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ABSTRACT
Wegive near-optimal algorithms for computing an ellipsoidal round-

ing of a convex polytope whose vertices are given in a stream. The

approximation factor is linear in the dimension (as in John’s theo-

rem) and only loses an excess logarithmic factor in the aspect ratio

of the polytope. Our algorithms are nearly optimal in two senses:

first, their runtimes nearly match those of the most efficient known

algorithms for the offline version of the problem. Second, their ap-

proximation factors nearly match a lower bound we show against

a natural class of geometric streaming algorithms. In contrast to

existing works in the streaming setting that compute ellipsoidal

roundings only for centrally symmetric convex polytopes, our al-

gorithms apply to general convex polytopes.

We also show how to use our algorithms to construct coresets

from a stream of points that approximately preserve both the ellip-

soidal rounding and the convex hull of the original set of points.
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1 INTRODUCTION
We consider the problem of approximating convex polytopes in R𝑑

with “simpler” convex bodies. Consider a convex polytope 𝑍 ⊂ R𝑑 .
Our goal is to find a convex body 𝑍 ⊂ R𝑑 from a given family of

convex bodies, a translation vector 𝒄 ∈ R𝑑 , and a scaling factor
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𝛼 ∈ (0, 1] such that

𝒄 + 𝛼 · 𝑍 ⊆ 𝑍 ⊆ 𝒄 + 𝑍 . (1)

We say that 𝑍 is a
1/𝛼-approximation to 𝑍 ; an algorithm that com-

putes 𝑍 is a
1/𝛼-approximation algorithm. In this paper, we will be

interested in approximating 𝑍 with (a) ellipsoids and (b) polytopes

defined by small number of vertices.

This problem has many applications in computational geometry,

graphics, robotics, data analysis, and other fields (see [1] for an

overview of some applications). It is particularly relevant when we

are in the big-data regime and storing polytope𝑍 requires too much

memory. In this case, instead of storing 𝑍 , we find a reasonable

approximation 𝑍 with a succinct representation and then use it as

a proxy for 𝑍 . In this setting, it is crucial that we use a low-memory
approximation algorithm to find 𝑍 .

In this paper, we study the problem of approximating convex

polytopes in the streaming model. The streaming model is a canon-

ical big-data setting that conveniently lends itself to the study

of low-memory algorithms. We assume that 𝑍 is the convex hull

of points 𝒛1, . . . , 𝒛𝑛 : 𝑍 = conv({𝒛1, . . . , 𝒛𝑛}); the stream of points

{𝒛1, . . . , 𝒛𝑛} contains all the vertices of 𝑍 and additionally may

contain other points from polytope 𝑍 . In our streaming model,

points 𝒛1, . . . , 𝒛𝑛 arrive one at a time. At every timestep 𝑡 , we must

maintain an approximating body 𝑍𝑡 and translate 𝒄𝑡 such that

conv({𝒛1, . . . , 𝒛𝑡 }) ⊆ 𝒄𝑡 + 𝑍𝑡 . (2)

Once a new point 𝒛𝑡+1 arrives, the algorithm must compute a new

approximating body 𝑍𝑡+1 and translation 𝒄𝑡+1 such that the guar-

antee (2) holds for timestep 𝑡 + 1. Finally, after the algorithm has

seen all 𝑛 points, we must have

𝒄𝑛 + 𝛼 · 𝑍𝑛 ⊆ conv({𝒛1, . . . , 𝒛𝑛})︸                  ︷︷                  ︸
𝑍

⊆ 𝒄𝑛 + 𝑍𝑛 (3)

for some 0 < 𝛼 ≤ 1 (where
1/𝛼 is the approximation factor). Note

that the algorithm may not know the value of 𝑛 beforehand. We

consider two types of approximation.

Ellipsoidal roundings. In one thrust, we aim to calculate an ellip-
soidal rounding of 𝑍 – we are looking for ellipsoidal approximation

𝑍 = E. Formally, we would like to output an origin-centered ellip-

soid E, a center/translate 𝒄 ∈ R𝑑 , and a scaling parameter 0 < 𝛼 ≤ 1

such that

𝒄 + 𝛼 · E ⊆ 𝑍 ⊆ 𝒄 + E .
Ellipsoidal roundings are convenient representations of convex

sets. They have applications to preconditioning convex sets for

efficient sampling and volume estimation [7], algorithms for convex

programming [15], robotics [17], and other areas. They also require
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the storage of at most∼ 𝑑2 floating point numbers, as every ellipsoid

can be represented with a center 𝒄 and semiaxes 𝒗1, . . . , 𝒗𝑑 ′ for

𝑑′ ≤ 𝑑 .
We note that by John’s theorem [8], the minimum-volume outer

ellipsoid for 𝑍 achieves approximation
1/𝛼 ≤ 𝑑 . Moreover, the upper

bound of 𝑑 is tight, which is witnessed when 𝑍 is a 𝑑-dimensional

simplex (that is, the convex hull of 𝑑 + 1 points in general position).

We now formally state the streaming ellipsoidal rounding prob-

lem.

Problem 1.1 (Streaming ellipsoidal rounding). For 𝒛1, . . . , 𝒛𝑛 ∈
R𝑑 , let 𝑍 = conv({𝒛1, . . . , 𝒛𝑛}). A streaming algorithm A receives

points 𝒛1, . . . , 𝒛𝑛 one at a time and produces a sequence of ellipsoids

𝒄𝑡 + E𝑡 and scalings 𝛼𝑡 . The algorithm must satisfy the following

guarantee at the end of the stream.

𝒄𝑛 + 𝛼𝑛 · E𝑛 ⊆ 𝑍 ⊆ 𝑐𝑛 + E𝑛

We say that 𝒄𝑛 + E𝑛 is an ellipsoidal rounding of 𝑍 with approxi-

mation factor
1/𝛼𝑛 .

We note that in the special case where 𝑍 is centrally symmetric

(i.e., 𝑍 = −𝑍 ), there are algorithms with nearly optimal approxi-

mation factors𝑂 (
√︃
𝑑 log

(
𝑛𝜅OL

)
) and𝑂 (

√︁
𝑑 log𝜅) due to Woodruff

and Yasuda [20] and Makarychev, Manoj, and Ovsiankin [11], re-

spectively (here, 𝜅OL is the online condition number and 𝜅 is the

aspect ratio of the dataset). The running times of these algorithms

nearly match those of the best-known offline solutions. However,

these algorithms do not work with non-symmetric polytopes and

we are not aware of any way to adapt them so that they do. We defer

a more detailed discussion of the algorithms for the symmetric case

to Section 1.2.

Convex hull approximation. In another thrust, we want to find a

translate 𝒄 ∈ R𝑑 , subset 𝑆 ⊆ [𝑛], and scale 𝛼 such that

conv({𝒛𝑖 : 𝑖 ∈ 𝑆}) ⊆ conv({𝒛1, . . . , 𝒛𝑛})

⊆ 𝒄 + 1

𝛼
· conv({𝒛𝑖 − 𝒄 : 𝑖 ∈ 𝑆}).

Note that 𝒄 + 1/𝛼 · conv({𝒛𝑖 − 𝒄 : 𝑖 ∈ 𝑆}) is a
1/𝛼-scaled copy of

conv({𝒛𝑖 : 𝑖 ∈ 𝑆}). In otherwords, we desire to find a coreset {𝒛𝑖 : 𝑖 ∈ 𝑆}
that approximates 𝑍 . This approach has the advantage of yielding

an interpretable solution – one can think of a coreset as consisting

of the most “important” datapoints of the input dataset.

We formally state the streaming convex hull approximation prob-

lem we study in Problem 1.2.

Problem 1.2 (Streaming convex hull approximation). Let 𝑍 =

conv(𝒛1, . . . , 𝒛𝑛) ⊆ R𝑑 . A streaming algorithm A receives points

𝒛1, . . . , 𝒛𝑛 one at a time and produces a sequence of scalings 𝛼𝑡 ,

centers 𝒄𝑡 , subsets 𝑆𝑡 ⊆ [𝑛] such that 𝑆𝑡 ⊆ 𝑆𝑡+1. The algorithm
must satisfy the following guarantee at the end of the stream.

conv({𝒛𝑖 : 𝑖 ∈ 𝑆𝑛}) ⊆ conv({𝒛1, . . . , 𝒛𝑛})

⊆ 𝒄𝑛 + 1

𝛼
· conv({𝒛𝑖 − 𝒄𝑛 : 𝑖 ∈ 𝑆𝑛})

We say that {𝒛𝑖 : 𝑖 ∈ 𝑆𝑛} is a coreset of 𝑍 with approximation factor

1/𝛼𝑛 . We will also call 𝑆𝑛 a coreset.

Note that the model considered in Problem 1.2 is essentially the

same as the online coreset model studied by Woodruff and Yasuda

[20]. Similar to Problem 1.1, Problem 1.2 has been studied in the case

where 𝑍 is centrally symmetric. In particular, Woodruff and Yasuda

[20] obtain approximation factor 𝑂 (
√︃
𝑑 log

(
𝑛𝜅OL

)
) (where 𝜅OL is

the same online condition number mentioned earlier). However,

whether analogous results for asymmetric polytopes hold was an

important unresolved question.

1.1 Our Contributions
In this section, we present our results for Problems 1.1 and 1.2.

1.1.1 Algorithmic Results. We start with defining several quantities

that we need to state the results and describe their proofs.

Notation. We will denote the linear span of a set of points 𝐴

by span(𝐴). That is, span(𝐴) is the minimal linear subspace that

contains𝐴. We denote the affine span of𝐴 by aff(𝐴). That is, aff(𝐴)
is the minimal affine subspace that contains 𝐴. Note that aff(𝐴) =
𝒂 + span(𝐴 − 𝒂) if 𝒂 ∈ 𝐴. Finally, we denote the unit ball centered
at the origin by 𝐵𝑑

2
.

Definition 1.3 (Inradius). Let 𝐾 ⊂ R𝑑 be a convex body. The

inradius 𝑟 (𝐾) of 𝐾 is the largest 𝑟 such that there exists a point 𝒄𝐼

(called the incenter) for which 𝒄𝐼 + 𝑟 ·
(
𝐵𝑑
2
∩ span(𝐾 − 𝒄𝐼 )

)
⊆ 𝐾 .

Definition 1.4 (Circumradius). Let 𝐾 ⊂ R𝑑 be a convex body. The

circumradius 𝑅(𝐾) of 𝐾 is the smallest 𝑅 such that there exists a

point 𝒄𝐶 (called the circumcenter) for which 𝐾 ⊆ 𝒄𝐶 + 𝑅 · 𝐵𝑑
2
.

Definition 1.5 (Aspect Ratio). Let 𝐾 ⊂ R𝑑 be a convex body. We

say that 𝜅 (𝐾) B 𝑅 (𝐾 )/𝑟 (𝐾 ) is the aspect ratio of 𝐾 .

We now state Theorem 1.6, which provides an algorithm for

Problem 1.1. In addition to the data stream of 𝑧1, . . . , 𝑧𝑛 , this al-

gorithm needs a suitable initialization: a ball 𝒄0 + 𝑟0 · 𝐵𝑑
2
inside

𝑍 .

