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ABSTRACT

We give near-optimal algorithms for computing an ellipsoidal round-
ing of a convex polytope whose vertices are given in a stream. The
approximation factor is linear in the dimension (as in John’s theo-
rem) and only loses an excess logarithmic factor in the aspect ratio
of the polytope. Our algorithms are nearly optimal in two senses:
first, their runtimes nearly match those of the most efficient known
algorithms for the offline version of the problem. Second, their ap-
proximation factors nearly match a lower bound we show against
a natural class of geometric streaming algorithms. In contrast to
existing works in the streaming setting that compute ellipsoidal
roundings only for centrally symmetric convex polytopes, our al-
gorithms apply to general convex polytopes.

We also show how to use our algorithms to construct coresets
from a stream of points that approximately preserve both the ellip-
soidal rounding and the convex hull of the original set of points.
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1 INTRODUCTION

We consider the problem of approximating convex polytopes in R4
with “simpler” convex bodies. Consider a convex polytope Z C RY.
Our goal is to find a convex body Z c R4 from a given family of
convex bodies, a translation vector ¢ € Rd, and a scaling factor
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a € (0,1] such that
c+a-ZCZCc+Z. (1)

We say that Zisa 1/e-approximation to Z; an algorithm that com-
putes Zisa 1/e-approximation algorithm. In this paper, we will be
interested in approximating Z with (a) ellipsoids and (b) polytopes
defined by small number of vertices.

This problem has many applications in computational geometry,
graphics, robotics, data analysis, and other fields (see [1] for an
overview of some applications). It is particularly relevant when we
are in the big-data regime and storing polytope Z requires too much
memory. In this case, instead of storing Z, we find a reasonable
approximation Z with a succinct representation and then use it as
a proxy for Z. In this setting, it is crucial that we use a low-memory
approximation algorithm to find Z.

In this paper, we study the problem of approximating convex
polytopes in the streaming model. The streaming model is a canon-
ical big-data setting that conveniently lends itself to the study
of low-memory algorithms. We assume that Z is the convex hull
of points z1,...,2zp: Z = conv({z1, ..., zn}); the stream of points
{z1,...,2zp} contains all the vertices of Z and additionally may
contain other points from polytope Z. In our streaming model,
points z1, ...,z arrive one at a time. At every timestep ¢, we must
maintain an approximating body Z; and translate ¢; such that

conv({z1,...,2+}) C et +Z. (2)

Once a new point z;41 arrives, the algorithm must compute a new
approximating body Zt+1 and translation ¢4 such that the guar-
antee (2) holds for timestep ¢t + 1. Finally, after the algorithm has
seen all n points, we must have

cn+a-Zn Cconv({z1,...,zn}) C cn+2Zn (3)
N~——— —
V4

for some 0 < a < 1 (where !/« is the approximation factor). Note
that the algorithm may not know the value of n beforehand. We
consider two types of approximation.

Ellipsoidal roundings. In one thrust, we aim to calculate an ellip-
soidal rounding of Z — we are looking for ellipsoidal approximation
Z=8. Formally, we would like to output an origin-centered ellip-
soid &, a center/translate ¢ € Rd, and a scaling parameter 0 < a < 1
such that

c+ta-ECZCc+6&.

Ellipsoidal roundings are convenient representations of convex
sets. They have applications to preconditioning convex sets for
efficient sampling and volume estimation [7], algorithms for convex
programming [15], robotics [17], and other areas. They also require
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the storage of at most ~ d? floating point numbers, as every ellipsoid
can be represented with a center ¢ and semiaxes v1,...,04 for
d' <d.

We note that by John’s theorem [8], the minimum-volume outer
ellipsoid for Z achieves approximation '/« < d. Moreover, the upper
bound of d is tight, which is witnessed when Z is a d-dimensional
simplex (that is, the convex hull of d + 1 points in general position).

We now formally state the streaming ellipsoidal rounding prob-
lem.

Problem 1.1 (Streaming ellipsoidal rounding). For z1,...,zn €
R?, let Z = conv({z1, ...,2n}). A streaming algorithm A receives
points z1, . . ., z, one at a time and produces a sequence of ellipsoids

¢; + &; and scalings a;. The algorithm must satisfy the following
guarantee at the end of the stream.

cnt+an-EnCZCcp+Ep

We say that ¢, + &, is an ellipsoidal rounding of Z with approxi-
mation factor !/a,.

We note that in the special case where Z is centrally symmetric
(i.e., Z = —Z), there are algorithms with nearly optimal approxi-

mation factors O(4/d log (nxOL)) and O(+/d log k) due to Woodruff
and Yasuda [20] and Makarychev, Manoj, and Ovsiankin [11], re-
spectively (here, kO is the online condition number and « is the
aspect ratio of the dataset). The running times of these algorithms
nearly match those of the best-known offline solutions. However,
these algorithms do not work with non-symmetric polytopes and
we are not aware of any way to adapt them so that they do. We defer
a more detailed discussion of the algorithms for the symmetric case
to Section 1.2.

Convex hull approximation. In another thrust, we want to find a
translate ¢ € Rd, subset S C [n], and scale « such that

conv({z; : i € S}) C conv({z1,...,2n})
Qc+§'conv({zi—c:i65}).

Note that ¢ + !/« - conv({z; —c : i € S}) is a !/a-scaled copy of

conv({z; : i € S}).In other words, we desire to find a coreset {z; : i € S}

that approximates Z. This approach has the advantage of yielding
an interpretable solution - one can think of a coreset as consisting
of the most “important” datapoints of the input dataset.

We formally state the streaming convex hull approximation prob-
lem we study in Problem 1.2.

Problem 1.2 (Streaming convex hull approximation). Let Z =
conv(zy, ..., zn) C R%. A streaming algorithm A receives points
z1,...,2p one at a time and produces a sequence of scalings a;,
centers ¢;, subsets S; C [n] such that Sy C Sy41. The algorithm
must satisfy the following guarantee at the end of the stream.

conv({z; : i € Sp}) C conv({z1,...,2n})
1
Cep+ p -conv({z; —cp :i € Sp})

We say that {z; : i € S,,} is a coreset of Z with approximation factor
1/e,. We will also call S, a coreset.

Makarychev, Manoj, Ovsiankin

Note that the model considered in Problem 1.2 is essentially the
same as the online coreset model studied by Woodruff and Yasuda
[20]. Similar to Problem 1.1, Problem 1.2 has been studied in the case
where Z is centrally symmetric. In particular, Woodruff and Yasuda

[20] obtain approximation factor O(4/d log (mco'-)) (where O is

the same online condition number mentioned earlier). However,
whether analogous results for asymmetric polytopes hold was an
important unresolved question.

1.1 Our Contributions

In this section, we present our results for Problems 1.1 and 1.2.

1.1.1  Algorithmic Results. We start with defining several quantities
that we need to state the results and describe their proofs.

Notation. We will denote the linear span of a set of points A
by span(A). That is, span(A) is the minimal linear subspace that
contains A. We denote the affine span of A by aff(A). That is, aff (A)
is the minimal affine subspace that contains A. Note that aff(A) =
a +span(A — a) if a € A. Finally, we denote the unit ball centered
at the origin by Bg.

Definition 1.3 (Inradius). Let K C R4 be a convex body. The
inradius r(K) of K is the largest r such that there exists a point ¢y

(called the incenter) for which ¢y +r - (Bg N span(K — cI)) CK.

Definition 1.4 (Circumradius). Let K C R9 be a convex body. The
circumradius R(K) of K is the smallest R such that there exists a
point c¢ (called the circumcenter) for which K € ¢c +R - Bg.

