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Abstract

In this paper, we present a pressure-robust enriched Galerkin (EG) scheme for solving the
Stokes equations, which is an enhanced version of the EG scheme for the Stokes problem
proposed in [S.-Y. Yi, X. Hu, S. Lee, J. H. Adler, An enriched Galerkin method for the
Stokes equations, Computers and Mathematics with Applications 120 (2022) 115–131]. The
pressure-robustness is achieved by employing a velocity reconstruction operator on the load
vector on the right-hand side of the discrete system. An a priori error analysis proves that
the velocity error is independent of the pressure and viscosity. We also propose and analyze
a perturbed version of our pressure-robust EG method that allows for the elimination of
the degrees of freedom corresponding to the discontinuous component of the velocity vector
via static condensation. The resulting method can be viewed as a stabilized H1-conforming
P1-P0 method. Further, we consider efficient block preconditioners whose performances are
independent of the viscosity. The theoretical results are confirmed through various numerical
experiments in two and three dimensions.

Keywords: enriched Galerkin, finite element methods, Stokes equations, pressure-robust,
static condensation, stabilization

1. Introduction

We consider the Stokes equations for modeling incompressible viscous flow in an open and
bounded domain Ω ⊂ R

d, d = 2, 3, with simply connected Lipschitz boundary ∂Ω: Find the
fluid velocity u : Ω → R

d and the pressure p : Ω → R such that

−ν∆u+∇p = f in Ω, (1.1a)

∇ · u = 0 in Ω, (1.1b)

u = 0 on ∂Ω, (1.1c)

where ν > 0 is the fluid viscosity, and f is a given body force.
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Various finite element methods (FEMs) have been applied to solve the Stokes problem
based on the velocity-pressure formulation (1.1), including conforming and non-conforming
mixed FEMs [1–4], discontinuous Galerkin (DG) methods [5, 6], weak Galerkin methods [7, 8],
and enriched Galerkin methods [9, 10]. It is well-known that the finite-dimensional solution
spaces must satisfy the inf-sup stability condition [11–13] for the well-posedness of the discrete
problem regardless of what numerical method is used. Therefore, there has been extensive
research to construct inf-sup stable pairs for the Stokes equations in the last several decades.
Some classical H1-conforming stable pairs include Taylor-Hood, Bernardi-Raugel, and MINI
elements [14].

Though the inf-sup condition is crucial for the well-posedness of the discrete problem, it
does not always guarantee an accurate solution. Indeed, many inf-sup stable pairs are unable
to produce an accurate velocity solution when the viscosity is very small. More precisely,
such pairs produce the velocity solution whose error bound depends on the pressure error
and is inversely proportional to the viscosity, ν. Hence, it is important to develop numerical
schemes whose velocity error bounds are independent of pressure and viscosity, which we call
pressure-robust schemes.

There have been three major directions to develop pressure-robust schemes. The first
direction is based on employing a divergence-free velocity space since, then, one can separate
the velocity error from the pressure error. Recall, however, that the velocity space of clas-
sical low-order inf-sup stable elements do not satisfy the divergence-free (incompressibility)
condition strongly. One way to develop a divergence-free velocity space is to take the curl of
an H2-conforming finite element space [15–17], from which the pressure space is constructed
by taking the divergence operator. Though this approach provides the desired pressure-
robustness, it requires many degrees of freedom (DoFs). Another way, which has received
much attention lately, is to employ an H(div)-conforming velocity space [17–22]. However, to
take account of lack of regularity, the tangential continuity of the velocity vector across the
inter-elements has to be imposed either strongly [17, 21] or weakly [18–20, 22]. The second
direction is based on the grad-div stabilization [23, 24], which is derived by adding a modified
incompressibility condition to the continuous momentum equation. This stabilization tech-
nique reduces the pressure effect in the velocity error estimate but not completely eliminates
it. The third direction, which we consider in the present work, is based on employing a veloc-
ity reconstruction operator [25]. In this approach, one reconstructs (H(div)-nonconforming)
discrete velocity test functions by mapping them into an H(div)-conforming space. These
reconstructed velocity test functions are used in the load vector (corresponding to the body
force f) on the right-hand side of the discrete system while the original test functions are used
in the stiffness matrix. This idea has been successfully explored in various numerical methods
[8, 26–32].

Our main goal is to develop and analyze a pressure-robust finite element method requiring
minimal number of degrees of freedom. To achieve this goal, we consider as the base method
the enriched Galerkin (EG) method proposed for the Stokes equations with mixed boundary
conditions [10]. This EG method employs the piecewise constant space for the pressure. As
for the velocity space, it employs the linear Lagrange space, enriched by some discontinuous,
piecewise linear, and mean-zero vector functions. This enrichment space requires only one
DoF per element. Indeed, any function v in the velocity space has a unique decomposition
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of the form v = vC + vD, where vC belongs to the linear Lagrange space and vD belongs
to the discontinuous linear enrichment space. To take account of the non-conformity of the
velocity space, an interior penalty discontinuous Galerkin (IPDG) bilinear form is adopted.
This method is one of the cheapest inf-sup stable methods with optimal convergence rates
for the Stokes problem. However, like many other inf-sup stable methods, this EG method
produces pressure- and viscosity-dependent velocity error. In order to derive a pressure-
robust EG method, we propose to take the velocity reconstruction approach mentioned above.
Specifically, the velocity test functions are mapped to the first-order Brezzi-Douglas-Marini
space, whose resulting action is equivalent to preserving the continuous component vC and
mapping only the discontinuous component vD to the lowest-order Raviart-Thomas space.
This operator is applied to the velocity test functions on the right-hand side of the momentum
equation, therefore the resulting stiffness matrix is the same as the one generated by the
original EG method in [10]. By this simple modification in the method, we can achieve
pressure-robustness without compromising the optimal convergence rates, which has been
proved mathematically and demonstrated numerically.

Though the proposed pressure-robust EG method is already a very cheap and efficient
method, we seek to reduce the computational costs even more by exploring a couple of strate-
gies. First, we developed a perturbed pressure-robust EG method, where a sub-block in the
stiffness matrix corresponding to the discontinuous component, uD

h , of the velocity solution
uh = uC

h + uD
h is replaced by a diagonal matrix. This modification allows for the elimina-

tion of the DoFs corresponding to uD
h from the discrete system via static condensation. The

method corresponding to the condensed linear system can be viewed as a new stabilized H1-
conforming P1-P0 method (see [33] for a similar approach). For an alternative strategy, we
designed fast linear solvers for the pressure-robust EG method and its two variants. Since
the stiffness matrix remains unchanged, the fast linear solvers designed for the original EG
method in [10] can be applied to the new pressure-robust EG method and its two variants
with only slight modifications. The performance of these fast solvers was investigated through
some numerical examples.

The remainder of this paper is organized as follows: Section 2 introduces some preliminar-
ies and notations, which are useful in the later sections. In Section 3, we recall the standard
EG method [10] and introduce our pressure-robust EG method. Then, well-posedness and
error estimates are proved in Section 4, which reveal the pressure-robustness of our new EG
scheme. In Section 5, a perturbed pressure-robust EG scheme is presented, and its numerical
analysis is discussed. In Section 6, we verify our theoretical results and demonstrate the effi-
ciency of the proposed EG methods through two-and three-dimensional numerical examples.
We conclude our paper by summarizing the contributions of our new EG methods and discuss
future research in Section 7.

