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Abstract

In high-latitude species with high dispersal ability, such as long-distance migratory birds,
populations are often assumed to exhibit little genetic structure due to high gene flow or recent
postglacial expansion. We sequenced over 120 low-coverage whole genomes from across the
breeding range of a long-distance migratory bird, the Veery (Catharus fuscescens), revealing
strong evidence for isolation by distance. Additionally, we found distinct genetic structure
between boreal, western montane U.S., and southern Appalachian sampling regions. We suggest
that population genetic structure in this highly migratory species is detectable with the high
resolution afforded by whole-genomic data because, similar to many migratory birds, the Veery
exhibits high breeding site fidelity, which likely limits gene flow. Resolution of isolation by
distance across the breeding range was sufficient to assign likely breeding origins of individuals
sampled in this species’ poorly understood South American nonbreeding range, demonstrating
the potential to assess migratory connectivity in this species using genomic data. As the Veery’s
breeding range extends across both historically glaciated and unglaciated regions in North
America, we also evaluated whether contemporary patterns of structure and genetic diversity are
consistent with historical population isolation in glacial refugia. We found that patterns of
genetic diversity did not support southern montane regions (southern Appalachians or western
U.S. mountains) as glacial refugia. Overall, our findings suggest that isolation by distance yields
subtle associations between genetic structure and geography across the breeding range of this
highly vagile species even in the absence of obvious historical vicariance or contemporary

barriers to dispersal.
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Lay summary

Describing how populations in a species differ genetically is important for understanding
that species’ evolutionary history.

Migratory birds have high dispersal abilities, potentially reducing genetic structure.
However, many migratory birds return to the same breeding site year after year, which
could reduce gene flow between populations.

We sequenced >120 genomes to detect population genetic differentiation in a common
songbird, the Veery (Catharus fuscescens).

We found that genetic similarity between samples decreased with increasing geographic
distance (i.e., isolation by distance) and that populations in southern Appalachia were
distinct from samples in the rest of the breeding range.

We did not detect differences in genetic diversity patterns between populations, contrary
to predictions about putative glacial refugia.

We assigned likely geographic breeding region to birds sampled in the poorly understood
wintering range.

Despite the Veery’s long-distance migration and high dispersal ability, isolation by

distance produces subtle but detectable population structure across its breeding range.
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Introduction

Resolving genetic population structure in wild populations is important for understanding
a species’ spatial and demographic evolutionary history as well as identifying microevolutionary
processes underlying adaptation and population differentiation (Manel et al. 2003; Edwards et al.
2015; Lou et al. 2021). For species with high dispersal ability, however, resolving spatial genetic
structure can be particularly challenging, as greater dispersal capabilities are associated with
higher gene flow and minimal genetic structure (Slatkin 1987; Bohonak 1999; Claramunt et al.
2012; Medina et al. 2018). Seasonally migratory species, which often travel long distances
between breeding and wintering grounds each year, are typically considered to have high
dispersal, as their vagility should reduce the impact of geographic barriers on dispersal-related
movements (Paradis et al. 1998; Medina et al. 2018; Everson et al. 2019; Claramunt 2021). Yet,
in many bird species, long-distance seasonal migration is associated with limited dispersal
between breeding sites, as adult migratory birds frequently exhibit high interannual fidelity to
their breeding sites (Winger et al. 2019). Natal dispersal patterns, however, remain poorly
understood in small-bodied migratory birds. Breeding site fidelity and natal philopatry have the
potential to limit gene flow across the breeding range, such that long-distance migrants could
still exhibit genetic structure or isolation by distance despite their long seasonal journeys and
high dispersal potential. Here, we combine thorough range-wide geographic sampling with
whole-genome sequencing to investigate whether genetic structure can be resolved in the Veery
(Catharus fuscescens), a Nearctic-Neotropical long-distance migratory songbird.

The Veery is an ideal species to test for the presence of spatial genetic structure in
migratory birds, given its long-distance migrations and high adult breeding site fidelity (Outlaw

et al. 2003; Heckscher et al. 2011; Hobson and Kardynal 2015). The Veery breeds across wet
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forested habitats of the boreal and the temperate-boreal transition (‘hemiboreal’) belt, coastal
forests of the northeastern U.S. and Canada, the Appalachian Mountains, and riparian canyons in
the mountains of western North America (Fig. 1; Heckscher et al. 2020). Previous work has
delineated five phenotypic subspecies based on subtle geographic breeding population
differences in plumage coloration (Phillips 1991; Pyle 1997), but concordance between genetic
data and subspecific designation has not been evaluated.