Definition 1.5 (Aspect Ratio). Let K C R be a convex body. We
say that k(K) = RK)/r(x) is the aspect ratio of K.

We now state Theorem 1.6, which provides an algorithm for
Problem 1.1. In addition to the data stream of z1, ..., z,, this al-
gorithm needs a suitable initialization: a ball ¢ + 7 - Bg inside
Z.

THEOREM 1.6. Consider the setting of Problem 1.1. Suppose the
algorithm is given an initial center ¢y and radius ro for which it is
guaranteed that ¢y + ry - Bg C conv({z1,...,2n}). There exists an
algorithm that, for every timestep t, maintains an origin-centered
ellipsoid &, center ¢y, and scaling factor a; such that at every timestep
t:conv({z1,...,2¢}) C ¢t + &, and at timestep n: cp + ap - Ep C
Z C cp + Ep, where

e, = O (min (RA) [y, dlog (R(2) [r,)))

The algorithm has runtime O(nd?) and stores O(d?) floating point
numbers.

Note that the final approximation factor depends on the qual-
ity of the initialization (¢, ro). If the radius ry of this ball is rea-
sonably close to the inradius r(Z) of Z, the algorithm gives an
O(min(x(Z),dlogk(Z))) approximation. In Theorem 1.7, we adapt
the algorithm form Theorem 1.6 to the setting where the algorithm
does not have the initialization information. Note that the approx-
imation guarantee of O(min(x(Z),dlogk(Z))) is a natural ana-
logue of the bounds by [11] and [20] for the symmetric case (see
Section 1.2).
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THEOREM 1.7. Consider the setting of Problem 1.1. There exists an
algorithm that, for every timestep t, maintains an ellipsoid &, center
¢, and approximation factor a;y such that

ct+ar-E Cconv({zy,...,2:}) Ccr+Ey.

Additionally, let ry and R; be the largest and smallest parameters,
respectively, for which there exists ¢} such that

cf+rp- (B‘zi Nspan(z; —¢f,..., 2t — cf)) c conv({z1,...,z:})
Cef+Re-BY

and d; = dim (aff(z1,...,2;)). Then, for all timesteps t, we have

R
Yo, =0 (dt log (dt - max —t)) .
V<t Ty
The algorithm runs in time O(nd®) and stores O(d?) floating point
numbers.

Let us now quickly compare the guarantees of Theorem 1.6
and 1.7. Notice that the algorithm in Theorem 1.7 does not require
an initialization pair (co, r9). Additionally, the algorithm in Theo-
rem 1.7 outputs a per-timestep approximation as opposed to just an
approximation at the end of the stream. However, these advantages
come at a cost — it is easy to check that the aspect ratio term seen
in Theorem 1.7 can be larger than that in Theorem 1.6, e.g., it is
possible to have R(@) [y, < maxy <p Refr,..

However, when we impose the additional constraint that the
points z; have coordinates that are integers in the range [-N, N],
we can improve over the guarantee in Theorem 1.7 and obtain re-
sults that are independent of the aspect ratio. This is similar in spirit
to the condition number-independent bound that Woodruff and
Yasuda [20] obtain for the sums of online leverage scores. However,
a key difference is that our results still remain independent of the
length of the stream. See Theorem 1.8.

THEOREM 1.8. Consider the setting of Problem 1.1, where in addi-
tion, the points z1, .. ., zy, are such that their coordinates are integers
in {-N,-N+1,...,N — 1, N}. There exists an algorithm that, for
every timestep t, maintains an ellipsoid &;, center ¢;, and approxi-
mation factor ay such that

cr+ay-E Cconv({zy,...,z:}) Cecr+Ey.
Let d; = dim (aff(z1,...,2;)). Then, for all timesteps t, we have
e, = O (d¢ log (dN)) .

The algorithm runs in time O(nd?) and stores O(d%) floating point
numbers.

We present Theorems 1.6, 1.7, and 1.8 in the full version of the
paper [12], although we discuss some of the main components for
these algorithms in Section 4. With Theorems 1.7 and 1.8 in hand,
obtaining results for Problem 1.2 becomes straightforward. We
use the algorithm guaranteed by Theorem 1.7 along with a simple
subset selection criterion to arrive at our result for Problem 1.2.

THEOREM 1.9. Consider Z = conv({z1,...,2zn}). For a subset S C
[n], let Z|s = conv({z; : i € S}). Consider the setting of Problem
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1.2. There exists a streaming algorithm that, for every timestep t,
maintains a subset Sy, center ¢;, and scaling factor a; such that

1
Z|s, S conv({z1,...,zt}) Cer + o (Z]s, —ct) -
¢

Additionally, for dy, ry and Ry as defined in Theorem 1.7, we have for
allt that

1 R R
— =O(dtlog (dt-max —t)) and |S;| =O(dt10g (max —t))
ar t'<t 1y t'<t Iy

and, if the z; have integer coordinates ranging in [-N, N], then

ai =0(d;log(dN))  and  |S¢| = O (d;log (dN)).

t
Each S; is either S;_1 orSt-1 U {t} (wheret > 1 and Sy = @). The
algorithm runs in time O(nd?) and stores at most O(d?) floating
point numbers.

We prove Theorem 1.9 in the full version of the paper.

1.1.2  Approximability Lower Bound. Observe that the approxima-
tion factors obtained in Theorems 1.6, 1.7, and 1.9 all incur a mild
dependence on (variants of) the aspect ratio of the dataset. A nat-
ural question is whether this dependence is necessary. In Theo-
rem 1.10, we conclude that the approximation factor from The-
orem 1.6 is in fact nearly optimal for a wide class of monotone
algorithms. We defer the discussion of the notion of a monotone
algorithm to Section 2.1. Loosely speaking, a monotone algorithm
commits to the choices it makes; namely, the outer ellipsoid may
only increase over time ¢; + & 2 ¢;-1 + E;—1 and the inner el-
lipsoid ¢; + a;&; satisfies a related but more technical condition
ct + ;& C conv((ci—1 +ar—1 - Er-1) U{zs}).

THEOREM 1.10. Consider the setting of Problem 1.1. Let A be any
monotone algorithm (see Definition 2.1 in Section 2.1) that solves
Problem 1.1 with approximation factor '/e,. For every d > 2, there
exists a sequence of points {z1,...,zn} C R? such that algorithm

A gets an approximation factor of 'fa, = Q (%) onZ =

conv({z1,...,2n}).

We prove Theorem 1.10 in the full version of the paper.

1.2 Related Work and Open Questions

Streaming asymmetric ellipsoidal roundings. To our knowledge,
the first paper to study ellipsoidal roundings in the streaming model
is that of Mukhopadhyay, Sarker, and Switzer [13]. The authors
consider the case where d = 2 and prove that the approximation
factor of the greedy algorithm (that which updates the ellipsoid
to be the minimum volume ellipsoid containing the new point
and the previous iterate) can be unbounded. Subsequent work by
Mukhopadhyay, Greene, Sarker, and Switzer [14] generalizes this
result to all d > 2.

Nearly-optimal streaming symmetric ellipsoidal roundings. Re-
cently, Makarychev, Manoj, and Ovsiankin [11] and Woodruff and
Yasuda [20] gave the first positive results for streaming ellipsoidal
roundings. Both [11] and [20] considered the problem only in the
symmetric setting — when the goal is to approximate the polytope

conv({+z1,...,%+2,}). [11] and [20] obtained O(+/dlogk(Z)) and



STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

O(+/d log nkOL) approximations, respectively (here, kOl is the on-
line condition number; see [20] for details). Their algorithms use
only O(poly(d)) space, where the O suppresses logd, logn, and
aspect ratio-like terms. Note that by John’s theorem, the Q(Vd)
dependence is required in the symmetric setting even for offline
algorithms.

