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Abstract

We present a general theory for optical imaging of moving objects obscured by heavily scattering

random media. Measurements involve collecting a series of speckle intensity images as a function

of the position of a moving object. A statistical average intensity correlation can be formed with

the potential to provide access to microscopic and macroscopic information about the object. For

macroscopic objects and translation distances that are both large relative to the wavelength, there

is a clear method to invert measurements to form an image of the hidden object. Opportunities

exist for super-resolution sensing and imaging, with far-subwavelength resolution. Importantly,

there is no fundamental limit to the thickness of the background randomly scattering medium,

other than the practical requirement of detecting an adequate number of photons and sufficient

background scatter for developed Gaussian field statistics. The approach can be generalized to

any wave type and frequency, under the assumption that there is adequate temporal coherence.

Applications include deep tissue in vivo imaging and sensing in and through various forms of

environmental clutter. The theory also provides another dimension for intensity interferometry

and entangled state detection to the case with motion of the scatterer or emitter.
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I. INTRODUCTION

Electromagnetic waves are of broad consequence in the natural and engineered world.

Notably, photonics is pervasive in communications, optical sensing, and imaging, providing

capacity by virtue of the carrier frequency and the transmission media, and information

through spectroscopy, leading to the expanding presence of optical methods in medical

research and medicine. Throughout the application spaces in science and technology, random

scatter generally presents difficulties. For example, atmospheric scatter has long limited

earth-based astronomy. Tissue scatter of light has made high resolution coherent imaging

in vivo a challenge at depths beyond a few hundred microns.

The scatter of coherent light from randomly arranged scatterers in bulk material or rough

surfaces results in speckle, the granular intensity patterns from the interference between the

wavefronts of the differently scattered fields, and if the scatterers move, the speckle pattern

changes accordingly. Therefore, in principle, information about a scattering medium or the

light impinging on such a medium is available. However, the challenge is to find a means to

extract such information. Because of the difficulty associated with describing deterministic

light propagation in the multiply-scattered regime, a statistical treatment becomes impor-

tant [1]. Changes in speckle patterns are used in diffusing wave spectroscopy [2] and laser

speckle contrast imaging [3], where motion reduces the local granular nature of the speckle

pattern during the image collection window. The local speckle contrast ratio can thus be an

indicator of the velocity of blood flow under thin skin [4]. Decreasing the temporal coherence

(increasing the bandwidth of laser light) reduces the speckle contrast ratio (the ratio of the

speckle intensity standard deviation to the mean), effectively reducing the graininess. There

is therefore a relationship between speckle decorrelation over scanned frequency and the

transport of light through the scattering medium [5, 6]. The ensemble-averaged temporal

response of a random medium, useful in characterizing random media and imaging, can be

obtained using third-order correlations of speckle patterns over frequency, thereby providing

access to the Fourier phase, when the field is described by circular complex Gaussian statis-

tics [6]. This implies the detection of polarized light and allows use of a moment theorem

[7]. Control of the temporal coherence of the light source provides a means to image hidden

objects [8]. Practically, fixing the light source while increasing the scatter also reduces the

contrast ratio. Speckle contrast can be reduced by reducing spatial coherence using, for
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example, random lasers, allowing full-field imaging [9]. Speckle intensity patterns can also

be tailored to have artificial statistics, non-existing in naturally occurring speckle, using a

spatial light modulator, and this has been considered for applications [10]. The presence of

scatter can also increase communication capacity because of access to multiple independent

channels [11, 12], as well as provide enhanced security [13, 14]. Characterization of the

transmission properties or a random medium also allows access to the spectral properties of

light incident on the scattering medium [15].

Imaging using coherent light offers high resolution, but increasing random scatter, such

as occurs with biological tissue, eventually precludes direct observation. Consequently, co-

herent imaging of an object through a thick scattering medium is extremely difficult. The

transmission of coherent light through a scattering medium has been studied intensely (see,

for example, [5, 16, 17]). The memory effect (where the speckle pattern moves with the inci-

dent wave vector) [18] allows imaging through a scattering medium, as long as the thickness

is small [18–22]. Wavefront control using a spatial light modulator and feedback control

(based on a sensing arrangement at the point of interest) enables focusing through scat-

ter [23, 24], facilitating point-wise imaging. Knowledge of the field transmission matrix

(spatial point wise for the incident field) for a point within the scattering medium provides

information that can be used to control the incident field (such as with a spatial light mod-

ulator) to focus at that point. The transmission matrix can be measured, but this requires

sensing within or on the other side of the scattering medium or guidestar control of a small

volume where the focus will occur [25–27]. The contrast has been directly related to the

effective number of the contributing transmission matrix eigenchannels based on random

matrix calculations [28]. While a challenging computational problem, inversion of measure-

ment data can be presented as an estimation of the positions of a set of scatterers, and

simplified using, for example, the first Born approximation describing the field scattered

by each scatterer. Having this computational model for the background scattering medium

would allow separation of measurement data when an object within or on the other side is

to be imaged.

We develop a general statistical treatment that allows sensing and imaging of a moving

object hidden inside a heavily scattering random background in a manner that is limited only

by the number of photons detected. The imaging concept is presented in Fig. 1. Notably, the

random background provides a structured field that also allows access to far-subwavelength
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spatial information, along the lines of a proposal for super-resolution imaging with motion

in prepared structured fields [29]. In this sense, the random scatter facilitates information

that would otherwise be unavailable at a remote detector. The mathematical development

generalizes earlier work showing the extraction of the incident field from correlations of

intensity speckle patterns over translated field position [30, 31], the imaging of aperture-

type objects between scattering slabs [32], and recent experimental evidence that general

objects can be imaged [33]. The new theory provides a means to image and motivation for

a series of experiments to evaluate new aspects of the the information that can be accessed.

We treat the moving object parameterization in the context of the wave equation in

Sect. II. Intensity speckle patterns that can be measured as a function of object position are

expanded as moments of the detected field in Sect. III. Section IV develops the relationship

between the second order field moments and the object(s) to be imaged. The theory has

short-range, subwavelength-scale information, and for macroscopic objects, information on

the length scale commensurate with the object that can be used as a basis for sensing and

imaging. Section V considers the physical basis of the normalized field correlation functions.