Contemporary breeding ranges of long-distance migratory birds, such as the Veery, are
typically found at mid or high latitudes, such that Pleistocene glacial cycles presumably forced
populations into fragmented habitat when ice sheets advanced (Hewitt 2004; Svenning et al.
2015). Isolation of populations in putative glacial refugia is thought to have generated discrete
population structure that is detectable in contemporary populations through measures of genetic
diversity and heterozygosity (Bohonak 1999; Weir and Schluter 2004). Indeed, this pattern has
been observed in several North American migratory bird species with molecularly distinct
populations (e.g., Ruegg and Smith 2002; Barrowclough et al. 2004; Mila et al. 2007; Spellman
and Klicka 2007; Manthey et al. 2011; van Els et al. 2012; Winker et al. 2023). Molecular
signatures in multiple North American bird species have supported several glacial refugia—
which might also have been occupied by the Veery—including south of the glaciers to the east
(e.g., southern Appalachian Mountains) and west (e.g., southern Rocky Mountains), and offshore
of Newfoundland (e.g., Grand Banks) (Hewitt 2004; Soltis et al. 2006).

Here, we employ range-wide genomic sampling to test patterns of genetic differentiation
and diversity across the species’ range and evaluate the phylogeographic history of the species.
The only previous phylogeographic work on this species evaluated mitochondrial differentiation

between the eastern and western extremes of the breeding range (Newfoundland versus
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Washington), identifying subtle but distinct genetic differentiation (Topp et al. 2013). In this
study, we use range-wide sampling and low-coverage whole genome-sequencing (IcWGS) to
investigate subtle patterns of spatial genetic differentiation and evaluate the concordance of
phenotypic subspecies descriptions with patterns of genetic differentiation. The development of
cost-effective IcWGS allows inference based on orders of magnitude more loci than reduced
representation genome sequencing (Lou et al. 2021), which might facilitate detection of subtle
genetic patterns not otherwise evident (Novembre et al. 2008).

We also assessed contemporary genetic structure across the breeding range in light of
historic processes associated with geographic isolation in different refugia versus population
expansion from a single glacial refugium (Le Corre and Kremer 1998; Mimura and Aitken 2007,
Meirmans 2012; Westram et al. 2013; Wabhlsteen et al. 2023). If southern Appalachia and the
western regions were historic glacial refugia for the Veery, we predict higher nucleotide diversity
and heterozygosity in these populations given their likely long-term population stability as
source populations for an expansion into post-glacial higher latitude habitat.

Given that we produced the first detailed phylogeographic study of this species, an
additional goal of our study was to use samples from the winter range to identify nonbreeding
birds’ breeding population of origin. The nonbreeding distribution of this species, which occurs
entirely within South America, is poorly understood (Remsen Jr 2001; Heckscher et al. 2020).
Veeries are known to exhibit intra-tropical movements during the overwintering period, as
observed from geolocation data from populations breeding in Delaware (Heckscher et al. 2011)
and British Columbia (Hobson and Kardynal 2015). Individuals spend the early portion of the
northern winter in the Amazon basin south of the Amazon River in November—December, before

moving northwest to a second wintering site likely in response to seasonal flooding patterns
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(Heckscher et al. 2011; Heckscher et al. 2015; Hobson and Kardynal 2015). With limited
tracking data available, assessing migratory connectivity between breeding and nonbreeding
ranges remains a challenge but is critical for identifying the ecological and conservation links
between stages in the annual cycle (Webster et al. 2002; Ambrosini et al. 2019). Therefore, we
used our data to determine whether breeding origin can be identified for wintering samples given
genetic differentiation across the breeding range. Through this analysis, we tested the utility of
our breeding grounds dataset for use in future research centered around migratory connectivity in

this species and its poorly understood nonbreeding distributions.