Theorem 1.6. Consider the setting of Problem 1.1. Suppose the
algorithm is given an initial center 𝒄0 and radius 𝑟0 for which it is
guaranteed that 𝒄0 + 𝑟0 · 𝐵𝑑

2
⊆ conv({𝒛1, . . . , 𝒛𝑛}). There exists an

algorithm that, for every timestep 𝑡 , maintains an origin-centered
ellipsoid E𝑡 , center 𝒄𝑡 , and scaling factor𝛼𝑡 such that at every timestep
𝑡 : conv({𝒛1, . . . , 𝒛𝑡 }) ⊆ 𝒄𝑡 + E𝑡 , and at timestep 𝑛: 𝒄𝑛 + 𝛼𝑛 · E𝑛 ⊆
𝑍 ⊆ 𝑐𝑛 + E𝑛 , where

1/𝛼𝑛 = 𝑂 (min (𝑅 (𝑍 )/𝑟0, 𝑑 log (𝑅 (𝑍 )/𝑟0)))

The algorithm has runtime 𝑂 (𝑛𝑑2) and stores 𝑂 (𝑑2) floating point
numbers.

Note that the final approximation factor depends on the qual-

ity of the initialization (𝒄0, 𝑟0). If the radius 𝑟0 of this ball is rea-
sonably close to the inradius 𝑟 (𝑍 ) of 𝑍 , the algorithm gives an

𝑂 (min(𝜅 (𝑍 ), 𝑑 log𝜅 (𝑍 ))) approximation. In Theorem 1.7, we adapt

the algorithm form Theorem 1.6 to the setting where the algorithm

does not have the initialization information. Note that the approx-

imation guarantee of 𝑂 (min(𝜅 (𝑍 ), 𝑑 log𝜅 (𝑍 ))) is a natural ana-

logue of the bounds by [11] and [20] for the symmetric case (see

Section 1.2).
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Theorem 1.7. Consider the setting of Problem 1.1. There exists an
algorithm that, for every timestep 𝑡 , maintains an ellipsoid E𝑡 , center
𝒄𝑡 , and approximation factor 𝛼𝑡 such that

𝒄𝑡 + 𝛼𝑡 · E𝑡 ⊆ conv({𝒛1, . . . , 𝒛𝑡 }) ⊆ 𝒄𝑡 + E𝑡 .

Additionally, let 𝑟𝑡 and 𝑅𝑡 be the largest and smallest parameters,
respectively, for which there exists 𝒄★𝑡 such that

𝒄★𝑡 + 𝑟𝑡 ·
(
𝐵𝑑
2
∩ span(𝒛1 − 𝒄★𝑡 , . . . , 𝒛𝑡 − 𝒄★𝑡 )

)
⊆ conv({𝒛1, . . . , 𝒛𝑡 })

⊆ 𝒄★𝑡 + 𝑅𝑡 · 𝐵𝑑2
and 𝑑𝑡 B dim (aff(𝒛1, . . . , 𝒛𝑡 )). Then, for all timesteps 𝑡 , we have

1/𝛼𝑡 = 𝑂
(
𝑑𝑡 log

(
𝑑𝑡 ·max

𝑡 ′≤𝑡
𝑅𝑡

𝑟𝑡 ′

))
.

The algorithm runs in time 𝑂 (𝑛𝑑2) and stores 𝑂 (𝑑2) floating point
numbers.

Let us now quickly compare the guarantees of Theorem 1.6

and 1.7. Notice that the algorithm in Theorem 1.7 does not require

an initialization pair (𝒄0, 𝑟0). Additionally, the algorithm in Theo-

rem 1.7 outputs a per-timestep approximation as opposed to just an

approximation at the end of the stream. However, these advantages

come at a cost – it is easy to check that the aspect ratio term seen

in Theorem 1.7 can be larger than that in Theorem 1.6, e.g., it is

possible to have
𝑅 (𝑍 )/𝑟0 ≤ max𝑡 ′≤𝑛 𝑅𝑛/𝑟𝑡 ′ .

However, when we impose the additional constraint that the

points 𝒛𝑡 have coordinates that are integers in the range [−𝑁, 𝑁 ],
we can improve over the guarantee in Theorem 1.7 and obtain re-

sults that are independent of the aspect ratio. This is similar in spirit

to the condition number-independent bound that Woodruff and

Yasuda [20] obtain for the sums of online leverage scores. However,

a key difference is that our results still remain independent of the

length of the stream. See Theorem 1.8.

Theorem 1.8. Consider the setting of Problem 1.1, where in addi-
tion, the points 𝒛1, . . . , 𝒛𝑛 are such that their coordinates are integers
in {−𝑁,−𝑁 + 1, . . . , 𝑁 − 1, 𝑁 }. There exists an algorithm that, for
every timestep 𝑡 , maintains an ellipsoid E𝑡 , center 𝒄𝑡 , and approxi-
mation factor 𝛼𝑡 such that

𝒄𝑡 + 𝛼𝑡 · E𝑡 ⊆ conv({𝒛1, . . . , 𝒛𝑡 }) ⊆ 𝒄𝑡 + E𝑡 .

Let 𝑑𝑡 B dim (aff(𝒛1, . . . , 𝒛𝑡 )). Then, for all timesteps 𝑡 , we have

1/𝛼𝑡 = 𝑂 (𝑑𝑡 log (𝑑𝑁 )) .

The algorithm runs in time 𝑂 (𝑛𝑑2) and stores 𝑂 (𝑑2) floating point
numbers.

We present Theorems 1.6, 1.7, and 1.8 in the full version of the

paper [12], although we discuss some of the main components for

these algorithms in Section 4. With Theorems 1.7 and 1.8 in hand,

obtaining results for Problem 1.2 becomes straightforward. We

use the algorithm guaranteed by Theorem 1.7 along with a simple

subset selection criterion to arrive at our result for Problem 1.2.

Theorem 1.9. Consider 𝑍 = conv({𝒛1, . . . , 𝒛𝑛}). For a subset 𝑆 ⊆
[𝑛], let 𝑍 |𝑆 = conv({𝒛𝑖 : 𝑖 ∈ 𝑆}). Consider the setting of Problem

1.2. There exists a streaming algorithm that, for every timestep 𝑡 ,
maintains a subset 𝑆𝑡 , center 𝒄𝑡 , and scaling factor 𝛼𝑡 such that

𝑍 |𝑆𝑡 ⊆ conv({𝒛1, . . . , 𝒛𝑡 }) ⊆ 𝒄𝑡 +
1

𝛼𝑡
·
(
𝑍 |𝑆𝑡 − 𝒄𝑡

)
.

Additionally, for 𝑑𝑡 , 𝑟𝑡 and 𝑅𝑡 as defined in Theorem 1.7, we have for
all 𝑡 that

1

𝛼𝑡
= 𝑂

(
𝑑𝑡 log

(
𝑑𝑡 ·max

𝑡 ′≤𝑡
𝑅𝑡

𝑟𝑡 ′

))
and |𝑆𝑡 | = 𝑂

(
𝑑𝑡 log

(
max

𝑡 ′≤𝑡
𝑅𝑡

𝑟𝑡 ′

))
and, if the 𝒛𝑡 have integer coordinates ranging in [−𝑁, 𝑁 ], then

1

𝛼𝑡
= 𝑂 (𝑑𝑡 log (𝑑𝑁 )) and |𝑆𝑡 | = 𝑂 (𝑑𝑡 log (𝑑𝑁 )) .

Each 𝑆𝑡 is either 𝑆𝑡−1 or 𝑆𝑡−1 ∪ {𝑡} (where 𝑡 ≥ 1 and 𝑆0 = ∅). The
algorithm runs in time 𝑂 (𝑛𝑑2) and stores at most 𝑂 (𝑑2) floating
point numbers.

We prove Theorem 1.9 in the full version of the paper.

1.1.2 Approximability Lower Bound. Observe that the approxima-

tion factors obtained in Theorems 1.6, 1.7, and 1.9 all incur a mild

dependence on (variants of) the aspect ratio of the dataset. A nat-

ural question is whether this dependence is necessary. In Theo-

rem 1.10, we conclude that the approximation factor from The-

orem 1.6 is in fact nearly optimal for a wide class of monotone
algorithms. We defer the discussion of the notion of a monotone

algorithm to Section 2.1. Loosely speaking, a monotone algorithm

commits to the choices it makes; namely, the outer ellipsoid may

only increase over time 𝒄𝑡 + E𝑡 ⊇ 𝒄𝑡−1 + E𝑡−1 and the inner el-

lipsoid 𝒄𝑡 + 𝛼𝑡E𝑡 satisfies a related but more technical condition

𝒄𝑡 + 𝛼𝑡E𝑡 ⊆ conv((𝒄𝑡−1 + 𝛼𝑡−1 · E𝑡−1) ∪ {𝒛𝑡 }).

Theorem 1.10. Consider the setting of Problem 1.1. Let A be any
monotone algorithm (see Definition 2.1 in Section 2.1) that solves
Problem 1.1 with approximation factor 1/𝛼𝑛 . For every 𝑑 ≥ 2, there
exists a sequence of points {𝒛1, . . . , 𝒛𝑛} ⊂ R𝑑 such that algorithm

A gets an approximation factor of 1/𝛼𝑛 ≥ Ω
(
𝑑 log(𝜅 (𝑍 ) )

log𝑑

)
on 𝑍 =

conv({𝑧1, . . . , 𝑧𝑛}).

We prove Theorem 1.10 in the full version of the paper.

1.2 Related Work and Open Questions
Streaming asymmetric ellipsoidal roundings. To our knowledge,

the first paper to study ellipsoidal roundings in the streaming model

is that of Mukhopadhyay, Sarker, and Switzer [13]. The authors

consider the case where 𝑑 = 2 and prove that the approximation

factor of the greedy algorithm (that which updates the ellipsoid

to be the minimum volume ellipsoid containing the new point

and the previous iterate) can be unbounded. Subsequent work by

Mukhopadhyay, Greene, Sarker, and Switzer [14] generalizes this

result to all 𝑑 ≥ 2.

Nearly-optimal streaming symmetric ellipsoidal roundings. Re-
cently, Makarychev, Manoj, and Ovsiankin [11] and Woodruff and

Yasuda [20] gave the first positive results for streaming ellipsoidal

roundings. Both [11] and [20] considered the problem only in the

symmetric setting – when the goal is to approximate the polytope

conv({±𝒛1, . . . ,±𝒛𝑛}). [11] and [20] obtained 𝑂 (
√︁
𝑑 log𝜅 (𝑍 )) and
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𝑂 (
√︁
𝑑 log𝑛𝜅OL) approximations, respectively (here, 𝜅OL is the on-

line condition number; see [20] for details). Their algorithms use

only 𝑂 (poly(𝑑)) space, where the 𝑂 suppresses log𝑑 , log𝑛, and

aspect ratio-like terms. Note that by John’s theorem, the Ω(
√
𝑑)

dependence is required in the symmetric setting even for offline

algorithms.