A natural question is whether the techniques of [11] or [20] ex-
tend to Problems 1.1 and 1.2. The update rule used in [11] essentially
updates &1 to be the minimum volume ellipsoid covering both &;
and points +2;41. In the non-symmetric case, it would be natural
to consider the minimum volume ellipsoid covering &; and point
Zr41. However, this approach does not give an O(d) approximation.
The algorithm in [20] maintains a quadratic form that consists of
sums of outer products of “important points” (technically speaking,
those with a constant online leverage score). Unfortunately, this
approach does not suggest how to move the previous center ¢;—1
to a new center c¢; in a way that allows the algorithm to maintain
a good approximation factor. It is not hard to see that there exist
example streams for which the center ¢;_1 must be shifted in each
iteration to maintain even a bounded approximation factor. This
means that any nontrivial solution to Problems 1.1 and 1.2 must
overcome this difficulty.

Offline ellipsoidal roundings for general convex polytopes. Nes-
terov [15] gives an efficient offline O(d)-approximation algorithm
for the ellipsoidal rounding problem, with a runtime of O(nd?).
Observe that this is essentially the same runtime as those achieved
by the algorithms we give (see Theorems 1.6 and 1.7).

Streaming convex hull approximations. Agarwal and Sharathku-
mar [2] studied related problems of computing extent measures of a
convex hull in the streaming model, in particular finding coresets
for the minimum enclosing ball, and obtained both positive and
negative results. Blum et al. [5] showed that one cannot maintain
an e-hull in space proportional to the number of vertices belonging
to the offline optimal solution (where a body Z is an e-hull for Z if
every point in Z is distance at most ¢ away from Z).

Offline convex hull approximations. The problem of approximat-
ing a convex body with the convex hull of a small number of points
belonging to the body has been well-studied. Existentially, Barvi-
nok [3] shows that if the input convex set is sufficiently symmetric,
then one can choose (d/¢)%/2 points to obtain a 1+¢ approximation.
Moreover, Lu [10] shows that one can obtain a d + 2 approximation
with d + 1 points, which is witnessed by choosing the d + 1 points
to be the maximum volume simplex contained within the convex
body (for this reason, this construction is called “John’s Theorem
for simplices”; see [16] for more details). However, none of these
works study a streaming or online setting, as we do here.

Coresets for the minimum volume enclosing ellipsoid problem
(MVEE).. Let MVEE(K) denote the minimum volume enclosing
ellipsoid for a convex body K ¢ R¥. We say that a subset S C [n]
is an e-coreset for the MVEE problem if we have

vol (MVEE(2)) < (1 +¢)9 vol (MVEE(Z[s)) . )

There is extensive literature on coresets for the MVEE problem, and
we refer the reader to papers by Kumar and Yildirim [9], Todd and
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Yildirim [19], Clarkson [6], Bhaskara, Mahabadi, and Vakilian [4],
and the book by Todd [18].

Importantly, MVEE(Z|s) may not be a good approximation for
MVEE(Z) (for that reason, some authors refer to coresets satis-
fying (4) as weak coresets for MVEE). Therefore, even though
MVEE(Z) provides a good ellipsoidal rounding for Z, MVEE(Z|s)
generally speaking does not. See [19, page 2] and [4, Section 2.1]
for an extended discussion.

2 SUMMARY OF TECHNIQUES

In this section, we give an overview of the technical methods behind
our results.

2.1 Monotone Algorithms

The algorithm we give in Theorem 1.6 belongs to a class we term
monotone algorithms, which we now define.

Definition 2.1 (Monotone algorithm). Consider the setting of Prob-
lem 1.1. Note the following invariants for every timestep t.

¢t +&E¢ 2 conv((ci—1 +E—1) U {zt}) 6
¢t + ;& Cconv((cp—1 + -1+ Er-1) U{zt}) (6)

We say that an algorithm A is monotone if for any initial (¢ +
&o, ap) and sequence of data points zy,. .., 2z, the resulting se-
quence {(co +Eop, ap), (c1+E1, 1), ..., (cn + Ep, an)} arising from
applying A to the stream satisfies the two invariants (5) and (6).
Refer to Figure 1.

We will sometimes consider how a monotone algorithm A makes
a single update upon seeing a new point x. In this setting, we will
call A a monotone update rule.

c+ &

AR

a-&

Figure 1: A monotone update step. For brevity, we refer to
& and «a - & as the previous ellipsoids &;_1,aE;_1, and &’
and o’ - &’ as the next ellipsoids &, a; - E;. & and a& are,
respectively, the larger and smaller black circles. ¢ + & and
¢+ a’E’ are the larger and smaller blue ellipses. The dotted
lines show d(conv(a& U {z})) \ d(aE), i.e. the the boundary of
conv(a - & U {z}) minus the boundary of «&.

Here we will refer to ¢; + &, ¢ + @;E; as the “next” ellipsoids
and to ¢;—1 + E¢—1,¢ + a—185;-1 as the “previous” ellipsoids. The
first condition we require is that

cr+Er D1 +E4-1. (5a)
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It ensures that each successive outer ellipsoid contains the previous
outer ellipsoid. Thus once the algorithm decides that some z €

c; + &;, it makes a commitment that z € ¢ + &y forall t/ > t.

Note that (5a) implies (5), since z; must be in ¢; + &; and ¢; + &;
is convex. The second condition (6) looks more complex but is
also very natural. Assume that the algorithm only knows that (a)
ct—1+ ar—1E4-1 C Z (this is true from induction) and (b) z; € Z
(this is true by the definition of Z). Then, we must have that A =
conv((cr—1 + ar—1 - Er—1) U {z;}) lies in Z; as far as the algorithm
is concerned, any point outside of A may also be outside of Z. Since
the algorithm must ensure that ¢; + 2;&; C Z, it will also ensure
that ¢; + ;&; C A and thus satisfy (6).

2.2 Streaming Ellipsoidal Rounding (Theorems
1.6, 1.7, and 1.8)

Now we describe the algorithm from Theorem 1.6 in more detail.

Our algorithm keeps track of the current ellipsoid &, center ¢;, and
scaling parameter a;. Initially, ¢y + &y is the ball of radius rg around
¢o (ro and ¢ are given to the algorithm), and o = 1. Each time the
algorithm gets a new point z;, it updates E;-1, ¢;—1, a;—1 using a
monotone update rule (as defined in Definition 2.1) and obtains &,
¢, ar. The monotonicity condition is sufficient to guarantee that
the algorithm gets a 1/, approximation to Z. Indeed, first using
condition (5), we get

cn+Ep 2 (cp—1+8En-1) U{zn}
2 (cn-2+En-2) U{zn-1.2n}
2---2{z1,....2zn}

Thus, ¢, + &, 2 Z. Then, using condition (6), we get

cn+anEn C conv((cp-1 + an-18n-1) U {zn})
C conv((cp—2 + an-28n-2) U{zZn-1,2n})

C - Cconv((co+ &) U{z1,...,zn}).

The initial ellipsoid ¢o + apEp = ¢o + rOB‘zi is in Z and therefore
cn+an&y C conv(zy,. .., zy) = Z. We verified that the algorithm
finds a !/a, approximation for Z.

Now, the main challenge is to design an update rule that ensures
that 1/, is small (as in the statement Theorem 1.6) and prove
that the rule satisfies the monotonicity conditions/invariants from
Definition 2.1. We proceed as follows.