The detector intensity correlation expression is developed in Sect. VI, where we arrive at a

key relationship that is subsequently studied in Sect. VII in terms of length scale and the

amount of the scatter from the moving object. The general theory is couched as a sensing

and imaging methodology in Sect. VIII. Section IX presents a discussion of issues related to

the theory, the experimental studies, and key applications, and Sect. X projects the potential

impact in the form of a conclusion.

II. OBJECT PARAMETERIZATION

We treat the problem of imaging a moving object in a randomly scattering background

medium (Fig. 1) as one where the background field without the object is considered as

the incident field and the scattered field is that due to the object or objects of interest.

This neglects possible displacement of background scatterers as the object of interest moves.

Assuming a linear and locally time-invariant system during each measurement, the total field

is exactly the superposition of the incident and scattered field everywhere. For scattering

dielectric problems, it is convenient to use the electric field representation. The total field is

E = Eb + Es, the sum of the background field (Eb) and the scattered field (Es) due to the

4



moving object. Our interest here is in extracting information about the object from Es, but

the challenge is that the associated field is heavily scattered by the background medium.

Our treatment will use a Green’s function for the wave equation that will remain unknown

throughout the development.

The source-free Maxwell curl equations in the temporal frequency domain (exp(−iωt))

and for non-magnetic media are

∇×H = −iωϵ0ϵE (1)

∇×E = iωµ0H, (2)

where we have assumed that a complex, isotropic dielectric constant ϵ(r) describes the

scattering problem, and H is the magnetic field, µ0 the free space permeability, and ϵ0 the

free space permittivity. From (1) and (2), the vector wave equation for E becomes

∇×∇× E− k2
0ϵE = 0, (3)

with k0 = ω
√
µ0ϵ0. Let

ϵ(r) = ϵb(r) + ϵs(r), (4)

where ϵb(r) is the spatially dependent background dielectric constant that describes the

random medium without the moving object(s) of interest and ϵs(r) is the contrast due to

the moving scattering object to be imaged, as shown in Fig. 2. Therefore, with use of (4),

(3) becomes

∇×∇× E− k2
0ϵbE = k2

0ϵsE. (5)

Recognizing that ∇×∇×Eb − k2
0ϵbEb = 0, (5) can be written as

∇×∇× Es − k2
0ϵbEs = k2

0ϵsE. (6)

The Green’s function wave equation corresponding to (6) is

∇×∇×Gp(r, r
′)− k2

0ϵb(r)Gp(r, r
′) = −δ(r− r′)p̂, (7)

where the position vectors are now included for clarity, r′ is the (equivalent) source location

and p̂ is drawn from the set of orthogonal unit vectors to produce the tensor G. Using (7)
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and superposition to write the integral equation corresponding to (6), and with E = Eb+Es,

we have

E(r) = Eb(r)−
∫

k2
0ϵs(r

′)G(r, r′)E(r′)dr′ (8)

as the exact representation for the scattering problem. The use of a tensor Green’s function

in (8) provides for multiple scattering from the random background medium, including

related depolarization and polarization coupling, in forming the integral representation of

the vector scattered electric field. Implicit in the ensuing development is the dependence of

measurable intensities on the incident field, and assuming a laser excitation, on the specifics

of the illumination.

The predominant underlying theory in statistical optics deals with Gaussian fields [1]. In

the relevant experiments, this implies both adequate temporal coherence and the detection

of a single polarization state [31, 32]. This is achieved by making (intensity) measurements

through a polarizer. Consequently, the d̂ component of the electric field is sifted (describing

a specific polarization state), so (8) assumes the scalar form

E(r) = Eb(r) +

∫

O(r′) d̂ · [G(r, r′)E(r′)] dr′

= Eb(r) + Es(r). (9)

Without loss of generality, we can define a simplified scalar object function as

O(r′) = −k2
0ϵs(r

′). (10)

The development of the imaging formulation exploits this simplified scalar picture with the

exact interpretation that the vector field is being sampled at the detector through a polarizer.

III. DETECTED FIELD MOMENTS

Consider a point detector located at r = rd, as in Fig. 1, and define the field at this point

by E(rd) ≡ Ed, where the spatial argument is represented as a subscript for compactness.

We assume measurements that reflect Ed at a sequence of object positions defined by a

reference position r0 and a translation vector ∆r. We can thus describe the field at the

detector as Ed(r0) with the object at some reference position and Ed(r0 + ∆r) with the

object at the displaced position defined by ∆r.
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The background scattering process is treated as random, and the fields at some rd can be

considered as a random phasor sum with developed statistics so that Ed is zero-mean circular

Gaussian [1]. This also provides access to a moment theorem made widely known by Reed

[7], and with stationary statistics the special cases of the second and fourth moments are

related in a manner presented earlier by Siegert [34]. We define the statistical average ⟨·⟩ as

being over background scatterer configuration. Section VIII considers the practical aspects

of how the average is determined experimentally with speckle intensity data obtained by a

camera.

The intensity is assumed to be measured, and we write the intensity at the detector

as Id = |Ed|2, where a normalized impedance is assumed. The fourth order field moment

provides the measured intensity correlation over object position as [7]

⟨Id(r0)Id(r0 +∆r)⟩ = ⟨Ed(r0)E
∗

d(r0)Ed(r0 +∆r)E∗

d(r0 +∆r)⟩

= ⟨Id(r0)⟩⟨Id(r0 +∆r)⟩+ ⟨E∗

d(r0)Ed(r0 +∆r)⟩⟨E∗

d(r0 +∆r)Ed(r0)⟩

= ⟨Id(r0)⟩⟨Id(r0 +∆r)⟩+ |⟨E∗

d(r0)Ed(r0 +∆r)⟩|2 . (11)

Equation (11) will be used throughout our development.

It is convenient to define a normalized field

Ẽ =
E

⟨I⟩1/2
, (12)

with I = |E|2, and a normalized intensity

Ĩ =
(I − ⟨I⟩)

⟨I⟩
. (13)

The normalization for field (giving Ẽ) in (12) is consistent with that for intensity (Ĩ) in (13).

For a Gaussian field [7], ⟨I2⟩ = 2⟨I⟩2, so the intensity variance is

σ2
I = ⟨I2⟩ − ⟨I⟩2

= ⟨I⟩2. (14)

The contrast ratio is thus σI/⟨I⟩ = 1 [1].