A natural question is whether the techniques of [11] or [20] ex-

tend to Problems 1.1 and 1.2. The update rule used in [11] essentially

updates E𝑡+1 to be the minimum volume ellipsoid covering both E𝑡
and points ±𝒛𝑡+1. In the non-symmetric case, it would be natural

to consider the minimum volume ellipsoid covering E𝑡 and point

𝒛𝑡+1. However, this approach does not give an 𝑂̃ (𝑑) approximation.

The algorithm in [20] maintains a quadratic form that consists of

sums of outer products of “important points” (technically speaking,

those with a constant online leverage score). Unfortunately, this

approach does not suggest how to move the previous center 𝒄𝑡−1
to a new center 𝒄𝑡 in a way that allows the algorithm to maintain

a good approximation factor. It is not hard to see that there exist

example streams for which the center 𝒄𝑡−1 must be shifted in each

iteration to maintain even a bounded approximation factor. This

means that any nontrivial solution to Problems 1.1 and 1.2 must

overcome this difficulty.

Offline ellipsoidal roundings for general convex polytopes. Nes-
terov [15] gives an efficient offline 𝑂 (𝑑)-approximation algorithm

for the ellipsoidal rounding problem, with a runtime of 𝑂 (𝑛𝑑2).
Observe that this is essentially the same runtime as those achieved

by the algorithms we give (see Theorems 1.6 and 1.7).

Streaming convex hull approximations. Agarwal and Sharathku-

mar [2] studied related problems of computing extent measures of a
convex hull in the streaming model, in particular finding coresets

for the minimum enclosing ball, and obtained both positive and

negative results. Blum et al. [5] showed that one cannot maintain

an 𝜀-hull in space proportional to the number of vertices belonging

to the offline optimal solution (where a body 𝑍 is an 𝜀-hull for 𝑍 if

every point in 𝑍 is distance at most 𝜀 away from 𝑍 ).

Offline convex hull approximations. The problem of approximat-

ing a convex body with the convex hull of a small number of points

belonging to the body has been well-studied. Existentially, Barvi-

nok [3] shows that if the input convex set is sufficiently symmetric,

then one can choose (𝑑/𝜀)𝑑/2 points to obtain a 1+𝜀 approximation.

Moreover, Lu [10] shows that one can obtain a 𝑑 + 2 approximation

with 𝑑 + 1 points, which is witnessed by choosing the 𝑑 + 1 points

to be the maximum volume simplex contained within the convex

body (for this reason, this construction is called “John’s Theorem

for simplices”; see [16] for more details). However, none of these

works study a streaming or online setting, as we do here.

Coresets for the minimum volume enclosing ellipsoid problem
(MVEE).. Let MVEE(𝐾) denote the minimum volume enclosing

ellipsoid for a convex body 𝐾 ⊂ R𝑑 . We say that a subset 𝑆 ⊆ [𝑛]
is an 𝜀-coreset for the MVEE problem if we have

vol (MVEE(𝑍 )) ≤ (1 + 𝜀)𝑑 vol (MVEE(𝑍 |𝑆 )) . (4)

There is extensive literature on coresets for the MVEE problem, and

we refer the reader to papers by Kumar and Yildirim [9], Todd and

Yildirim [19], Clarkson [6], Bhaskara, Mahabadi, and Vakilian [4],

and the book by Todd [18].

Importantly,MVEE(𝑍 |𝑆 ) may not be a good approximation for

MVEE(𝑍 ) (for that reason, some authors refer to coresets satis-

fying (4) as weak coresets for MVEE). Therefore, even though

MVEE(𝑍 ) provides a good ellipsoidal rounding for 𝑍 , MVEE(𝑍 |𝑆 )
generally speaking does not. See [19, page 2] and [4, Section 2.1]

for an extended discussion.

2 SUMMARY OF TECHNIQUES
In this section, we give an overview of the technical methods behind

our results.

2.1 Monotone Algorithms
The algorithm we give in Theorem 1.6 belongs to a class we term

monotone algorithms, which we now define.

Definition 2.1 (Monotone algorithm). Consider the setting of Prob-
lem 1.1. Note the following invariants for every timestep 𝑡 .

𝒄𝑡 + E𝑡 ⊇ conv((𝒄𝑡−1 + E𝑡−1) ∪ {𝒛𝑡 }) (5)

𝒄𝑡 + 𝛼𝑡E𝑡 ⊆ conv((𝒄𝑡−1 + 𝛼𝑡−1 · E𝑡−1) ∪ {𝒛𝑡 }) (6)

We say that an algorithm A is monotone if for any initial (𝒄0 +
E0, 𝛼0) and sequence of data points 𝒛1, . . . , 𝒛𝑛 , the resulting se-

quence {(𝒄0 + E0, 𝛼0), (𝒄1 + E1, 𝛼1), . . . , (𝒄𝑛 + E𝑛, 𝛼𝑛)} arising from
applying A to the stream satisfies the two invariants (5) and (6).

Refer to Figure 1.

Wewill sometimes consider how amonotone algorithmAmakes

a single update upon seeing a new point 𝒙 . In this setting, we will

call A a monotone update rule.

Figure 1: A monotone update step. For brevity, we refer to
E and 𝛼 · E as the previous ellipsoids E𝑡−1, 𝛼E𝑡−1, and E′

and 𝛼 ′ · E′ as the next ellipsoids E𝑡 , 𝛼𝑡 · E𝑡 . E and 𝛼E are,
respectively, the larger and smaller black circles. 𝑐 + E′ and
𝑐 + 𝛼 ′E′ are the larger and smaller blue ellipses. The dotted
lines show 𝜕(conv(𝛼E ∪ {𝒛})) \ 𝜕(𝛼E), i.e. the the boundary of
conv(𝛼 · E ∪ {𝒛}) minus the boundary of 𝛼E.

Here we will refer to 𝒄𝑡 + E𝑡 , 𝒄 + 𝛼𝑡E𝑡 as the “next” ellipsoids
and to 𝒄𝑡−1 + E𝑡−1, 𝒄 + 𝛼𝑡−1E𝑡−1 as the “previous” ellipsoids. The
first condition we require is that

𝒄𝑡 + E𝑡 ⊇ 𝒄𝑡−1 + E𝑡−1 . (5a)
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It ensures that each successive outer ellipsoid contains the previous

outer ellipsoid. Thus once the algorithm decides that some 𝒛 ∈
𝒄𝑡 + E𝑡 , it makes a commitment that 𝒛 ∈ 𝒄𝑡 ′ + E𝑡 ′ for all 𝑡 ′ ≥ 𝑡 .

Note that (5a) implies (5), since 𝒛𝑡 must be in 𝒄𝑡 + E𝑡 and 𝒄𝑡 + E𝑡
is convex. The second condition (6) looks more complex but is

also very natural. Assume that the algorithm only knows that (a)

𝒄𝑡−1 + 𝛼𝑡−1E𝑡−1 ⊆ 𝑍 (this is true from induction) and (b) 𝒛𝑡 ∈ 𝑍
(this is true by the definition of 𝑍 ). Then, we must have that 𝐴 =

conv((𝒄𝑡−1 + 𝛼𝑡−1 · E𝑡−1) ∪ {𝒛𝑡 }) lies in 𝑍 ; as far as the algorithm
is concerned, any point outside of𝐴 may also be outside of 𝑍 . Since

the algorithm must ensure that 𝒄𝑡 + 𝛼𝑡E𝑡 ⊆ 𝑍 , it will also ensure

that 𝒄𝑡 + 𝛼𝑡E𝑡 ⊆ 𝐴 and thus satisfy (6).

2.2 Streaming Ellipsoidal Rounding (Theorems
1.6, 1.7, and 1.8)

Now we describe the algorithm from Theorem 1.6 in more detail.

Our algorithm keeps track of the current ellipsoid E𝑡 , center 𝒄𝑡 , and
scaling parameter 𝛼𝑡 . Initially, 𝒄0 +E0 is the ball of radius 𝑟0 around

𝒄0 (𝑟0 and 𝒄0 are given to the algorithm), and 𝛼0 = 1. Each time the

algorithm gets a new point 𝒛𝑡 , it updates E𝑡−1, 𝒄𝑡−1, 𝛼𝑡−1 using a
monotone update rule (as defined in Definition 2.1) and obtains E𝑡 ,
𝒄𝑡 , 𝛼𝑡 . The monotonicity condition is sufficient to guarantee that

the algorithm gets a 1/𝛼𝑛 approximation to 𝑍 . Indeed, first using

condition (5), we get

𝒄𝑛 + E𝑛 ⊇ (𝒄𝑛−1 + E𝑛−1) ∪ {𝒛𝑛}
⊇ (𝒄𝑛−2 + E𝑛−2) ∪ {𝒛𝑛−1, 𝒛𝑛}
⊇ · · · ⊇ {𝒛1, . . . , 𝒛𝑛}

Thus, 𝒄𝑛 + E𝑛 ⊇ 𝑍 . Then, using condition (6), we get

𝒄𝑛 + 𝛼𝑛E𝑛 ⊆ conv((𝒄𝑛−1 + 𝛼𝑛−1E𝑛−1) ∪ {𝒛𝑛})
⊆ conv((𝒄𝑛−2 + 𝛼𝑛−2E𝑛−2) ∪ {𝒛𝑛−1, 𝒛𝑛})
⊆ · · · ⊆ conv((𝒄0 + 𝛼0E0) ∪ {𝒛1, . . . , 𝒛𝑛}).

The initial ellipsoid 𝒄0 + 𝛼0E0 = 𝒄0 + 𝑟0𝐵𝑑
2
is in 𝑍 and therefore

𝒄𝑛 + 𝛼𝑛E𝑛 ⊆ conv(𝒛1, . . . , 𝒛𝑛) = 𝑍 . We verified that the algorithm

finds a
1/𝛼𝑛 approximation for 𝑍 .

Now, the main challenge is to design an update rule that ensures

that 1/𝛼𝑛 is small (as in the statement Theorem 1.6) and prove

that the rule satisfies the monotonicity conditions/invariants from

Definition 2.1. We proceed as follows.

First, we design a monotone update rule that satisfies a particular

evolution condition. This condition upper bounds the increase of

the approximation factor
1/𝛼𝑡 − 1/𝛼𝑡−1. Second, we prove that any

monotone update rule satisfying the evolution condition yields

the approximation we desire. These two parts imply Theorem 1.6.

Finally, we remove the initialization requirement from Theorem

1.6 and obtain Theorem 1.7.

Designing a monotone update rule. Suppose that at the end of

timestep 𝑡 − 1 our solution consists of a center 𝒄𝑡−1, ellipsoid E𝑡−1,
and scaling parameter 𝛼𝑡−1 for which the invariants in Definition

2.1 hold.We give a procedure that, given the next point 𝒛𝑡 , computes

𝒄𝑡 , E𝑡 , 𝛼𝑡 that still satisfy the invariants of Definition 2.1. Further,

we prove that the resulting update satisfies an evolution condition

(7)

1/𝛼𝑡 − 1/𝛼𝑡−1
log vol(E𝑡 ) − log vol(E𝑡−1)

≤ 𝐶, (7)

where 𝐶 is an absolute constant and vol(E) denotes the volume

of the ellipsoid E. While it is possible to find the optimal update

using convex optimization (the update that satisfies the invariants

and minimizes the ratio on the left of (7)), we instead provide an

explicit formula for an update that readily satisfies (7) and as we

show is monotone.