First, we design a monotone update rule that satisfies a particular
evolution condition. This condition upper bounds the increase of
the approximation factor !/a, — !/a:,. Second, we prove that any
monotone update rule satisfying the evolution condition yields
the approximation we desire. These two parts imply Theorem 1.6.
Finally, we remove the initialization requirement from Theorem
1.6 and obtain Theorem 1.7.

Designing a monotone update rule. Suppose that at the end of
timestep ¢ — 1 our solution consists of a center ¢;—1, ellipsoid &;—1,
and scaling parameter a;—1 for which the invariants in Definition
2.1hold. We give a procedure that, given the next point z;, computes
¢t, Et, o that still satisfy the invariants of Definition 2.1. Further,
we prove that the resulting update satisfies an evolution condition
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™

l/az - 1/“:—1
<
log vol(&;) — logvol(&s-1)

() @)

where C is an absolute constant and vol(E) denotes the volume
of the ellipsoid &. While it is possible to find the optimal update
using convex optimization (the update that satisfies the invariants
and minimizes the ratio on the left of (7)), we instead provide an
explicit formula for an update that readily satisfies (7) and as we
show is monotone.

We now describe how we get the formula for the update rule. By
applying an affine transformation, we may assume that &;_1 isa
unit ball and ¢;—1 = 0. Further, we may assume that z; is colinear
with e; (the first basis vector): z; = ||z¢||e;. Importantly, affine
transformations preserve (a) the invariants in Definition 2.1 (if they
hold for the original ellipsoids and points, then they also do for the
transformed ones and vice versa) and (b) the value of the ratio in
(7), since they preserve the value of vol(E;)/vol(E;-1).

Now consider the group G = O(d)¢, = O(d — 1) of orthogonal
transformations that map e; to itself: all of them map the unit
ball ;-1 to itself and z; to itself. Thus, it is natural to search
for an update (c;, E;) that is symmetric with respect to all these
transformations. It is easy to see that in this case &; is defined
by equation (x1/a)? + Z?:z (xi/b)? = 1 where a and b are some
parameters (equal to the semiaxes of &;) and ¢; = ce; for some c.
Since all ellipsoids and points appearing in the invariant conditions
are symmetric with respect to G, it is sufficient now to restrict
our attention to their sections in the 2d-plane span(ej,ez) and
prove that the invariants hold in this plane. Hence, the problem
reduces to a statement in two-dimensional Euclidean geometry
(however, when we analyze (7), we still use that the volume of &;
is proportional to ab®~! and not ab).

Let us denote the coordinates corresponding to basis vectors
e; and ey by x and y. For brevity, let & = E,-1, 2 = 24, &’ = &,
c=c =cey,a = a1, and &’ = a;. We now need to choose
parameters a, b, and ¢ so that invariants from Definition 2.1 and (7)
hold. See Figure 1. As shown in that figure, the new outer ellipse
¢ + & must contain the previous outer ellipse & and the newly
received point z. The new inner ellipse ¢ + ¢’&’ must be contained
within the convex hull of the previous inner ellipse «& and z.

It is instructive to consider what happens when point z is at
infinitesimal distance A from &: ||z|| = 1+A. We consider a minimal
axis-parallel outer ellipse & that contains & and z. It must go
through z = (1+A, 0) and touch & at two points symmetric w.r.t. the
x-axis, say, (— sin ¢,  cos ¢). Angle ¢ uniquely determines &’. Now
we want to find the largest value of the scaling parameter a’ so that
o’ &’ fits inside the convex hull of & and z. When A is infinitesimal,
this condition splits into two lower bounds on &’ - loosely speaking,
they say that & does not extend out beyond the convex hull in
the horizontal (one bound) and vertical directions (the other). The
former bound becomes stronger (gives a smaller upper bound on
@) when ¢ increases, and the latter becomes stronger when ¢
decreases. When ¢ = a/2 + O(a?), all terms linear in a vanish in
both bounds and then o’ = & — ©(a?A) satisfies both of them; for
other choices of ¢, we have @’ < a — Q(aA). So we let ¢ = /2 and
from the formula for o’ get 1/a’ = 1/a + O(A). On the other hand,
vol(&”) > (1+A/2) vol(E), since &’ covers z = (1+A,0). It is easy
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to see now that the evolution condition (7) holds: the numerator is
O(A) and the denominator is Q(A) in (7).

We remark that letting ¢ + &’ be the minimum volume ellipsoid
that contains & and z is a highly suboptimal choice (it corresponds
to setting ¢ = ©(1/d)). To derive our specific update formulas for
arbitrary z, we, loosely speaking, represent an arbitrary update
as a series of infinitesimal updates, get a differential equation on
a, b, ¢, and o', solve it, and then simplify the solution (remove
non-essential terms, etc). We get the following.

Our updates come from a family parameterized by y > 0. Define
a’ by or = /o + 2y. With this choice of &', define the new ellipses
to be

a—lz(x—c)2+bi2y2=1, aiz(x—c)2+bi2y2=ot'2
c+&’ cta’ &
where we use parameters
a=exp(y)
b=1+ a-a
2

c=—a+da -a

Choose y ~ In||z|| so that ¢ + & covers point z. We use two-
dimensional geometry to prove that &', ¢, and o’ satisfy the in-
variants (see Figure 1). Now to prove the evolution condition, we
observe two key properties: (1) the increase in the approximation
factor is given by é - % = 2y and (2) the length of the hori-
zontal semiaxis of the new outer ellipse is exp(y). The length of
the vertical semiaxis is at least 1, so by the second property we
have logvol(&’) —log vol(&) > y. We combine this with the first
property to prove that this update satisfies the evolution condition
(7).

Finally, we obtain an upper bound on 1/ay, from the evolution
equation. We have

You = o+ ) (o = )
t=1

< 1+C
=1
vol &,

(by 7) z
(logvol(&;) — logvol(E¢-1))

=1+Clog

vol &y

It remains to get an upper bound on vol(&;,). We know that &,
approximates Z, and Z, in turn, is contained in the ball of radius
R(Z). Loosely speaking, we get vol(Ep,) = vol(Z) < R(2)4 vol(Bg).
Since & is the ball of radius r, vol & = r¥ vol(Bg). We conclude
that the approximation factor is at most '/, £ 1+ Clog R(rLd)d =
1+ 0O(dlog @), as desired.

Removing the initialization assumption. Once we have a mono-
tone update rule and guarantee on its approximation factor, we
have to convert this to a guarantee where the algorithm does not
have access to the initialization.

One natural approach is as follows. Let d’ < d be the largest
timestep for which points zy, ..., 24,1 are in general position. We
can compute the John ellipsoid for conv({z1,...,z441}) and after
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that apply the monotone update rule guaranteed by Theorem 1.6 to
obtain the rounding for every ¢t > d’ + 2, so long as for every such
timestep we have z; € aff(z1,...,2¢-1).

The principal difficulty in this approach is designing an irregular
update step that will handle points z; outside of aff(zy,...,z;-1);
when we add these points the dimensionality of the affine hull
increases by 1. We consider the special case where the new point z;
is conveniently located with respect to our previous ellipsoid E;—1
(see Figure 2 for a 2d-picture). Specifically, E;—_1 is the unit ball in
span(ey, ..., ey ), and the new point z; = (0,...,0, V1 + 2a),0,...).
In z;, only coordinate d’ +1 is nonzero. We show that we can design
an irregular update step for this special case that makes the new
approximation factor !/, satisfy /o = ey + 1.

Y
z; = (0,v1+2a)

0,0)

Y
a-&_q

v
Er—1

Figure 2: Irregular update step. &;—1 and a - E;_1 are, respec-
tively, the light blue strip on the x-axis and the dark blue
strip on the x-axis. z; = (0, V1+ 2a) is the newly received
point.

