
Mathematical Programming
https://doi.org/10.1007/s10107-023-02023-6

FULL LENGTH PAPER

Series A

Efficient Kirszbraun extension with applications to
regression

Hananel Zaichyk1 · Armin Biess1 · Aryeh Kontorovich1 · Yury Makarychev2

Received: 1 March 2022 / Accepted: 21 September 2023
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023,
corrected publication 2024

Abstract
We introduce a framework for performing vector-valued regression in finite-
dimensional Hilbert spaces. Using Lipschitz smoothness as our regularizer, we
leverageKirszbraun’s extension theorem for off-data prediction.We analyze the statis-
tical and computational aspects of this method—to our knowledge, its first application
to supervised learning. We decompose this task into two stages: training (which corre-
sponds operationally to smoothing/regularization) and prediction (which is achieved
via Kirszbraun extension). Both are solved algorithmically via a novel multiplicative
weight updates (MWU) scheme, which, for our problem formulation, achieves sig-
nificant runtime speedups over generic interior point methods. Our empirical results
indicate a dramatic advantage over standard off-the-shelf solvers in our regression
setting.

Keywords Convex optimization · Quadratically constrained quadratic program ·
Kirszbraun extension · Regression

Mathematics Subject Classification 65K05 · 90C20 · 62J02

B Aryeh Kontorovich
karyeh@bgu.ac.il

Hananel Zaichyk
zaichyk@gmail.com

Armin Biess
abiess@bgu.ac.il

Yury Makarychev
yury@ttic.edu

1 Ben-Gurion University of the Negev, Be’er Sheva, Israel

2 Toyota Technological Institute at Chicago, Chicago, IL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-02023-6&domain=pdf
http://orcid.org/0000-0001-8038-8671

H. Zaichyk et al.

1 Introduction

Regression The classical problem of estimating a continuous-valued function from
noisy observations, known as regression, is of central importance in statistical theory
with a broad range of applications; see, for example, [20, 31].When the target function
is assumed to have a specific structure, the regression problem is termed parametric
and the optimization problem is (effectively) finite-dimensional.1 Linear regression,
for example [30, chapter 10.3.1], is perhaps the simplest and most common type of
parametric regression. When no structural assumptions concerning the target function
are made, the regression problem is nonparametric. Informally, the main objective
in the study of nonparametric regression is to understand the relationship between
the regularity conditions that a function class might satisfy (e.g., Lipschitz or Hölder
continuity, or sparsity in some representation) and its behavior vis-à-vis optimization
and generalization. Most existing algorithms for regression either focus on the scalar-
valued case or else reduce multiple outputs to several scalar problems [5], see the
paragraph on related work, below in this section.

Convex optimization Many learning problems can be cast in the framework of convex
optimization. In particular, regression naturally lends itself to this formulation. While
some cases, such as linear regression, admit efficient closed-form solutions, this is
not the case in general. Typically, convex optimization problems are solved via iter-
ative methods up to a specified accuracy. One general approach is the interior-point
methods, which, on problems with n variables and m constraints achieves a runtime of
O(max{n3, n2m, F}), where F is the cost of evaluating the first and second derivatives
of the objective and the constraints [6].

Motivation and contribution The chief motivation of this work was to generalize the
results of [17] to vector-valued output, which amounts to learning a regression problem
between two vector spaces, via a Lipschitz extension technique. To our knowledge,
this is the first application of this technique to multidimensional supervised learning.

Briefly, we are given a dataset {x1, . . . , xn} residing in Ra labeled by {y1, . . . , yn}
in R

b, as well as a “smoothness budget” captured by the constant L > 0.2 The
learning proceeds via two natural phases, which are formally described in Sect. 3.
First is the training, or Empirical Risk Minimization (ERM) or yet smoothing phase,
in which we modify the labels from {y1, . . . , yn} to {z1, . . . , zn} so as to minimize
the distortion with respect to the original labels {yi } while ensuring that the data
satisfies the L-Lipschitz constraint (1). Computationally, this procedure may be cast
as a Quadratically Constrained Quadratic Program (QCQP) problemwith bn variables
and O(n2) constraints:

1 Even when the problem is formally infinite-dimensional, such as with SVM, the Representer Theorem
[25] shows that the solution is spanned by the finite sample.
2 As explained in Sect. 3, there is no need to assume that L is given, as this hyper-parameter can be tuned
via Structural Risk Minimization (SRM).

123

Efficient Kirszbraun extension with applications to regression

minimize
˜Y

�(Y,˜Y) :=
n

∑

i=1
‖yi − ỹi‖2

subject to ‖ỹi − ỹ j‖ ≤ L‖xi − x j‖, i, j ∈ [n]. (1)

The second phase is prediction or generalization on unseen data. We accomplish this
via Kirszbraun extension of the smoothed data (xi , zi)i∈[n] to a new point x∗. Given
a finite sequence (xi)i∈[n] ⊂ X = R

a , its image (yi)i∈[n] ⊂ Y = R
b under some

L-Lipschitz map f : X → Y (defined formally in Sect. 2), and a test point x∗, we
wish to solve the following existence problem:

exist? y∗ ∈ R
b

subject to
∥

∥y∗ − yi
∥

∥ ≤ L
∥

∥x∗ − xi
∥

∥ , i = 1, . . . , m.

Kirszbraun’s Theorem [26] guarantees the existence of a solution, and our key contri-
bution is an efficient algorithm for approximating it.Although generalQCQPproblems
are not convex, our special instance is—and as such is, in principle, amenable to the
standard convex optimization framework, such as interior point methods.

Attempts to numerically solve our optimization problem using Matlab’s off-the-
shelf solvers indicated that these were incapable of handling our framework. Even for
relatively small problems, with a sample size of 200, the optimizer was not able to
complete the run within 12h. This is due to the number of constraints m = O(n2)

for a sample of size n, runtime O(max{n3, n2 m, F}) ⊂ O(max{n4, F}), as discussed
above.

The lack of a dedicated solver for Kirszbraun extensionmotivated us to develop two
new optimization algorithms. Both rely on theMultiplicativeWeights Update (MWU)
scheme, which is formally described in Sect. 3.We solve the smoothing problem, up to
constant additive precision, in runtime O(ma+m3/2(logm)2b) and the extensionprob-
lem in runtime O(na + nb log n). When solving large-scale problems, even a modest
improvement in the exponent of the solver’s running time yields dramatic savings—
and indeed, our improvement from O(n4) to Õ(n3) in the ERMphase and from O(n3)

to Õ(n) in the prediction phase produced palpable results.3 The latter is of particular
significance, since typically theERMphase is performed once during “offline” training
while extension is performed many times during “online” prediction. Thus, our main
contributions are (a) on the statistical front to give a novel application of Kirszbraun
extension to the problem of regression and (b) on the algorithmic front, to provide
efficient algorithms for solving the optimization problems inherent in (a) as well as
the more general class of QCQP problems we termed Laplace’s problem in Sect. 3.1.

Our experiments in Sect. 4 show that our specialized algorithm significantly out-
performs general-purpose QCQP solvers. Although our main contributions are algo-
rithmic, a statistical analysis of our regression method is provided in “Appendix C”.

Related work Previous approaches to vector-valued regression include ε-insensitive
SVMwith p-norm regularization [8], least-squares andMLE-basedmethods [23], and

3 A further improvement via the use of spanners allows reducing the number of constraints m from O(n2)
to O(n) and hence the ERM runtime to Õ(n3/2), as detailed in Sect. 3.1.

123

H. Zaichyk et al.

(for linear models) the Danzig selector [11]. According to a recent survey [5], existing
methods essentially “transform the multi-output problem into independent single-
output problems.”Someapproaches tomultitask learningproblemsdoexploit relations
between the different tasks [10]. In econometrics, the decoupling of the outputs ismade
explicit in the Seemingly Unrelated Regressions (SUR) model [15, 18, 19]. These
approaches, however, do not seem to encapsulate the need of a single vector output
with possibly strong relations between its coordinates. In our approach, we devise a
principled approach for leveraging the dependencies via Kirszbraun extension. The
latter has previously been applied by [28] to dimensionality reduction (unsupervised
learning), but to the best of our knowledge has not been used in the supervised learning
setting. Very recently, a rather general regression setting studying mappings between
twometric spaces was studied [13]; notably, the Lipschitz extension approach does not
apply in such generality (as discussed therein). Additionally, the stringent condition
of uniform Lipschitz smoothness of the regressor can be relaxed to a more forgiving
average-case notion [4] and further to average Hölder smoothness [21].