We now describe how we get the formula for the update rule. By

applying an affine transformation, we may assume that E𝑡−1 is a
unit ball and 𝒄𝑡−1 = 0. Further, we may assume that 𝒛𝑡 is colinear
with 𝒆1 (the first basis vector): 𝒛𝑡 = ∥𝒛𝑡 ∥𝒆1. Importantly, affine

transformations preserve (a) the invariants in Definition 2.1 (if they

hold for the original ellipsoids and points, then they also do for the

transformed ones and vice versa) and (b) the value of the ratio in

(7), since they preserve the value of vol(E𝑡 )/vol(E𝑡−1).
Now consider the group 𝐺 = O(𝑑)𝒆1 � O(𝑑 − 1) of orthogonal

transformations that map 𝒆1 to itself: all of them map the unit

ball E𝑡−1 to itself and 𝒛𝑡 to itself. Thus, it is natural to search

for an update (𝒄𝑡 , E𝑡 ) that is symmetric with respect to all these

transformations. It is easy to see that in this case E𝑡 is defined

by equation (𝑥1/𝑎)2 +
∑𝑑
𝑖=2 (𝑥𝑖/𝑏)2 = 1 where 𝑎 and 𝑏 are some

parameters (equal to the semiaxes of E𝑡 ) and 𝒄𝑡 = 𝑐𝒆1 for some 𝑐 .

Since all ellipsoids and points appearing in the invariant conditions

are symmetric with respect to 𝐺 , it is sufficient now to restrict

our attention to their sections in the 2d-plane span(𝒆1, 𝒆2) and
prove that the invariants hold in this plane. Hence, the problem

reduces to a statement in two-dimensional Euclidean geometry

(however, when we analyze (7), we still use that the volume of E𝑡
is proportional to 𝑎𝑏𝑑−1 and not 𝑎𝑏).

Let us denote the coordinates corresponding to basis vectors

𝒆1 and 𝒆2 by 𝑥 and 𝑦. For brevity, let E = E𝑡−1, 𝒛 = 𝒛𝑡 , E′ = E𝑡 ,
𝒄 = 𝒄𝑡 = 𝑐𝒆1, 𝛼 = 𝛼𝑡−1, and 𝛼 ′ = 𝛼𝑡 . We now need to choose

parameters 𝑎, 𝑏, and 𝑐 so that invariants from Definition 2.1 and (7)

hold. See Figure 1. As shown in that figure, the new outer ellipse

𝒄 + E′
must contain the previous outer ellipse E and the newly

received point 𝒛. The new inner ellipse 𝒄 + 𝛼 ′E′
must be contained

within the convex hull of the previous inner ellipse 𝛼E and 𝒛.
It is instructive to consider what happens when point 𝒛 is at

infinitesimal distance Δ from E: ∥𝒛∥ = 1+Δ. We consider a minimal

axis-parallel outer ellipse E′
that contains E and 𝒛. It must go

through 𝒛 = (1+Δ, 0) and touch E at two points symmetric w.r.t. the

𝑥-axis, say, (− sin𝜑,± cos𝜑). Angle𝜑 uniquely determines E′
. Now

we want to find the largest value of the scaling parameter 𝛼 ′ so that
𝛼 ′E′

fits inside the convex hull of E and 𝒛. When Δ is infinitesimal,

this condition splits into two lower bounds on 𝛼 ′ – loosely speaking,
they say that E does not extend out beyond the convex hull in

the horizontal (one bound) and vertical directions (the other). The

former bound becomes stronger (gives a smaller upper bound on

𝛼 ′) when 𝜑 increases, and the latter becomes stronger when 𝜑

decreases. When 𝜑 = 𝛼/2 ±𝑂 (𝛼2), all terms linear in 𝛼 vanish in

both bounds and then 𝛼 ′ = 𝛼 − Θ(𝛼2Δ) satisfies both of them; for

other choices of 𝜑 , we have 𝛼 ′ ≤ 𝛼 −Ω(𝛼Δ). So we let 𝜑 = 𝛼/2 and
from the formula for 𝛼 ′ get 1/𝛼 ′ = 1/𝛼 +𝑂 (Δ). On the other hand,

vol(E′) ≥ (1+Δ/2) vol(E), since E′
covers 𝒛 = (1+Δ, 0). It is easy
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to see now that the evolution condition (7) holds: the numerator is

𝑂 (Δ) and the denominator is Ω(Δ) in (7).

We remark that letting 𝒄 + E′
be the minimum volume ellipsoid

that contains E and 𝒛 is a highly suboptimal choice (it corresponds

to setting 𝜑 = Θ(1/𝑑)). To derive our specific update formulas for

arbitrary 𝒛, we, loosely speaking, represent an arbitrary update

as a series of infinitesimal updates, get a differential equation on

𝑎, 𝑏, 𝑐 , and 𝛼 ′, solve it, and then simplify the solution (remove

non-essential terms, etc). We get the following.

Our updates come from a family parameterized by 𝛾 ≥ 0. Define

𝛼 ′ by 1/𝛼 ′ = 1/𝛼 + 2𝛾 . With this choice of 𝛼 ′, define the new ellipses

to be

1

𝑎2
(𝑥 − 𝑐)2 + 1

𝑏2
𝑦2 = 1︸                       ︷︷                       ︸

𝒄+E′

,
1

𝑎2
(𝑥 − 𝑐)2 + 1

𝑏2
𝑦2 = 𝛼 ′2︸                          ︷︷                          ︸

𝒄+𝛼 ′E′

where we use parameters

𝑎 = exp (𝛾)

𝑏 = 1 + 𝛼 − 𝛼 ′
2

𝑐 = −𝛼 + 𝛼 ′ · 𝑎

 .
Choose 𝛾 ≈ ln ∥𝒛∥ so that 𝒄 + E′

covers point 𝒛. We use two-

dimensional geometry to prove that E′
, 𝒄 , and 𝛼 ′ satisfy the in-

variants (see Figure 1). Now to prove the evolution condition, we

observe two key properties: (1) the increase in the approximation

factor is given by
1

𝛼 ′ − 1

𝛼 = 2𝛾 and (2) the length of the hori-

zontal semiaxis of the new outer ellipse is exp(𝛾). The length of

the vertical semiaxis is at least 1, so by the second property we

have log vol(E′) − log vol(E) ≥ 𝛾 . We combine this with the first

property to prove that this update satisfies the evolution condition

(7).

Finally, we obtain an upper bound on 1/𝛼𝑛 from the evolution

equation. We have

1/𝛼𝑛 = 1/𝛼0 +
𝑛∑︁
𝑡=1

(1/𝛼𝑡 − 1/𝛼𝑡−1)

(by 7)
≤ 1 +𝐶

𝑛∑︁
𝑡=1

(log vol(E𝑡 ) − log vol(E𝑡−1))

= 1 +𝐶 log

vol E𝑛
vol E0

.

It remains to get an upper bound on vol(E𝑛). We know that E𝑛
approximates 𝑍 , and 𝑍 , in turn, is contained in the ball of radius

𝑅(𝑍 ). Loosely speaking, we get vol(E𝑛) ≈ vol(𝑍 ) ≤ 𝑅(𝑍 )𝑑 vol(𝐵𝑑
2
).

Since E0 is the ball of radius 𝑟 , vol E0 = 𝑟𝑑 vol(𝐵𝑑
2
). We conclude

that the approximation factor is at most
1/𝛼𝑛 ⪅ 1 +𝐶 log

𝑅 (𝑍 )𝑑
𝑟𝑑

=

1 +𝑂 (𝑑 log 𝑅 (𝑍 )
𝑟 ), as desired.

Removing the initialization assumption. Once we have a mono-

tone update rule and guarantee on its approximation factor, we

have to convert this to a guarantee where the algorithm does not

have access to the initialization.

One natural approach is as follows. Let 𝑑′ ≤ 𝑑 be the largest

timestep for which points 𝒛1, . . . , 𝒛𝑑 ′+1 are in general position. We

can compute the John ellipsoid for conv({𝒛1, . . . , 𝒛𝑑 ′+1}) and after

that apply the monotone update rule guaranteed by Theorem 1.6 to

obtain the rounding for every 𝑡 ≥ 𝑑′ + 2, so long as for every such

timestep we have 𝒛𝑡 ∈ aff(𝒛1, . . . , 𝒛𝑡−1).
The principal difficulty in this approach is designing an irregular

update step that will handle points 𝒛𝑡 outside of aff(𝒛1, . . . , 𝒛𝑡−1);
when we add these points the dimensionality of the affine hull

increases by 1. We consider the special case where the new point 𝒛𝑡
is conveniently located with respect to our previous ellipsoid E𝑡−1
(see Figure 2 for a 2d-picture). Specifically, E𝑡−1 is the unit ball in
span(𝒆1, . . . , 𝒆𝑑 ′ ), and the new point 𝒛𝑡 = (0, . . . , 0,

√
1 + 2𝛼), 0, . . . ).

In 𝒛𝑡 , only coordinate 𝑑′+1 is nonzero. We show that we can design

an irregular update step for this special case that makes the new

approximation factor
1/𝛼𝑡 satisfy 1/𝛼𝑡 = 1/𝛼𝑡−1 + 1.

Figure 2: Irregular update step. E𝑡−1 and 𝛼 · E𝑡−1 are, respec-
tively, the light blue strip on the 𝑥-axis and the dark blue
strip on the 𝑥-axis. 𝒛𝑡 = (0,

√
1 + 2𝛼) is the newly received

point.

It turns out that it is sufficient to consider only this special case.

To see this, note that we can choose an affine transformation that

maps any new point 𝒛𝑡 and previous ellipsoid E𝑡−1 to the setting

shown in Figure 2. Next, observe that there are at most𝑑−1 irregular
update steps. This means that the irregular update steps contribute

at most an additive 𝑑 − 1 to the final approximation factor.

Finally, observe that the inradius of conv({𝒛1, . . . , 𝒛𝑡 }) is not
monotone in 𝑡 . In particular, it can decrease after each irregular

update step. Nonetheless, we can still give a bound on the radius

of a ball that our convex body conv(𝒛1, . . . , 𝒛𝑡 ) contains for all 𝑡 .
This will give us everything we need to apply Theorem 1.6 to this

setting, and Theorem 1.7 follows.

Improved bounds on lattices. Finally, we briefly discuss how to

remove the aspect ratio dependence in the setting where the in-

put points 𝒛𝑡 have coordinates in [−𝑁, 𝑁 ]. At a high level, this

improvement follows from carefully tracking how the approxima-

tion factors of our solutions change after an irregular update step.

Following (7), recall that our goal is to analyze (where we write

𝛼0 = 1) ∑︁
𝑡≥1

1

𝛼𝑡
− 1

𝛼𝑡−1
.
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By (7), we see that for all “regular” updates, we have

1

𝛼𝑡
− 1

𝛼𝑡−1
≲ log

(
vol𝑑𝑡 (E𝑡 )
vol𝑑𝑡 (E𝑡−1)

)
,

where 𝑑𝑡 = dim (aff(𝒛1, . . . , 𝒛𝑡 )). Furthermore, as previously men-

tioned, in our irregular update step, we get

1

𝛼𝑡
− 1

𝛼𝑡−1
= 1.