It turns out that it is sufficient to consider only this special case.
To see this, note that we can choose an affine transformation that
maps any new point z; and previous ellipsoid &;_1 to the setting
shown in Figure 2. Next, observe that there are at most d—1 irregular
update steps. This means that the irregular update steps contribute
at most an additive d — 1 to the final approximation factor.

Finally, observe that the inradius of conv({zy,...,2;}) is not
monotone in ¢. In particular, it can decrease after each irregular
update step. Nonetheless, we can still give a bound on the radius
of a ball that our convex body conv(zy,...,z;) contains for all ¢.
This will give us everything we need to apply Theorem 1.6 to this
setting, and Theorem 1.7 follows.

Improved bounds on lattices. Finally, we briefly discuss how to
remove the aspect ratio dependence in the setting where the in-
put points z; have coordinates in [-N, N]. At a high level, this
improvement follows from carefully tracking how the approxima-
tion factors of our solutions change after an irregular update step.
Following (7), recall that our goal is to analyze (where we write
ay = 1)

1 1

ar a1
o -1
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By (7), we see that for all “regular” updates, we have

1 1 ( volg, (&r) )
Slog| ———— |,

ar o1 VOId, (&t-1)
where d; = dim (aff(z1, ..., z¢)). Furthermore, as previously men-
tioned, in our irregular update step, we get
1 1
=1
ar -1

In order to control the sum of the !/a, — !/a,_,, it remains to bound
vola, (82) [voly,_, (&,-1) for an irregular update step t. We will then get a
telescoping upper bound whose last term is the ratio of the volume
of the final ellipsoid to the Euclidean ball in the same affine span.
Similarly to the improvements of Woodruff and Yasuda [20] in
the integer-valued case, it will turn out that we will be interested
in the total product of these volume changes. By carefully tracking
these, we will get that this product can be expressed as the determi-
nant of a particular integer-valued matrix. Then, since this matrix
has integer entries, the magnitude of its determinant must be at
least 1. We then observe that the volume of &, after normalizing by

the volume of voI(Bg") must be at most (N\/a)d", since the length

of any vector in this lattice is at most NVd. The desired result then
follows.

2.3 Coresets for Convex Hull (Theorem 1.9)

We now outline our proof strategy for Theorem 1.9. Our main task
is to design an appropriate selection criterion for every new point —
in other words, we must check whether a new point z; is “important
enough” to be added to our previous set of points S;—1. We then
have to show that this selection criterion yields the approximation
guarantee promised by Theorem 1.9.

To design the selection criterion, we run an instance of the algo-
rithm in Theorem 1.7 on the stream. For every new point z;, we ask
two questions — “Does z; result in an irregular update step? Does it
cause vol(&;) to be much larger than vol(&E;-1)?” If the answer to
any of these questions is affirmative, we add z; to the coreset. The
first question is necessary to obtain even a bounded approximation
factor (for example, imagine that the final point z, results in an
irregular update step — then, we must add it). The second question
is quite natural, as it ensures that the algorithm adds “important
points” — those that necessitate a significant update.

We now observe that at every irregular update step ¢ty ford’ < d
and subsequent timestep t > ty for which there are no irregular
update steps in between t; and ¢, there exists a translation cy
(which is the center for &4 that the algorithm maintains) and a
value ry for which we know

ey +ry - (B‘zi Nspan(z1 —cgry...,2q — cd/)) C conv(zy,...,2z)
Cec+Re - BY,

where cc is the circumcenter of conv({zy, ..., z;}). The resulting
bound on |S;| follows easily from the above observation and a
simple volume argument.

Finally, we obtain the approximation guarantee from noting that
for all ¢, the output of the algorithm from Theorem 1.7 given the
first t points is the same as running it only on the points selected
by St.
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2.4 Lower Bound (Theorem 1.10)

Whereas in the upper bound we demonstrated a particular algo-
rithm that satisfies the evolution condition (7), for the lower bound
it suffices to show that for any monotone algorithm, there exists

an instance of the problem (a sequence of zi,..., z,) where the
algorithm must satisfy the “reverse evolution condition”, i.e.
l/m - 1/011—1

c ®)

>
logvol(&;) — logvol(E-1) —

for some C > 0. In analogy to the argument of the upper bound,
showing this reverse evolution condition yields a lower bound of
ai,, >Q (dlog(x)). Given any monotone algorithm A,
the instance we use is produced by an adversary that repeatedly
feeds A a point that is a constant factor away from the previous
ellipsoid.

In order to simplify showing this reverse evolution condition,
we use a symmetrization argument. Specifically, by a particular
sequence of Steiner symmetrizations, we see that the optimal re-
sponse of A can be completely described in two dimensions. Thus,
it is sufficient to only show this reverse evolution condition in the
two-dimensional case where the previous outer ellipsoid is the unit
ball.

This transformed two-dimensional setting is significantly sim-
pler to analyze. Specifically, we can assume that the point given by
the adversary is always 2e;. The rest of the argument proceeds by
cases, again using two-dimensional Euclidean geometry. On a high
level, the constraints placed on the new outer and inner ellipsoid
by the monotonicity condition force the update of A to satisfy the
reverse evolution condition.

the form

3 PRELIMINARIES
3.1 Notation

We denote the standard Euclidean norm of a vector v by ||v]|. We
write Diag (a, ..., ag) to mean the d X d diagonal matrix whose
diagonal entries are aj, ..., ay.

Denote the #-unit ball by B’zi = {x eRY: ||x|| < 1}. We use 9S

for the boundary of an arbitrary set S. We use natural logarithms
unless otherwise specified.

In this paper, we work extensively with ellipsoids. We will always
assume that all ellipsoids and balls we consider are centered at
the origin. We use the following representation of ellipsoids: for
a non-singular matrix A € RI%d et 4 = {x: ||Ax|| < 1}. In
other words, the matrix A defines an bijective linear map satisfying
A8y = B‘Zi. Every full-dimensional ellipsoid (centered at the origin)
has such a representation. We note that this representation is not
unique as matrices A and M A define the same ellipsoid if matrix
M is orthogonal (since || Av|| = ||[MAv|| for every vector v).

3.2 Geometry

We restate the well-known result that five points determine an
ellipse. This is usually phrased for conics, but for nondegenerate
ellipses the usual condition that no three of the five points are
colinear is vacuously true.
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Cramm 3.1 (FIVE POINTS DETERMINE AN ELLIPSE). Letc1+0E1, co+
9E; be two ellipses in R2. If they intersect at five distinct points, then
c1 + 9081 and ¢y + 0E7 are the same.

The following claim, that every full-rank ellipsoid (i.e. an el-
lipsoid whose span has full dimension) can be represented by a
positive definite matrix, follows from looking at the singular value
decomposition of A.

Cram 3.2. Let & C R? be a full-rank ellipsoid. Then there exists
A > 0 such that & = E4.

We also have the standard result relating volume and determi-
nants, which follows from observing AS4 = Bg.

Cramv 3.3. Let A > 0. Then vol(E4) = det(A™") vol(BY).

4 STREAMING ELLIPSOIDAL ROUNDING

In this section, we describe the key components of the algorithms
used to prove 1.6 and 1.7. The full details are given in the full version
of the paper.

4.1 Monotone Algorithms Solve Problem 1.1

To design algorithms to solve the streaming ellipsoidal rounding

problem, we first show that any monotone algorithm gives a valid

solution. We let ¢o € R? and ry > 0 be given so that co +rg -Bg C Z,

and denote the initial ellipsoid as &y = rp - B‘zi. Note that ry need

not be the inradius, although it is upper bounded by the inradius.
If we had for each intermediate step t that

c;+ap-E Cconv(zy,...z:) Ccr+ &

then clearly any algorithm that satisfies this would give a valid final
solution as well. However, in intermediate steps it is not clear that
¢ +ay - E C conv(zy,...zt), due to the initialization of ¢g + &p in
our monotone algorithm framework. Instead, we relax this invariant
tocr+ar - E Cconv({zi,...2:} U (co + Ep)), which still suffices
to produce a valid final solution.