Both of our problems (smoothing and extension) may be formulated as QCQP
problems, whose most general form is

minimize x�P0x + a�x

subject to x�Pi x + a�i x ≤ bi , i = 1, . . . , m,

where a, ai∈[m] and x are vectors, P0, Pi∈[m] are matrices, and the bi are scalars. The
general problem is NP-hard, but when all of the Pi are semi-definite, the problem is
convex and can be solved in polynomial time [6]. QCQP problems are usually solved
in practice using log-barrier or primal-dual interior-point methods. The running time
of an optimization algorithm based on interior-point methods significantly depends
on the problem at hand. Specifically, consider a problem with N variables and m
constraints. In order to obtain a (1 + ε)-approximate solution, the algorithm has to
performΘ(

√
m log(1/ε)) iterations in theworst case [33, Chapter 6]. In each iteration,

the algorithm has to initialize and invert an N × N Hessian matrix (or equivalently
solve a system of N linear equations with N variables). The time required to initialize
the Hessian matrix is problem specific: while it is O(m N 2) in the worst case, it is
often significantly less than that. The Hessian matrix can be inverted in O(Nω) time,
where ω is the matrix multiplication exponent [9] (the best current upper bound on
ω is 2.37286 [1]). However, to the best of our knowledge, all implementations used
in practice perform this step in O(N 3) time. That said, this step can be significantly
sped up if the Hessian matrix has a special structure.

Our Multiplicative Weights Update (MWU) scheme is based on the framework
of [2]. We include the relevant background and their results in “Appendix A” for
completeness.

Main results We cast the general regression problem between Hilbert spaces as two
QCQPs, and provide an efficient algorithm for each problem.

The problem setup, formalized in Sect. 3, involves a dataset of size n of vectors in
an a-dimensional Euclidean space labeled by b-dimensional vectors. The smoothing

123

Efficient Kirszbraun extension with applications to regression

(also: training, regularization, denoising) problem (Sect. 3.1) is to perturb the labels
so as to achieve the user-specified Lipschitz smoothness constraint while incurring
a minimum distortion. This is a standard statistical technique, known as regulariza-
tion, which prevents overfitting in prediction. Our Theorem 1 solves the smoothing
optimization problem, up to a tolerance ε ∈ (0, 1/2), in runtime

O(an2 + bn3(log n)2 log(1/ε)/ε5/2).

Next, we address the task of prediction (i.e., assigning a label to a test point). In The-
orem 2, we accomplish this via ε-approximate Kirszbraun extension of the smoothed
dataset, in runtime O(an+bn(log n)/ε2). We also provide a data structure for answer-
ing Lipschitz extension queries, which is useful when a is small. The data structure can
be constructed in time 2O(a)n log n. Then it answers Lipschitz extension/prediction
queries in per-query time

(1/ε)O(a)(b + log n).

In Sect. 4, we compare the performance of our MWU-based approach to a generic
off-the-shelf interior-point based solver and report a significant runtime advantage,
which allows processing larger samples and ultimately yields greater accuracy.

Finally, for completeness, in “Appendix C”, we include a Rademacher-based anal-
ysis of the generalization error of our regression algorithm. Our MATLAB code is
publicly available for reproducibility. 4

2 Formal setup

Metric space and Lipshcitz function A metric space (X , dX) is a set X equipped with
a symmetric function dX : X2 → [0,∞) satisfying dX (x, x ′) = 0 ⇐⇒ x = x ′
and the triangle inequality. Given two metric spaces (X , dX) and (Y , dY), a function
f : X → Y is L-Lipschitz if dY (f (x), f (x ′)) ≤ LdX (x, x ′) for all x, x ′ ∈ X ;
its Lipschitz constant ‖ f ‖Lip is the smallest L for which the latter inequality holds.
For any metric space (X , dX) and A ⊆ X , the following classic Lipschitz extension
result, essentially due to [29, 36], holds. If f : A → R is Lipschitz (under the
inherited metric of dX on A) then there is an extension f ∗ : X → R that coincides
with f on A and ‖ f ‖Lip = ‖ f ∗‖Lip. A Hilbert space H is a vector space (in our
case, over R) equipped with an inner product 〈·, ·〉 : H2 → R, which is a positive-
definite symmetric bilinear form, which is further complete in the metric dH (x, x ′) :=√〈x − x ′, x − x ′〉 (in the sense of Cauchy sequences converging to points in H , see
e.g. [34] for background). Under the definition of a metric space (X , dX), for every
x ∈ X we can define Ball(x, r) = {

x ′ ∈ X : dX (x, x ′) < r
}

. For positive integers n,
the set {1, . . . , n} will be denoted by [n]. We use standard graph-theoretic definitions:

4 https://github.com/HananZaichyk/Kirszbraun-extension.

123

https://github.com/HananZaichyk/Kirszbraun-extension

H. Zaichyk et al.

an undirected graph G = (V , E) is defined by a finite set of vertices V and edges
E ⊂ V 2; see, e.g., [7] for reference.

Kirszbraun theorem Kirszbraun [26] proved that for two Hilbert spaces (X , dX) and
(Y , dY), and f mapping A ⊆ X to Y , there is an extension f ∗ : X → Y such that
‖ f ‖Lip = ‖ f ∗‖Lip. This result is in general false for Banach spaces whose norm is not
induced by an inner product [32].

Learning problem We assume a familiarity with the abstract agnostic learning frame-
work and refer the reader to [30] for background. Our approach will be applied
to learn a mapping between two Hilbert spaces, (X , dX) and (Y , dY). We assume
a fixed unknown distribution P on X × Y and a labeled sample (xi , yi)i∈[n] of
input–output examples. The risk of a given mapping f : X → Y is defined as
R(f) = E(x,y)∼P [dY (f (x), y)]; implicit here is our designation of the metric of Y as
the loss function. Analogously, the empirical risk of f on a labeled sample is given
by R̂n(f) = n−1

∑

i∈[n] dY (f (xi), yi). In this paper, we always take X = R
a and

Y = R
b, each equippedwith the standard Euclideanmetric. Uniform deviation bounds

on |R(f)− R̂n(f)|, over all f with ‖ f ‖Lip ≤ L are given in “Appendix C”.

3 Learning algorithm

Overview We follow the basic strategy proposed by [17] for real-valued regression.
That is, we propose a learning paradigm based on Lipschitz functions. This is done in
two phases Smoothing as described in Sect. 3.1 and Lipschitz extension as described
in Sect. 3.2 In the smoothing phase, our Hypothesis class is

HL = {h : X → Y : h is L-Lipshchitz}

and the ERM process can be interpreted as picking the L-Lipschitz function ĥ which
fits best to the sample in terms of theMean Squared Error. The Extension phase, which
amounts to predicting the label of a new point, is simply assigning a value on a new
point ĥ(x∗) in a way that ĥ will remain L-Lipschitz on X

⋃{x∗}
We are given a labeled sample (xi , yi)i∈[n], where xi ∈ X := R

a and yi ∈ Y :=
R

b. For a user-specified Lipschitz constant L > 0, we compute the (approximate)
Empirical Risk Minimizer (ERM) f̂ := argmin f ∈FL

R̂n(f) over FL := { f ∈ Y X :
‖ f ‖Lip ≤ L}. (A standard method for tuning L is via Structural Risk Minimization

(SRM): One computes a generalization bound R(f̂) ≤ R̂n(f̂)+ Qn(a, b, L), where
Qn(a, b, L) := sup f ∈FL

|R(f)− R̂n(f)| = O(L/na+b+1), as derived in “Appendix

C”, and chooses L̂ to minimize this. We omit this standard stage of the learning
process.)

Predicting the value at a test point x∗ ∈ X amounts to Lipschitz-extending f̂ from
{xi : i ∈ [n]} to {xi : i ∈ [n]} ∪ {x∗}. Equivalently, the ERM stage may be viewed as
a smoothing procedure, where ỹi := f̂ (xi) and (xi , ỹi)i∈[n] is the smoothed sample—

123

Efficient Kirszbraun extension with applications to regression

which is then (approximately) Lipschitz-extended to x∗. We proceed to describe each
stage in detail.