In order to control the sum of the
1/𝛼𝑡 − 1/𝛼𝑡−1, it remains to bound

vol𝑑𝑡 (E𝑡 )/vol𝑑𝑡−1 (E𝑡−1 ) for an irregular update step 𝑡 . We will then get a

telescoping upper bound whose last term is the ratio of the volume

of the final ellipsoid to the Euclidean ball in the same affine span.

Similarly to the improvements of Woodruff and Yasuda [20] in

the integer-valued case, it will turn out that we will be interested

in the total product of these volume changes. By carefully tracking

these, we will get that this product can be expressed as the determi-

nant of a particular integer-valued matrix. Then, since this matrix

has integer entries, the magnitude of its determinant must be at

least 1. We then observe that the volume of E𝑛 after normalizing by

the volume of vol(𝐵𝑑𝑛
2
) must be at most (𝑁

√
𝑑)𝑑𝑛 , since the length

of any vector in this lattice is at most 𝑁
√
𝑑 . The desired result then

follows.

2.3 Coresets for Convex Hull (Theorem 1.9)
We now outline our proof strategy for Theorem 1.9. Our main task

is to design an appropriate selection criterion for every new point –

in other words, wemust check whether a new point 𝒛𝑡 is “important

enough” to be added to our previous set of points 𝑆𝑡−1. We then

have to show that this selection criterion yields the approximation

guarantee promised by Theorem 1.9.

To design the selection criterion, we run an instance of the algo-

rithm in Theorem 1.7 on the stream. For every new point 𝒛𝑡 , we ask
two questions – “Does 𝒛𝑡 result in an irregular update step? Does it

cause vol(E𝑡 ) to be much larger than vol(E𝑡−1)?” If the answer to
any of these questions is affirmative, we add 𝒛𝑡 to the coreset. The

first question is necessary to obtain even a bounded approximation

factor (for example, imagine that the final point 𝒛𝑛 results in an

irregular update step – then, we must add it). The second question

is quite natural, as it ensures that the algorithm adds “important

points” – those that necessitate a significant update.

We now observe that at every irregular update step 𝑡𝑑 ′ for 𝑑′ ≤ 𝑑
and subsequent timestep 𝑡 ≥ 𝑡𝑑 ′ for which there are no irregular

update steps in between 𝑡𝑑 ′ and 𝑡 , there exists a translation 𝒄𝑑 ′

(which is the center for E𝑑 ′ that the algorithm maintains) and a

value 𝑟𝑑 ′ for which we know

𝒄𝑑 ′ + 𝑟𝑑 ′ ·
(
𝐵𝑑
2
∩ span(𝒛1 − 𝒄𝑑 ′ , . . . , 𝒛𝑑 ′ − 𝒄𝑑 ′ )

)
⊆ conv(𝒛1, . . . , 𝒛𝑡 )

⊆ 𝒄𝐶 + 𝑅𝑡 · 𝐵𝑑2 ,

where 𝒄𝐶 is the circumcenter of conv({𝒛1, . . . , 𝒛𝑡 }). The resulting
bound on |𝑆𝑡 | follows easily from the above observation and a

simple volume argument.

Finally, we obtain the approximation guarantee from noting that

for all 𝑡 , the output of the algorithm from Theorem 1.7 given the

first 𝑡 points is the same as running it only on the points selected

by 𝑆𝑡 .

2.4 Lower Bound (Theorem 1.10)
Whereas in the upper bound we demonstrated a particular algo-

rithm that satisfies the evolution condition (7), for the lower bound

it suffices to show that for any monotone algorithm, there exists

an instance of the problem (a sequence of 𝒛1,. . . , 𝒛𝑛) where the

algorithm must satisfy the “reverse evolution condition”, i.e.

1/𝛼𝑡 − 1/𝛼𝑡−1
log vol(E𝑡 ) − log vol(E𝑡−1)

≥ 𝐶 (8)

for some 𝐶 > 0. In analogy to the argument of the upper bound,

showing this reverse evolution condition yields a lower bound of

the form
1

𝛼𝑛
≥ Ω̃ (𝑑 log(𝜅)). Given any monotone algorithm A,

the instance we use is produced by an adversary that repeatedly

feeds A a point that is a constant factor away from the previous

ellipsoid.

In order to simplify showing this reverse evolution condition,

we use a symmetrization argument. Specifically, by a particular

sequence of Steiner symmetrizations, we see that the optimal re-

sponse of A can be completely described in two dimensions. Thus,

it is sufficient to only show this reverse evolution condition in the

two-dimensional case where the previous outer ellipsoid is the unit

ball.

This transformed two-dimensional setting is significantly sim-

pler to analyze. Specifically, we can assume that the point given by

the adversary is always 2𝒆1. The rest of the argument proceeds by

cases, again using two-dimensional Euclidean geometry. On a high

level, the constraints placed on the new outer and inner ellipsoid

by the monotonicity condition force the update of A to satisfy the

reverse evolution condition.

3 PRELIMINARIES
3.1 Notation
We denote the standard Euclidean norm of a vector 𝒗 by ∥𝒗∥. We

write Diag (𝑎1, . . . , 𝑎𝑑 ) to mean the 𝑑 × 𝑑 diagonal matrix whose

diagonal entries are 𝑎1, . . . , 𝑎𝑑 .

Denote the ℓ2-unit ball by 𝐵
𝑑
2
=

{
𝒙 ∈ R𝑑 : ∥𝒙 ∥ ≤ 1

}
. We use 𝜕𝑆

for the boundary of an arbitrary set 𝑆 . We use natural logarithms

unless otherwise specified.

In this paper, wework extensively with ellipsoids.Wewill always

assume that all ellipsoids and balls we consider are centered at

the origin. We use the following representation of ellipsoids: for

a non-singular matrix 𝑨 ∈ R𝑑×𝑑 , let E𝑨 B {𝒙 : ∥𝑨𝒙 ∥ ≤ 1}. In
other words, the matrix 𝑨 defines an bijective linear map satisfying

𝑨E𝑨 = 𝐵𝑑
2
. Every full-dimensional ellipsoid (centered at the origin)

has such a representation. We note that this representation is not

unique as matrices 𝑨 and 𝑴𝑨 define the same ellipsoid if matrix

𝑴 is orthogonal (since ∥𝑨𝒗∥ = ∥𝑴𝑨𝒗∥ for every vector 𝒗).

3.2 Geometry
We restate the well-known result that five points determine an

ellipse. This is usually phrased for conics, but for nondegenerate

ellipses the usual condition that no three of the five points are

colinear is vacuously true.
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Claim 3.1 (Five points determine an ellipse). Let 𝒄1+𝜕E1, 𝒄2+
𝜕E2 be two ellipses in R2. If they intersect at five distinct points, then
𝒄1 + 𝜕E1 and 𝒄2 + 𝜕E2 are the same.

The following claim, that every full-rank ellipsoid (i.e. an el-

lipsoid whose span has full dimension) can be represented by a

positive definite matrix, follows from looking at the singular value

decomposition of 𝑨.

Claim 3.2. Let E ⊆ R𝑑 be a full-rank ellipsoid. Then there exists
𝑨 ≻ 0 such that E = E𝑨.

We also have the standard result relating volume and determi-

nants, which follows from observing 𝑨E𝑨 = 𝐵𝑑
2
.

Claim 3.3. Let 𝑨 ≻ 0. Then vol(E𝑨) = det(𝑨−1) vol(𝐵𝑑
2
).

4 STREAMING ELLIPSOIDAL ROUNDING
In this section, we describe the key components of the algorithms

used to prove 1.6 and 1.7. The full details are given in the full version

of the paper.

4.1 Monotone Algorithms Solve Problem 1.1
To design algorithms to solve the streaming ellipsoidal rounding

problem, we first show that any monotone algorithm gives a valid

solution. We let 𝒄0 ∈ R𝑑 and 𝑟0 ≥ 0 be given so that 𝒄0 +𝑟0 ·𝐵𝑑
2
⊆ 𝑍 ,

and denote the initial ellipsoid as E0 = 𝑟0 · 𝐵𝑑
2
. Note that 𝑟0 need

not be the inradius, although it is upper bounded by the inradius.

If we had for each intermediate step 𝑡 that

𝒄𝑡 + 𝛼𝑡 · E𝑡 ⊆ conv(𝒛1, . . . 𝒛𝑡 ) ⊆ 𝒄𝑡 + E𝑡

then clearly any algorithm that satisfies this would give a valid final

solution as well. However, in intermediate steps it is not clear that

𝒄𝑡 + 𝛼𝑡 · E𝑡 ⊆ conv(𝒛1, . . . 𝒛𝑡 ), due to the initialization of 𝒄0 + E0 in

ourmonotone algorithm framework. Instead, we relax this invariant

to 𝒄𝑡 + 𝛼𝑡 · E𝑡 ⊆ conv({𝒛1, . . . 𝒛𝑡 } ∪ (𝒄0 + E0)), which still suffices

to produce a valid final solution.

Claim 4.1. To solve Problem 1.1, it suffices for the sequence of ellip-
soids 𝒄𝑖 + E𝑖 and scalings 𝛼𝑖 to satisfy the invariants of Definition 2.1.

Proof. First, we argue that conv(𝒛1, . . . , 𝒛𝑛) ⊆ 𝒄𝑛 + E𝑛 . As
E𝑛 is an ellipsoid and therefore a convex set, it suffices to show

{𝒛1, . . . , 𝒛𝑛} ⊆ 𝒄𝑛 + E𝑛 . We actually argue by induction that for all

0 ≤ 𝑡 ≤ 𝑛. {𝒛1, . . . , 𝒛𝑡 } ⊆ 𝒄𝑡 + E𝑡 . This is vacuously true for 𝑡 = 0.

At each step 𝑡 > 0 the inductive hypothesis gives {𝒛1, . . . , 𝒛𝑡−1} ⊆
𝒄𝑡−1 + E𝑡−1, and thus by (5) we have {𝒛1, . . . , 𝒛𝑡 } ⊆ 𝒄𝑡 + E𝑡 .

Now, we argue that 𝒄𝑛 +𝛼𝑛 · E𝑛 ⊆ conv(𝒛1, . . . , 𝒛𝑛). We show by

induction that 𝒄𝑡 + 𝛼𝑡 · E𝑡 ⊆ conv({𝒛1, . . . , 𝒛𝑡 } ∪ (𝒄0 + E0)) for all
0 ≤ 𝑡 ≤ 𝑛. This is sufficient as conv({𝒛1, . . . , 𝒛𝑛} ∪ (𝒄0 + E0)) = 𝑍 .
The case for 𝑡 = 0 is trivial. For 𝑡 > 0, the inductive hypothesis

gives 𝒄𝑡−1 + 𝛼𝑡−1 · E𝑡−1 ⊆ conv({𝒛1, . . . , 𝒛𝑡−1} ∪ (𝒄0 + E0)), and
by (6) we have

𝑐𝑡 + 𝛼𝑡 · E𝑡 ⊆ conv((𝑐𝑡−1 + 𝛼𝑡−1 · E𝑡−1) ∪ {𝒛𝑖 })
⊆ conv({𝒛1, . . . , 𝒛𝑡 } ∪ (𝒄0 + E0))

as desired. □

4.2 Special Case
In light of Claim 4.1, our strategy is to design an algorithm that

preserves the invariants given in Definition 2.1. This algorithm can

be thought of as an update rule that, given the previous outer and

inner ellipsoids 𝒄𝑡−1 + E𝑡−1, 𝒄𝑡−1 + 𝛼𝑡−1E𝑡−1 and next point 𝒛𝑡 ,
produces the next outer and inner ellipsoids 𝒄𝑡 + E𝑡 , 𝒄𝑡 + 𝛼𝑡E𝑡 .