Craim 4.1. To solve Problem 1.1, it suffices for the sequence of ellip-
soids ¢; + &; and scalings a; to satisfy the invariants of Definition 2.1.

Proor. First, we argue that conv(zi,...,zn) € cn + Ep. As
&Ep is an ellipsoid and therefore a convex set, it suffices to show
{z1,...,2n} C cp + Ep. We actually argue by induction that for all
0<t<n{z1...,2:} C ¢t + E;. This is vacuously true for t = 0.
At each step t > 0 the inductive hypothesis gives {z1,...,2z;-1} C
¢;—1+ E¢—1, and thus by (5) we have {z1,...,2;} C ¢ + &E;.

Now, we argue that ¢, +a, - E, C conv(zy, ..., z,). We show by
induction that ¢; + a; - &; C conv({z1,...,2:} U (co + &Ey)) for all
0 < t < n. This is sufficient as conv({z1,...,zn} U (co + Ep)) = Z.
The case for t = 0 is trivial. For ¢ > 0, the inductive hypothesis
gives ¢;—1 + ar—1 - E4—1 C conv({z1,...,2z;—1} U (co + Ep)), and
by (6) we have

ct+ar - & Cconv((cr—1 +ar—1- Er-1) U{z;})
C conv({z1,...,2z:} U (co + Ep))

as desired. O
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4.2 Special Case

In light of Claim 4.1, our strategy is to design an algorithm that
preserves the invariants given in Definition 2.1. This algorithm can
be thought of as an update rule that, given the previous outer and
inner ellipsoids ¢;—1 + &¢—1, ¢;—1 + @;—1E¢-1 and next point z;,
produces the next outer and inner ellipsoids ¢; + &, ¢ + 2 E¢.

It is in fact sufficient to consider the simplified case where the
previous outer ellipsoid is the unit ball, and the previous inner ellip-
soid is some scaling of the unit ball; we will show this in Section 4.3.
We can further specialize by considering only the two-dimensional
case d = 2. We will later show that the high-dimensional case is
not much different, as all the relevant sets ¢z, + E;-1, ¢ + & and
conv(a - ;-1 U {z;}) form bodies of revolution about the axis
through ¢;—1 and z;.

We now describe our two-dimensional update rule. In order to
simplify notation, we will let « be the previous scaling a;—1, and
o’ be the next scaling ;. We will assume that a < /2 to simplify
the analysis of our update rule; this will not affect the quality of
our final approximation as this update rule will only be used in
the “large approximation factor” regime. We will also overload
notation by writing ¢ + & even when c is a scalar to mean (c, 0) +&.
We can describe the previous outer ellipsoid & with the equation
x% +1? < 1, and the previous inner ellipsoid a& with x? + y? < a?.
We define the next outer and inner ellipsoids ¢ + &, ¢ + a’E’ as

1 2, 1 2
—x-c)"+=y" <1,
az( ) Y

1 2, L a_
—x-c)'+ sy <«
az( ) Y

c+&' cta’' &'

where we use parameters

a=exp(y)
_ ’
b=1+2 2a
c=—a+a -a ©)
l: 1
1
a+2}/

We will let z be the rightmost point of ¢ + &', so that z = (¢ +
a,0). Eventually, we will choose y so that z coincides with z;, the
point received in the next iteration. In Section 4.4, these parameters
a(y),b(y),c(y),a’(y) will be used as functions of the parameter
Yy = 0. However, we will not yet explicitly specify y, so in this
section these parameters can be thought of as constants for some
fixed y. This update rule is pictured in Figure 1.

We first collect a few straightforward properties of this update
rule.

CraM 4.2. The parameters in the setup (9) satisfy the following.
(1) 3 =2 +2

) 1?21
3)c=0

4 c+ad a>a

Before proving these properties, we provide geometric interpre-
tations. Intuitively, (1) means that y is proportional to the increase
in the approximation factor at this step, a fact that we use when
analyzing the general-case algorithm. (2) means that the outer el-
lipsoid grows on every axis; and (3) means that the centers of the
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next ellipsoids are to the right of the y-axis, i.e. the centers of the
next ellipsoids are further towards v than those of the previous
ellipsoids. The rightmost point of ¢ + @’ &’ is ¢ + &’ - a, so (4) shows
that this point is to the right of the rightmost point of « - &.

We now prove Claim 4.2.

ProOF OF CraM 4.2. (1) is clear from rearranging the definition
of &’. From (1) we also have a’ < «, so that (2) follows immediately.
For (3), observe that 2 = 1+ 2ya. When « < /2, this means

a
551+)/Sexp(y):a (10)

using 1+ x < e*. By definition of ¢, @/’ < a is equivalent to ¢ > 0.

To show (4), by definition we have that c + &’ - a = —a + 2d’a.
Thus showing ¢ + @’ - a > « is equivalent to showing that a’a > a,
which is equivalent to the inequality in (10). O

As Figure 1 depicts, the update step we defined satisfies the
invariants in Definition 2.1 and so is monotone; in the rest of this
section we make this picture formal. To start, we consider the
invariant concerning outer ellipsoids; we will show that & C ¢+ &’.
For now we can think of z as replacing z; , and clearly z € ¢ + &’,
so if we show that & C ¢+ &’, then conv(E U {z}) C c+ &’ as well
since ¢ + &’ is convex.

CraM 4.3. We have&E Cc+&’.

Proor. First, observe that & C &’ because both axes of & have
greater length than those of &: a > 1 by definition, and b > 1 from
Claim 4.2-(2). Now, we translate & to the right until it touches &
at two points. We call this translated ellipse ¢, + &', as shown in
Figure 3. Observe that as long as ¢ < ¢, we have & C ¢+ &’. We
now determine c.

c+¢& ¢ +&

Figure 3: Outer ellipses of the update step. As before, & is
the black circle and ¢ + &’ is the blue ellipse. ¢, + &’ is the
magenta ellipse, with its center at ¢, and the dotted magenta
line showing the position of ¢, along the x-axis. ¢, is defined
so ¢, + &’ and & are tangent at two points. Q is one of these
two tangent points.

First, note points on the boundary of ¢, + &’ are described by
the equation
-c)? ¥

— 7= L (11)
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Let Q = (x,y’) be the point of intersection between & and ¢, +

&’ where y’ > 0. Since Q is on the boundary of both ellipses,
the vectors (% Zb—yz) and (2x’,2y’), which are the normal
vectors at Q of ¢, + & and & respectively, must be parallel. Thus

4(xa;cr) oy = 491’72’( , which simplifies to

C
x = Zr (12)
-7

At this point we have a system of three equations relating (x, ")
and ¢;: (12), Q lying on &, and Q satisfying (11). We now solve this

system to find c,. To start, we expand (11) into x’2 — 2x"c, + ¢ +

2 2 2
y’Z% = a?, which we rewrite into x’zz—z +x? (l - %) —2x'c +
2 2
c? +y’2% = a?. As Q lies on &, this becomes x'? (1 - %) -2x"cr+
2 2
e+ % = . Substituting in (12), we get C’az -2 C’az +c2+
o Ty
2 2
= a? Simplifying, we have c? (1 - b2b—a2) = a® (1 - #), ie.
2
¢ = % a? — b?). To complete the proof of Claim 4.3, it suffices
to show
b2 -1
2 2 _ 2
c“ < = (a® = b°).
This is shown in Claim 7.5 in the full version of the paper. O

Now, we move on to the inner ellipsoid invariant of Definition 2.1.
In particular, we will argue that ¢ + &’&’ C conv(a& U {z}). On a
high level, we show this by arguing that the boundary of ¢ + o’ &’
does not intersect the boundary of conv(a&U{z}), except at points
of tangency.