The second order field correlation over object position, measured at the detector, is

G(1)(rd; r0, r0 +∆r) = ⟨E∗

d(r0)Ed(r0 +∆r)⟩ ≡ G(1)(r0, r0 +∆r), (15)

where we use a common notation for the second order field moment (G(1)(·)) and a com-

pact argument to simplify the form of subsequent expressions, where the implication is a
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measurement at a single detector point (rd). With the use of normalizations involving the

mean intensity, ⟨Ẽ∗

d(r)Ẽd(r+∆r)⟩ → ⟨Ẽ∗

d(0)Ẽd(∆r)⟩, and the normalized field (and inten-

sity) correlations become independent of the object reference position r. The normalized

averaged field correlation measured at the detector point as the object is scanned is then

g(1)(∆r) = ⟨Ẽ∗

d(0)Ẽd(∆r)⟩

=
G(1)(r0, r0 +∆r)

⟨Id(r0)⟩1/2⟨Id(r0 +∆r)⟩1/2
. (16)

Use of (12) or (13) and (16) with (11) gives

⟨Ĩd(r0)Ĩd(r0 +∆r)⟩ = ⟨Ĩd(0)Ĩd(∆r)⟩

=
∣

∣g(1)(∆r)
∣

∣

2
. (17)

While object information is in principle embedded in (17), this interpretation of normal-

ized measured data does not provide for imaging. We present a theory that provides a clear

path to a method to invert measured data and form an image.

IV. RELATIONSHIP BETWEEN OBJECT AND DETECTED FIELD MOMENTS

Returning to (9), we write the field at the detector as a superposition of that due to the

background random scatter (Edb) and that due to the object (defined as the scattered field,

Eds). Expanding the second-order field correlation with this field superposition, we have

⟨E∗

d(r0)Ed(r0 +∆r)⟩ = ⟨E∗

db(r0)Edb(r0 +∆r)⟩+ ⟨E∗

db(r0)Eds(r0 +∆r)⟩

+ ⟨E∗

ds(r0)Edb(r0 +∆r)⟩+ ⟨E∗

ds(r0)Eds(r0 +∆r)⟩

= ⟨Idb⟩+ ⟨E∗

dbEds(r0 +∆r)⟩+ ⟨E∗

ds(r0)Edb⟩

+ ⟨E∗

ds(r0)Eds(r0 +∆r)⟩. (18)

Note that Edb(r0) = Edb(r0 +∆r) = Edb, because the background field is that without the

object (the incident field), so ⟨E∗

db(r0)Edb(r0 + ∆r)⟩ = ⟨E∗

dbEdb⟩ = ⟨Idb⟩, dictated by the

optical excitation, the scattering medium, and the detector location, but independent of the

moving object.

In (18), referring to (9) and (10), Eds = Es(rd), so with the object at the reference

position r0,

Eds(r0) =

∫

O(r′; r0) d̂ · [G(rd, r
′)E(r′)] dr′, (19)
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where O(r′) defines the object through (10). This allows us to build expressions for each of

the three remaining terms in (18).

First, from (19) and with a shift in object position of ∆r,

⟨E∗

ds(r0)Eds(r0 +∆r)⟩ = ⟨
∫

O∗(r′; r0)d̂ · [G(rd, r
′)E(r′)]∗ dr′

∫

O(r′; r0 +∆r) d̂ · [G(rd, r
′)E(r′)] dr′⟩

= ⟨
∫

dr′
∫

dr′′O∗(r′; r0) d̂ · [G(rd, r
′)E(r′)]∗

O(r′′; r0 +∆r)d̂ · [G(rd, r
′′)E(r′′)]⟩

= G(1)
ss (r0, r0 +∆r)

= ⟨Ids(r0)⟩1/2⟨Ids(r0 +∆r)⟩1/2g(1)ss (∆r), (20)

so

g(1)ss (∆r) = ⟨Ids(r0)⟩−1/2⟨Ids(r0 +∆r)⟩−1/2

⟨
∫

dr′
∫

dr′′O∗(r′; r0) d̂ · [G(rd, r
′)E(r′)]∗O(r′′; r0 +∆r)d̂ · [G(rd, r

′′)E(r′′)]⟩

= ⟨Ẽ∗

ds(0)Ẽds(∆r)⟩

= ass(∆r)eiφss(∆r). (21)

We note from (21) that the normalization results in |g(1)ss (0)| = 1, so that ass(0) = 1 and

φss(0) = 0. Notice that g(1)ss in principle provides access to a measure of the spatial correlation

of the object, something we pursue later. The challenge is to relate g(1)ss to a measurable

quantity, because Ids is not directly available.

Like (20), using (19), we have

⟨E∗

db(r0)Eds(r0 +∆r)⟩ = ⟨E∗

db

∫

O(r′; r0 +∆r)d̂ · [G(rd, r
′)E(r′)] dr′⟩

= ⟨Idb⟩1/2⟨Ids(r0 +∆r)⟩1/2g(1)bs (∆r). (22)

Hence,

g(1)bs (∆r) = ⟨Ẽ∗

dbẼds(∆r)⟩

= abs(∆r)eiφbs(∆r), (23)

and |g(1)bs (0)| = 0.
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The final term in (18) is thus

⟨E∗

ds(r0)Edb⟩ = ⟨Ids(r0)⟩1/2⟨Idb⟩1/2g(1)sb (0)

≡ ⟨Ids(r0)⟩1/2⟨Idb⟩1/2g(1)∗bs (0), (24)

where we have

g(1)sb (0) = ⟨Ẽ∗

ds(r)Ẽdb⟩

= asb(0)e
iφsb(0)

= eiφsb(0)

= e−iφbs(0)

≡ g(1)∗bs (0). (25)

Collecting the various terms, we can thus write the field correlation over object position

measured at the detector point, from (18), as

⟨E∗

d(r0)Ed(r0 +∆r)⟩ = ⟨E∗

dbEdb⟩+ ⟨E∗

db(r0)Eds(r0 +∆r)⟩

+ ⟨E∗

ds(r0)Edb(r0 +∆r)⟩+ ⟨E∗

ds(r0)Eds(r0 +∆r)⟩

= ⟨Idb⟩+ ⟨Idb⟩1/2⟨Ids(r0 +∆r)⟩1/2g(1)bs (∆r)

+ ⟨Ids(r0)⟩1/2⟨Idb⟩1/2g(1)∗bs (0)

+ ⟨Ids(r0)⟩1/2⟨Ids(r0 +∆r)⟩1/2g(1)ss (∆r). (26)

Interpretations of (26) will prove useful in imaging based on motion in scattering media.