It is in fact sufficient to consider the simplified case where the

previous outer ellipsoid is the unit ball, and the previous inner ellip-

soid is some scaling of the unit ball; we will show this in Section 4.3.

We can further specialize by considering only the two-dimensional

case 𝑑 = 2. We will later show that the high-dimensional case is

not much different, as all the relevant sets 𝒄𝑡1 + E𝑡−1, 𝒄𝑡 + E𝑡 and
conv(𝛼 · E𝑡−1 ∪ {𝒛𝑡 }) form bodies of revolution about the axis

through 𝒄𝑡−1 and 𝒛𝑡 .
We now describe our two-dimensional update rule. In order to

simplify notation, we will let 𝛼 be the previous scaling 𝛼𝑡−1, and
𝛼 ′ be the next scaling 𝛼𝑡 . We will assume that 𝛼 ≤ 1/2 to simplify

the analysis of our update rule; this will not affect the quality of

our final approximation as this update rule will only be used in

the “large approximation factor” regime. We will also overload

notation by writing 𝑐 + E even when 𝑐 is a scalar to mean (𝑐, 0) + E.
We can describe the previous outer ellipsoid E with the equation

𝑥2 +𝑦2 ≤ 1, and the previous inner ellipsoid 𝛼E with 𝑥2 +𝑦2 ≤ 𝛼2.
We define the next outer and inner ellipsoids 𝑐 + E′

, 𝑐 + 𝛼 ′E′
as

1

𝑎2
(𝑥 − 𝑐)2 + 1

𝑏2
𝑦2 ≤ 1︸                        ︷︷                        ︸

𝑐+E′

,
1

𝑎2
(𝑥 − 𝑐)2 + 1

𝑏2
𝑦2 ≤ 𝛼 ′2︸                           ︷︷                           ︸

𝑐+𝛼 ′E′

where we use parameters

𝑎 = exp (𝛾)

𝑏 = 1 + 𝛼 − 𝛼 ′
2

𝑐 = −𝛼 + 𝛼 ′ · 𝑎

𝛼 ′ =
1

1

𝛼 + 2𝛾


(9)

We will let 𝒛 be the rightmost point of 𝑐 + E′
, so that 𝒛 = (𝑐 +

𝑎, 0). Eventually, we will choose 𝛾 so that 𝒛 coincides with 𝒛𝑡 , the
point received in the next iteration. In Section 4.4, these parameters

𝑎(𝛾), 𝑏 (𝛾), 𝑐 (𝛾), 𝛼 ′ (𝛾) will be used as functions of the parameter

𝛾 ≥ 0. However, we will not yet explicitly specify 𝛾 , so in this

section these parameters can be thought of as constants for some

fixed 𝛾 . This update rule is pictured in Figure 1.

We first collect a few straightforward properties of this update

rule.

Claim 4.2. The parameters in the setup (9) satisfy the following.
(1)

1

𝛼 ′ =
1

𝛼 + 2𝛾

(2) 𝑏 ≥ 1

(3) 𝑐 ≥ 0

(4) 𝑐 + 𝛼 ′ · 𝑎 ≥ 𝛼

Before proving these properties, we provide geometric interpre-

tations. Intuitively, (1) means that 𝛾 is proportional to the increase

in the approximation factor at this step, a fact that we use when

analyzing the general-case algorithm. (2) means that the outer el-

lipsoid grows on every axis; and (3) means that the centers of the
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next ellipsoids are to the right of the 𝑦-axis, i.e. the centers of the

next ellipsoids are further towards 𝒗 than those of the previous

ellipsoids. The rightmost point of 𝑐 + 𝛼 ′E′
is 𝑐 + 𝛼 ′ · 𝑎, so (4) shows

that this point is to the right of the rightmost point of 𝛼 · E.
We now prove Claim 4.2.

Proof of Claim 4.2. (1) is clear from rearranging the definition

of 𝛼 ′. From (1) we also have 𝛼 ′ ≤ 𝛼 , so that (2) follows immediately.

For (3), observe that
𝛼
𝛼 ′ = 1 + 2𝛾𝛼 . When 𝛼 ≤ 1/2, this means

𝛼

𝛼 ′
≤ 1 + 𝛾 ≤ exp (𝛾) = 𝑎 (10)

using 1 + 𝑥 ≤ 𝑒𝑥 . By definition of 𝑐 , 𝛼/𝛼 ′ ≤ 𝑎 is equivalent to 𝑐 ≥ 0.

To show (4), by definition we have that 𝑐 + 𝛼 ′ · 𝑎 = −𝛼 + 2𝛼 ′𝑎.
Thus showing 𝑐 + 𝛼 ′ · 𝑎 ≥ 𝛼 is equivalent to showing that 𝛼 ′𝑎 ≥ 𝛼 ,
which is equivalent to the inequality in (10). □

As Figure 1 depicts, the update step we defined satisfies the

invariants in Definition 2.1 and so is monotone; in the rest of this

section we make this picture formal. To start, we consider the

invariant concerning outer ellipsoids; we will show that E ⊆ 𝑐 +E′
.

For now we can think of 𝒛 as replacing 𝒛𝑡 , and clearly 𝒛 ∈ 𝑐 + E′
,

so if we show that E ⊆ 𝑐 + E′
, then conv(E ∪ {𝒛}) ⊆ 𝑐 + E′

as well

since 𝑐 + E′
is convex.

Claim 4.3. We have E ⊆ 𝑐 + E′.

Proof. First, observe that E ⊆ E′
because both axes of E′

have

greater length than those of E: 𝑎 ≥ 1 by definition, and 𝑏 ≥ 1 from

Claim 4.2-(2). Now, we translate E′
to the right until it touches E

at two points. We call this translated ellipse 𝑐𝑟 + E′
, as shown in

Figure 3. Observe that as long as 𝑐 ≤ 𝑐𝑟 , we have E ⊆ 𝑐 + E′
. We

now determine 𝑐𝑟 .

Figure 3: Outer ellipses of the update step. As before, E is
the black circle and 𝑐 + E′ is the blue ellipse. 𝑐𝑟 + E′ is the
magenta ellipse, with its center at 𝑐𝑟 and the dotted magenta
line showing the position of 𝑐𝑟 along the 𝑥-axis. 𝑐𝑟 is defined
so 𝑐𝑟 + E′ and E are tangent at two points. 𝑄 is one of these
two tangent points.

First, note points on the boundary of 𝑐𝑟 + E′
are described by

the equation

(𝑥 − 𝑐𝑟 )2
𝑎2

+ 𝑦
2

𝑏2
= 1. (11)

Let 𝑄 = (𝑥 ′, 𝑦′) be the point of intersection between E and 𝑐𝑟 +
E′

where 𝑦′ > 0. Since 𝑄 is on the boundary of both ellipses,

the vectors

(
2(𝑥 ′−𝑐𝑟 )

𝑎2
,
2𝑦′

𝑏2

)
and (2𝑥 ′, 2𝑦′), which are the normal

vectors at 𝑄 of 𝑐𝑟 + E′
and E respectively, must be parallel. Thus

4(𝑥 ′−𝑐𝑟 )
𝑎2

· 𝑦′ = 4𝑦′𝑥 ′

𝑏2
, which simplifies to

𝑥 ′ =
𝑐𝑟

1 − 𝑎2

𝑏2

. (12)

At this point we have a system of three equations relating (𝑥 ′, 𝑦′)
and 𝑐𝑟 : (12), 𝑄 lying on E, and 𝑄 satisfying (11). We now solve this

system to find 𝑐𝑟 . To start, we expand (11) into 𝑥 ′2 − 2𝑥 ′𝑐𝑟 + 𝑐2𝑟 +
𝑦′2 𝑎

2

𝑏2
= 𝑎2, which we rewrite into 𝑥 ′2 𝑎

2

𝑏2
+ 𝑥 ′2

(
1 − 𝑎2

𝑏2

)
− 2𝑥 ′𝑐𝑟 +

𝑐2𝑟 +𝑦′2 𝑎
2

𝑏2
= 𝑎2. As𝑄 lies on E, this becomes 𝑥 ′2

(
1 − 𝑎2

𝑏2

)
− 2𝑥 ′𝑐𝑟 +

𝑐2𝑟 + 𝑎2

𝑏2
= 𝑎2. Substituting in (12), we get

𝑐2𝑟

1− 𝑎2
𝑏2

− 2
𝑐2𝑟

1− 𝑎2
𝑏2

+ 𝑐2𝑟 +

𝑎2

𝑏2
= 𝑎2 Simplifying, we have 𝑐2𝑟

(
1 − 𝑏2

𝑏2−𝑎2
)
= 𝑎2

(
1 − 1

𝑏2

)
, i.e.

𝑐2𝑟 = 𝑏2−1
𝑏2

(𝑎2 − 𝑏2). To complete the proof of Claim 4.3, it suffices

to show

𝑐2 ≤ 𝑏2 − 1

𝑏2
(𝑎2 − 𝑏2) .

This is shown in Claim 7.5 in the full version of the paper. □

Now, wemove on to the inner ellipsoid invariant of Definition 2.1.

In particular, we will argue that 𝑐 + 𝛼 ′E′ ⊆ conv(𝛼E ∪ {𝒛}). On a

high level, we show this by arguing that the boundary of 𝑐 + 𝛼 ′E′

does not intersect the boundary of conv(𝛼E∪{𝒛}), except at points
of tangency.

We can split the boundary of conv(𝛼E ∪ {𝒛}) into two pieces:

the part that intersects with the boundary of 𝛼E, which is an arc of

the boundary of 𝛼E; and the remainder, which can described as two

line segments connecting 𝒛 to that arc. In particular, there are two

lines that go through 𝒛 and are tangent to 𝛼E, one of which we call

line 𝐿, and the other line is the reflection of 𝐿 across the 𝑥-axis. We

define 𝑃1 and 𝑃2 as the tangent points of these lines to 𝛼E. Then,
the boundary of conv(𝛼E ∪ {𝒛}) consists of an arc 𝑃1𝑃2 and the

line segments 𝑃1𝒛, 𝑃2𝒛. This is illustrated in Figure 4. Note that at

this point it is possible a priori for the arc 𝑃1𝑃2 that coincides with

the boundary of conv(𝛼E ∪ {𝒛}) to be either the major or minor

arc; we will later show it must be the major arc. We will take 𝐿

to be the line whose tangent point to 𝛼E, 𝑃1, is above the 𝑥-axis,
though this choice is arbitrary due to symmetry across the 𝑥-axis.

