG′(P ′
i , V \ (P ′

i ∪B′
i)).

7If Qu ⊆ B′
i, let us assume that u is of the first type.
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Now we lower bound w(Pi). Let A be the set of vertices u of the first type such that Qu ⊆ P ′
i ∪ B′

i. Note that
Pi ⊆ A and P ′

i ⊆
⋃

u∈AQu. Consider u ∈ A. If u ∈ Pi, then w(Pi ∩ {u}) = |Qu| ≥ |Qu ∩ P ′
i | − |Qu ∩ B′

i|. If
u /∈ Pi, then w(Pi ∩ {u}) = 0 ≥ |Qu ∩ P ′

i | − |Qu ∩B′
i|, since |Qu ∩ P ′

i | < |Qu|/2 ≤ |Qu ∩B′
i|. We have,

w(Pi) =
∑
u∈A

w(Pi ∩ {u}) ≥
∑
u∈A

|Qu ∩ P ′
i | − |Qu ∩B′

i| ≥ |P ′
i | − |B′

i| ≥ (1− ε′)|P ′
i |.

We have,

ϕG(Pi ∥ Bi) =
δG(Pi, V \ (Pi ∪Bi)

w(Pi)
≤ 4

1− ε′
δG′(P ′

i , V \ (P ′
i ∪B′

i)

|P ′
i |

=
O(c(δ)) log k

ε
λk′(LG).

It remains to show that partition (P1, . . . , Pk ∥ B1, . . . , Bk) is ε-buffered. We already showed that w(Pi) ≥
(1− ε′)w(P ′

i ). Now we upper bound w(Bi). First, w(B
′′
i ) ≤ ε|P ′

i |/2 ≤ εw(Pi)/2(1−ε′) ≤ 5εw(Pi)/9.
Then, u ∈ Bi \B′′

i if and only if |Qu ∩B′
i| ≥ |Qu|/2 = wu/2. Therefore,

w(Bi \B′′
i ) ≤ 2

∑
u∈Bi\B′′

i

|Qu ∩B′
i| ≤ 2|B′

i| ≤ 2ε′|P ′
i | ≤

2ε′

1− ε′
w(Pi) ≤

2ε

9
w(Pi).

We conclude that w(Bi) = w(Bi \ B′′
i ) + w(B′′

i ) =
7ε
9 w(Pi), as required. This completes the proof for the case

when all the vertex weights are integers. By linearity, inequality (E.4) also holds when all the weights are rational
numbers, and by continuity, it follows that inequality (E.4) holds when weights are arbitrary positive real numbers.

F Lower Bound on hk,εG

In this section, we prove Theorem 1.4, which we now restate as follows.

Theorem F.1. Consider a d-regular graph G = (V,E) and its ε-buffered partition (P1, . . . , Pk||B1, . . . , Bk). Then
for every i ∈ [k],

λk ≤ 2ϕG(P1, . . . , Pk||B1, . . . , Bk) + ε.

Thus,

λk ≤ 2hk,εG + ε.

Proof. By the Courant-Fischer min-max theorem,

λk = min
H

max
z∈H:z ̸=0

zTLGz

∥z∥2
,

where the minimum is over k-dimensional subspaces H of Rn. Let bi be the indicator vector of Pi: bi(u) = 1 if

u ∈ Pi and bi(u) = 0, otherwise. Let H be the linear span of b1, . . . , bk and z =
∑k

i=1 αibi. Then,

λk ≤ max
(α1,...,αk)̸=0

zTLGz

∥z∥2

First note that vectors bi have disjoint supports and thus are mutually orthogonal. Therefore, ∥z∥2 =
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∑k
i=1 α

2
i ∥hi∥2 =

∑k
i=1 α

2
i |Pi|. Now we upper bound zTLGz. We will use that |δ(Pi, Bi)| ≤ d|Bi| ≤ εd|Pi|.

dzTLGz
by (1.1)
=

∑
i,j∈[k]
i<j

(αi − αj)
2 · |δ(Pi, Pj)|+

∑
i∈[k]

(αi − 0)2 ·
∣∣δ(Pi,

⋃
j

Bj

)∣∣

≤
∑

i,j∈[k]
i<j

(2α2
i + 2α2

j ) · |δ(Pi, Pj)|+
∑
i∈[k]

α2
i ·
∣∣δ(Pi,

⋃
j:j ̸=i

Bj \Bi

)∣∣+ α2
i · |δ(Pi, Bi)|



= 2
∑

i,j∈[k]
i̸=j

α2
i · |δ(Pi, Pj)|+

∑
i∈[k]

α2
i ·

∣∣δ(Pi,
⋃

j:j ̸=i

Bj \Bi

)∣∣+ |δ(Pi, Bi)|



≤
∑
i∈[k]

α2
i ·

2

∣∣∣∣∣∣δ
(
Pi,

⋃
j:j ̸=i

Pj ∪
( ⋃
j:j ̸=i

Bj \Bi

))∣∣∣∣∣∣+ |δ(Pi, Bi)|


≤
∑
i∈[k]

α2
i ·
(
2
∣∣δ(Pi, V \ (Pi ∪Bi))

∣∣+ εd|Pi|
)
.

Therefore,
zTLGz

∥z∥2
≤ 1

d
max
i∈[k]

2
∣∣δ(Pi, V \ (Pi ∪Bi))

∣∣+ εd|Pi|
|Pi|

= max
i∈[k]

2
∣∣δ(Pi, V \ (Pi ∪Bi))

∣∣
d|Pi|

+ ε.