2. Notation and Preliminaries

We first present some notations and preliminaries that will be useful for the rest of this
paper. For any open domain D ∈ R

d, where d = 2, 3, we use the standard notation Hs(D)
for Sobolev spaces, where s is a positive real number. The Sobolev norm and semi-norm
associated withHs(D) are denoted by ‖·‖s,D and |·|s,D, respectively. In particular, when s = 0,
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H0(D) coincides with L2(D) and its associated norm will be denoted by ‖·‖0,D. Also, (·, ·)D
denotes the L2-inner product on D. If D = Ω, we drop D in the subscript. We extend these
definitions and notations to vector- and tensor-valued Sobolev spaces in a straightforward
manner. Additionally, H1

0 (Ω) and L2
0(Ω) are defined by

H1
0 (Ω) = {z ∈ H1(Ω) | z = 0 on ∂Ω}, L2

0(Ω) = {z ∈ L2(Ω) | (z, 1) = 0}.

We finally introduce a Hilbert space

H(div,Ω) := {v ∈ [L2(Ω)]d : div v ∈ L2(Ω)}

with an associated norm
‖v‖2H(div,Ω) := ‖v‖20 + ‖div v‖20.

To define our EG methods, we consider a shape-regular mesh Th on Ω, consisting of
triangles in two dimensions and tetrahedra in three dimensions. Let hK be the diameter of
K ∈ Th. Then, the characteristic mesh size h is defined by h = maxK∈ThhK . Denote by Eo

h

the collection of all the interior edges/faces in Th and by Eb
h the boundary edges/faces . Then,

Eh = Eo
h ∪ Eb

h is the collection of all edges/faces in the mesh Th. On each K ∈ Th, let nK

denote the unit outward normal vector on ∂K. Each interior edge/face e ∈ Eo
h is shared by

two neighboring elements, that is, e = ∂K+ ∩ ∂K− for some K+,K− ∈ Th. We associate one
unit normal vector ne with e ∈ Eo

h, which is assumed to be oriented from K+ to K−. If e is
a boundary edge/face, then ne is the unit outward normal vector to ∂Ω.

We now define broken Sobolev spaces on Th and Eh. The broken Sobolev space Hs(Th) on
the mesh Th is defined by

Hs(Th) = {v ∈ L2(Ω) | v|K ∈ Hs(K) ∀K ∈ Th},

which is equipped with a broken Sobolev norm

‖v‖s,Th =





∑

K∈Th

‖v‖2s,K





1

2

.

Similarly, we define the space L2(Eh) on Eh and its associated norm

‖v‖0,Eh =





∑

e∈Eh

‖v‖20,e





1

2

.

Also, the L2-inner product on Eh is denoted by 〈·, ·〉Eh .
Finally, we define the average and jump operators, which will be needed to define the EG

methods. For any v ∈ Hs(Th) with s > 1/2, let v± be the trace of v|K± on e = ∂K+ ∩ ∂K−.
Then, the average and jump of v along e, denoted by {·} and [·], are defined by

{v} =
1

2
(v+ + v−), [v] = v+ − v− on e ∈ Eo

h.

On a boundary edge/face,
{v} = v, [v] = v on e ∈ Eb

h.

These definitions can be naturally extended to vector- or tensor-valued functions.
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3. Pressure-Robust Enriched Galerkin Method

In this section, we introduce our new pressure-robust EG method for the Stokes equations.
First, we can derive the following weak formulation of the governing equations (1.1) in a
standard way: Find (u, p) ∈ [H1

0 (Ω)]
d × L2

0(Ω) such that

ν(∇u,∇v)− (∇ · v, p) = (f ,v) ∀v ∈ [H1
0 (Ω)]

d, (3.1a)

(∇ · u, q) = 0 ∀q ∈ L2
0(Ω). (3.1b)

In this paper, we consider the homogeneous Dirichlet boundary condition for simplicity. How-
ever, in the case of a non-homogeneous Dirichlet boundary condition, this weak problem
can be easily modified by changing the solution space for the velocity u to reflect the non-
homogeneous boundary condition.

3.1. Standard EG method for the Stokes problem [10]

Our pressure-robust EG method is designed based upon the EG method originally pro-
posed in [10], which we will refer to as the standard EG method for the Stokes equations.
Therefore, in this section, we first present the standard EG method to lay a foundation for
the presentation of the new pressure-robust method.

For any integer k ≥ 0, Pk(D) denotes the set of polynomials defined on D ⊂ R
d whose

total degree is less than or equal to k. Let

Ch = {v ∈ [H1
0 (Ω)]

d | v|K ∈ [P1(K)]d ∀K ∈ Th}

and
Dh = {v ∈ L2(Ω) | v|K = c(x− xK), c ∈ R ∀K ∈ Th},

where xK is the centroid of the element K ∈ Th. Then, our EG finite element space for the
velocity is defined by

Vh = Ch ⊕Dh.

Therefore, any v ∈ Vh has a unique decomposition v = vC + vD such that vC ∈ Ch and
vD ∈ Dh. On the other hand, we employ the mean-zero, piecewise constant space for the
pressure. That is, the pressure space is defined by

Qh = {q ∈ L2
0(Ω) | q ∈ P0(K) ∀K ∈ Th}.

The standard EG scheme introduced in [10] reads as follows:
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Algorithm 1 Standard EG (ST-EG) method

Find (uh, ph) ∈ Vh ×Qh such that

a(uh,v)− b(v, ph) = (f ,v) ∀v ∈ Vh, (3.2a)

b(uh, q) = 0 ∀q ∈ Qh, (3.2b)

where

a(v,w) := ν
(

(∇v,∇w)Th − 〈{∇v}ne, [w]〉Eh

− 〈{∇w}ne, [v]〉Eh + ρ〈h−1
e [w], [v]〉Eh

)

, (3.3a)

b(w, q) := (∇ ·w, q)Th − 〈[w] · ne, {q}〉Eh . (3.3b)

Here, ρ > 0 is a penalty parameter and he = |e|1/(d−1), where |e| is the length/area of the
edge/face e ∈ Eh.

3.2. Pressure-robust EG method

In order to define a pressure-robust EG scheme, we use a velocity reconstruction operator
R : Vh → H(div,Ω) that maps any function v ∈ Vh into the Brezzi-Douglas-Marini space of
index 1, denoted by BDM1 [34]. Specifically, for any v ∈ Vh, Rv ∈ BDM1 is defined by

∫

e
(Rv) · nep1 ds =

∫

e
{v} · nep1 ds ∀p1 ∈ P1(e), ∀e ∈ Eo

h, (3.4a)

∫

e
(Rv) · nep1 ds = 0 ∀p1 ∈ P1(e), ∀e ∈ ∂Ω. (3.4b)

Remark 3.1. The above definition of R is useful in numerical analysis of the new method. In
practice, however, we reconstruct only the discontinuous component of each vector based on the
following observation: For any v = vC + vD ∈ Vh, the operator R defined in (3.4) keeps the
continuous component vC the same while mapping vD into the lowest-order Raviart-Thomas
space [35], denoted by RT0. Indeed, RvD ∈ RT0 satisfies

∫

e
RvD · ne ds =

∫

e
{vD} · ne ds ∀e ∈ Eh. (3.5)

Using the definition of the operator R, we can easily prove the following lemma.

Lemma 3.2. The bilinear form b(w, q) can be written using the velocity reconstruction op-
erator R as follows:

b(w, q) = (∇ · Rw, q)Th . (3.6)

We are now ready to define our pressure-robust EG method using the velocity reconstruc-
tion operator R as below.
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Algorithm 2 Pressure-robust EG (PR-EG) method

Find (uh, ph) ∈ Vh ×Qh such that

a(uh,v)− b(v, ph) = (f ,Rv), ∀v ∈ Vh, (3.7a)

b(uh, q) = 0, ∀q ∈ Qh, (3.7b)

where the bilinear forms a(·, ·) and b(·, ·) are the same as in (3.3).