V. PHYSICAL BASIS OF g
(1)
ss (∆r) AND g

(1)
bs (∆r)

Experimental evidence indicates that a macroscopic moving object’s geometrical param-

eters can be determined from an average speckle intensity correlation over translated object

position [32, 33]. In the special case of an aperture function, total decorrelation occurs at

a distance corresponding to the aperture width [32]. From (26), this information about the

object is described by |g(1)ss (∆r)|. From (21) and considering the case of an aperture, this

implies that the scattered field from the object and its translated version survive an averag-

ing process. This availability of field information despite the intervening heavily scattering

random medium is consistent with experiments that showed that the incident field on a
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random medium can be determined from transmitted speckle intensity correlations over the

scanned field position [31]. Generalizing to results from an experiment with an absorbing

patch [33], the patch diameter was available from a dip in the speckle correlation. This line

of evidence suggests that the normalized scattered field associated with the moving object,

represented in the field correlation of (26), is retained through an averaging process involving

reconfiguration of the background randomly located scatterers. Macroscopically, referring to

Fig. 1, this situation occurs when the object and the translated object share a joint spatial

support, and follows from the concept of correlated incident fields when imaging based on

field translation over the remote side of a randomly scattering medium [31]. We therefore

arrive at the conclusion that g(1)ss (∆r) has correlated scattered field contributions from the

object and the shifted object when they share a common spatial support. We will separate

g(1)ss (∆r) into short-range and long-range terms, as shown in Fig. 3. The short range decorre-

lation has been shown to be sensitive to the microstructure and subwavelength features and

the long range to macroscopic object information through a joint spatial support picture

[32]. We will separately address the role of g(1)bs .

The autocorrelation of the object function is

Γ(∆r) =

∫

dr′O∗(r′)O(r′ +∆r). (27)

A comparison of (21) and (27), under conditions of sufficient random scatter for developed

statistics, suggests

g(1)ss (∆r) = γ(∆r)

=

∫

dr′Õ∗(r′)Õ(r′ +∆r), (28)

where γ is the normalized autocorrelation and Õ is the normalized object function. With

(28), information related to g(1)ss (∆r) leads to a means to retrieve Õ, as we will describe.

Possibly less obvious is the role of g(1)bs (∆r) and its character, upon observation of the

average field correlation in (22). It is insightful to consider the Gedankenexperiment of a

detected field correlation without displacement. Based on (18), the mean intensity at the

detector point with the object at the reference position is

⟨Id(r0)⟩ = ⟨E∗

d(r0)Ed(r0)⟩

= ⟨Idb⟩+ 2ℜ{⟨E∗

dbEds(r0)⟩}+ ⟨Ids(r0)⟩

= ⟨Idb⟩+ ⟨Ids(r0)⟩+ ⟨Idb⟩1/2⟨Ids(r0)⟩1/22ℜ{g(1)bs (0)}, (29)
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with ℜ{·} the real part. The only way to describe a decrease in mean intensity with the

introduction of an object is by g(1)bs (0). Therefore, in general, g(1)bs must be retained in the

intensity correlation expressions. Also, clear from (29), g(1)bs (0) has negative real part for

situations where ⟨Idb⟩ > ⟨Id⟩. From (23), one might anticipate that g(1)bs (∆r) will reduce to

zero when the object translation is large compared to λ. This position rests on substantial

uncorrelated scatter associated with the moving object in relation to the background random

scattering medium. Note from (22) that g(1)bs is normalized by ⟨Ids⟩, which provides the

scattering strength. If ⟨Ids⟩1/2g(1)bs (∆r) were available, this could provide object information.

By analogy with field correlations over frequency [35], a random phasor sum description

in the Gaussian field limit indicates a pathlength distribution with a differential phase shift

k|∆r| < λ, suggesting a decorrelation over |∆r| ∼ λ. Irrespective of the details of the moving

object, we therefore expect a contribution from point scatterer motion on this length scale,

and that this will influence both g(1)ss and g(1)bs . Embedded in this will be nanostructure

information about the object.

VI. DETECTOR INTENSITY CORRELATION

From (11), the intensity correlation at the detector point, measured over object position,

is

⟨Id(r)Id(r+∆r)⟩ = ⟨Id(r)⟩⟨Id(r+∆r)⟩+ |⟨E∗

d(r)Ed(r+∆r)⟩|2 . (30)

Using (26) and arranging into terms involving orders of g(1)ss ,

|⟨E∗

d(r)Ed(r+∆r)⟩|2 =
{

⟨Idb⟩2

+ ⟨Idb⟩3/2
[

⟨Ids(r+∆r)⟩1/22ℜ{g(1)bs (∆r)}+ ⟨Ids(r)⟩1/22ℜ{g(1)bs (0)}
]

+ ⟨Idb⟩⟨Ids(r)⟩1/2⟨Ids(r+∆r)⟩1/22ℜ{g(1)bs (0)g
(1)
bs (∆r)}

+ ⟨Idb⟩⟨Ids(r)⟩|g(1)bs (0)|
2 + ⟨Idb⟩⟨Ids(r+∆r)⟩|g(1)bs (∆r)|2

}

+
{

⟨Idb⟩1/2
[

⟨Ids(r)⟩1/2⟨Ids(r+∆r)⟩2ℜ{g(1)bs (∆r)g(1)∗ss (∆r)}

+⟨Ids(r)⟩⟨Ids(r+∆r)⟩1/22ℜ{g(1)bs (0)g
(1)
ss (∆r)}

]

+ ⟨Idb⟩⟨Ids(r)⟩1/2⟨Ids(r+∆r)⟩1/22ℜ{g(1)ss (∆r)}
}

+ ⟨Ids(r)⟩⟨Ids(r+∆r)⟩|g(1)ss (∆r)|2. (31)
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It is convenient to convert raw measured speckle intensity data into normalized form (Ĩ)

using (13). This step also simplifies the mathematical representation. In normalized form,

(30) becomes

⟨Ĩd(r0)Ĩd(r0 +∆r)⟩ =
∣

∣

∣
⟨Ẽ∗

d(r0)Ẽd(r0 +∆r)⟩
∣

∣

∣

2
, (32)

where

Ẽd(r0) =
Ed(r0)

⟨Id(r0)⟩1/2
(33)

Ẽd(r0 +∆r) =
Ed(r0 +∆r)

⟨Id(r0 +∆r)⟩1/2
, (34)

and, as before, the normalized fields depend only on the translation, ∆r. Drawing on (31)