Methods

(a) Study system and sampling

We used 121 frozen or ethanol-preserved C. fuscescens tissue samples from our

institutions’ museum collections or provided by other museum collections (Fig. 1; Table S1). We
also included 3 blood samples from Newfoundland provided by the New York State Museum
(Fig. 1; Table S1). Fieldwork by the authors was approved by our Institutional Animal Care and
Use Committees and all relevant permitting authorities (see Acknowledgments). All samples
were collected during the breeding season, except for 4 individuals that were collected on their
wintering grounds in South America in October—November (Bolivia: n = 3, Paraguay: n = 1;
hereafter, ‘nonbreeding birds’) that we included to assess migratory connectivity. Our sample
size for nonbreeding birds is small but includes most nonbreeding tissue samples available in
North American museum collections. Specifically, these samples represent four out of only six
available tissue samples from the overwintering period that are published in a compendium of

museum collections (www.vertnet.org). Given the sampling dates and locations, the four
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nonbreeding birds were likely collected on their first wintering site (Heckscher et al. 2011;
Heckscher et al. 2015; Hobson and Kardynal 2015).

We extracted DNA using DNeasy Blood and Tissue Kits (Qiagen Sciences, Germantown,
MD, USA) and prepared libraries for low-coverage whole genome sequencing using a modified
[llumina Nextera protocol (Therkildsen and Palumbi 2017; Schweizer et al. 2021). All libraries
were sequenced on NovaSeq (200 samples per lane) using services provided by the University of

Michigan Advanced Genomics Core.

(b) Data processing

We trimmed remaining adaptors and low-quality bases from demultiplexed data with
AdapterRemoval v2.3.1 using the —trimns and —trimqualities options (Schubert et al. 2016). We
also removed low-quality read ends using fastp v0.23.2 (Chen et al. 2018b) with the --cut _right
option to mitigate the potential for batch effects arising from differences between sequencing
runs (Lou and Therkildsen 2022). Following trimming steps, samples had a mean of 4.8x
coverage of the genome (range= 2.59-28.38 billion bases; 2.3x—25.1x coverage).

All samples were confirmed to be tissues from C. fuscescens using BLAST in Geneious
(v.2021.2.2) on at least one mitochondrial gene from each individual as described in a previous
study (Kimmitt et al. 2023). As a chromosome-assembled genome of C. fuscescens was not
available, we aligned all samples to a reference genome of a close relative, C. ustulatus
(GenBank assembly accession number GCA 009819885.2bCatUst1.pri.v2, coverage = 60.58x)
using bwa mem (Li and Durbin 2010) and Samtools (Li et al. 2009). We removed overlapping
reads using clipOverlap in bamUtil (Jun et al. 2015), marked duplicate reads with

MarkDuplicates, and assigned all reads to a new read group with AddOrReplaceReadGroups
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using picard (http://broadinstitute.github.io/picard/). All bam files were then indexed using
Samtools (Li et al. 2009). The mean mapping rate across all samples used in analyses was
97.43% (range 93.98-98.43%). We then used GATK v3.7 (Van der Auwera et al. 2013) to re-
align samples around indels by applying RealignerTargetCreator to the entire dataset and using
IndelRealigner for each sample.

Genotype likelihoods from low-coverage sequencing data were calculated using the
GATK model in ANGSD v0.9.40 (Korneliussen et al. 2014). Given the genotype uncertainty
associated with low-coverage sequencing, all results were analyzed in a genotype likelihood
framework, as this method uses probability-based inference to account for sequencing error
(Korneliussen et al. 2014; Lou et al. 2021). Parameters used for each ANGSD analysis are

described further below or detailed in Table S2.

(c) Population structure

We calculated genotype likelihoods for all sites with a SNP p-value < 0.05 across the
entire genome using ANGSD (Table S1). We then filtered mis-mapped or paralogous SNPs out
of the dataset using ngsParalog v1.3.2 (https://github.com/tplinderoth/ngsParalog; Linderoth
2018). ngsParalog is designed for low-coverage sequencing data and implements a likelihood
method to find mapping problems.