As the bilinear forms a(·, ·) and b(·, ·) are the same as in (3.3), the PR-EG method in
Algorithm 2 and the ST-EG method in Algorithm 1 have the same stiffness matrix. However,
this seemingly simple modification on the right-hand side vector significantly enhances the
performance of the ST-EG method, as will be shown in the error estimates and numerical
experiments.

4. Well-Posedness and Error Estimates

We first establish the inf-sup condition [34] and prove a priori error estimates for the PR-EG
method, Algorithm 2. To this end, we employ the following mesh-dependent norm in Vh:

‖v‖E =

(

‖∇v‖20,Th + ρ‖h
− 1

2

e [v]‖20,Eh

) 1

2

.

Also, the analysis relies on the interpolation operator Πh : [H1(Ω)]d → Vh, defined in [10, 36],
and the local L2-projection P0 : H

1(Ω) → Qh. Here, we only state their useful properties and
error estimates without proof.

Lemma 4.1. There exists an interpolation operator Πh : [H1(Ω)]d → Vh such that

(∇ · (v −Πhv), 1)K = 0 ∀K ∈ Th, ∀v ∈ [H1(Ω)]d, (4.1a)

|v −Πhv|j ≤ Chm−j |v|m 0 ≤ j ≤ m ≤ 2, ∀v ∈ [H2(Ω)]d, (4.1b)

‖v −Πhv‖E ≤ Ch‖v‖2 0 ≤ j ≤ m ≤ 2, ∀v ∈ [H2(Ω)]d, (4.1c)

‖Πhv‖E ≤ C|v|1 ∀v ∈ [H1
0 (Ω)]

d. (4.1d)

Also, the local L2-projection P0 : H
1(Ω) → Qh satisfies

(w − P0w, 1) = 0 ∀w ∈ H1(Ω), (4.2a)

‖w − P0w‖0 ≤ Ch‖w‖1 ∀w ∈ H1(Ω). (4.2b)

The inf-sup condition and the coercivity and continuity of the bilinear form a(·, ·) can be
proved following the same lines as the proofs of Lemma 4.5 in [10]. Therefore, we only state
the results here.

Lemma 4.2. Provided that ρ is large enough, there exists a constant α > 0, independent of
h, such that

sup
v∈Vh

v 6=0

b(v, q)

‖v‖E
≥ α‖q‖0 ∀q ∈ Qh. (4.3)

7



Lemma 4.3. Provided that the penalty parameter ρ is large enough, there exist positive con-
stants κ1 and κ2, independent of h and ν, such that

a(v,v) ≥ κ1ν‖v‖
2
E ∀v ∈ Vh, (4.4)

|a(v,w)| ≤ κ2ν‖v‖E‖w‖E ∀v,w ∈ Vh. (4.5)

We now have the following well-posedness result of the PR-EG method.

Theorem 4.4. There exists a unique solution (uh, ph) ∈ Vh × Qh to the PR-EG method,
provided that the penalty term ρ > 0 is large enough.

Proof. Thanks to the finite-dimensionality of Vh and Qh, it suffices to show the uniqueness
of the solution. Suppose there exist two solutions (uh,1, ph,1) and (uh,2, ph,2) to the PR-EG

method, and let wh = uh,1 − uh,2 and rh = ph,1 − ph,2. Then, it is trivial to see that

a(wh,v)− b(v, rh) = 0 ∀v ∈ Vh, (4.6a)

b(wh, q) = 0 ∀q ∈ Qh. (4.6b)

Taking v = wh and q = rh in the above system (4.6) and adding the two equations, we obtain

a(wh,wh) = 0.

Then, the coercivity of a(·, ·) yields wh = 0. On the other hand, wh = 0 reduces (4.6a) to

b(v, rh) = 0 ∀v ∈ Vh.

Then, we get rh = 0 by using the inf-sup condition in (4.3). Hence, the proof is complete.

In order to facilitate our error analysis, we consider an elliptic projection uh of the true
solution u defined as follows:

a(uh,v) = a(u,v) + ν(∆u,v −Rv)Th ∀v ∈ Vh. (4.7)

Then, let us introduce the following notation:

χu = u− uh, ξu = uh − uh, χp = p− P0p, ξp = P0p− ph. (4.8)

Using the above notation, we have

u− uh = χu + ξu, p− ph = χp + ξp.

As we already have an error estimate for χp in (4.2b), we only need to establish error estimates
for χu, ξu, and ξp. Let us first prove the following lemma, which will be used for an estimate
for χu.

Lemma 4.5. For any v ∈ Vh, we have

‖Rv − v‖0 ≤ Ch‖v‖E . (4.9)
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Proof. For any φK ∈ RT0(K), using the standard scaling argument [37, p. 554], we have

‖φK‖0,K ≤ C
∑

e∈∂K

h
1

2

e ‖φK · nK‖0,e (4.10)

for some constant C > 0 independent of h. Apply (4.10) to φK = (RvD − vD)|K ∈ RT0(K)
and note that

{vD} − vD = ±
1

2
[vD].

Then,

‖Rv − v‖20 = ‖RvD − vD‖20,Th ≤ C‖h
1

2

e [v
D] · ne‖

2
0,Eh

≤ Ch2‖h
− 1

2

e [vD]‖20,Eh

= Ch2‖h
− 1

2

e [v]‖20,Eh ≤ Ch2‖v‖2E .

Lemma 4.6. Let uh be the solution of the elliptic problem (4.7). Assuming the true velocity
solution u belongs to [H2(Ω)]d, the following error estimate holds true:

‖u− uh‖E ≤ Ch‖u‖2. (4.11)

Proof. We already have ‖u − Πhu‖E ≤ Ch‖u‖2 from (4.1c). To bound the error ξuh
:=

uh −Πhu, subtract a(Πhu,v) from both sides of (4.7) and take v = ξuh
to obtain

a(ξuh
, ξuh

) = a(u−Πhu, ξuh
) + ν(∆u, ξuh

−Rξuh
)Th .

Then, we bound the left-hand side by using the coercivity of a(·, ·) and the right-hand side by
the continuity of a(·, ·), along with the Cauchy-Schwarz inequality and (4.9). Then, we get

κ1ν‖ξuh
‖2E ≤ κ2ν‖u−Πhu‖E‖ξuh

‖E + ν‖u‖2‖ξuh
−Rξuh

‖0 ≤ Chν‖u‖2‖ξuh
‖E .

Therefore, (4.11) follows from the triangle inequality combined with (4.1c).

Now, we consider the following lemmas to derive auxiliary error equations.

Lemma 4.7. For all v ∈ Vh, we have

(∇p,Rv)Th = −b(v,P0p). (4.12)

Proof. Recall that Rv · nK is continuous across the interior edges (faces) and zero on the
boundary edges (faces), and ∇ · Rv ∈ P0(K) on each K ∈ Th. Therefore, using integration
by parts, the regularity of the pressure p, and (3.6), we obtain

(∇p,Rv)Th =
∑

K∈Th

〈p,Rv · nK〉∂K − (p,∇ · Rv)Th

= −(P0p,∇ · Rv)Th = −b(v,P0p).
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Lemma 4.8. The auxiliary errors ξu and ξp satisfy the following equations:

a(ξu,v)− b(v, ξp) = 0 ∀v ∈ Vh, (4.13a)

b(ξu, q) = −b(χu, q) ∀q ∈ Qh. (4.13b)

Proof. To derive (4.13a), take the L2-inner product of (1.1a) with Rv for v ∈ Vh to get

−ν(∆u,v)Th + (∇p,Rv)Th = (f ,Rv)Th − ν(∆u,v −Rv)Th . (4.14)

Note that standard integration by parts and the regularity of u yield the following identity:

−ν(∆u,v)Th = a(u,v) ∀v ∈ Vh.