3.1 Smoothing

Problem statement We reformulate the ERM problem f̂ = argmin f ∈FL
R̂n(f) as

follows. Given two sets of vectors, (xi , yi)i∈[n], where xi ∈ X := R
a and yi ∈ Y :=

R
b, we wish to compute a “smoothed” version ỹi of the yi ’s so as to

minimize
˜Y

�(Y,˜Y) :=
n

∑

i=1
‖yi − ỹi‖2

subject to ‖ỹi − ỹ j‖ ≤ L‖xi − x j‖, i, j ∈ [n],

where�(Y,˜Y) := ∑n
i=1 ‖yi− ỹi‖2 is the distortion, and‖ỹi− ỹ j‖ ≤ L‖xi−x j‖ for all

i, j ∈ [n] are the Lipschitz constraints. Here,Y = (y1, . . . , yn) and˜Y = (ỹ1, . . . , ỹn)

(the columns of matricesY and˜Y are vectors y1, . . . , yn and ỹ1, . . . , ỹn , respectively).
Notice that when we use the L2 norm, this problem is a quadratically constrained
quadratic program (QCQP). We refer to that problem as the smoothing problem.

To design an efficient algorithm for the smoothing problem, we consider a more
general variant of this problem where we are given a graph G = ({1, . . . , n}, E), and
the goal is to ensure that the Lipschitz constraints ‖ỹi − ỹ j‖ ≤ L‖xi − x j‖ hold for
all (i, j) ∈ E . We note that the smoothing problem corresponds to the case where E
is the complete graph. Importantly, if the doubling dimension ddim X is low, we can
solve the original problem by letting ([n], E) be a (1+ ε)-stretch spanner;5 then m =
n(1/ε)O(ddim) (this approach was previously used by [17]; see also [22, Section 8.2],
who used a similar approach to compute the doubling constant). Our algorithm for
Lipschitz Smoothing iteratively solves Laplace’s problem (see Problem 1) in the graph
G. We proceed to define this problem and present a closed-form formula for the
solution.

Problem 1 (Laplace’s problem) We are given vectors Y = {yi , i ∈ [n]}, graph G, and
additionally vertex weights {λi ≥ 0 (for i ∈ [n]}) and edge weights {μi j ≥ 0 (for
(i, j) ∈ E)}. Our goal is to find ˜Y = {ỹi , i ∈ [n]} so as to

minimize
˜Y

Ψ (Y,˜Y, {λi }, {μi j }) ≡
n

∑

i=1
λi‖yi − ỹi‖2 +

∑

(i, j)∈E

μi j‖ỹi − ỹ j‖2.

Let L be the Laplacian of G = ([n], E) with edge weights μi j ; that is, Li i =
∑

j : j �=i μi j (diagonal entries),Li j = −μi j for (i, j) ∈ E , andLi j = 0 for (i, j) /∈ E ,
i �= j . Let � = diag(λ1, . . . , λn). We solve Laplace’s problem using the standard

5 A spanner of a graph is a sub-graph simultaneously enjoying sparsity and distance-preserving properties.
The reader is referred to [17, 22] for the relevant background and in particular, the precise definition of a
(1+ ε)-stretch spanner and doubling dimension.

123

H. Zaichyk et al.

approach. We write the gradient of objective Ψ with respect to ỹi (assuming all other
parameters are fixed):

2λi (ỹi − yi)+ 2
∑

j :(i, j)∈E

μi j (ỹi − ỹ j) = 2

⎛

⎝λi +
∑

j :(i, j)∈E

μi j

⎞

⎠ ỹi

− 2
∑

j :(i, j)∈E

μi j ỹ j − 2λi yi

= 2
(

(L +�) Ỹ�)

i
− 2(�Y�)i .

For the optimal solution Ỹ , the gradientmust be equal 0 for every i . Thus, theminimum
is attained at:

(L +�)˜Y� = �Y�.

This equation can be solved separately for each of b rows of Y� using a nearly-
linear equation solver for diagonally dominant matrices by [27] in total time
O(bm log n log(1/ε)) (see also [35], which presented the first nearly-linear time solve
for diagonally dominant matrices).

We solve the Lipschitz Smoothing problem via the multiplicative weights update
algorithm LipschitzSmooth, presented below (see Algorithm 1). It was inspired by
the algorithm for finding maximum flow using electrical networks by [12]. Notice that
in the following analysis we prove that by defining λ and

{

μi j
}

as in Algorithm 1
LipschitzSmooth, solving Laplace’s problem will give us an approximate solution to
the smoothing problem
Analysis Let Y∗ be the optimal solution to the Lipschitz Smoothing problem and and
�0 be a (1+ ε) approximation to the optimal value; that is,

�(Y,Y∗) ≤ �0 ≤ (1+ ε)�(Y,Y∗)

(we assume that �0 is given to the algorithm; note that �0 can be found by binary
search).

We use the multiplicative-weight update (MWU) method. Let

h�(˜Y) = 1−
√

�(Y,˜Y)

�0
,

hi j (˜Y) = 1− ‖ỹi − ỹ j‖
M‖xi − x j‖ , (i, j) ∈ E .

Note that functions h� and hi j are concave.
Observe that h�(˜Y∗) ≥ 0 and hi j (˜Y∗) ≥ 0 for every (i, j) ∈ E . On the other hand,

if h�(˜Y) ≥ −ε and hi j (˜Y) ≥ −ε, then

�(Y,˜Y) ≤ (1+ ε)2�0

123

Efficient Kirszbraun extension with applications to regression

Algorithm 1 LipschitzSmooth
Require: vectors X = x1, . . . , xn ∈ R

a , Y = y1, . . . , yn ∈ R
b , graph G = ([n], E), M and �0

Output: ˜Y
1:
2: let Y ≡ (y1, . . . , yn)

3: let ri j = L‖xi − x j‖ for (i, j) ∈ E
4: let wi j = 1/(m + 1) for (i, j) ∈ E , where m = |E |
5:
6: let w� = 1/(m + 1)

7: let T = c1�
√

m ln n
ε2

� (the number of iterations)
8: for for t = 1 to T do
9: let L be the Laplacian of G with edge weights μi j = wi j+ε/(m+1)

r2i j
10: let λ = (w� + ε/(m + 1))/�0
11: solve (λ−1L + I) (˜Yt)� = Y� for ˜Yt

12: update the weights: w� =
(

1+ c2ε

(
√

�(Y,˜Yt)
�0

− 1

))

w�

13: wi j =
(

1+ c2ε

(‖ỹi−ỹ j ‖
ri j

− 1

))

wi j for every (i, j) ∈ E

14: normalize the weights: W = w� +∑

(i, j)∈E wi j

15: w� = w�/W

16: wi j = wi j /W for all (i, j) ∈ E
17:
18: end for
19: return ˜Y = 1

T
∑T

t=1 ˜Yt

and ‖ỹi − ỹ j‖ ≤ (1+ ε)L‖xi − x j‖ for every (i, j) ∈ E .
In the Appendix, we describe the approximation oracle that we invoke in the MWU

method.

Theorem 1 There is an algorithm for the Lipschitz Smoothing problem that runs in
time

O
(

ma + m3/2b(log n)2 log(1/ε)/ε5/2
)

,

where m = |E |.
Proof Theorem 1 From Theorem 3.5 in [2], we get that the algorithm finds an O(ε)

approximate solution in T = O
(√

m/ε lnm
ε2

)

=
(√

m
ε5/2

)

iterations. Each iteration

takes O(bm log n log(1/ε)) time (which is dominated by the time necessary to solve
Laplace’s problem); additionally, we spend time O(am) to compute pairwise distances
between points in X . ��

3.2 Approximate Lipschitz extension

Problem statement Given a finite sequence (xi)i∈[n] ⊂ X = R
a , its image

(yi)i∈[n] ⊂ Y = R
b under some L-Lipschitz map f : X → Y , a test point x∗,

123

H. Zaichyk et al.

Algorithm 2 OnePointExtension
Require: labeled sample (xi , yi = f (xi)) ⊂ (X×Y)n , ε ∈ (0, 1/2) query point x∗ ∈ X , and upper bound

L ≥ ‖ f ‖Lip return label y∗
let x◦ be the nearest neighbor of x∗ among x1, . . . , xn ; y◦ = f (x◦); d◦ = ‖x◦ − x∗‖
initialize weights w

(1)
1 , . . . , w

(1)
n as follows: w(1)

i = 1/n for every i
let di = ‖xi − x∗‖ for every i
let T = � 16 ln n

ε2
� (the number of iterations)

for t = 1 to T do

let P = ∑n
i=1 w

(t)
i /d2i and pi = w

(t)
i

Pd2i
let z0 =

∑n
i=1 pi yi and Δ = ‖z0 − y◦‖

if Δ ≤ Ld◦ then z(t) = z0 else z(t) = Ld◦
Δ

z0 + Δ−Ld◦
Δ

y◦

update the weights: w
(t+1)
i = (1+ ε‖ỹ−yi ‖

8Ldi
)w

(t)
i for every i

normalize the weights: compute W = ∑n
i=1 w

(t)
i and let w(t+1)

i = w
(t)
i /W for every i

end for
return z = 1

T
∑T

t=1 z(t)

and a precision parameter ε ∈ (0, 1/2), we wish to compute y∗ = f (x∗) so that
‖y∗ − yi‖ ≤ (1+ ε)L ‖x∗ − xi‖ for all i ∈ [n]. Our result is an efficient Algorithm 2
(called OnePointExtension) that achieves this:

Theorem 2 The approximate Lipschitz extension algorithmOnePointExtension (Algo-
rithm 2) has runtime O(na + nb log n/ε2).