We first show that 𝑐+𝛼 ′E′
does not intersect 𝑃1𝒛 and 𝑃2𝒛, except

possibly at points of tangency. In fact, we show a slightly stronger

statement, in similar fashion to Claim 4.3.

Claim 4.4. 𝑐 + 𝛼 ′E′ lies inside the angle ∠𝑃1𝒛𝑃2.

Proof. We translate 𝑐 +𝛼 ′E′
to the right until it touches 𝐿 (and,

by symmetry, 𝑃2𝒛). We call this translated ellipse 𝑐+ + 𝛼 ′E′
, as

shown in Figure 5. (Formally, the center 𝑐+ can be described not as

a translation from some other ellipse, but as 𝑐+ such that 𝑐+ + 𝛼 ′E′

intersects 𝐿 at one point). Observe that if 𝑐 ≤ 𝑐+, then 𝑐 + 𝛼 ′E′
lies

inside the angle ∠𝑃1𝒛𝑃2. We now determine 𝑐+.
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Figure 4: Inner ellipses of the update step. As before, 𝛼E is
the black circle and 𝑐 +𝛼 ′E′ is the blue ellipse. 𝑃0 is the shared
leftmost point of 𝛼E and 𝑐 +𝛼 ′E′. There are two lines through
𝒛 that are tangent to 𝛼E, one of which we call 𝐿 and pictured
in orange. We call the tangent points 𝑃1 and 𝑃2. The line
segments 𝑃1𝒛, 𝑃2𝒛 are the dotted black lines. 𝑃 ′

1
and 𝑃 ′

2
are the

two points of intersection between 𝜕(𝑐 + 𝛼 ′E′) and the line
segment 𝑃1𝑃2. 𝑃 ′′

1
and 𝑃 ′′

2
are the two points of intersection

between 𝜕(𝑐 + 𝛼 ′E′) and 𝜕𝛼E to the right of the 𝑦-axis. Note
that 𝑃2, 𝑃 ′

2
, 𝑃 ′′

2
are the reflections of 𝑃1, 𝑃 ′

1
, 𝑃 ′′

1
across the 𝑥-axis.

Figure 5: Inner ellipses of the update step. As before, 𝛼E is
the black circle, 𝑐 + 𝛼 ′E is the blue ellipse, 𝐿 is the orange
line through 𝒛 and tangent to 𝛼E, 𝑃1 and 𝑃2 are the tangent
points on the lines through 𝒛 tangent to 𝛼E, and 𝑃1𝒛, 𝑃2𝒛 are
the dotted black lines. 𝑐+ + 𝛼 ′E′ is the magenta ellipse, with
its center at 𝑐+ and magenta dotted line showing its position
on the 𝑥-axis. 𝑐+ is defined so that 𝑐+ + 𝛼 ′E′ is tangent to 𝑃1𝒛
and 𝑃2𝒛, with 𝑄 as the tangent point of 𝑐+ + 𝛼 ′E′ and 𝑃1𝒛.

The equation defining 𝐿 is

1

𝑐 + 𝑎︸︷︷︸
ℓ1

·𝑥 +
√︄

1

𝛼2
− 1

(𝑐 + 𝑎)2︸               ︷︷               ︸
ℓ2

·𝑦 = 1,

where we define ℓ1, ℓ2 as the coefficients for 𝑥 and 𝑦. Observe that

𝒛 is on 𝐿, and 𝐿 is tangent to 𝛼E at 𝑃1, which has coordinates

𝑃1 =

(
𝛼2

𝑐 + 𝑎 , 𝛼
2

√︄
1

𝛼2
− 1

(𝑐 + 𝑎)2

)
. (13)

Tangency can be confirmed by checking that 𝑃1 is parallel to (ℓ1, ℓ2),
the normal vector defining 𝐿.

Let 𝑄 = (𝑥 ′, 𝑦′) be the point of intersection of 𝐿 and 𝑐+ + 𝛼 ′E,
there are three properties that define𝑄 . First it lies on the boundary

of 𝑐+ + 𝛼 ′E, so it satisfies

(𝑥 ′ − 𝑐+)2
𝑎2

+ 𝑦
′2

𝑏2
= 𝛼 ′2 . (14)

Second, at 𝑄 the normal vectors for the equations defining 𝑐+ +
𝛼 ′E and 𝐿 are parallel, i.e. ( 2(𝑥−𝑐+ )

𝑎2
,
2𝑦

𝑏2
) is parallel to (ℓ1, ℓ2). So

(𝑥 ′ − 𝑐+)
𝑎2

ℓ2 =
𝑦′

𝑏2
ℓ1 . (15)

Finally, 𝑄 lies on 𝐿, so we have ℓ1𝑥
′ + ℓ2𝑦′ = 1. Solving this for 𝑦′,

we get

𝑦′ =
1 − ℓ1𝑥 ′
ℓ2

. (16)

These three equations form a system for 𝑥 ′, 𝑦′ and 𝑐+, which we

now solve to find 𝑐+. Taking the square of (15) and rearranging gives
𝑦′2

𝑏2
=

𝑏2 (𝑥 ′−𝑐+ )2ℓ2
2

𝑎4ℓ2
1

. Substituting this into (14), we get
(𝑥 ′−𝑐+ )2

𝑎2
+

𝑏2 (𝑥 ′−𝑐+ )2ℓ2
2

𝑎4ℓ2
1

= 𝛼 ′2. Now, defining 𝑟 B
𝑎2ℓ2

1

𝑏2ℓ2
2

, we group the terms of

this equation into the form

(𝑥 ′ − 𝑐+)2 ·
1

𝑎2

(
1 + 1

𝑟

)
= 𝛼 ′2 . (17)

We substitute (16) into (15) to get
𝑥 ′−𝑐+
𝑎2

ℓ2 =
ℓ1
𝑏2

1−𝑥 ′ℓ1
ℓ2

. Grouping

for 𝑥 ′ and rearranging yields

𝑥 ′ − 𝑐+ =
𝑟

1 + 𝑟

(
1

ℓ1
− 𝑐+

)
. (18)

Next, we substitute (18) into (17), and get after some cancellation(
1

ℓ1
− 𝑐+

)
2

= 𝛼 ′2𝑎2 · 1 + 𝑟
𝑟

.

Observe on the left hand side that
1

ℓ1
− 𝑐+ = 𝑐 + 𝑎 − 𝑐+. Clearly

the center 𝑐+ must be to the left of 𝒛, so this must be non-negative.

Hence after taking the positive square root, we obtain 𝑐+ = 𝑐 + 𝑎 −
𝛼 ′ · 𝑎

√︃
1+𝑟
𝑟 . It remains to show that 𝑐 ≤ 𝑐+, or equivalently that

𝑎 − 𝛼 ′ · 𝑎
√︂

1 + 𝑟
𝑟

≥ 0.

We verify this in Claim 7.6 in the full version of the paper. □

Now, we build on the previous claim to show the inner ellipsoid

invariant.

Claim 4.5. We have 𝑐 + 𝛼 ′ · E′ ⊆ conv(𝛼 · E ∪ {𝒛}).

Proof. We will argue that the boundary of 𝑐 + 𝛼 ′E′
does not

intersect the boundary of conv(𝛼E ∪ {𝒛}), except at points of tan-
gency. This is sufficient to establish the claim, as Claim 4.4 shows
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that 𝑐 +𝛼 ′E′
is internal to ∠𝑃1𝒛𝑃2, and so if 𝑐 +𝛼 ′E′

does not inter-

sect the boundary of conv(𝛼E ∪ {𝒛}), 𝑐 +𝛼 ′E′
must lie inside of, or

be disjoint from conv(𝛼E∪{𝒛}). Since the leftmost points of𝛼E and

𝑐 + 𝛼 ′E′
coincide, 𝑐 + 𝛼 ′E′

must then lie inside of conv(𝛼E ∪ {𝒛}).
Recall that the boundary of conv(𝛼E∪{𝒛}) consists of the arc 𝑃1𝑃2
and the line segments 𝑃1𝒛, 𝑃2𝒛. Claim 4.4 already shows that the

boundary of 𝑐 + 𝛼 ′E′
does not intersect 𝑃1𝒛 and 𝑃2𝒛, so we only

need to show that the boundary of 𝑐 + 𝛼 ′E′
does not intersect the

arc 𝑃1𝑃2.

To do this, we start by enumerating the points of intersection of

𝜕𝛼E and 𝜕(𝑐 + 𝛼 ′E′), recalling that 𝑃1𝑃2 is an arc of 𝜕𝛼E. Observe
that the leftmost points of 𝛼E and 𝑐 +𝛼 ′E′

coincide, as the leftmost

point of 𝑐 + 𝛼 ′E′
is 𝑐 − 𝛼 ′ · 𝑎 = −𝛼 by definition; we call this point

𝑃0. 𝑃0 is a point of tangency and hence has intersection multiplicity

2, because the centers of 𝛼E and 𝑐 + 𝛼 ′ · E′
both lie on the 𝑥-axis.

Next, we argue for the existence of twomore distinct intersection

points 𝑃 ′′
1
, 𝑃 ′′

2
as depicted in Figure 4. The leftmost point of 𝑐 +𝛼 ′E′

is (−𝛼, 0), and the rightmost point is 𝑐 + 𝛼 ′, which by Claim 4.2-

(4) is to the right of (𝛼, 0), the rightmost point of 𝛼E. Thus, by
lying on 𝜕𝛼E, 𝑃1, 𝑃2 lie between the leftmost and rightmost points

of 𝑐 + 𝛼 ′E′
, and so 𝑐 + 𝛼 ′E′

intersects the line through 𝑃1 and

𝑃2. Further, by Claim 4.4, as 𝑐 + 𝛼 ′E′
lies in the angle ∠𝑃1𝒗𝑃2,

𝑐 +𝛼 ′E′
actually intersects the line segment 𝑃1𝑃2. Observe that this

intersection happens at two distinct points, which we call 𝑃 ′
1
and

𝑃 ′
2
. Both points are inside of 𝛼E, yet 𝜕(𝑐 + 𝛼 ′E′) is a continuous

path that connects both to the rightmost point of 𝑐 +𝛼 ′E′
, which is

outside of 𝛼E. Thus 𝜕(𝑐 +𝛼 ′E′) intersects 𝜕𝛼E at two more distinct

points, which we call 𝑃 ′′
1
and 𝑃 ′′

2
.

Now, we argue that 𝑃 ′′
1
and 𝑃 ′′

2
lie on the minor arc 𝑃1𝑃2. First,

observe that the arc 𝑃1𝑃2 containing 𝑃0 is the major arc. This is

because 𝑃1 lies to the right of the 𝑦-axis, as determined in (13); and

by symmetry so does 𝑃2. This also implies that major arc 𝑃1𝑃2 is

the arc with which the boundary of conv(𝛼E ∪ {𝒛}) coincides. 𝑃 ′
1

and 𝑃 ′
2
are colinear with 𝑃1 and 𝑃2, and as 𝑃 ′′

1
and 𝑃 ′′

2
are to the

right of 𝑃 ′
1
and 𝑃 ′

2
, this implies that they must lie on the minor arc

𝑃1𝑃2.