Further, using (4.12) for the second term on the left side of (4.14), we obtain

a(u,v)− b(v,P0p) = (f ,Rv)Th − ν(∆u,v −Rv)Th .

Then, subtract (3.7a) from the above equation and use the definition of the elliptic projection
uh in (4.7) to obtain the first error equation (4.13a). Next, to prove the second error equation
(4.13b), first note

(∇ · u, q)Th = b(u, q) ∀q ∈ Qh.

The rest of the proof is straightforward.

Lemma 4.9. We have the following error bound:

‖ξp‖0 ≤ Cν‖ξu‖E . (4.15a)

Proof. We obtain the desired bound by using (4.3), (4.13a), and (4.5) as follows:

‖ξp‖0 ≤
1

α
sup
v∈Vh

v 6=0

b(v, ξp)

‖v‖E
=

1

α
sup
v∈Vh

v 6=0

a(ξu,v)

‖v‖E
≤ Cν‖ξu‖E .

The last two lemmas lead us to the following auxiliary error estimates.

Lemma 4.10. We have the following error estimates for ξu and ξp:

‖ξu‖E ≤ Ch‖u‖2, (4.16a)

‖ξp‖0 ≤ Cνh‖u‖2. (4.16b)

Proof. Taking v = ξu and q = ξp in (4.13a) and (4.13b), respectively, and adding the two
resulting equations, we get

a(ξu, ξu) = −b(χu, ξp).
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Then, we bound the left-hand side from below using the coercivity of a(·, ·) and the right-hand
side by using (4.1a), the trace inequality, (4.1b), and (4.15a):

κ1ν‖ξu‖
2
E ≤ a(ξu, ξu) = −b(χu, ξp)

= −〈[χu] · ne, {ξp}〉Eh ≤ C
1

h
‖χu‖0‖ξp‖0 ≤ Cνh‖u‖2‖ξu‖E ,

from which (4.16a) follows. On the other hand, the error bound (4.16b) is an immediate
consequence of (4.15a) and (4.16a).

We now state the main theorem of this section.

Theorem 4.11. Assuming the true solution, (u, p), of the Stokes problem (1.1) belongs to
[H2(Ω)]d× (L2

0(Ω)∩H1(Ω)), the solution (uh, ph) to our PR-EG method satisfies the following
error estimates:

‖u− uh‖E ≤ Ch‖u‖2,

‖p− ph‖0 ≤ Ch(ν‖u‖2 + ‖p‖1),

provided that the penalty parameter ρ is large enough.

5. Perturbed Pressure-Robust EG Method

In this section, we consider a perturbed version of the PR-EG method, Algorithm 2, where
a perturbation is introduced in the bilinear form a : Vh ×Vh 7→ R. The perturbed bilinear
form is denoted by aD(·, ·) and assumed to satisfy the following coercivity and continuity
conditions:

aD(v,v) ≥ κD1 ν‖v‖
2
E ∀v ∈ Vh, (5.1)

|aD(v,w)| ≤ κD2 ν‖v‖E‖w‖E ∀v,w ∈ Vh, (5.2)

where κD1 and κD2 are positive constants, independent of h and ν. Additionally, we make the
following assumption on the bilinear form aD(·, ·):

aD(vC ,w) = a(vC ,w) ∀vC ∈ Ch, ∀w ∈ Vh. (A1)

This assumption provides a consistency property of aD(·, ·) and is useful to maintain the
optimal convergence rate of the perturbed pressure-robust EG scheme.

Using a perturbed bilinear form aD(·, ·), a perturbed version of the PR-EG method is
defined as follows:

Algorithm 3 Perturbed pressure-robust EG (PPR-EG) method

Find (uh, ph) ∈ Vh ×Qh such that

aD(uh,v)− b(v, ph) = (f ,Rv), ∀v ∈ Vh, (5.3a)

b(uh, q) = 0, ∀q ∈ Qh. (5.3b)

Here, a specific choice of aD(·, ·) will be presented later in (5.6).
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In what follows, we establish the well-posedness and optimal-order error estimates of the
PPR-EGmethod with a general choice of aD(·, ·) satisfying the coercivity (5.1), continuity (5.2),
and Assumption (A1). Then, at the end of this section, we introduce one specific choice of
aD(·, ·) that allows for the elimination of the degrees of freedom corresponding to the DG
component of the velocity vector uh, i.e., u

D
h ∈ Dh, via static condensation.

5.1. Well-posedness and error estimates

Based on the coercivity (5.1) and continuity (5.2) of the perturbed bilinear form aD(·, ·),
together with the inf-sup condition (4.3), we have the following well-posedness result of the
PPR-EG method, Algorithm 3.

Theorem 5.1. There exists a unique solution (uh, ph) ∈ Vh × Qh to the PPR-EG method,
provided that the penalty term ρ > 0 is large enough.

An a priori error analysis for the PPR-EG method can be done in a similar fashion to that
of the PR-EG method, Algorithm 2. For the sake of brevity, we will only indicate the necessary
changes in the previous analysis. First, we define the following elliptic projection uh of the
true solution u using aD(·, ·):

aD(uh,v) = a(u,v) + ν(∆u,v −Rv)Th ∀v ∈ Vh. (5.4)

Lemma 5.2. Let uh be the solution of the elliptic problem (5.4). If Assumption (A1) holds
and u ∈ [H2(Ω)]d, then the following error estimate holds true:

‖u− uh‖E ≤ Ch‖u‖2. (5.5)

Proof. Let ΠC : [H1(Ω)]d 7→ Ch be the usual linear Lagrange interpolation operator. Then,
we have ‖u − ΠCu‖E = |u − ΠCu|1 ≤ Ch‖u‖2. Let ξuh

:= uh − ΠCu. Then, subtracting
aD(ΠCu,v) from both sides of (5.4), taking v = ξuh

, and using the fact that aD(ΠCu,v) =
a(ΠCu,v) by Assumption (A1), we obtain

aD(ξuh
, ξuh

) = a(u−ΠCu, ξuh
) + ν(∆u, ξuh

−Rξuh
)Th .

Then, using the coercivity of aD(·, ·) and the continuity of a(·, ·), along with the Cauchy-
Schwarz inequality and (4.9), we get

κD1 ν‖ξuh
‖2E ≤ κ2ν‖u−ΠCu‖E‖ξuh

‖E + ν‖u‖2‖ξuh
−Rξuh

‖0 ≤ Chν‖u‖2‖ξuh
‖E .

Therefore, (5.5) follows from the triangle inequality ‖u− uh‖E ≤ ‖u−ΠCu‖E + ‖ξuh
‖E .

The rest of the error analysis follows the same lines as in Section 4, hence the details are
omitted here. We state the optimal error estimates for the PPR-EG method in the following
theorem:

Theorem 5.3. Assume that the solution (u, p) ∈ [H2(Ω)]d × (L2
0(Ω) ∩H1(Ω)) and that the

perturbed bilinear form aD satisfies (5.1), (5.2), and (A1). Then, the solution (uh, ph) to the
PPR-EG method satisfies the following error estimates provided that the penalty parameter ρ is
large enough.

‖u− uh‖E ≤ Ch‖u‖2,

‖p− ph‖0 ≤ Ch(ν‖u‖2 + ‖p‖1).

12



5.2. Perturbed bilinear form aD

In this section, we introduce one particular choice of the perturbed bilinear form aD(·, ·),
which allows for the elimination of the DG component of the velocity vector via static con-
densation.