We are also interested in the setting when the labeled sample {(xi yi)}i is fixed,
and we compute Kirszbraun extensions y∗ for multiple points x∗. In this setting, the
query runtime—the time necessary to compute one extension—can be significantly
improved if the dimension of X is small:

Theorem 3 There is a data structure for the Lipschitz extension problem of memory
size 2O(a)n that can be constructed in time 2O(a)n log n. Given a query point x∗ and a
parameter ε ∈ (0, 1/2), one can compute y∗ such that ‖y∗− yi‖ ≤ (1+ε)L‖x∗− xi‖
for every i in time (1/ε)O(a)(b + log n).

Analysis We begin with an intuitive explanation. Consider a feasibility problem over
a domain P ∈ R

n in which one must determine whether there exists an x ∈ P
satisfying the constraints fi (x) ≥ 0 for i ∈ [m]. This problem in the general case
is NP-Hard. The Arora–Hazan–Kale result indicates that, under certain conditions,
an approximate solution to the simpler problem, where the m constraints have been
replaced by their convex combination

∑

i wi fi (x) ≥ 0 can be leveraged to solve
the original one. One makes repeated calls to the simpler-problem oracle and uses
multiplicative weight updates to adjust the w. If a solution xi ∈ P exists for all
iterations, then x∗ = 1

T

∑T
t=1 x (t) will be an approximate solution to the original

feasibility problem. The precise details in “Appendix A”. In this section, we present
our algorithm, show how our problem fits the paradigm of [2, Sec. 3.3.1, p. 137], show
how our oracle solves the simpler problem, and prove that our algorithms solve the
feasibility problems efficiently.

123

Efficient Kirszbraun extension with applications to regression

We analyze algorithm OnePointExtension (Algorithm 2) and prove Theorems 2
and 3 via the multiplicative update framework of [2]. In particular, we will invoke their
Theorem 3.4, which, for completeness, is reproduced in “Appendix A” as Theorem 5.
Let P = Ball(y◦, L‖x◦ − x∗‖) (see algorithm OnePointExtension 2 for the defini-
tions of x◦ and y◦), and define hi (y) = 1− ||y−yi ||

L||x∗−xi || for y ∈ Y , i ∈ {1, . . . , n}. Then
the Lipschitz extension problem is equivalent to the following: find y ∈ P such that
hi (y) ≥ 0 for all i ∈ [n]. Note that functions hi are concave and thus the problem is
in the form of (3.8) from [2]. We now bound the width of the problem, proving that
hi (y) ∈ [−2, 1] for every y ∈P; that is, in the notation from [2], we show that every
oracle for the problem is (
, ρ)-bounded with
 = 1 and ρ = 2. Observe that for every
y ∈P and every i , we have (i) hi (y) ≤ 1 as ‖y−yi‖

L‖x∗−xi‖ ≥ 0 and (ii)

1− hi (y) = ‖y − yi‖
L‖x∗ − xi‖ ≤

‖y − y◦‖ + ‖y◦ − yi‖
L‖x∗ − xi‖

≤ L‖x◦ − x∗‖ + L‖x◦ − xi‖
L‖x∗ − xi‖

≤ 2‖x◦ − x∗‖ + ‖x∗ − xi‖
‖x∗ − xi‖

= 1+ 2
‖x◦ − x∗‖
‖x∗ − xi‖ ≤ 3.

Here, we used that ‖y− y◦‖ ≤ L‖x◦ − x∗‖ (which is true since y ∈P), ‖y◦ − yi‖ ≤
L‖x◦− xi‖ (which is true since f is L-Lipschitz), ‖x◦− xi‖ ≤ ‖x◦− x∗‖+‖x∗− xi‖
(the triangle inequality), and ‖x∗ − x◦‖ ≤ ‖x∗ − xi‖ (which is true since x◦ is the
point closest to x∗ among all points x1, . . . , xn). We conclude that hi (y) ∈ [−2, 1].

To apply Theorem 5, we design an oracle for the following problem:

Problem 2 Given non-negative weights wi that add up to 1, find y ∈P such that

n
∑

i=1
wi hi (y) ≥ 0. (2)

Note that Problem 2 has a solution, since (i) by the Kirzsbraun theorem there exists
a Lipschitz extension y∗ of f to point x∗, and (ii) y∗ satisfies (2). Define auxiliary
weights pi as follows:

P =
n

∑

i=1

wi

‖x∗ − xi‖2 and pi = wi

P‖x∗ − xi‖2 .

Note that
∑

i pi = 1. We now show that the oracle finds and outputs z ∈ P that
minimizes V (z) = ∑n

i=1 pi‖z − yi‖2. To this end, it first computes z0 = ∑n
i=1 pi yi .

Note that V (z) = ‖z− z0‖2+∑n
i=1 pi‖z0− yi‖2. Observe that the second term does

not depend on z and the first term is minimized when z is the closest point to z0 inP .
Thus, if z0 ∈P , the algorithm sets z = z0; otherwise, it sets z to be the point closest
to z0 inP .

123

H. Zaichyk et al.

We derive a formula for z in the latter case. Note that L‖x◦ − x∗‖ ≤ ‖z0 − y◦‖
because z0 /∈ P . Since P is a ball, point z is the intersection point of the sphere of
radius L‖x◦ − x∗‖ around y◦ (the boundary of P) and segment [z0, y◦]. Now we
verify that z is given by the following formula

z = L‖x◦ − x∗‖
‖z0 − y◦‖ z0 +

(

1− L‖x◦ − x∗‖
‖z0 − y◦‖

)

y◦.

Indeed, this z is a convex combination of points z0 and y◦ and thus z ∈ [z0, y◦]. Then,

‖z − y◦‖ = L‖x◦ − x∗‖
‖z0 − y◦‖ · ‖z0 − y◦‖ = L‖x◦ − x∗‖.

We have verified that this z is the intersection point of the sphere of radius L‖x◦− x∗‖
around y◦ and segment [z0, y◦], as required.

We compute z on lines 6–8 of the algorithm.We verify that z satisfies condition (2).
Write condition (2) for point y = z:

0 ≤
∑

i

wi hi (z) =
∑

i

wi

(

1− ||z − yi ||
L||x∗ − xi ||

)

= 1−
∑

i

wi ||z − yi ||
L||x∗ − xi || .

That is, we need to verify that
∑

i
wi ||z−yi ||
||x∗−xi || ≤ L . Using that ‖y∗− yi‖2

/‖x∗− xi‖2 ≤
L2, we get

n
∑

i=1
wi

‖z − yi‖
‖x∗ − xi‖≤

(

n
∑

i=1
wi

‖z − yi‖2
‖x∗ − xi‖2

n
∑

i=1
wi

)1/2

≤
(

n
∑

i=1
wi
‖y∗ − yi‖2
‖x∗ − xi‖2

)1/2

≤ L.

The first inequality is due to Cauchy–Schwarz, and the second holds since V (z) ≤
V (y∗).

Proof of Theorem 2 From Theorem 5, we get that the algorithm finds a 1+ ε approx-
imate solution in T = 8ρ
 lnm

ε2
= 16 lnm

ε2
iterations. Computing distances di takes

O(an) time, each iteration takes O(bn) time. ��
Proof of Theorem 3 Our key observation is that we can run the algorithm from Theo-
rem 2 on a subset X ′ of X , which is sufficiently dense in X . Specifically, let x◦ be a
(1+ ε)-approximate nearest neighbor for x∗ in X . Assume that a subset X ′ ⊂ X con-
tains x◦ and satisfies the following property: for every xi ∈ X∩Ball(x∗, ‖x∗−x◦‖/ε),
there exists x j ∈ X ′ such that ‖x j − xi‖ ≤ ε‖x∗ − xi‖.