We used PCAngsd v1.10 (Meisner and Albrechtsen 2018) to conduct Principal
Component Analyses (PCA) to visually assess spatial genetic structure. As PCA can be sensitive
to genomic inversions that could obscure geographic structure (Novembre et al. 2008; Tian et al.
2008; Novembre and Peter 2016), we first ran PCAngsd separately for each chromosome using

all 124 samples to identify possible inversions. At least six chromosomes exhibited evidence of
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clustering associated with putative inversions, so we analyzed each chromosome further for
inversions using lostruct (Li and Ralph 2019) as implemented using PCAngsd with scripts
available from https://github.com/alxsimon/local pcangsd. All microchromosomes with
evidence of inversions (n = 8) as well as all sex chromosomes were removed from the dataset.
For the remaining chromosomes, we then ran PCAngsd with the --admix option to estimate
admixture proportions using a non-negative matrix factorization algorithm so that we could
produce genome-wide PCAs and admixture plots. Two individuals sampled from Nova Scotia
had an aberrantly high PCA covariance (> 0.2) such that they were visual outliers on the PCA
(see Fig. S1); therefore, we excluded one of these individuals from the final PCAs to better
facilitate visual assessment of range-wide structure patterns.

We implemented the find.clusters function from the R package adegenet (Jombart et al.
2010) using the covariance matrix produced by PCAngsd; find.clusters runs successive K-means
with an increasing number of clusters (K) and then performs a goodness of fit analysis (BIC) to
identify the optimal K. We also used a Mantel test in the ade4 package v. 1.7-19 (Thioulouse
and Dray 2007), with 1000 permutations, to determine whether genetic distance (using the proxy
1 — PCA covariance; Novembre et al. 2008) varied significantly with geographic distance
between samples. As a continuous population genetic analysis, Mantel tests do not rely on pre-
assigned population clusters, such that we could investigate both discrete and continuous
population structure.

We calculated pairwise Fsr between three distinct populations that were revealed by the
PCA-based clustering methods mentioned above (see also Results and Figs. 1-2): (1) “western”
(i.e., western United States including Washington, Oregon, Idaho, and Colorado; n = 22), (2)

“southern Appalachian” (i.e., West Virginia and North Carolina, n =29), and (3) “boreal” (i.e.,
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Canada from Alberta to Newfoundland, Western Great Lake states and Northeastern United
States; n = 69) (Fig. 1). To make our Fsrcalculations computationally tractable, we randomly
downsampled the reference genome, including SNPs and invariant sites, to create a set of loci
that consisted of stretches of 2 kb loci at least 10 kb apart (yielding approximately 12% of the
whole genome). We used scripts modified from https://github.com/markravinet/genome sampler
and excluded loci from regions flagged by the inversion filters. Sites flagged by ngsParalog were
also removed from the subsampled dataset and stored the loci in a BED file. We generated a site
allele frequency (SAF) file in ANGSD with the -doSaf parameter and -sites filter to include only
subsampled loci. We used winsfs (Rasmussen et al. 2022) to create 2-dimensional (2D) site
frequency spectra (SFS) between each population pair. We then used the Fsr index and stats
function with the option -whichFst 1 (i.e., Bhatia estimator) in ANGSD to calculate pairwise Fisr
between unbalanced sample sizes.

Finally, to assess the direction of gene flow between the three populations, we calculated
a directionality index () from the 2D SFS with a custom script from (Adams et al. 2023) using
equation 1b from (Peter and Slatkin 2013). Balanced sample sizes are necessary to calculate y
(Peter and Slatkin 2013), such that we randomly selected 22 individuals three times from both
the southern Appalachian and the boreal populations to created new SAF and 2D SFS files

between each population pair for a total of 15 SFS files.

(d) Genetic diversity and heterozygosity
Genetic diversity measure, pairwise 0, requires pre-assigned populations for analysis.
Therefore, for each of the three populations identified by the clustering analysis above (western,

boreal, and southern Appalachian), we estimated population-level summary statistics for genetic
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diversity from the subsampled loci using ANGSD and winsfs. Since the sample size of the more
geographically expansive boreal population was much larger than the other two populations, we
randomly selected 30 individuals from the boreal population for population-level genetic
diversity analyses. We generated a SAF using only subsampled loci in ANGSD that excluded
flagged sites by ngsParalog and microchromosomes with detected putative inversions. We used
winsfs to produce and fold a population-level 1-dimensional (1D) SFS. Pairwise 6, was
calculated for each chromosome separately using the saf2theta and thetaStat functions in
ANGSD. We compared 6, by chromosome among populations using a one-way analysis of
variance (ANOVA). For each population we also calculated the total pairwise « / total number of
sites across all chromosomes.