For any v ∈ Vh, we have a unique decomposition v = vC + vD, where vC ∈ Ch and
vD ∈ Dh. Therefore, we have, for v, w ∈ Vh,

a(v,w) = a(vC ,wC) + a(vC ,wD) + a(vD,wC) + a(vD,wD).

Denote the basis ofDh by {ΦK}K∈Th and write vD =
∑

K∈Th
vKΦK andwD =

∑

K∈Th
wKΦK .

Then,

a(vD,wD) =
∑

K, K′∈Th

vKwK′a(ΦK ,ΦK′).

Define a bilinear form d : Dh ×Dh 7→ R by

d(vD,wD) :=
∑

K∈Th

vKwKa(ΦK ,ΦK).

We define a perturbed bilinear form aD(·, ·) of a(·, ·) by replacing a(vD,wD) with d(vD,wD).
That is, for v, w ∈ Vh,

aD(v,w) := a(vC ,wC) + a(vC ,wD) + a(vD,wC) + d(vD,wD). (5.6)

Note that, for any vC ∈ Ch,

aD(vC ,w) = a(vC ,wC) + a(vC ,wD) = a(vC ,w), ∀w ∈ Vh,

which verifies that the bilinear form aD(·, ·) defined in (5.6) satisfies Assumption (A1).
Next, we want to prove the coercivity and continuity of aD(·, ·) on Dh with respect to

‖·‖E . This will be done in several steps. We first introduce a bilinear form aE corresponding
to the mesh-dependent norm ‖·‖E :

aE(v,w) := ν
(

(∇v,∇w)Th + ρ〈h−1
e [[w]], [[v]]〉Eh

)

,

from which we immediately see that

ν‖v‖2E = aE(v,v).

Also, for vD, wD ∈ Dh, we have

aE(v
D,wD) =

∑

K, K′∈Th

uKvK′aE(ΦK ,ΦK′).

Then, we define another bilinear form dE : Dh ×Dh 7→ R as follows:

dE(v
D,wD) :=

∑

K∈Th

uKvKaE(ΦK ,ΦK).
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Note, from the definitions, that both bilinear forms aE and dE are symmetric and positive
definite (SPD). Also, thanks to the coercivity and continuity of the bilinear form a(·, ·) on Vh

with respect to ‖·‖E proved in Lemma 4.3, we have the following spectral equivalence results:

κ1aE(v
D,vD) ≤ a(vD,vD) ≤ κ2aE(v

D,vD), (5.7)

κ1dE(v
D,vD) ≤ d(vD,vD) ≤ κ2dE(v

D,vD). (5.8)

Therefore, if aE(v
D,vD) and dE(v

D,vD) are spectrally equivalent, the spectral equivalence of
a(vD,vD) and d(vD,vD) follows directly. In fact, the spectral equivalence between aE(v

D,vD)
and dE(v

D,vD) has been shown in [36].

Lemma 5.4. [36] There exist positive constants C1 and C2, depending only on the dimension
d, the shape regularity of the mesh, and the penalty parameter ρ, such that

C1dE(v
D,vD) ≤ aE(v

D,vD) ≤ C2dE(v
D,vD) ∀vD ∈ Dh. (5.9)

Proof. The spectral equivalence follows from [36, Equations (5.23), (5.24), and Lemma 5.6]
and the fact that vD ∈ Dh ⊂ Vh.

Therefore, we can conclude that a(vD,vD) and d(vD,vD) are spectral equivalent as stated
in the following lemma.

Lemma 5.5. There exist positive constants C1 and C2 such that

C1d(v
D,vD) ≤ a(vD,vD) ≤ C2d(v

D,vD) ∀vD ∈ Dh. (5.10)

Here, C1 and C2 depend only on the dimension d, the shape regularity of the mesh, the penalty
parameter ρ, and κ1 and κ2.

Proof. The desired result is an immediate consequence of (5.7), (5.8), and (5.9).

We are now ready to show that the perturbed bilinear form aD(·, ·) defined in (5.6) satisfies
the desired coercivity and continuity conditions.

Lemma 5.6. The bilinear form aD(·, ·) defined in (5.6) satisfies the coercivity condition (5.1)
and the continuity condition (5.2) with some positive constants κD1 and κD2 . Here, the con-
stants κD1 and κD2 depend only on the dimension d, the shape regularity of the mesh, the
penalty parameter ρ, and the constants κ1 and κ2.

Proof. As we deal with SPD bilinear forms here, the conclusion follows directly from the
definitions of a(·, ·) and aD(·, ·), the spectral equivalence result (5.10) on the enrichment
space Dh, and several applications of triangular and Cauchy-Schwarz inequalities.

So far, we have verified the coercivity and continuity conditions, (5.1) and (5.2), and
Assumption (A1) for the perturbed bilinear form aD(·, ·) defined in (5.6). Therefore, the
resulting PPR-EG method in Algorithm 3 is well-posed and converges at the optimal rate as
proved in Theorem 5.3.
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5.3. Elimination of the DG component of the velocity

The PR-EG method in Algorithm 2 results in a linear system in the following matrix form:





ADD ADC GD

ACD ACC GC

G>
D G>

C 0









UD

UC

P



 =





fD

fC

0



 , (5.11)

where a(vD,wD) 7→ ADD, a(vD,wC) 7→ ADC, a(vC ,wD) 7→ ACD, a(vC ,wC) 7→ ACC,
b(vD, p) 7→ GD, b(v

C , p) 7→ GC, (f ,RvD) 7→ fD, and (f ,vC) 7→ fC.
The coefficient matrix in (5.11) will be denoted by A. On the other hand, the PPR-EG

method, Algorithm 3, basically replaces ADD in (5.11) with a diagonal matrix DDD := diag(ADD),
which was resulted from d(vD,wD). Therefore, its stiffness matrix is as follows:

AD :=





DDD ADC GD

ACD ACC GC

G>
D G>

C 0



 .

Indeed, the diagonal block DDD allows us to eliminate the DoFs corresponding to the DG
component of the velocity vector. Specifically, we can obtain the following two-by-two block
form via static condensation:

AE :=

(

ACC − ACDD
−1
DDADC GC − ACDD

−1
DDGD

G>
C − G>

DD
−1
DDADC −G>

DD
−1
DDGD

)

:=

(

AE
u GE

(GE)> −AE
p

)

.

The method corresponding to this condensed linear system is well-posed as it is obtained
from the well-posed PPR-EG method via state condensation (see [38, Theorem 3.2] for a similar
proof). Moreover, this method has the same DoFs as the H1-conforming P1-P0 method for the
Stokes equations. Therefore, this method can be viewed as a stabilized P1-P0 scheme for the
Stokes equations, where a stabilization term appears in every sub-block. Similar stabilization
techniques have been studied in [33, 39]. We emphasize that this new stabilized P1-P0 scheme
is not only stable but also pressure-robust. Then, the algorithm to find U = (UD,UC)> and P

is summarized in Algorithm 4.

Algorithm 4 Condensed pressure-robust EG (CPR-EG) method

1: Compute fE = (fC − ACDD
−1
DDfD,−G>

DD
−1
DDfD)

2: Solve AExE = fE for xE

3: Set (UC,P) = xE

4: Compute UD = D
−1
DD(fD − ADCU

C − GDP)

5.4. Block preconditioners

In this subsection, we discuss block preconditioners for solving the linear systems resulted
from the three pressure-robust EG algorithms, i.e., the PR-EG, PPR-EG, and CPR-EG meth-
ods. We mainly follow the general framework developed in [38, 40–42] to design robust block
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preconditioners. The main idea is based on the well-posedness of the proposed EG discretiza-
tions.