We can split the boundary of conv(a& U {z}) into two pieces:
the part that intersects with the boundary of @&, which is an arc of
the boundary of «&; and the remainder, which can described as two
line segments connecting z to that arc. In particular, there are two
lines that go through z and are tangent to a&, one of which we call
line L, and the other line is the reflection of L across the x-axis. We
define P; and P; as the tangent points of these lines to @&. Then,
the boundary of conv(a& U {z}) consists of an arc P;P, and the
line segments Pz, Pyz. This is illustrated in Figure 4. Note that at
this point it is possible a priori for the arc P; P, that coincides with
the boundary of conv(a& U {z}) to be either the major or minor
arc; we will later show it must be the major arc. We will take L
to be the line whose tangent point to a&, Py, is above the x-axis,
though this choice is arbitrary due to symmetry across the x-axis.

We first show that c+a’ &’ does not intersect m and @ except
possibly at points of tangency. In fact, we show a slightly stronger
statement, in similar fashion to Claim 4.3.

CrAamM 4.4. ¢+ a’&’ lies inside the angle /P1zP;.

Proor. We translate ¢ + a’&’ to the right until it touches L (and,
by symmetry, Pyz). We call this translated ellipse ¢y + a’E’, as
shown in Figure 5. (Formally, the center c; can be described not as
a translation from some other ellipse, but as ¢, such that ¢y + a’&’
intersects L at one point). Observe that if ¢ < ¢4, then ¢ + &’ &’ lies
inside the angle /P1zP,. We now determine c;.
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C+Oég oy \/
PO \\\‘~~ z T
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P, /!
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Figure 4: Inner ellipses of the update step. As before, a& is
the black circle and c+a’E’ is the blue ellipse. P is the shared
leftmost point of «& and c+a’&’. There are two lines through
z that are tangent to &, one of which we call L and pictured
in orange. We call the tangent points P; and P;. The line
segments P, z, P,z are the dotted black lines. P{ and P; are the
two points of intersection between d(c + @’E’) and the line
segment P P;. P{" and P}/ are the two points of intersection
between 9(c + @’E’) and 9a& to the right of the y-axis. Note
that Py, Pé, Pé’ are the reflections of P, P{, P{’ across the x-axis.

y o
c+ad'& P}\ Q cr+d&
% C+i; T\\'/\\ z T

M/
\
\
\
\
\
\
\
h

Q

Figure 5: Inner ellipses of the update step. As before, a& is
the black circle, ¢ + @’E is the blue ellipse, L is the orange
line through z and tangent to «&, P; and P, are the tangent
points on the lines through z tangent to a&, and P, z, P,z are
the dotted black lines. c; + o’E’ is the magenta ellipse, with
its center at c; and magenta dotted line showing its position
on the x-axis. c; is defined so that c; + a’E’ is tangent to Piz
and P,z, with Q as the tangent point of ¢, + o’E’ and Piz.

The equation defining L is

1 + 1 1 1
X —_ -y =1,
c+a a? (c+a)2y
N
-

£
1 t

Makarychev, Manoj, Ovsiankin

where we define £1, £, as the coefficients for x and y. Observe that
zison L, and L is tangent to a& at P, which has coordinates

1%:(0‘2 o | ! ) (13)

c+a a®  (c+a)?

Tangency can be confirmed by checking that P; is parallel to (¢, £2),
the normal vector defining L.

Let Q = (x’,y’) be the point of intersection of L and ¢y + o’&,
there are three properties that define Q. First it lies on the boundary
of c; + &’ E, so it satisfies

72

(x" —cy)?
T+ %—2 = 0(,2. (14)

Second, at Q the normal vectors for the equations defining ¢, +

a’E and L are parallel, i.e. (2(xa+c+), Zb—é’) is parallel to (¢, £2). So
’ 7
(xa—20+)£’2 = g—zt’l. (15)
Finally, Q lies on L, so we have £;x” + 2y’ = 1. Solving this for v/,
we get
, 11— fHx’

==

These three equations form a system for x’, y” and ¢, which we

now solve to find c,.. Taking the square of (15) and rearranging gives

(16)

12 b2 (x' —c. )2 02 o o F_ 2

Z_Z = %. Substituting this into (14), we get % +
1

b2 (x’ —c. )22 ] 22

—(ang) 2 = g2, Now, defining r := Zz—é, we group the terms of

this equation into the form

1 1
(x' —cy)?- — (1+—) =a’. 17)
a r
We substitute (16) into (15) to get x,;f* b = % 172/& . Grouping
for x” and rearranging yields
, r 1
X —cy = — —c4]. 18
= (5] (13

Next, we substitute (18) into (17), and get after some cancellation

2

1 1+r
— —c,| =a%®- .
l’l r

Observe on the left hand side that % — ¢4 = c+a—cy. Clearly
the center ¢4 must be to the left of z, so this must be non-negative.
Hence after taking the positive square root, we obtain ¢, =c+a —

a -a 1;’—’ It remains to show that ¢ < c4, or equivalently that
, 1+r
a-a -a > 0.
r
We verify this in Claim 7.6 in the full version of the paper. O

Now, we build on the previous claim to show the inner ellipsoid
invariant.

Cramm 4.5. We havec+a’ - & C conv(a - & U {z}).

Proor. We will argue that the boundary of ¢ + «’&’ does not
intersect the boundary of conv(a& U {z}), except at points of tan-
gency. This is sufficient to establish the claim, as Claim 4.4 shows
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that c+ o’ &’ is internal to Z/P1zPs, and so if ¢ + o’ &’ does not inter-
sect the boundary of conv(a& U {z}), c + @’ & must lie inside of, or
be disjoint from conv(a&U{z}). Since the leftmost points of @& and
c+a’&’ coincide, ¢ + &’ &’ must then lie inside of conv(a& U {z}).
Recall that the boundary of conv(a& U{z}) consists of the arc P; P
and the line segments m @ Claim 4.4 already shows that the
boundary of ¢ + a’E’ does not intersect Pyz and P;z, so we only
need to show that the boundary of ¢ + a’&’ does not intersect the
arc P1P,.

To do this, we start by enumerating the points of intersection of
da& and d(c + a’E’), recalling that P P; is an arc of da&. Observe
that the leftmost points of #& and ¢+ a’&’ coincide, as the leftmost
point of ¢ + @’&’ is ¢ — @’ - a = —a by definition; we call this point
Py. Py is a point of tangency and hence has intersection multiplicity
2, because the centers of @& and ¢ + o’ - & both lie on the x-axis.

Next, we argue for the existence of two more distinct intersection
points P{’, P}’ as depicted in Figure 4. The leftmost point of ¢ +a’ &’
is (-, 0), and the rightmost point is ¢ + @’, which by Claim 4.2-
(4) is to the right of (a,0), the rightmost point of a&. Thus, by
lying on da&, Py, P, lie between the leftmost and rightmost points
of c + &’&’, and so ¢ + o’ &’ intersects the line through P; and
P,. Further, by Claim 4.4, as ¢ + «’E’ lies in the angle /PjoP;,
c+a’ & actually intersects the line segment Py P;. Observe that this
intersection happens at two distinct points, which we call P] and
P;. Both points are inside of &, yet d(c + a’E’) is a continuous
path that connects both to the rightmost point of ¢ + &’ &’, which is
outside of @&. Thus d(c+a’E’) intersects da& at two more distinct
points, which we call P{" and P;/.