First, we prove that by running the algorithm on set X ′ as above, we get y∗ such
that ‖yi − y∗‖ ≤ (1+ O(ε))L‖xi − x∗‖ for all i . Then we describe a data structure
that we use to find X ′ for a given query point x∗ in time (1/ε)O(a) log n.

123

Efficient Kirszbraun extension with applications to regression

Lemma 1 Algorithm from Theorem 2 finds y∗ such that ‖yi−y∗‖ ≤ (1+O(ε))L‖xi−
x∗‖ for all xi ∈ X ′.

Proof Consider xi ∈ X . First, assume that xi ∈ Ball(x∗, ‖x∗ − x◦‖/ε). Find x j ∈ X ′
such that ‖x j − xi‖ ≤ ε‖x∗ − xi‖. Then

‖yi − y∗‖ ≤ ‖yi − y j‖ + ‖y j − y∗‖
≤ L‖xi − x j‖ + (1+ ε)L‖x j − x∗‖
≤ L((2+ ε)‖xi − x j‖ + (1+ ε)‖xi − x∗‖)
≤ (1+ 3ε + ε2)L‖xi − x∗‖,

Now assume that xi /∈ Ball(x∗, ‖x∗ − x◦‖/ε). Then ‖xi − x∗‖ > ‖x∗ − x◦‖/ε; that
is, ‖x∗ − x◦‖ < ε‖xi − x∗‖. Thus,

‖yi − y∗‖ ≤ ‖yi − y◦‖ + ‖y◦ − y∗‖
≤ L‖xi − x◦‖ + (1+ ε)L‖x◦ − x∗‖
≤ L(‖xi − x∗‖ + (2+ ε)‖x◦ − x∗‖)
≤ L(‖xi − x∗‖ + (2+ ε) · ε‖xi − x∗‖)
= (1+ ε)2L‖xi − x∗‖.

as required.
We can use a data structure D for approximate nearest neighbor search in X . We

employ one of the constructions for low-dimensional Euclidean spaces by [3, 22],
or [14]. Using D , we can find a (1+ ε/3)-approximate nearest neighbor of a point in
R

a in time (1/ε)O(a) log n. Recall that we can construct D in O(2O(a)n log n) time,
and it requires O(2O(a)n log n) space. Suppose that we get a query point x∗. We first
find an approximate nearest neighbor x◦ for x∗. Let r = ‖x◦ − x∗‖. Take an εr/3
net N ′ in the ball Ball(x∗, r/ε). For every point p ∈ N ′, we find an approximate
nearest neighbor x(p) in X (using D). Let X ′ = {x(p) : p ∈ N ′} ∪ {x◦}. Consider
xi ∈ Ball(x∗, r/ε) ∪ X . There is p ∈ N ′ at distance at most εr/3 from xi . Let
x j = x(p) ∈ X ′. Then

‖p − x j‖ ≤ (1+ ε/3)‖xi − p‖ ≤ (1+ ε/3)εr/3

and

‖xi − x j‖ ≤ ‖xi − p‖ + ‖p − x j‖
≤ εr/3+ (1+ ε/3)εr/3

≤ (2+ ε/3)εr/3 ≤ 3‖x∗ − xi‖,

as required. The size of X ′ is at most the size of N ′, which is (1/ε)O(a).
Finally, let us compute the total Lipschitz extension query time.Wemake (1/ε)O(a)

nearest-neighbor queries, each taking time (1/ε)O(a) log n. Then we run the algorithm
from Theorem 2 on the set X ′, this requires time

123

H. Zaichyk et al.

O(|X ′|a + |X ′|b log |X ′|/ε2) = O((1/ε)O(a)a + (1/ε)O(a)b log(1/ε)O(a))

= O((1/ε)O(a)ab log(1/ε)) = O((1/ε)O(a)b).

The total query time is (1/ε)O(a)(b + log n).

Algorithm 3 MultiPointExtension
Require: vectors x1, . . . , xn , xn+1, . . . , xn+n′ ∈ R

a and y1, . . . , yn ∈ R
b , graph G = ([n + n′], E), and

M return ˜Y = (yn+1, . . . , yn+n′)
1: let Y ≡ (y1, . . . , yn)

2: let ri j = L‖xi − x j‖ for (i, j) ∈ E
3: let wi j = 1/m for (i, j) ∈ E

4: let T = c1�
√

m ln n
ε2

� (the number of iterations)
5: for for t = 1 to T do
6: let λi j = wi j+ε/m

r2i j
for (i, j) ∈ E

7: define n′ × n times matrix K as:
8: Ki j = λi+n, j+n if (i + n, j + n) ∈ E and 0 otherwise.

9: solve L(˜Yt)� = KY� for ˜Yt

10: update the weights: wi j =
(

1+ c2ε
(‖yi−y j ‖

ri j
− 1

))

wi j for every (i, j) ∈ E

11: normalize the weights: W = ∑

(i, j)∈E wi j
12: wi j = wi j /W for all (i, j) ∈ E
13: end for
14: return ˜Y = 1

T
∑T

t=1 ˜Yt

3.3 Multi-point Lipschitz extension

Finally,we describe an algorithm for theMulti-point Lipschitz Extension. The problem
is a generalization of the problem we studied in Sect. 3.2.

We are given a set of points X = {x1, . . . , xn} ⊂ R
a and their images Y =

{y1, . . . , yn} ⊂ R
b under L-Lipschitz map f . Additionally, we are given a set Z =

{xn+1, . . . , xn+n′ } ⊂ R
a and a set of edges E on {1, . . . , n + n′}. We need to extend

f to Z—that is, find yn+1, . . . , yn+n′—such that ‖yi − y j‖ ≤ (1 + ε)L‖xi − x j‖
for (i, j) ∈ E . We note that E may contain edges that impose Lipschitz constraints
(i) between points in X and Z and (ii) between pairs of points in Z . Without loss of
generality, we assume that there are no edges (i, j) ∈ E with 1 ≤ i, j ≤ n.

Theorem 4 There is an algorithm for the Multi-Point Lipschitz Extension problem that
runs in time

O

(

ma + m3/2(logm)2b log(1/ε)

ε5/2

)

,

where m = |E |.
The algorithmand its analysis are almost identical to those for theLipschitz Smooth-

ing problem. (see Theorem 1).

123

Efficient Kirszbraun extension with applications to regression

4 Experiments

To illustrate the utility of our framework—learning via Kirszbraun extension—we
designed two simple non-linear regression problems, where the input and output are
both scalars. We generated data points uniformly at random over [−2π, 2π] on two
cases: f (x) = x3 and f (x) = sin(x).We gave our learning algorithms the labeled data
sets {(xi , f (xi); i ∈ [1, . . . , n]}, and evaluated their prediction performance using the
average square loss function 1

n

∑n
i=1(h(xi) − f (xi))

2, where h(xi) is the output of
our Kirszbraun Extension model for a data point xi . To illustrate the advantage of the
MWU-based optimization methods presented in Sect. 3 over a generic QCQP solver,
we designed a second experiment for learning the same non-linear transformations via
Kirszbraun extension, but using MATLAB’s QCQP solver based on the interior-point
algorithm (IntPt) for the smoothing and extension problem.

Setup We implemented Algorithms 1 and 2 in MATLAB, solving the regression
problem via the Kirszbraun extension technique for both cases f (x) = x3 and
f (x) = sin(x). We considered the squared Euclidean distance as the loss function.
We ran several tests on data sets of size 20, 100, 200, 500, and 1000 random points
as the training set, and 100 test points in all experiments. We then re-implemented
the algorithms for the smoothing and extension problems, this time using MATLAB’s
QCQP solver based on the interior-point algorithm (IntPt). For reproducibility, we
used MATLAB’s random seed 1 in all our runs. All the tests were conducted on the
same Macbook Pro computer: MacBook Pro (16-inch, 2019), 2.6 GHz 6-Core Intel
Core i7 processor, Memory 16 GB 2667 MHz DDR4.

Tables 1, 2, 3, 4 and 5 summarise the results for f (x) = x3. The results for
f (x) = sin(x) are showing the same basic pattern and were added to the Appendix.
The “TL” entries in the tables indicate that the process was too long as it did not
terminate in the time allotted for the experiment (12h).