As mentioned in Section 3, the ST-EG method in Algorithm 1 and the PR-EG method in
Algorithm 2 have the same stiffness matrices but different right-hand-side vectors. Therefore,
the block preconditioners developed for the ST-EG method in [10] can be directly applied for
the PR-EG method. For the sake of completeness, we recall those preconditioners here as
follows.

BD =

(

Au 0

0 ν−1Mp

)−1

, BL =

(

Au 0

G> ν−1Mp

)−1

, BU =

(

Au G

0 ν−1Mp

)−1

,

where

Au =

(

ADD ADC

ACD ACC

)

, G =

(

GD

GC

)

,

and Mp is the mass matrix, i.e., (ph, qh) 7→ Mp. We want to point out that, in [10], the block
corresponding to the velocity part is based on the mesh-dependent norm on Vh. Here, we
directly use the blocks from the stiffness matrix A. Lemma 4.3 makes sure that this still leads
to effective preconditioners. As suggested [10], while the inverse of Mp is trivial since it is diag-
onal, inverting the diagonal block Au could be expensive and sometimes infeasible. Therefore,
we approximately invert this diagonal block and define the following inexact counterparts

MD =

(

Hu 0

0 νM−1
p

)

, ML =

(

H−1
u 0

G> ν−1Mp

)−1

, MU =

(

H−1
u G

0 ν−1Mp

)−1

,

where Hu is spectrally equivalent to A−1
u .

Next, we consider the PPR-EG method, Algorithm 3. Since it is well-posed, as shown in
Theorem 5.1, we can similarly develop the corresponding block preconditioners as follows:

BD
D =

(

AD
u 0

0 ν−1Mp

)−1

, BD
L =

(

AD
u 0

G> ν−1Mp

)−1

, BD
U =

(

AD
u G

0 ν−1Mp

)−1

,

where

A
D
u =

(

DDD ADC

ACD ACC

)

,

and their inexact versions providing more practical values:

MD
D =

(

HD
u 0

0 νM−1
p

)

,MD
L =

(

(HD
u )

−1 0

G> ν−1Mp

)−1

,MD
U =

(

(HD
u )

−1 G

0 ν−1Mp

)−1

,

where HD
u is spectrally equivalent to (AD

u )
−1.

Finally, we consider the CPR-EG method, Algorithm 4. The following block preconditioners
are constructed based on the well-posedness of the CPR-EG method:

BE
D =

(

AE
u 0

0 SEp

)−1

, BE
L =

(

AE
u 0

(GE)> SEp

)−1

, BE
U =

(

AE
u GE

0 SEp

)−1

,
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where SEp := ν−1Mp + AE
p = ν−1Mp + G>

DD
−1
DDGD. In this case, the second diagonal block, SEp ,

is not a diagonal matrix anymore. Therefore, in the inexact version block preconditioners,
we need to replace (SEp)

−1 by its spectrally equivalent approximation HE
p . This leads to the

following inexact block preconditioners:

ME
D =

(

HE
u 0

0 HE
p

)

, MD
L =

(

(HE
u)

−1 0

(GE)> (HE
p)

−1

)−1

, ME
U =

(

(HD
u )

−1 GE

0 (HE
p)

−1

)−1

,

where HE
u and HE

p are spectrally equivalent to (AE
u)

−1 and (AE
p), respectively.

Before closing this section, we want to point out that, following the general framework in
[40, 41], we can show that the block diagonal preconditioners are parameter-robust and can
be applied to the minimal residual methods. On the other hand, following the framework
presented in [38, 40, 42], we can also show that block triangular preconditioners are field-
of-value equivalent preconditioners and can be applied to the generalized minimal residual
(GMRES) method. We omit the proof here, but we refer the readers to our previous work [10,
38, 42] for similar proofs.

6. Numerical Examples

In this section, we conduct numerical experiments to validate our theoretical conclusions
presented in the previous sections. The numerical experiments are implemented by authors’
codes developed based on iFEM [43]. To distinguish the numerical solutions using the four
different EG algorithms considered in the present work, we use the following notations:

• (uST

h , pSTh ): Solution by the ST-EG method in Algorithm 1.

• (uPR

h , pPRh ): Solution by the PR-EG method in Algorithm 2.

• (uPPR

h , pPPRh ): Solution by the PPR-EG method in Algorithm 3.

• (uCPR

h , pCPRh ): Solution by the CPR-EG method in Algorithm 4.

The error estimates for the ST-EG method have been proved in [10]:

‖u− uST

h ‖E . h
(

‖u‖2 + ν−1‖p‖1
)

, (6.1a)

‖P0p− pSTh ‖0 . h (ν‖u‖2 + ‖p‖1) , ‖p− pSTh ‖0 . h (ν‖u‖2 + ‖p‖1) . (6.1b)

Also, recall the error estimates for the PR-EG method:

‖u− uPR

h ‖E . h‖u‖2, (6.2a)

‖P0p− pPRh ‖0 . νh‖u‖2, ‖p− pPRh ‖0 . h (ν‖u‖2 + ‖p‖1) . (6.2b)

Note that (uPPR

h , pPPRh ) and (uCPR

h , pCPRh ) satisfy the same error estimates as in (6.2).
In two- and three-dimensional numerical examples, we show the optimal convergence rates

and pressure-robustness of the pressure-robust EG methods (PR-EG, PPR-EG, and CPR-EG) via
mesh refinement study and by considering a wide range of the viscosity value. To highlight the
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better performance of the pressure-robust EG methods than the ST-EG method, we compare
the magnitudes and behaviors of the errors produced by them as well. We also demonstrate
the improved computational efficiency of the CPR-EG method compared to the PR-EG method.
Further, we present some results of the performance of the block preconditioners developed
in Subsection 5.4 on three-dimensional benchmark problems to show its robustness and effec-
tiveness.

6.1. A two-dimensional example

We consider an example problem in two dimensions. In this example, the penalty param-
eter was set to ρ = 10.

6.1.1. Test 1: Vortex flow

Let the computational domain be Ω = (0, 1) × (0, 1). The velocity field and pressure are
chosen as

u =

(

10x2(x− 1)2y(y − 1)(2y − 1)
−10x(x− 1)(2x− 1)y2(y − 1)2

)

, p = 10(2x− 1)(2y − 1).

Then the body force f and the Dirichlet boundary condition u = g are obtained from (1.1)
using the exact solutions.
Accuracy test. First, we perform a mesh refinement study for both the ST-EG and PR-EG

methods by varying the mesh size h while keeping ν = 10−6. The results are summarized
in Table 1, where we observe that the convergence rates for the velocity and pressure errors
for both methods are of at least first-order. The velocity error for the ST-EG method seems
to converge at the order of 1.5, but the PR-EG method yields about five orders of magnitude
smaller velocity errors than the standard method. On the other hand, the total pressure
errors produced by the two methods are very similar in magnitude. Therefore, our numerical
results support our theoretical error estimates in (6.1) and (6.2).

ST-EG PR-EG

h ‖u− uST

h
‖E Rate ‖p− pST

h
‖0 Rate ‖u− uPR

h
‖E Rate ‖p− pPR

h
‖0 Rate

1/4 1.959e+5 - 1.166e+0 - 2.200e-1 - 9.547e-1 -

1/8 7.140e+4 1.46 5.180e-1 1.17 1.060e-1 1.05 4.802e-1 0.99

1/16 2.468e+4 1.53 2.483e-1 1.06 4.920e-2 1.11 2.404e-1 1.00

1/32 8.552e+3 1.53 1.223e-1 1.02 2.372e-2 1.05 1.203e-1 1.00

1/64 2.987e+3 1.52 6.078e-2 1.01 1.166e-2 1.02 6.014e-2 1.00

Table 1: Test 6.1.1, Vortex flow: A mesh refinement study for the ST-EG and PR-EG methods with varying
mesh size h and a fixed viscosity ν = 10−6.