Now, we argue that P{’ and Pé' lie on the minor arc Py Ps. First,
observe that the arc PP, containing Py is the major arc. This is
because P; lies to the right of the y-axis, as determined in (13); and
by symmetry so does P,. This also implies that major arc P1 P, is
the arc with which the boundary of conv(a& U {z}) coincides. P
and P are colinear with P; and P2, and as P;" and P}’ are to the
right of P{ and P), this implies that they must lie on the minor arc
PP,

Counting all the intersection points of da& and d(c + @’ E’), we
have Py (with multiplicity 2) and P;” and P}’ (both with multiplicity
1); with total multiplicity 4. Using Claim 3.1, it is impossible for
them to have another intersection point without both ellipses being
the same. Thus d(c + a’E’) cannot intersect the major arc P; Py
except at Py, and so except at points of tangency the boundary of
¢+ a’&’ does not intersect the boundary of conv(a& U {z}). O

4.3 Generalizing to High Dimension and
Arbitrary Previous Ellipsoids

Now that we have demonstrated the invariants of Definition 2.1 for
the special two-dimensional case where the previous ellipsoid is
the unit ball, we generalize slightly to higher dimensions. However,
we first still assume the previous ellipsoid is the unit ball.

Using the parameters as defined in (9), we will let & = Bd, and
define the boundary of &’ as a—lz(xl -2+ #x% +...+ #x{zi =1.
Similarly to before, we let z = (¢ + 4,0,0,...,0) € Rd, the furthest
point of ¢ + &’ in the positive direction of the x1-axis.

Now, we argue that the invariants of Definition 2.1 still hold in
this setting.
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CrLAM 4.6. The inner and outer ellipsoid invariants hold in this
setting:

1N &ECc-en+&

(2) c-e1+a’'E C conv(aE U {z})

Proor. Observe that &, c-e1+&’, c-e;+a’E’, and conv(aEU{z})
are all bodies of revolution about the xj-axis, with their cross-
sections given by their counterparts in Section 4.2. As Claim 4.3
and Claim 4.5 hold for these cross sections, the set containments
hold for the bodies of revolution as well. ]

We further generalize to the case where the previous ellipsoid
is arbitrary. In particular, let ¢ + & be the previous ellipsoid, with
a vector ¢® € R? and & = &4 for non-singular matrix A € R?%4,
Let z° € R? be an arbitrary vector, representing the next point
received. We let u = A(z° — ¢°), and W € R%*? be an orthog-
onal matrix with w = ﬁ as its first column (e.g. by using as
its columns an orthonormal basis containing w). We define the
next outer ellipsoid as c® + cA™lw + &’ for & = Eypwra. with

D = Diag (# #ﬁ) Observe that z = ¢® + (c + a) A" lw is

the furthest point of ¢® + cA™lw + &’ from the previous center ¢°
towards z°.

This setup works to preserve the key invariants, as we see in the
next claim.

Cramm 4.7. The inner and outer ellipsoid invariants hold in this
setting:

(1) c°+ECc®+cA lw+ &

(2) ®+cA lw+a’E C conv((c® + a&) U {z})

Proor. We translate both set inclusions by —¢°, then apply the
nonsingular linear transformation W' A. Observe that the set inclu-
sions we wish to prove hold if and only if the transformed ones do.
Noting that WTAE' = Ewp, the transformed set inclusions are
Ew Cc-e1+Ewpandc-e;+a’Ewp C conv(aEw U{(c+a)-e1}).
However, since W is an orthogonal matrix, Ew = Bg and Ewp =
&Ep, and so the inclusions are exactly those shown in Claim 4.6. O

Choosing y correctly in (9) ensures that z € ¢® + cA™w + &’
coincides with z°, as stated in the upcoming claim. This can be seen
by looking at the definition of z.

Cram 4.8. Ify is chosen so that ¢ + a = ||u|, then z = z°.

4.4 General Update Step

In this section, in Algorithm 1 we give the general update step,
which is the primary primitive for the algorithm that solves Prob-
lem 1.1. The analysis of this step builds on that of the previous
sections.

In Lines 3, 4 and 5, we use the definition of a(y), b(y), c(y), @’ (y)
from (9), substituting a;—; for a. Although the update step does not
explicitly mention ellipsoids, we use &; = E4, so that at iteration
t the next outer and inner ellipsoids are ¢; + E4, and ¢; + a;E4,,
respectively.

Observe also that if in iteration ¢ we let W € R%*? be an orthog-
onal matrix with w as its first column, we can write
1 1 .

. 1
A=W - Diag , e :
a(y}) b(yf b(y})

(19)
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Algorithm 1 Full update step A"

Input: A;_q € RY*d, 1 €RY ap_q € [0, %],zt eR4
Output: A; € R¥%9 ¢, e RY a; € [0, a5_1]

1: Letu=A;_1(zs —ct—1),w = m

2. if ||u]| > 1 then

3 Lety) be such that a(y}") + c(y}) = llull

. A 1 1 _ 1 T
S TR ﬁ(am*) o)

5. return A; = A-As_1,¢r = Cr_1 +c(y?)At’_11w, ar =o' (v))

6: else
7. return Ay = A;_1,¢t = Cr—1, & = A1

Now, we argue that this algorithm satisfies the invariants defined
in Definition 2.1. This argument is essentially the observation that
the update step in the algorithm is the one analyzed in Claim 4.7.

Cramm 4.9. Algorithm 1 is a monotone update; i.e., it satisfies the
invariants in Definition 2.1.

Proor. If ||u|| < 1, then z; € ¢, + &, and the inner and outer
ellipsoids are not updated, so the invariants clearly hold. Other-
wise, we apply Claim 4.7 and Claim 4.8 setting A = A;_1,¢° =
ct-1,2° = zs,a = a;—1. Using (19), 84, is the same as &’ in
Claim 4.7; and clearly a; = «’. This establishes the inner ellip-
soid invariant ¢; + ;&; € conv((cr—1+ar-18E-1) U{z;}) directly.
To show conv((c;—1 + E¢—1) U{z;}) C ¢c; + &;, observe that we
have ¢;—1 + E;-1 C ¢; + &; from Claim 4.7, and z; € ¢; + E; from
Claim 4.8. Then the outer ellipsoid invariant follows as ¢; + &; is a
convex set. |

Finally, we bound the relevant quantities that will be used in the
analysis of the full algorithm’s approximation factor. In particular,
we show that exp(y}°) gives a lower bound on the increase in vol-
ume at each iteration ¢, showing that the evolution condition holds.
If ||u|| < 1, and the ellipsoids are not updated, in that iteration we
think of y} = 0.

Cram 4.10. Forany input given to Algorithm 1, we havevol(&E;) >
exp(y}) vol(&Es-1).

ProoF. This formula is clearly true when the ellipsoids are not
updated because y; = 0, so we consider the nontrivial case. Recall
the formula vol(E4) = det(A™1) vol(B‘zi) from Claim 3.3. Then we
have

vol(E4,) = det(A; 1) vol(BY) = det(A™?) - det(A[},) - vol(BY)
=det(A ) vol(E4,_,)

where we use the definition of A from Line 4 on the ¢-th iteration.
Then

det(A™!) = a(y) - b(y;)* ! using (19)
> a(yt*) by Claim 4.2-(2)
= exp(y}) by definition of a in (9)

and using vol(E4,) = det(A71) - vol(E4,_,) completes the proof.
O
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