Table 1 ERM of the smoothing process

Algorithm Avg. loss

Training points 20 100 200 500 1000

MWU 247.94 0.33 0.31 0.31 0.36

IntPt 4.1e−18 46,023.79 353,691.64 TL TL

Table 2 Cross validation running time over the smoothing process in seconds

Algorithm Avg. loss

Training points 20 100 200 500 1000

MWU 2.75 19.94 46.24 212.48 1243.23

IntPt 18.17 692.65 4087.66 TL TL

123

H. Zaichyk et al.

Table 3 Running time in
seconds of the Smoothing
process

Algorithm Avg. loss

Training points 20 100 200 500 1000

MWU 0.09 0.70 1.63 8.07 45.14

IntPt 2.47 155.55 766.54 TL TL

Table 4 Extension avg loss

Algorithm Avg. loss

Training points 100 200 500 1000

MWU 1119.47 0.33 0.37 0.43 0.52

IntPt 3065.56 9475.26 9475.48 TL TL

Table 5 Extension running time
for a single point in the test set,
in seconds

Algorithm Avg. loss

Training points 20 100 200 500 1000

MWU 0.05 0.001 0.002 0.005 0.009

IntPt 1.330 1.690 2.610 TL TL

5 Discussion and conclusions

This work introduces a framework for performing regression between two Hilbert
spaces based on Kirszbraun’s extension theorem, along with statistical analysis for
this method. This task is decomposed into two stages: Smoothing (which corresponds
to the training) and prediction (which is achieved via Kirszbraun extension). Numer-
ically solving our optimization problems has indicated a need for a more efficient
solver for our optimization problems than generic off-the-shelf interior-point solvers.
We introduced two optimization algorithms, one for the smoothing problem and one
for the extension, both are solved algorithmically via novel MWU schemes. Both
analysis and experiments show dramatic runtime improvement for both optimization
problems, illustrating the practical utility of our algorithms. Our code is also provided
for reproducibility and to facilitate deployment (Table 6).

123

Efficient Kirszbraun extension with applications to regression

Table 6 Visual comparison between our MWU-based algorithm (first row) and IntPt (MATLAB’s) based
algorithm (second row)

For f = x3 and N = 100 random points. In all graphs, the blue line represents the ground truth function
f = x3 while the orange x symbols represent the estimation of the data points by the learned function. It
is possible to see that while the MWU-based algorithm was able to fit both the training and test set to high
accuracy, the IntPt method has several “heavy” outliers which increase significantly its average squared
error

Acknowledgements AKwas partially supported by the Israel Science Foundation (Grant No. 1602/19), the
Ben-Gurion University Data Science Research Center, and an Amazon Research Award. HZ was an MSc
student at Ben-Gurion University of the Negev during part of this research. YM was partially supported by
NSF awards CCF-1718820, CCF-1955173, and CCF-1934843.

Appendix A: The Arora–Hazan–Kale result

Intuitive explanation of the result Consider a feasibility problem over a domainP ∈
R

n in which you need to determine if there exists x ∈ P which satisfies finite set of
constrains: fi (X) ≥ 0 for all i ∈ [m]. This problem in the general case is NP-Hard.
The Arora-Hazan-Kale result indicates that, under certain conditions, if we know
how to solve approximately a simpler problem: ∃?X ∈ P : ∑

i wi fi (X) ≥ 0 where
∑

i wi = 1, by an algorithmwhich we call “Oracle”, then we can run T iterations over
the simpler problem, where in each iteration we update the weights {wi }i∈[m] using
the MWU framework, and solve the updated problem using the Oracle. If a solution
xi ∈ P exists for all iterations then X∗ = 1

T

∑T
t=1X(t) will be an approximate

solution to the feasible problem. The conditions and the definitions of the meaning
in the intuitive explanation are given in “Appendix A”. In this section, we present

123

H. Zaichyk et al.

our algorithm, show our problem fits the paradigm of [2, Sec. 3.3.1, p. 137], show
our oracle solves the simpler problem (given in the algorithm) and proof that our
algorithms solve the feasible problems efficiently. For completeness, we quote here
the relevant definitions and results from [2, Sec. 3.3.1, p. 137].

Consider the following feasibility problem. LetP ∈ R
n be a convex domain inRn

and fi : P → R be concave functions for i ∈ [m]. The goal is to determine if there
exists x ∈P such that fi (X) ≥ 0 for all i ∈ [m]:

∃?X ∈P : ∀i ∈ [m] : fi (X) ≥ 0, (3)

The multiplicative weights update method of Arora, Hazan, and Kale [2] provides an
algorithm that satisfies (3) approximately, up to an additive error of ε. We assume
the existence of an oracle that given a probability distribution w = (w1, w2, . . . , wm)

solves the following feasibility problem:

∃?X ∈P :
∑

i

wi fi (X) ≥ 0. (4)

Definition 1 We say that oracle Oracle is (
, ρ)-bounded if it always returns x ∈ P
such that fi (X) ∈ [−ρ,
] for all ∈ [m]. The width of the oracle is ρ +
.

Remark 1 Note that if fi (X) ∈ [−ρ,
] for all X ∈ P then every oracle for the
problem is (
, ρ)-bounded.

Definition 2 We say that oracle Oracle is ε-approximate if given w = (w1, . . . , wm)

it either finds a solution X ∈ P such that
∑

i wi fi ≥ −ε for all i ∈ [m] or correctly
concludes that (4) has no feasible solution.

Consider the following algorithm.

Algorithm 4Multiplicative Weights Update Algorithm
Require: functions fi (x) for i ∈ [m], access to (
, ρ)-bounded oracle Oracle
return feasible solution x∗ ∈P
let η = ε

4

initialize weights w
(1)
1 , . . . , w

(1)
n as follows: w(1)

i = 1/n for every i ∈ [n]
let T = � 8ρ
 lnm

ε2
� (the number of iterations)

for t = 1 to T do
call Oracle with probability distribution w = w(i).
if the call fails, return “there is no feasible solution”
else let X(t) be the solution found by Oracle

update the weights: w
(t+1)
i = (1− η fi (X(t)))w

(t)
i for every i

normalize the weights: compute W = ∑n
i=1 w

(t)
i and let w(t+1)

i = w
(t)
i /W for every i

end for
return X∗ = 1

T
∑T

t=1 X(t)

We now state theorems providing performance guarantees for Algorithm 4. The-
orems 5 and 6 are for the cases where we have an exact and ε-approximate oracles,
respectively.

123

Efficient Kirszbraun extension with applications to regression

Theorem 5 (Theorem 3.4 in [2], restated) Let ε > 0 be a given error parameter.
Suppose that there exists an (
, ρ)-bounded Oracle for the feasibility problem (3) with

 ≥ ε/2. Then Algorithm 4 either

– solves problem (3) up to an additive error of ε; that is, finds a solution X∗ ∈ P
such that fi (X∗) ≥ −ε for all i ∈ [m],

– or correctly concludes that problem (3) is infeasible,

making only O(
ρ log(m)/ε2) calls to the Oracle, with an additional processing time
of O(m) per call.

Theorem 6 (Theorem 3.5 in [2], restated) Let ε > 0 be a given error parameter. Sup-
pose that there exists an (
, ρ)-bounded (ε/3)-approximate Oracle for the feasibility
problem (3) with
 ≥ ε/2. Consider Algorithm 4 with adjusted parameters η = ε

6

and T = � 18ρ
 lnm
ε2

�. Then the algorithm either

– solves problem (3) up to an additive error of ε; that is, finds a solution X∗ ∈ P
such that fi (X∗) ≥ −ε for all i ∈ [m],

– or correctly concludes that problem (3) is infeasible,

making only O(
ρ log(m)/ε2) calls to the Oracle, with an additional processing time
of O(m) per call.

Appendix B: Approximate oracle

This section is a continuation to Sect. 3.1, the analysis of the LipschitzSmooth algo-
rithm in Theorem 1. To use the MWU method (see Theorem 6, Theorem 3.5 in [2]),
we design an approximate oracle for the following problem.

Problem 3 Given non-negative edge weights w� and wi j , which add up to 1, find ˜Y
such that

w�h�(˜Y)+
∑

(i, j)∈E

w(i, j)h(i, j)(˜Y) ≥ 0. (5)

If Problem 3 has a feasible solution, the oracle finds a solution ˜Y such that

w�h�(˜Y)+
∑

(i, j)∈E

w(i, j)h(i, j)(˜Y) ≥ −ε. (6)

Let μi j = wi j+ε/(m+1)
M2‖xi−x j‖2 and λi = λ = (w� + ε/(m + 1))/�0. We solve Laplace’s

problem with parameters μi j and λi (see Sect. 1 and Line 9 of the algorithm). We get
a matrix ˜Y = (ỹ1, . . . , ỹn) minimizing

λ

n
∑

i=1
‖yi − ỹi‖2 +

∑

(i, j)∈E

μi j‖ỹi − ỹ j‖2.