Next, to visualize the quality difference in the solutions, we present the numerical solutions
obtained by the two methods with h = 1/16 and ν = 10−6 in Figure 1. As expected, the two
methods produce nearly the same pressure solutions. As for the velocity solutions, the PR-EG
method well captures the vortex flow pattern, while the ST-EG method is unable to do so.
Robustness test. This test is to verify the pressure-robustness of the PR-EG method. To
confirm the error behaviors predicted by (6.1) and (6.2), we solved the example problem with
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(a) ST-EG: u1, u2, and p with the velocity vector fields, from left to right

(b) PR-EG: u1, u2, and p with the velocity vector fields, from left to right

Figure 1: Test 6.1.1, Vortex flow: Comparison of the numerical solutions with h = 1/16 and ν = 10−6.

varying ν values, from 10−2 to 10−6, while fixing the mesh size to h = 1/32. Figure 2 shows
the total velocity and auxiliary pressure errors, i.e., ‖u−uh‖E and ‖P0p−ph‖0. As expected,
the ST-EG method produces the velocity errors inversely proportional to ν as the second term
in the error bound (6.1a) becomes a dominant one as ν gets smaller. Meanwhile, the auxiliary
pressure error remains nearly the same while ν varies. On the other hand, the PR-EG method
produces nearly the same velocity errors regardless of the ν values. Moreover, the auxiliary
pressure errors decrease in proportion to ν. These numerical results are consistent with the
error bounds (6.1) and (6.2).
Performance of the CPR-EG method. In this test, we shall validate the error estimates in
Theorem 5.3 for the CPR-EG method and compare its performances with the PR-EG method.
First, we consider the sparsity pattern of their stiffness matrices when generated on the same
mesh of size h = 1/32. Figure 3 compares the sparsity patterns of the stiffness matrices
corresponding to PR-EG, PPR-EG, and CPR-EG methods. The PPR-EG method produces a
matrix with less nonzero entries than the PR-EG method. It also shows the CPR-EG method
yields a much smaller but denser stiffness matrix than the PR-EG method. More specifically,
by eliminating the DG component of the velocity vector, we can achieve 33% reduction in the
number of DoFs. To compare the accuracy of the two methods, we performed a numerical
convergence study with varying h values and a fixed viscosity ν = 10−6, whose results are
plotted in Figure 4. As observed in this figure, the errors produced by the CPR-EG method not
only decrease at the optimal order of O(h), they are also nearly identical to those produced
by the PR-EG method.
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(a) Velocity error vs. viscosity (b) Auxiliary pressure error vs. viscosity

Figure 2: Test 6.1.1, Vortex flow: Error profiles of the ST-EG and PR-EG methods with varying ν values and a
fixed mesh size h = 1/32.

(a) PR-EG (b) PPR-EG (c) CPR-EG

Figure 3: Test 6.1.1, Vortex flow: Comparison of the sparsity patterns of the stiffness matrices on a mesh with
h = 1/32. nz denotes the number of nonzeros.

6.2. Three dimensional examples

We now turn our attention to some numerical examples in three dimensions. In all three-
dimensional tests, we used the penalty parameter ρ = 2.

6.2.1. Test 2: 3D flow in a unit cube

In this example, we consider a 3D flow in a unit cube Ω = (0, 1)3. The velocity field and
pressure are chosen as

u =





sin(πx) cos(πy)− sin(πx) cos(πz)
sin(πy) cos(πz)− sin(πy) cos(πx)
sin(πz) cos(πx)− sin(πz) cos(πy)



 , p = sin(πx) sin(πy) sin(πz).

Accuracy test. With this example problem, we performed a mesh refinement study for
the ST-EG and PR-EG methods with a fixed viscosity ν = 10−6. The results, summarized

20



Figure 4: Test 6.1.1, Vortex flow: Comparison of the errors from the PR-EG and CPR-EG methods. The viscosity
is fixed to ν = 10−6.

in Table 2, show very similar convergence behaviors to those of the two-dimensional results.
Though the velocity errors generated by the ST-EG method appear to decrease super-linearly,
the magnitudes of the numerical velocity solutions are extremely larger than those of the exact
solution and the solution of the PR-EG method. See the streamlines of the velocity solutions
of the ST-EG and PR-EG methods in Figure 5.

ST-EG PR-EG

h ‖u− uST

h
‖E Rate ‖p− pST

h
‖0 Rate ‖u− uPR

h
‖E Rate ‖p− pPR

h
‖0 Rate

1/4 8.785e+3 - 1.058e-1 - 3.732e+0 - 9.581e-2 -

1/8 3.429e+3 1.36 5.144e-2 1.04 1.827e+0 1.03 4.879e-2 0.97

1/16 1.239e+3 1.47 2.514e-2 1.03 9.048e-1 1.01 2.451e-2 0.99

1/32 4.346e+2 1.51 1.241e-2 1.02 4.501e-1 1.01 1.227e-2 1.00

1/64 1.521e+2 1.51 6.171e-3 1.01 2.244e-1 1.00 6.135e-3 1.00

Table 2: Test 6.2.1, 3D flow in a unit cube: A mesh refinement study for the ST-EG and PR-EG methods on
uniform meshes with varying h and a fixed viscosity ν = 10−6.

Robustness test. We consider the pattern of the error behaviors obtained by the two EG
methods when ν varies and the mesh size is fixed to h = 1/16. The results of our tests
are illustrated in Figure 6. As in the two-dimensional example, the velocity and (auxiliary)
pressure errors for the PR-EG method follow the patterns predicted by the error estimates in
(6.2). On the other hand, the velocity and auxiliary pressure errors for the ST-EG method
behave like O(ν−1) and O(1) only after ν becomes sufficiently small (ν ≤ 10−3). The earlier
deviation from these patterns when ν is relatively large (10−3 ≤ ν ≤ 10−2) is due to the
smallness of ‖p‖1 compared to ‖u‖2, unlike in Test 1.
Performance of the CPR-EG method. Next, we shall demonstrate the savings in the
computational cost when we use the CPR-EG method. See Figure 7 for the sparsity patterns
for the stiffness matrices generated by the PR-EG, PPR-EG, and CPR-EG methods on the same
mesh with h = 1/16. In this case, the PPR-EG method generates a stiffness matrix with fewer
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(a) ST-EG (b) PR-EG

Figure 5: Test 6.2.1, 3D flow in a unit cube: Streamlines of the numerical velocity when h = 1/16 and ν = 10−6.