- (34), we can write

⟨Ĩd(r0)Ĩd(r0 +∆r)⟩ = C0(∆r; r0)

+C11(∆r; r0)2ℜ{g(1)bs (∆r)g(1)∗ss (∆r)}+ C12(∆r; r0)2ℜ{g(1)bs (0)g
(1)
ss (∆r)}

+C13(∆r; r0)2ℜ{g(1)ss (∆r)}+ C2(∆r; r0)|g(1)ss (∆r)|2, (35)

where, referring to (31),

C0(∆r; r0) = ⟨Id(r0)⟩−1⟨Id(r0 +∆r)⟩−1
{

⟨Idb⟩2

+ ⟨Idb⟩3/2
[

⟨Ids(r0 +∆r)⟩1/22ℜ{g(1)bs (∆r)}+ ⟨Ids(r0)⟩1/22ℜ{g(1)bs (0)}
]

+ ⟨Idb⟩⟨Ids(r0)⟩1/2⟨Ids(r0 +∆r)⟩1/22ℜ{g(1)bs (0)g
(1)
bs (∆r)}

+ ⟨Idb⟩⟨Ids(r0)⟩+ ⟨Idb⟩⟨Ids(r0 +∆r)⟩|g(1)bs (∆r)|2
}

C11(∆r; r0) = ⟨Id(r0)⟩−1⟨Id(r0 +∆r)⟩−1⟨Idb⟩1/2⟨Ids(r0)⟩1/2⟨Ids(r0 +∆r)⟩

C12(∆r; r0) = ⟨Id(r0)⟩−1⟨Id(r0 +∆r)⟩−1⟨Idb⟩1/2⟨Ids(r0)⟩⟨Ids(r0 +∆r)⟩1/2

C13(∆r; r0) = ⟨Id(r0)⟩−1⟨Id(r0 +∆r)⟩−1⟨Idb⟩⟨Ids(r0)⟩1/2⟨Ids(r0 +∆r)⟩1/2

C2(∆r; r0) = ⟨Id(r0)⟩−1⟨Id(r0 +∆r)⟩−1⟨Ids(r0)⟩⟨Ids(r0 +∆r)⟩. (36)

The normalizations and spatial dependencies in (35) and (36) warrant special note. In (35),

⟨Ĩd(r0)Ĩd(r0 + ∆r)⟩ uses ⟨Id(r0)⟩ and ⟨Id(r0 + ∆r)⟩ for scaling, according to (13). This

results in ⟨Ĩd(r0)2⟩ = 1, independent of r0. However, the features in this correlation as ∆r

is varied can depend on r0, hence the inclusion of this dependency on the left of (35). The

normalizations used for g(1)bs (∆r) and g(1)ss (∆r) that make them independent of r0 are different

to those used in forming Ĩd. Consequently, there are products and ratios of various mean
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intensity forms in (36) that depend on r0. The r0 dependency on the right-hand side of (35)

is therefore incorporated into the coefficient functions in (36) and through the various mean

terms. In special arrangements, the coefficients in (35) can be written (or approximated) as

being independent of r0 (and ∆r).

We can sift g(1)ss from (35), with use of (36), by separating the real (ℜ) and imaginary

(ℑ) parts of the field correlations associated with C1j as

⟨Ĩd(r0)Ĩd(r0 +∆r)⟩ = C0(∆r; r0)

+2
[

C11(∆r; r0)ℜ{g(1)bs (∆r)}+ C12(∆r; r0)ℜ{g(1)bs (0)}+ C13(∆r; r0)
]

ℜ{g(1)ss (∆r)}

+2
[

C11(∆r; r0)ℑ{g(1)bs (∆r)}− C12(∆r; r0)ℑ{g(1)bs (0)}
]

ℑ{g(1)ss (∆r)}

+C2(∆r; r0)|g(1)ss (∆r)|2

≡ C0(∆r; r0) + 2C1r(∆r; r0)ℜ{g(1)ss (∆r)}+ 2C1i(∆r; r0)ℑ{g(1)ss (∆r)}

+C2(∆r; r0)|g(1)ss (∆r)|2, (37)

where the C coefficients in general vary with ∆r and r0 and

C1r(∆r; r0) = ℜ{C1(∆r; r0)} = C11(∆r; r0)ℜ{g(1)bs (∆r)}+ C12(∆r; r0)ℜ{g(1)bs (0)}+ C13(∆r; r0)

C1i(∆r; r0) = ℑ{C1(∆r; r0)} = C11(∆r; r0)ℑ{g(1)bs (∆r)}− C12(∆r; r0)ℑ{g(1)bs (0)}. (38)

Equation (37) can thus be written as

⟨Ĩd(r0)Ĩd(r0 +∆r)⟩ = C0(∆r; r0) + 2ℜ
{

C∗

1 (∆r; r0)g
(1)
ss (∆r)

}

+ C2(∆r; r0)|g(1)ss (∆r)|2.

(39)

Equation (39) is our key result, and this will be used to consider various object and scat-

ter regimes. The arrangement is in terms of orders of g(1)ss , the complex normalized field

correlation in (21) that we have written in terms of the object autocorrelation function

(28). Figure 3 shows the character expected for g(1)ss based on earlier experiments [32].

The coefficients C0, C1 and C2 depend on the relative position of the object and allow for

non-stationary statistics through position-dependent means. With sufficient scatter it may

suffice to treat these as constants [33]. Both C0 and C1 are non-zero only when there is a

background field at the detector, defined as the field without the moving object. With an

aperture in an opaque screen, absence of the object corresponds to a closed aperture and

hence there is no background field at the detector, resulting in a contribution from only the

third term in (39). Contained within C0 and C1 are correlations between the background
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field and the field scattered by the object, g(1)bs . Our experiments with absorbing patches

[33] indicate that C1/C0 is small and possibly negligible, that it diminishes with increasing

levels of background scatter, and that it increases with reducing object scatter (⟨Ids⟩). With

non-zero C0, the ratio C2/C0 decreases with an increase in background scatter. These co-

efficients thus become a measure of the character of the background scattering medium in

which the object is moving. While (39) is a compact expression relating measured intensity

correlations to g(1)ss and hence the object through (28), Ids and g(1)bs are not directly obtained

from any measurement. Therefore, a tractable path to imaging requires approximations or

assumptions to access the object function, O.