123

H. Zaichyk et al.

Consider the optimal solution ỹ∗1 , . . . , ỹ∗n for Lipschitz Smoothing. We have

λ

n
∑

i=1
‖yi − ỹi‖2 +

∑

(i, j)∈E

μi j‖ỹi − ỹ j‖2 ≤ λ

n
∑

i=1
‖yi − ỹ∗i ‖2 +

∑

(i, j)∈E

μi j‖ỹ∗i − ỹ∗j ‖2

(7)

≤ (w� + ε/(m + 1))

+
∑

(i, j)∈E

(

wi j + 1

m + 1

) ‖ỹ∗i − ỹ∗j ‖
M2‖xi − x j‖2

(8)

≤
⎛

⎝w� +
∑

(i, j)∈E

wi j

⎞

⎠+ ε = 1+ ε. (9)

We verify that ˜Y is a feasible solution for Problem 3. We have

1−
⎛

⎝w�h�(˜Y)+
∑

(i, j)∈E

w(i, j)h(i, j)(y)

⎞

⎠ = w�(1− h�)

+
∑

(i, j)∈E

w(i, j)(1− h(i, j)(y))

≤
√

w�(1− h�)2 +
∑

(i, j)∈E

w(i, j)(1− h(i, j)(y))2

=
√

√

√

√w�

�(Y,˜Y)

�0
+

∑

(i, j)∈E

w(i, j)
‖ỹi − ỹ j‖2

M2‖xi − x j‖2

≤
√

λ�(Y,˜Y)+
∑

(i, j)∈E

w(i, j)μi j‖ỹi − ỹ j‖2

≤ √
1+ ε ≤ 1+ ε,

as required.
Finally, we bound the width of the problem. We have h�(˜Y) ≤ 1 and hi j (˜Y) ≤ 1.

Then, using (7), we get

(1− h�(˜Y))2 = 1

�0

n
∑

i=1
‖yi − ỹi‖2 ≤ 1+ ε

λ�0
≤ (1+ ε)(m + 1)

ε
.

Therefore, −h�(˜Y) ≤ O(
√

m/ε).

123

Efficient Kirszbraun extension with applications to regression

Similarly,

(1− hi j (˜Y))2 = ‖yi − ỹi‖2
M2‖xi − x j‖2 ≤

1+ ε

μi j · M2‖xi − x j‖2 ≤
(1+ ε)(m + 1)

ε
.

Therefore, −hi j (˜Y) ≤ O(
√

m/ε).

Appendix C: Generalization bounds

Recall the following statistical setting of Sect. 3. We are given a labeled sample
(xi , yi)i∈[n], where xi ∈ X := R

a and yi ∈ Y := R
b. For a user-specified

Lipschitz constant L > 0, we compute the (approximate) Empirical Risk Mini-
mizer (ERM) f̂ := argmin f ∈FL

R̂n(f) over FL := { f ∈ Y X : ‖ f ‖Lip ≤ L}. A
standard method for tuning L is via Structural Risk Minimization (SRM): One com-
putes a generalization bound R(f̂) ≤ R̂n(f̂) + Qn(a, b, L), where Qn(a, b, L) :=
sup f ∈FL

|R(f) − R̂n(f)| = O(L/na+b+1), and chooses L̂ to minimize this. In this
section, we will derive the aforementioned bound.

Let BX ⊂ R
k and BY ⊂ R

 be the unit balls of their respective Hilbert spaces (each
endowed with the
2 norm || · || and corresponding inner product) and HL ⊂ BY

BX

be the set of all L-Lipschitz mappings from BX to BY . In particular, every h ∈ HL

satisfies

||h(x)− h(x ′)|| ≤ L||x − x ′||, x, x ′ ∈ BX ⊂ X .

Let FL ⊂ R
BX×BY be the loss class associated with HL :

FL = {BX × BY (x, y) !→ f (x, y) = fh(x, y) := ||h(x)− y||; h ∈HL}.

In particular, as every f ∈ FL satisfies 0 ≤ f ≤ 2.
Our goal is to bound the Rademacher complexity ofFL . We do this via a covering

numbers approach:
The empirical Rademacher complexity of a collection of functions F , mapping

some set
A = {a1, . . . , an} ⊂ An to R is defined by:

R̂(F ; A) = E

[

sup
f ∈F

1

n

n
∑

i=1
σi f (ai)

]

. (10)

where σ1, σ2, . . . , σm are independent random variables drawn from the Rademacher
distribution: Pr(σi = +1) = Pr(σi = −1) = 1/2.Recall the relevance ofRademacher
complexities to uniform deviation estimates for the risk functional R(·) [30, Theorem
3.1]: for every δ > 0, with probability at least 1− δ, for each h ∈HL :

R(h(z)) ≤ R̂n(h(z))+ 2R̂n(F̂L)+ 6

√

ln(2/δ)

2n
. (11)

123

H. Zaichyk et al.

Define Z = BX × BY and endow it with the norm ‖(x, y)‖Z = ‖x‖ + ‖y‖; note
that (Z , ‖·‖Z) is a Banach but not a Hilbert space. First, we observe that the functions
in FL are Lipschitz under ‖·‖Z . Indeed, choose any f = fh ∈ FL and x, x ′ ∈ BX ,
y, y′ ∈ BY . Then

∣

∣ fh(x, y)− fh(x ′, y′)
∣

∣ = ∣

∣‖h(x)− y‖ − ∥

∥h(x ′)− y′
∥

∥

∣

∣

≤ ∥

∥(h(x)− y)− (h(x ′)− y′)
∥

∥

≤ ∥

∥h(x)− h(x ′)
∥

∥+ ∥

∥y − y′
∥

∥

≤ L
∥

∥x − x ′
∥

∥+ ∥

∥y − y′
∥

∥

≤ (L ∨ 1)
∥

∥(x, y)− (x ′, y′)
∥

∥

Z ,

where a ∨ b := max {a, b}. We conclude that any f ∈ FL is (L ∨ 1) < (L + 1)-
Lipschitz under ‖·‖Z .

Since we restricted the domain and range ofHL , respectively, to the unit balls BX

and BY , the domain of FL becomes BZ := BX × BY and its range is [0, 2]. Let us
recall some basic facts about the
2 covering of the k-dimensional unit ball

N (t, BX , ‖·‖) ≤ (3/t)k;

an analogous bound holds forN (t, BY , ‖·‖). Now if CX is a collection of balls, each
of diameter at most t , that covers BX and CY is a similar collection covering BY , then
clearly the collection of sets

CZ := {E = F × G ⊂ Z : F ∈ CX , G ∈ CY }

covers BZ . Moreover, each E ∈ CZ is a ball of diameter at most 2t in (Z , ‖·‖Z). It
follows that

N (t, BZ , ‖·‖Z) ≤ (6/t)2k .

Finally, we endow FL with the
∞ norm, and use a Kolmogorov–Tihomirov type
covering estimate (see, e.g., [16, Lemma 4.2]):

logN (t, FL , ‖·‖∞) ≤ (96(L + 1)/t)2k log(8/t).

Finally, we invoke a standard result bounding the Rademacher complexity in terms
of the covering numbers via the so-called Dudley entropy integral [24],

R̂n(FL) ≤ inf
α≥0

(

4α + 12
∫ ∞

α

√

logN (t, FL , ‖·‖∞)

n
dt

)

. (12)

The estimate in (12) is computed, e.g., in [16, Theorem 4.3]:

R̂n(FL ;Z) = O

(

L

n1/(d+1)

)

. (13)

123

Efficient Kirszbraun extension with applications to regression

Table 7 ERM of the smoothing process

Algorithm Avg. loss

Training points 100 200 500 1000

MWU 5.5e−09 1.6e−08 3.7e−08 6.8e−08
IntPt 5.3e−16 5.9e 05 TL TL

Table 8 Cross validation
running time over the smoothing
process in seconds

Algorithm Avg. loss

Training points 100 200 500 1000

MWU 5.19 11.38 66.56 335.06

IntPt 3508.40 3936.64 TL TL

Table 9 Single∗ smoothing
process running time in seconds

Algorithm Avg. loss

Training points 100 200 500 1000

MWU 0.78 1.81 8.18 48.51

IntPt 114.56 778.10 TL TL

Table 10 Extension avg loss

Algorithm Avg. loss

Training points 100 200 500 1000

MWU 5.5e−09 1.1e−08 3.3e−08 7.3e−08
IntPt 0.29 0.83 TL TL

Putting d = k +
 and combining (12) with (11) yields our generalization bound:
with probability at least 1− δ,

R(h(z)) ≤ R̂n(h(z))+ 6

√

ln(2/δ)

2n
+ O

(

L

n1/(d+1)

)

. (14)

Appendix D: Additional experiments

For completeness we add here the comparison of the results from the experiment for
f (x) = sin(x) for x ∈ [−2π, 2π] (Tables 7, 8, 9, 10, 11 and Fig. 1).