Counting all the intersection points of 𝜕𝛼E and 𝜕(𝑐 + 𝛼 ′E′), we
have 𝑃0 (with multiplicity 2) and 𝑃 ′′

1
and 𝑃 ′′

2
(both with multiplicity

1); with total multiplicity 4. Using Claim 3.1, it is impossible for

them to have another intersection point without both ellipses being

the same. Thus 𝜕(𝑐 + 𝛼 ′E′) cannot intersect the major arc 𝑃1𝑃2
except at 𝑃0, and so except at points of tangency the boundary of

𝑐 + 𝛼 ′E′
does not intersect the boundary of conv(𝛼E ∪ {𝒛}). □

4.3 Generalizing to High Dimension and
Arbitrary Previous Ellipsoids

Now that we have demonstrated the invariants of Definition 2.1 for

the special two-dimensional case where the previous ellipsoid is

the unit ball, we generalize slightly to higher dimensions. However,

we first still assume the previous ellipsoid is the unit ball.

Using the parameters as defined in (9), we will let E = 𝐵𝑑
2
, and

define the boundary of E′
as

1

𝑎2
(𝒙1 − 𝑐)2 + 1

𝑏2
𝒙2
2
+ . . . + 1

𝑏2
𝒙2
𝑑
= 1.

Similarly to before, we let 𝒛 = (𝑐 + 𝑎, 0, 0, . . . , 0) ∈ R𝑑 , the furthest
point of 𝑐 + E′

in the positive direction of the 𝑥1-axis.

Now, we argue that the invariants of Definition 2.1 still hold in

this setting.

Claim 4.6. The inner and outer ellipsoid invariants hold in this
setting:

(1) E ⊆ 𝑐 · 𝒆1 + E′

(2) 𝑐 · 𝒆1 + 𝛼 ′E′ ⊆ conv(𝛼E ∪ {𝒛})

Proof. Observe that E, 𝑐 ·𝒆1+E′
, 𝑐 ·𝒆1+𝛼 ′E′

, and conv(𝛼E∪{𝒛})
are all bodies of revolution about the 𝑥1-axis, with their cross-

sections given by their counterparts in Section 4.2. As Claim 4.3

and Claim 4.5 hold for these cross sections, the set containments

hold for the bodies of revolution as well. □

We further generalize to the case where the previous ellipsoid

is arbitrary. In particular, let 𝒄◦ + E be the previous ellipsoid, with

a vector 𝒄◦ ∈ R𝑑 and E = E𝑨 for non-singular matrix 𝑨 ∈ R𝑑×𝑑 .
Let 𝒛◦ ∈ R𝑑 be an arbitrary vector, representing the next point

received. We let 𝒖 = 𝑨(𝒛◦ − 𝒄◦), and 𝑾 ∈ R𝑑×𝑑 be an orthog-

onal matrix with 𝒘 = 𝒖
∥𝒖 ∥ as its first column (e.g. by using as

its columns an orthonormal basis containing 𝒘). We define the

next outer ellipsoid as 𝒄◦ + 𝑐𝑨−1𝒘 + E′
for E′ = E𝑾𝑫𝑾⊤𝑨, with

𝑫 = Diag
(
1

𝑎2
, 1

𝑏2
, . . . , 1

𝑏2

)
. Observe that 𝒛 = 𝒄◦ + (𝑐 + 𝑎)𝑨−1𝒘 is

the furthest point of 𝒄◦ + 𝑐𝑨−1𝒘 + E′
from the previous center 𝒄◦

towards 𝒛◦.
This setup works to preserve the key invariants, as we see in the

next claim.

Claim 4.7. The inner and outer ellipsoid invariants hold in this
setting:

(1) 𝒄◦ + E ⊆ 𝒄◦ + 𝑐𝑨−1𝒘 + E′

(2) 𝒄◦ + 𝑐𝑨−1𝒘 + 𝛼 ′E′ ⊆ conv((𝒄◦ + 𝛼E) ∪ {𝒛})

Proof. We translate both set inclusions by −𝒄◦, then apply the

nonsingular linear transformation𝑾⊤𝑨. Observe that the set inclu-
sions we wish to prove hold if and only if the transformed ones do.

Noting that 𝑾⊤𝑨E′ = E𝑾𝑫 , the transformed set inclusions are

E𝑾 ⊆ 𝑐 ·𝒆1+E𝑾𝑫 and 𝑐 ·𝒆1+𝛼 ′E𝑾𝑫 ⊆ conv(𝛼E𝑾 ∪{(𝑐+𝑎) ·𝒆1}).
However, since𝑾 is an orthogonal matrix, E𝑾 = 𝐵𝑑

2
and E𝑾𝑫 =

E𝑫 , and so the inclusions are exactly those shown in Claim 4.6. □

Choosing 𝛾 correctly in (9) ensures that 𝒛 ∈ 𝒄◦ + 𝑐𝑨−1𝒘 + E′

coincides with 𝒛◦, as stated in the upcoming claim. This can be seen

by looking at the definition of 𝒛.

Claim 4.8. If 𝛾 is chosen so that 𝑐 + 𝑎 = ∥𝒖∥, then 𝒛 = 𝒛◦.

4.4 General Update Step
In this section, in Algorithm 1 we give the general update step,

which is the primary primitive for the algorithm that solves Prob-

lem 1.1. The analysis of this step builds on that of the previous

sections.

In Lines 3, 4 and 5, we use the definition of 𝑎(𝛾), 𝑏 (𝛾), 𝑐 (𝛾), 𝛼 ′ (𝛾)
from (9), substituting 𝛼𝑡−1 for 𝛼 . Although the update step does not

explicitly mention ellipsoids, we use E𝑡 = E𝑨𝑡 so that at iteration

𝑡 the next outer and inner ellipsoids are 𝒄𝑡 + E𝑨𝑡 and 𝒄𝑡 + 𝛼𝑡E𝑨𝑡 ,

respectively.

Observe also that if in iteration 𝑡 we let𝑾 ∈ R𝑑×𝑑 be an orthog-

onal matrix with𝒘 as its first column, we can write

ˆ𝑨 =𝑾 · Diag
(

1

𝑎(𝛾★𝑡 )
,

1

𝑏 (𝛾★𝑡 )
, · · · , 1

𝑏 (𝛾★𝑡 )

)
·𝑾⊤ . (19)
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Algorithm 1 Full update step Afull

Input: 𝑨𝑡−1 ∈ R𝑑×𝑑 , 𝒄𝑡−1 ∈ R𝑑 , 𝛼𝑡−1 ∈ [0, 1
2
], 𝒛𝑡 ∈ R𝑑

Output: 𝑨𝑡 ∈ R𝑑×𝑑 , 𝒄𝑡 ∈ R𝑑 , 𝛼𝑡 ∈ [0, 𝛼𝑡−1]
1: Let 𝒖 = 𝑨𝑡−1 (𝒛𝑡 − 𝒄𝑡−1),𝒘 = 𝒖

∥𝒖 ∥
2: if ∥𝒖∥ > 1 then
3: Let 𝛾★𝑡 be such that 𝑎(𝛾★𝑡 ) + 𝑐 (𝛾★𝑡 ) = ∥𝒖∥
4:

ˆ𝑨 = 1

𝑏 (𝛾★𝑡 )
𝑰𝑑 +

(
1

𝑎 (𝛾★𝑡 )
− 1

𝑏 (𝛾★𝑡 )

)
𝒘𝒘⊤

5: return 𝑨𝑡 = ˆ𝑨 ·𝑨𝑡−1, 𝒄𝑡 = 𝒄𝑡−1+𝑐 (𝛾★𝑡 )𝑨−1
𝑡−1𝒘, 𝛼𝑡 = 𝛼

′ (𝛾★𝑡 )

6: else
7: return 𝑨𝑡 = 𝑨𝑡−1, 𝒄𝑡 = 𝒄𝑡−1, 𝛼𝑖 = 𝛼𝑡−1

Now, we argue that this algorithm satisfies the invariants defined

in Definition 2.1. This argument is essentially the observation that

the update step in the algorithm is the one analyzed in Claim 4.7.

Claim 4.9. Algorithm 1 is a monotone update; i.e., it satisfies the
invariants in Definition 2.1.

Proof. If ∥𝒖∥ ≤ 1, then 𝒛𝑖 ∈ 𝒄𝑛 + E𝑛 and the inner and outer

ellipsoids are not updated, so the invariants clearly hold. Other-

wise, we apply Claim 4.7 and Claim 4.8 setting 𝑨 = 𝑨𝑡−1, 𝒄◦ =

𝒄𝑡−1, 𝒛◦ = 𝒛𝑡 , 𝛼 = 𝛼𝑡−1. Using (19), E𝑨𝑡 is the same as E′
in

Claim 4.7; and clearly 𝛼𝑡 = 𝛼 ′. This establishes the inner ellip-

soid invariant 𝒄𝑡 +𝛼𝑡E𝑡 ⊆ conv((𝒄𝑡−1 +𝛼𝑡−1E𝑡−1) ∪ {𝒛𝑡 }) directly.
To show conv((𝒄𝑡−1 + E𝑡−1) ∪ {𝒛𝑡 }) ⊆ 𝒄𝑡 + E𝑡 , observe that we
have 𝒄𝑡−1 + E𝑡−1 ⊆ 𝒄𝑡 + E𝑡 from Claim 4.7, and 𝒛𝑡 ∈ 𝒄𝑡 + E𝑡 from
Claim 4.8. Then the outer ellipsoid invariant follows as 𝒄𝑡 + E𝑡 is a
convex set. □

Finally, we bound the relevant quantities that will be used in the

analysis of the full algorithm’s approximation factor. In particular,

we show that exp(𝛾★𝑡 ) gives a lower bound on the increase in vol-

ume at each iteration 𝑡 , showing that the evolution condition holds.

If ∥𝒖∥ ≤ 1, and the ellipsoids are not updated, in that iteration we

think of 𝛾★𝑡 = 0.

Claim 4.10. For any input given to Algorithm 1, we have vol(E𝑖 ) ≥
exp(𝛾★𝑡 ) vol(E𝑡−1).

Proof. This formula is clearly true when the ellipsoids are not

updated because 𝛾★𝑡 = 0, so we consider the nontrivial case. Recall

the formula vol(E𝑨) = det(𝑨−1) vol(𝐵𝑑
2
) from Claim 3.3. Then we

have

vol(E𝑨𝑖 ) = det(𝑨−1
𝑖 ) vol(𝐵𝑑

2
) = det( ˆ𝑨−1) · det(𝑨−1

𝑡−1) · vol(𝐵
𝑑
2
)

= det( ˆ𝑨−1) vol(E𝑨𝑡−1 )

where we use the definition of
ˆ𝑨 from Line 4 on the 𝑡-th iteration.

Then

det( ˆ𝑨−1) = 𝑎(𝛾★𝑡 ) · 𝑏 (𝛾★𝑡 )𝑑−1 using (19)

≥ 𝑎(𝛾★𝑡 ) by Claim 4.2-(2)

= exp(𝛾★𝑡 ) by definition of 𝑎 in (9)

and using vol(E𝑨𝑖 ) = det( ˆ𝑨−1) · vol(E𝑨𝑡−1 ) completes the proof.

□
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