VII. CORRELATION LENGTH SCALES, OBJECT SCATTERING REGIMES

AND EXPERIMENTAL EVIDENCE

There are two important field correlations in (39) that carry information about the moving

object, g(1)bs (∆r) (that appears in C0(∆r; r0) and C1(∆r; r0) = C1r(∆r; r0) + iC1i(∆r; r0))

and g(1)ss (∆r) (see Fig. 3). At this point, we expect g(1)bs (∆r) to reduce from unit magnitude to

zero as ∆r increases from zero to the length scale of about λ. From (20), there will also be a

wavelength-scale decorrelation in g(1)ss (∆r), an observation that is supported by experimental

data [32]. There is also a long range correlation where the light interacts with the object

and a translated version at shared points, as Fig. 1 shows, and this forms a representation

for macroscopic imaging. Therefore, we write

g(1)ss (∆r) = g(1)sss (∆r) + g(1)lss (∆r), (40)

where g(1)sss is the short-range correlation, with |∆r| ∼ λ, and g(1)lss is the long-range corre-

lation (assuming D > λ, referring to Fig. 3) that exists because the deterministic moving

object modifies the background field at each point in space within the joint spatial support

of the scatterer and the translated scatterer (see Fig. 1). We have experimental evidence

that both g(1)sss (∆r) and g(1)lss (∆r) can be observed with heavily scattered light [32].

We consider now forms of (39) in the large and small translation distance regimes, relative

to λ, and in the weak and strong scatter contrast domains. This set of delineations relates

to various application domains for the theory.
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A. |∆r| ≫ λ

With |∆r| ≫ λ, and from (22), we assume that g(1)bs (∆r) = 0 and g(1)sss (∆r) = 0. Nor-

malization yields g(1)ss (0) = 1 but g(1)lss (0) ̸= 1. In this situation of large object translation

relative to λ, we have from (39)

⟨Ĩd(r0)Ĩd(r0 +∆r)⟩ = C l
0(∆r; r0) + 2ℜ

{

C l∗
1 (∆r; r0)g

(1)l
ss (∆r)

}

+C2(∆r; r0)|g(1)lss (∆r)|2, (41)

with

C l
0(∆r; r0) = ⟨Id(r0)⟩−1⟨Id(r0 +∆r)⟩−1

{

⟨Idb⟩2 + ⟨Idb⟩3/2⟨Ids(r0)⟩1/22ℜ{g(1)bs (0)}

+⟨Idb⟩⟨Ids(r0)⟩
}

(42)

C l
1r(∆r; r0) = C12(∆r; r0)ℜ{g(1)bs (0)}+ C13(∆r; r0)

C l
1i(∆r; r0) = −C12(∆r; r0)ℑ{g(1)bs (0)}, (43)

and with C12(∆r; r0) and C13(∆r; r0) from (36).

B. |∆r| < λ

Given a sufficiently small scan distance, we assume that stationarity holds, leading to

⟨Id(r0)⟩ ≈ ⟨Id(r0 +∆r)⟩ and ⟨Ids(r0)⟩ ≈ ⟨Ids(r0 +∆r)⟩. This approximation also holds with

larger scan distance and sufficient background random scatter. Therefore, in conjunction

with (39), we have

C0(∆r; r0) = ⟨Id(r0)⟩−2
{

⟨Idb⟩2

+ 2⟨Idb⟩3/2⟨Ids(r0)⟩1/2
[

ℜ{g(1)bs (∆r)}+ ℜ{g(1)bs (0)}
]

+ ⟨Idb⟩⟨Ids(r0)⟩2ℜ{g(1)bs (0)g
(1)
bs (∆r)}

+ ⟨Idb⟩⟨Ids(r0)⟩
[

1 + |g(1)bs (∆r)|2
]}

C1r(∆r; r0) = C11(r0)ℜ{g(1)bs (∆r)}+ C12(r0)ℜ{g(1)bs (0)}+ C13(r0)

C1i(∆r; r0) = C11(r0)ℑ{g(1)bs (∆r)}− C12(r0)ℑ{g(1)bs (0)}

C2(r0) = ⟨Id(r0)⟩−2⟨Ids(r0)⟩2, (44)
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where C11, C12, C13 and C2, defined in (36), are now assumed independent of scan distance

over the scale of one wavelength. Consequently,

C11(r0) = C12(r0)

= ⟨Id(r0)⟩−2⟨Idb⟩1/2⟨Ids(r0)⟩3/2

C13(r0) = ⟨Id(r0)⟩−2⟨Idb⟩⟨Ids(r0)⟩

(45)

We note that it is of significance that measurements in this regime with heavy background

random scatter could result in far-subwavelength information. This could be obtained from

g(1)bs (∆r), which varies with the object function. It is also available from g(1)sss and from (39).

C. ⟨Idb⟩ ≫ ⟨Ids⟩

If the scattering object, large or small, is weakly scattering so that ⟨Ids⟩ ≪ ⟨Idb⟩, we can

approximate (39) as

⟨Ĩd(r0)Ĩd(r0 +∆r)⟩ = C0(∆r; r0) + 2ℜ
{

C∗

1(∆r; r0)g
(1)
ss (∆r)

}

, (46)

with

C0(∆r; r0) = 1 +

[

⟨Ids(r0 +∆r)⟩1/22ℜ{g(1)bs (∆r)}+ ⟨Ids(r0)⟩1/22ℜ{g(1)bs (0)}
]

⟨Idb⟩1/2
. (47)

D. ⟨Idb⟩ ≪ ⟨Ids⟩

With ⟨Idb⟩ ≪ ⟨Ids⟩ and (39), we have the approximation

⟨Ĩd(0)Ĩd(∆r)⟩ =
∣

∣g(1)ss (∆r)
∣

∣

2
. (48)

VIII. SENSING AND IMAGING METHODOLOGY

A. Formation of Averages (⟨·⟩) with Experimental Data

The averaging process in our theory, ⟨·⟩, is mathematically an average over background

scatterer reconfiguration. This means in forming ⟨Ĩd(r0)Ĩd(r0 + ∆r)⟩ that the intensity is
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measured at the detector point (rd) with the object at r0 (giving the p-th measurement as

Idp(r0)) and at r0+∆r (resulting in Idp(r0+∆r)). Upon rearranging the background scatters

according to a relevant density function, a set of random samples is obtained. Thus, the

average with P measurements is formed as ⟨Ĩd(0)Ĩd(∆r)⟩ = 1
P

∑P
p=1 Ĩdp(0)Ĩdp(∆r), with P

suitably large. It is not practical to form averages involving rearrangement of the background

scatterers experimentally, because the object of interest would need to be in two locations

for each measurement with the background scatterer configuration being identical.