G Gaussian Distribution

In this section, we present several useful estimates on the Gaussian distribution. Let X ∼ N (0, 1) be a one-
dimensional Gaussian random variable. Denote the probability that X ≥ t by Φ̄(t):

Φ̄(t) = Pr{X ≥ t}.

The first lemma gives an accurate estimate on Φ̄(t) for large t.

Lemma G.1. (see [CMM06, Lemma A.1]) For every t > 0,

t√
2π (t2 + 1)

e−
t2

2 < Φ̄(t) <
1√
2π t

e−
t2

2 and Φ̄(t) = Θ
(e− t2

2

t+ 1

)
.

Lemma G.2. (see [CMM06, Lemma A.1, part 2]) For any ρ ≥ 1 and t ≥ 0, there exists a constant C such that

Φ̄(ρt) ≤ 1

t
(CtΦ̄(t))ρ

2

.

Lemma G.3. Let X and Y be jointly N (0, 1)-Gaussian random variables. Denote δ2 = 1/2Var[X − Y ]. Choose
m > 3, threshold t > 1 such that Φ̄(t) = 1/m, and a parameter ε ∈ [0, t]. Then

Pr{X ≥ t and Y ≤ t− ε} ≤ O(δ2ε−1
√
logm/m).

Proof. Note that (1) the covariance of X and Y is E[XY ] = 1−Var[X − Y ]/2 = 1− δ2, and (2) by Lemma G.1,
t = Θ(

√
logm). Denote p = Pr{X ≥ t and Y ≤ t − ε}. Note that if δ2ε−1t ≥ 1/32, then the lemma trivially

holds,

p = Pr{X ≥ t and Y ≤ t− ε} ≤ Pr{X ≥ t} =
1

m
≤ O

(δ2ε−1
√
logm

m

)
,

as required. So we assume below that ε > 32δ2t. Let α = E[XY ] = 1 − δ2. Consider Gaussian random variable
Z = αX − Y . Note that Z has mean 0 and variance E[Z2] = α2 + 1− 2α2 = 2δ2 − δ4. Further, the covariance of
X and Z is 0: E[XZ] = αE[X2]− E[XY ] = 0. In particular, for every τ ≥ 0,

(G.5) Pr{Z ≥ τ} = Φ̄(τ/
√

2δ2 − δ4) ≤ Φ̄

(
τ√
2δ

)
by Lemma G.1

≤ O
(
e
−( τ√

2δ
)2/2
)
.
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Therefore, X and Z are independent. We have,

p = Pr{X ≥ t and Y ≤ t− ε} = Pr{X ≥ t and αX − Z ≤ t− ε} =
1

m
Pr{Z ≥ ε+ αX − t | X ≥ t}

Define random variable ∆ = X − t. Then

ε+ αX − t = ε+ (1− δ2)(t+∆)− t ≥ ε/2 + (1− δ2)∆ ≥ ε+∆

2
,

where we used that ε/2− δ2t ≥ 0 and δ2 ≤ ε/(2t) ≤ t/(2t) = 1/2. We have,

p ≤ 1

m
Pr{Z ≥ (ε+∆)/2 | ∆ ≥ 0}

by (G.5)

≤ E[e−( ε+∆
2 )2/(4δ2) | ∆ ≥ 0]

m
.

Let us upper bound the probability density function f∆(x) of ∆ conditioned on the event ∆ ≥ 0.

f∆(x) =
e−(x+t)2/2

√
2π

/
Pr{∆ ≥ 0} = (t+ 1) · e−t2/2

√
2π(t+ 1)

· e−x2/2−tx ·m

≤ O
(
t · Φ̄(t) · e−x2/2−tx ·m

)
= O

(
te−x2/2−tx

)
= O

(
te−tx

)
.

We conclude that

pm ≤ O(1)

∫ ∞

0

e
−(ε+x)2

16δ2 (te−tx)dx = O
(
te4t

2δ2+εt
)∫ ∞

0

e
−(x+8tδ2+ε)2

16δ2 dx

let x̃= x+8tδ2+ε

2
√

2δ
= O

(
δte4t

2δ2+εt
)∫ ∞

8tδ2+ε/(2
√
2δ)

e
−x̃2

2 dx̃ ≤ O
(
δte2εtΦ̄

( ε

2
√
2δ

))
by Lemma G.1

≤ O

(
δ2

ε
te2εt−ε2/(16δ2)

)
= O

(
δ2t

ε

)
here we three times used that ε > 32δ2t. We conclude that p = O(δ2ε−1t/m) = O(δ2ε−1

√
logm/m), as required.
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H Supplementary Figures

(a) Buffered partition S,B, T = V \ (S ∪B). (b) Buffered partitioning (P1, . . . , P4∥B1, . . . , B4)

Figure 5: Left: The figure on the left shows a partition of the vertex set V into three pieces S,B and T = V \(S∪B).
Here B denotes the buffer, and cost of the this cut is δ(S, T ), as denoted by the edges marked in red. The edges
marked in grey denote the edges between S and the buffer B.
Right: The illustrative figure shows a k = 4 partition P1, P2, P3, P4 with buffers B1, B2, B3, B4. The red edges
indicate the edges δ(P1, V \ (P1 ∪ B1)) that contribute to the cut corresponding to P1. All parts P1, . . . , P4 and
B1, . . . , B4 are disjoint.
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