(a) Velocity error vs. viscosity (b) Auxiliary pressure error vs. viscosity

Figure 6: Test 6.2.1, 3D flow in a unit cube: Error profiles of the ST-EG and PR-EG methods with varying ν
and a fixed mesh size h = 1/16.

nonzero entries compared to the PR-EG method. On the other hand, the CPR-EG method
requires approximately 38% fewer DoFs than the other two methods. However, its resulting
stiffness matrix is denser than those resulting from the other two methods. Besides, we also
compared the errors generated by the PR-EG and PPR-EG methods. They are nearly the same.
But, the numerical data is not provided here for the sake of brevity.
Performance of block preconditioners. We use the proposed block preconditioners to
solve the corresponding linear systems and show their robustness with respect to the viscos-
ity ν. The required iteration numbers are reported in Table 3 for mesh size h = 1/4 and
penalty parameter ρ = 2. The exact and inexact block preconditioners are applied to the
preconditioned GMRES method. For the inexact block preconditioners, we use an algebraic
multigrid (AMG) preconditioned GMRES method to approximately invert the diagonal block
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(a) PR-EG (b) PPR-EG (c) CPR-EG

Figure 7: Test 6.2.1, 3D flow in a unit cube: Comparison of the sparsity patterns of the stiffness matrices on
a mesh with h = 1/16.

with tolerance 10−6. This inner block solver usually took 5-7 iterations in all our experiments.
Therefore, we only report the outer GMRES iteration numbers. The results in Table 3 show
the robustness of our block preconditioners with respect to the viscosity ν. This is further
confirmed in Table 4, where the condition numbers of the preconditioned stiffness matrices are
reported. In Table 4, we only show the results of the application of the block diagonal precon-
ditioner since, in this case, the preconditioner is symmetric positive definite and the condition

number is defined via the eigenvalues, i.e., κ(BDA) = max |λ(BDA)|
min |λ(BDA)| , κ(B

D
DAD) =

max |λ(BD

D
AD)|

min |λ(BD

D
AD)|

,

and κ(BE
DA

E) =
max |λ(BE

D
AE)|

min |λ(BE

D
AE)|

. As we can see, the condition number remains the same as

ν decreases, which demonstrates the robustness of the proposed block preconditioners. The
small variation in the number of iterations is mainly due to the outer GMRES method since
the matrices A, AD, and AE are ill-conditioned and may affect the orthogonalization pro-
cedure used in Krylov iterative methods. In addition, the numerical performance for the
CPR-EG method is the best among all three pressure-robust methods for this test in terms of
the number of iterations.
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Exact Solver

PR-EG PPR-EG CPR-EG

ν BD BL BU BD
D BD

L BD
U BE

D BE
L BE

U

1 43 23 21 62 34 32 30 20 18

10−2 61 33 33 87 49 49 45 27 28

10−4 71 39 39 89 52 52 39 25 25

10−6 72 40 40 91 55 55 36 25 25

Inexact Solver

PR-EG PPR-EG CPR-EG

ν MD ML MU MD
D MD

L MD
U ME

D ME
L ME

U

1 43 27 25 63 37 34 34 21 19

10−2 61 36 35 93 56 56 53 30 31

10−4 75 45 45 96 61 61 47 29 28

10−6 83 47 47 111 64 64 40 28 27

Table 3: Test 6.2.1, 3D flow in a unit cube: Iteration counts for the block preconditioners when ν varies on
mesh with h = 1/4.

PR-EG PPR-EG CPR-EG

ν κ(BDA) κ(BD
DAD) κ(BE

DA
E)

1 41.267 99.563 62.445

10−2 41.267 99.563 62.445

10−4 41.267 99.563 62.445

10−6 41.267 99.563 62.445

Table 4: Test 6.2.1, 3D flow in a unit cube: Condition number of the preconditioned stiffness matrices with
the exact block preconditioners when ν varies on mesh with h = 1/4.

6.2.2. Test 3: 3D vortex flow in L-shaped cylinder

Let us consider an L-shaped cylinder defined by Ω = (0, 1)3 \ (0.5, 1)× (0.5, 1)× (0, 1). In
this domain, the exact velocity field and pressure are chosen as

u =
1

x2 + y2 + 1





−y
x
0



 , p = |2x− 1|.

Note that the velocity is a rotational vector field whose center is (x, y) = (0, 0), and the
pressure contains discontinuity in its derivatives along the vertical line x = 0.5.
Accuracy and robustness test. We performed a mesh refinement study with ν = 10−6 and
also studied the error behaviors on a fixed mesh while ν varies for both the ST-EG and PR-EG

methods. The error behaviors are very similar to those of the previous examples reported in,
for example, Table 2 and Figure 6. Therefore, we omit the results here. However, we present
the streamlines of the numerical velocity solutions in Figure 8. The side-by-side comparison
of the velocity streamlines generated by the ST-EG and PR-EG methods clearly shows that the
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PR-EG method well captures the characteristic of the rotational vector field while the ST-EG

method does not.

(a) ST-EG (b) PR-EG

Figure 8: Test 6.2.2, 3D Vortex flow in an L-shaped cylinder: Streamlines of the numerical velocity solutions
with h = 1/16 and ν = 10−6.

Performance of block preconditioners. We again test the performance of the block
preconditioners for this 3D L-shaped domain example. The block preconditioners were imple-
mented in the same way as in Test 6.2.1. The inner GMRES method for solving the diagonal
blocks usually took 6-9 iterations in all cases, hence the results are omitted here, but the
numbers of iterations of the outer GMRES method are shown in Table 5. When the block
preconditioners are used for the PR-EG and PPR-EG methods, the numbers of iterations in-
crease moderately as the viscosity ν decreases. This is mainly caused by the outer GMRES
method since the condition numbers of the preconditioned stiffness matrices remain constant
when ν decreases, as shown in Table 6. Interestingly, the CPR-EG method performs the best in
terms of the number of iterations. However, its condition number is slightly larger than that
of the PR-EG method, as shown in Table 6. Further studies are needed to better understand
those observations to design parameter-robust preconditioners that can be applied in practice.
But this is out of the scope of this work and will be part of our future research.

7. Conclusions

In this paper, we proposed a pressure-robust EG scheme for solving the Stokes equations,
describing the steady-state, incompressible viscous fluid flow. The new EG method is based
on the recent work [10] on a stable EG scheme for the Stokes problem, where the velocity error
depends on the pressure error and is inversely proportional to viscosity. In order to make the
EG scheme in [10] a pressure-robust scheme, we employed a velocity reconstruction operator on
the load vector on the right-hand side of the discrete system. Despite this simple modification,
our error analysis shows that the velocity error of the new EG scheme is independent of
viscosity and the pressure error, and the method maintains the optimal convergence rates for
both the velocity and pressure. We also considered a perturbed version of our pressure-robust
EG method. This perturbed method allows for the elimination of the DoFs corresponding to
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Exact Solver

PR-EG PPR-EG CPR-EG

ν BD BL BU BD
D BD

L BD
U BE

D BE
L BE

U

1 98 50 49 116 62 59 64 33 31

10−2 161 85 85 207 113 113 102 56 56

10−4 189 101 101 252 136 136 105 57 57

10−6 217 120 120 – 161 161 105 57 57

Inexact Solver

PR-EG PPR-EG CPR-EG

ν MD ML MU MD
D MD

L MD
U ME

D ME
L ME

U

1 98 54 55 116 67 65 64 36 34

10−2 161 92 92 207 121 121 102 61 61

10−4 189 112 112 251 147 147 105 63 62

10−6 211 127 127 279 170 168 105 63 62

Table 5: Test 6.2.2, 3D flow in L-shaped domain: Iteration counts for the block preconditioners when ν varies
on mesh with h = 1/4.

PR-EG PPR-EG CPR-EG

ν κ(BDA) κ(BD
DAD) κ(BE

DA
E)

1 130.450 267.947 164.076

10−2 130.450 267.947 164.076

10−4 130.450 267.947 164.076

10−4 130.450 267.947 164.076

Table 6: Test 6.2.2, 3D flow in L-shaped domain: Condition number of the preconditioned stiffness matrices
with the exact block preconditioners when ν varies on mesh with h = 1/4.

the DG component of the velocity vector via static condensation. The resulting condensed
linear system can be viewed as an H1-conforming P1-P0 scheme with stabilization terms.
This stabilized P1-P0 scheme is inf-sup stable and pressure-robust as well. Furthermore, we
proposed an efficient preconditioning technique whose performance is robust with respect
to viscosity. Our two- and three-dimensional numerical experiments verified the theoretical
results. In the future, this work will be extended to more complicated incompressible flow
models, such as the Oseen and Navier-Stokes equations, where the pressure-robustness is
important for simulations in various flow regimes.
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