123

H. Zaichyk et al.

Table 11 Extension running
time for a all test set in seconds

Algorithm Avg. loss

Training points 100 200 500 1000

MWU 0.002 0.003 0.006 0.009

IntPt 4.3164 1.824 TL TL

Fig. 1 a–d Demonstrate the comparison, where training size is 200 random points, and f (x) = sin(x). a,
b Are the smoothing and extension phases implemented with our MWU based algorithm while c–d are the
results of Matlab’s IntPt implementation. In all graphs the line represents the ground truth function while
the X represent the estimation by the learned function

References

1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of
the Symposium on Discrete Algorithms, pp. 522–539. SIAM (2021)

2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and appli-
cations. Theory Comput. 8(1), 121–164 (2012)

3. Arya, S.,Mount, D.M., Netanyahu, N., Silverman, R.,Wu, A.Y.: An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. In: Symposium on Discrete Algorithms, pp. 573–582
(1994)

123

Efficient Kirszbraun extension with applications to regression

4. Ashlagi, Y., Gottlieb, L., Kontorovich, A.: Functions with average smoothness: structure, algorithms,
and learning. In: Belkin, M., Kpotufe, S. (eds.) Conference on Learning Theory, COLT 2021, 15–19
August 2021, Boulder, Colorado, USA, PMLR, Proceedings of Machine Learning Research, vol. 134,
pp. 186–236. http://proceedings.mlr.press/v134/ashlagi21a.html (2021)

5. Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output regression. Wiley
Interdiscip Rev Data Min Knowl Discov 5(5), 216–233 (2015)

6. Boyd, S., Vandenberghe, L.: Convex Optimization. Information Science and Statistics. Cambridge
University Press, Cambridge (2004)

7. Brualdi, R.A.: Introductory Combinatorics, 5th edn. Pearson Prentice Hall, Upper Saddle River (2010)
8. Brudnak, M.: Vector-valued support vector regression. In: The 2006 IEEE International Joint Confer-

ence on Neural Network Proceedings, pp. 1562–1569. IEEE (2006)
9. Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Math.

Comput. 28(125), 231–236 (1974)
10. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
11. Chen, S., Banerjee, A.: An improved analysis of alternatingminimization for structuredmulti-response

regression. In: Proceedings of the 32Nd International Conference on Neural Information Processing
Systems, NIPS’18, pp. 6617–6628. Curran Associates Inc., USA (2018). http://dl.acm.org/citation.
cfm?id=3327757.3327768

12. Christiano, P., Kelner, J.A.,Madry,A., Spielman,D.A., Teng, S.H.: Electrical flows, Laplacian systems,
and faster approximation of maximum flow in undirected graphs. In: Proceedings of Symposium on
Theory of Computing, pp. 273–282 (2011)

13. Cohen, D.T., Kontorovich, A.: Learning with metric losses. In: Loh, P., Raginsky,M. (eds.) Conference
on Learning Theory, 2–5 July 2022, London, UK, PMLR, Proceedings of Machine Learning Research,
vol. 178, pp. 662–700 (2022). https://proceedings.mlr.press/v178/cohen22a.html

14. Cole, R., Gottlieb, L.A.: Searching dynamic point sets in spaces with bounded doubling dimension.
In: Proceedings of the Symposium on Theory of Computing, pp. 574–583 (2006)

15. Davidson, R., MacKinnon, J.G., et al.: Estimation and Inference in Econometrics. OUP Catalogue
(1993)

16. Gottlieb, L.A., Kontorovich, A., Krauthgamer, R.: Adaptivemetric dimensionality reduction (extended
abstract: ALT 2013). Theoretical Computer Science, pp. 105–118 (2016)

17. Gottlieb, L.A., Kontorovich, A., Krauthgamer, R.: Efficient regression inmetric spaces via approximate
Lipschitz extension. IEEE Trans. Inf. Theory 63(8), 4838–4849 (2017)

18. Greene, W.H.: Econometric Analysis. Pearson Education India (2003)
19. Greene, W.H.: Econometric Analysis. William H. Greene (2012)
20. Györfi, L., Kohler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regres-

sion. Springer, Cham (2006)
21. Hanneke, S., Kontorovich, A., Kornowski, G.: Near-optimal learning with average Hölder smoothness.

CoRR arXiv:2302.06005 (2023)
22. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics and their applications.

SIAM J. Comput. 35(5), 1148–1184 (2006)
23. Jain, P., Tewari, A.: Alternating minimization for regression problems with vector-valued outputs. In:

Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems, vol. 28, pp. 1126–1134. Curran Associates, Inc. (2015). http://papers.nips.
cc/paper/5820-alternating-minimization-for-regression-problems-with-vector-valued-outputs.pdf

24. Kakade, S., Tewari, A.: Dudley’s theorem, fat shattering dimension, packing numbers. Lecture 15,
Toyota Technological Institute at Chicago (2008). http://ttic.uchicago.edu/~tewari/lectures/lecture15.
pdf

25. Kimeldorf, G.S., Wahba, G.: A correspondence between Bayesian estimation on stochastic processes
and smoothing by splines. Ann. Math. Stat. 41(2), 495–502 (1970). https://doi.org/10.1214/aoms/
1177697089

26. Kirszbraun, M.: Über die zusammenziehende und Lipschitzsche transformationen. Fundam. Math.
22(1), 77–108 (1934)

27. Koutis, I., Miller, G.L., Peng, R.: A fast solver for a class of linear systems. Commun. ACM 55(10),
99–107 (2012)

28. Mahabadi, S., Makarychev, K., Makarychev, Y., Razenshteyn, I.: Nonlinear dimension reduction via
outer bi-lipschitz extensions. In: Proceedings of the 50thAnnualACMSIGACTSymposiumonTheory
of Computing, pp. 1088–1101. ACM (2018)

123

http://proceedings.mlr.press/v134/ashlagi21a.html
http://dl.acm.org/citation.cfm?id=3327757.3327768
http://dl.acm.org/citation.cfm?id=3327757.3327768
https://proceedings.mlr.press/v178/cohen22a.html
http://arxiv.org/abs/2302.06005
http://papers.nips.cc/paper/5820-alternating-minimization-for-regression-problems-with-vector-valued-outputs.pdf
http://papers.nips.cc/paper/5820-alternating-minimization-for-regression-problems-with-vector-valued-outputs.pdf
http://ttic.uchicago.edu/~tewari/lectures/lecture15.pdf
http://ttic.uchicago.edu/~tewari/lectures/lecture15.pdf
https://doi.org/10.1214/aoms/1177697089
https://doi.org/10.1214/aoms/1177697089

H. Zaichyk et al.

29. McShane, E.J.: Extension of range of functions. Bull. Am.Math. Soc. 40(12), 837–842 (1934). https://
projecteuclid.org:443/euclid.bams/1183497871

30. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations Of Machine Learning. The MIT Press,
Cambridge (2012)

31. Nadaraya, E.A.: Nonparametric Estimation of Probability Densities and Regression Curves. Springer,
Cham (1989)

32. Naor, A.: Metric embeddings and Lipschitz extensions (2015)
33. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM,

Philadelphia (1994)
34. Rudin,W.: Principles ofMathematical Analysis. International Series in Pure andAppliedMathematics,

3rd edn. McGraw-Hill Book Co., New York (1976)
35. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph sparsification,

and solving linear systems. In: Proceedings of the Symposium on Theory of Computing, vol. 4 (2004)
36. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math.

Soc. 36(1), 63–89 (1934). http://www.jstor.org/stable/1989708

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://projecteuclid.org:443/euclid.bams/1183497871
https://projecteuclid.org:443/euclid.bams/1183497871
http://www.jstor.org/stable/1989708

	Efficient Kirszbraun extension with applications to regression
	Abstract
	1 Introduction
	2 Formal setup
	3 Learning algorithm
	3.1 Smoothing
	3.2 Approximate Lipschitz extension
	3.3 Multi-point Lipschitz extension

	4 Experiments
	5 Discussion and conclusions
	Acknowledgements
	Appendix A: The Arora–Hazan–Kale result
	Appendix B: Approximate oracle
	Appendix C: Generalization bounds
	Appendix D: Additional experiments
	References