Experimentally, one can estimate ⟨·⟩ using a camera image of the speckle intensity where

the image domain is small enough for stationary statistics to hold [6, 31–33]. In this case,

each speckle spot needs to be adequately resolved, there needs to be a sufficient number of

spots, and the regions imaged onto the camera should be small enough for the mean to be

independent of position within a given image (but not necessarily as ∆r is varied). Thus,

the average is formed over the pixels of a camera. The requirement for independent samples

can be met with a sufficient number of speckle spots. The sampling can be enhanced by

using multiple reference positions (rp) and equivalent offsets (∆r) [33]; this has also been

done to form an average over frequency [6]. The normalized intensity images associated with

each measurement can thus be formed.

B. ⟨Idb⟩ = 0: Aperture in a Screen

The simplest case corresponds to an aperture in a screen, where, with the object absent,

there is no field on the detector side for a transmission measurement. In this situation, (48)

is exact. This has been the basis of imaging results presented using experimental data [32].

C. ⟨Idb⟩ ≠ 0: General Object

We consider the heavy scatter regime and ∆r ≫ λ, allowing us to write (41) as

⟨Ĩd(r0)Ĩd(r0 +∆r)⟩ = C l
0(r0) + 2ℜ

{

C l∗
1 (r0)g

(1)l
ss (∆r)

}

+ C2(r0)|g(1)lss (∆r)|2, (49)

where within a scan distance corresponding to the joint support of the object and its trans-

lated self, it has been found that C l
0, C

l∗
1 , and C2 can be treated approximately as constants

[33]. The measured intensity data as a function of object position is then related to four real

numbers and g(1)lss , the object autocorrelation function. In principle, (49) can be solved and
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g(1)lss (∆r) obtained. Then, through a Gerchberg-Saxton [36] phase reconstruction process

(see [37, 38], for example), the object function Õ can be retrieved from g(1)lss (∆r) based on

(28) [32, 33].

Experiments with a translated millimeter-scale absorbing patch (formed with black tape)

in a heavily scattering background have found C1 to be small [33]. Consequently, in such

situations, where the second term in (49) is small, C l
0 can be extracted from measured data,

and (49) can be renormalized so that |g(1)lss (0)| = 1. These steps provide direct access to

the normalized object autocorrelation function from (28). In a general situation where the

second term in (49) cannot be neglected, optimization-based fitting can provide the three

constants and hence access to the object autocorrelation.

IX. APPLICATIONS AND PERSPECTIVES

Our compact, central result in (39) provides a new and fundamental description of in-

tensity correlations over (moving object) space that persist over infinite length scales. In

practice, the distances and levels of scatter become limited by the laser source energy and

detector noise. Previous investigations into second order intensity correlations (see Refs.

[5, 39–42] for a review) have identified contributors to the measured intensity correlation

of CI(∆x) = ⟨I(x0)I(x0 + ∆x)⟩, where ∆x represents the change in the correlation vari-

able (e.g., frequency or wave-vector direction) and the brackets ⟨· · · ⟩ represent the ensemble

average. CI(∆x) has been decomposed into three terms, short-range correlations C1(∆x),

long-range correlations C2(∆x), and infinite-range correlations C3(∆x) [17] (where we pre-

serve the notation in the cited reference, but note that the definitions of C1 and C2 are not the

same as in the development given in this work). Each of these correlations may contribute

to the measured correlation, and they have been weighted by the dimensionless quantity

g (dimensionless conductance) according to CI(∆x) = C1(∆x) + g−1C2(∆x) + g−2C3(∆x).

For most optical experiments involving a slab geometry, g ≫ 1 is typical, thus making the

contribution of the long- and infinite-range correlations negligible [43]. Our work with cor-

relations over object position provides another infinite range correlation for situations that

pertain to a randomly scattering slab where the thickness can in principle approach infinity.

A number of fundamental assumptions were made in the development of our theory that

impact applications: we assume that the statistics from a set of camera images will be a
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good indicator of an average formed from rearrangements of the environmental scatterers;

there is natural or controlled motion of the object of interest; the background scattering

environment is assumed to be static within the acquisition of speckle images; and, most

importantly, we have stipulated that the statistics of the detected speckle field to exhibit a

circular Gaussian distribution, required for use of Reed’s moment theorem [7]. We address

each of these requirements.

In an experiment, averages would be formed with camera speckle images that access

random intensity information over space (or angle). The statistics from the camera image

are expected to be a good representation provided each speckle is spatially resolved and

there are enough independent samples. Our experience with reasonably heavily scattering

media is that a spot of about 1 mm in diameter can have approximately a constant mean

intensity, thereby providing stationary statistics in the camera image [6, 8, 30–32, 44, 45].

A 4-F lens system with an aperture in the Fourier domain provides separate control of the

speckle size. There is a trade-off between speckle size and number of speckle spots, where the

camera pixel size should be small relative to the speckle (autocorrelation function full width

half maximum) and there should be a sufficient number (of independent samples) within

an image where the statistics are stationary (so the mean is constant). Measurements are

made through a polarizer. Negative exponential intensity statistics indicate that the speckle

images are satisfactory and that the fields are zero-mean-circular Gaussian. Laser light with

adequate coherence is also required (to achieve satisfactory statistics), and this requirement

is a function of the amount of background scatter.

Various physical situations involve object motion. One example is in vivo blood vessel

constituents. In other applications, motion could be induced using a translational stage.

This may be appropriate in material inspection, for instance. Regardless, prior information

on the motion of the object during the acquisition of speckle images is needed to apply this

approach which means the positional or velocity information of the unknown moving object

needs to be inferred through some complementary method, such as temporal decorrelation

or the Doppler shift [46], or localization based on a photon diffusion model [47]. The

dimensionality of any sensing and imaging result is commensurate with that of the object

motion. For motion other than linear translation, we foresee that a similar type of theory

may be possible. Given enough prior information about the motion of the object, the

experimentally-measured correlation could potentially be separated to different types of
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object motion, such as translation and rotation, and analyzed for useful sensing and imaging.

The need for stationary (static) background scatterer positions is perhaps the most severe

restriction. Natural settings may involve motion of the scatterers, such as with aerosols.

It is assumed that displacement of background scatterers with the motion of the object

of interest can be neglected. Generally, the stationary background scatterer requirement

implies that this motion is negligible during the measurement period over which the object

is moving. Alternatively, the implication is that intensity decorrelation due to the motion of

the randomly located background scatterers can be accounted for in a calibration and hence

known from prior information. This constraint also relates to object size or speed, which

has a detector signal-to-noise ratio implication.

An amount of scatter producing developed Gaussian field statistics is assumed. This

assumption can be met with a random medium having a thickness of one transport length,

the distance for photon momentum randomization, or more. Heavier scatter, such that

the mean intensity does not vary appreciably with object position over the measurement,

provides a simplification, and can lead to approximating C0, C1 and C2 as constant for ∆r

about the moving object’s size in our development in Sect. VIII.

We have been able to reconstruct images of macroscopic (mm-scale) objects, both aper-

tures of rather complex shapes and also black patches by obtaining speckle images as a

function of translated object position and applying the theory of Sect. VIII [33]. This was

achieved by assuming that C0, and C2 are constants that can be determined by fitting the

measured data and assuming C1 = 0 [33]. This provided access to g(1)lss and hence the object

autocorrelation, from which phase retrieval allowed imaging of the object to quite high pre-

cision. The principle is that correlations exist within the joint support and the wavelength-

scale correlation, g(1)sss , is neglected. In the general situation where these coefficients are

spatially dependent, inversion becomes ill-posed. Consequently, prior information would be

needed or constraints imposed. Recently, we have also obtained experimental results that

support using the ratio between C l
0 and C l

2 in (49) to qualitatively compare the relative

scattering strengths of the moving object and the scattering environment. This suggests

that various measures based on our general result in (39) could be of practical importance.

While the resolution could in principle approach wavelength scale in this macroscopic regime,

in practice it is limited by scanning precision and other practical aspects of making such

measurements.
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The experimental evidence for super-resolution sensitivity in a speckled field is com-

pelling [32]. This subwavelength length-scale information is contained within g(1)ss , specifi-

cally g(1)sss (∆r), and likely g(1)bs (∆r) (although there is currently no experimental information

relevant to the character of g(1)bs (∆r)). A combined numerical field study and the pursuit

of experiments with nanoparticles could shed light on these functions and may provide a

means to extract object parameters of relevance, hence providing sensing and perhaps even

imaging on this length scale. The achievement of far-subwavelength object information with

motion in a speckled field is analogous to an earlier proposal for motion in structured illu-

mination achieved by two interfering beams [29]. The distinction in the case of the speckled

field is that the field is generally unknown and hence a forward model and conventional

computational imaging approaches cannot be applied.

More generally, our method could allow communication in a cluttered environment. Con-

sider a moving transmitter that sends an identical set of signals from a series of spatial posi-

tions. This information could in principle be extracted in a manner similar to how imaging

is accomplished. Again, the principle is correlated information that survives the averaging

process with multiply-scattered light. In this case, temporal or multiple frequency data

would be extracted. There are of course details to be investigated as to how a protocol for

this communication arrangement would be implemented, but the principle we have described

should be applicable. This may also carry over to quantum key distribution in the presence

of clutter [48].

Ghost imaging involves entangled or correlated photons [49]. Speckle can occur [50] and

achieving high contrast-to-noise control is important [51, 52]. It may be possible to utilize

object motion to enhance the robustness of ghost imaging in a scattering environment. In

fact, moving objects have been considered in ghost imaging [53] and this could be extended

to heavily scattering media with our approach. With regard to energy-time entangled pho-

tons in scattering media, correlated detection (in the Hanbury Brown and Twiss sense) or

detection with a nonlinear crystal [54] provides temporal gating that could be useful in scat-

tering media. With a moving entangled photon source in a scattering medium, information

can be added by position control that could be interesting in applications.

Finally, fluorescence (or Förster) resonance energy transfer (FRET) is a non-radiative

energy transfer process between donor and acceptor molecules spatially separated by a dis-

tance usually between 1-10 nm that results in a decrease in the lifetime and quantum yield
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of the donor in the presence of the acceptor [55]. Measurement of FRET through lifetime

modification has become important in molecular biology [56] and has been shown possible

for in vivo applications [57, 58]. With suitable labeling, FRET can provide key information

about protein folding, relevant for many major diseases. Generally, the change of lifetime is

represented as a donor-acceptor distance using classical dipole-dipole coupling theory [55]. It

may be possible to use a coherent method based on absorption and motion along the lines we

have described to separately determine the distance (which is typically several nanometers).

X. CONCLUSION

We have presented a rigorous theory for imaging based on speckle pattern correlations

over object position. This leads to various sensing and imaging opportunities using coherent

light in scattering media. It may be possible to exploit natural motion in environmental

sensing situations where multiple scatter occurs. If the motion of the object of interest

were fast relative to the background scattering medium, then the situation would conform

to the theory described. It may also be possible to calibrate for decorrelation due to the

background, provided there is adequate sensitivity to the moving object to be imaged. An

important application domain is in vivo imaging without contrast agents, such as of blood

cells in capillaries. In this case, the local velocity may be constant over the micron length

scales required. While the corresponding translation is 1D, 3D imaging may be possible

with constraints. Accessing far-subwavelength information is an intriguing direction. This

is relevant in finding defects in semiconductor device processing using optical inspection.

The wafer can be precisely positioned but traditional methods are diffraction-limited and

hindered by speckle produced due to surface roughness and complicated 3D structures. It is

possible that the presence of defects may be determined by using speckle intensity correlation

over the wafer position. In weakly scattering situations, such as in microscopy where super-

resolution would be value, the speckle could be created by a diffusing screen and the object

of interest (cells for example) translated in this structured field, allowing intensity images

to be captured as a function of object position.
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FIG. 1. A moving object in a scattering medium to be imaged, along with the spatial variables

and the optical excitation and detection concept.
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FIG. 2. The separation of a randomly scattering background, described by a spatial variation of

the background dielectric constant, ϵb(r), and the moving object’s dielectric constant, ϵs(r), allows

separation of the fields and facilitates the development of (39).
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FIG. 3. The normalized scattered field correlation is shown to have a short-range, wavelength-

scale regime, as well as a long range macroscopic object characteristic that goes to a minimum at a

distance corresponding to the size of the object, D. This depiction is consistent with a relationship

to the object autocorrelation function and experimental data [32, 33].
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