Individual-level heterozygosity was also estimated by creating individual-level SAF files
with the same subsampled loci used in genetic diversity estimates. We then used these SAF files
with winsfs to generate individual 1D SFS. Individual heterozygosity was calculated as the
number of polymorphic sites divided by the total sites in each individual’s 1D SFS (Kersten et al.
2021). Exploratory analyses suggested that samples with very low (< 4x) genomic coverage
exhibited low individual-level heterozygosity relative to samples above 4x coverage. Therefore,
we filtered all samples with less than 4x coverage (n = 35) out of the dataset for this analysis
(retaining samples sizes of n = 15 for western U.S., n = 56 for boreal, and n = 14 for Southern
Appalachian regions). We then compared population differences in individual heterozygosity
using ANOVA and Tukey multiple pairwise comparisons. Since the three populations span large
geographic ranges, we also tested for the presence of gradients of heterozygosity across latitude
or longitude using linear models: 1) a western gradient across latitude including samples from

Alberta and the western population, 2) a boreal gradient across longitude, and 3) an eastern
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gradient across latitude including samples from the southern Appalachian population as well as

PA, OH, VT, Nova Scotia, and Newfoundland (Fig. 1).

Results
(a) Population structure

The PCA pattern indicated isolation by distance, as the shape of the PCA reflects a
sinusoidal curve typical of continuous structure (Fig. 2A; Novembre and Stephens 2008). The
Mantel test confirmed isolation by distance, as genetic distance (1 — PCA covariance) was
positively associated with geographic distance (Pearson’s correlation coefficient, » = 0.38, p =
0.001) using samples across the full breeding range (Fig. 3A). We also visually inferred two
distinct population clusters in the range-wide dataset of breeding individuals (n = 120) in the
PCA analysis, such that individuals from the southern Appalachian sampling regions (North
Carolina and West Virginia) clustered separately from all other individuals, demonstrating a
genetic break between the southern Appalachian samples and the northern Appalachian samples
(i.e., Pennsylvania, Ohio, and Vermont; Fig. 2A). We confirmed that two clusters were the best
fit for the data using the find.clusters tool. The admixture plot (K = 2) showed a gradual shift in
population ancestry across the geographic range.

We next removed southern Appalachian samples from the dataset to determine if we
could detect finer-scale genetic structure in the more genetically similar samples from western
and boreal sampling regions. In the boreal and western populations dataset, the relationship
between genetic distance and geographic distance was stronger than in the range-wide dataset (»
=0.78, p = 0.001; Fig. 3B). Without the southern Appalachian samples included, we also found

that the western population was distinct from a boreal population, which also includes the
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northern Appalachian samples (Fig. 2B) and confirmed that two clusters was the best fit for this
subset of the data using find.clusters. Finally, we ran a PCA on the boreal genetic population,
which includes northern Appalachian samples, to determine if subpopulations would be
detectable on a further reduced geographic scale. We visually noted that 3 out of 4 of the samples
from Newfoundland sorted separately on the PCA, suggesting that this isolated population could
be distinct from other boreal populations. However, find.clusters did not assign distinct clusters
associated with geography within the boreal population samples, consistent with the observed
overlap among sampling regions within the PCA (Fig. 2). Finally, the relationship between
genetic distance and geographic distance was weakest in the boreal population samples only (r =
0.22, p=0.001).

Based on the PCA and clustering results, we conducted analyses of population
differentiation and genetic diversity (next section) using three identified populations across the
sampling regions (Fig. 1): southern Appalachian (i.e., WV, NC), western US (i.e., WA, OR, ID,
and CO; hereafter the ‘western’ population), and the boreal belt (Alberta to Newfoundland)
including the northern Appalachians (i.e., PA, OH, VT), hereafter the ‘boreal’ population.
Pairwise Fsrvalues were < 0.02 between all three populations, indicating low levels of
population differentiation. Weighted pairwise population-level Fsrwas 0.008 between the boreal
and southern Appalachian population and 0.006 between the boreal and western populations. Fisr
was highest between the southern Appalachian and western populations (0.014).

Finally, the directionality index was low (y < 0.05) for all pairwise population
comparisons (Table S3). Since y is positive, this might indicate that the boreal population has
been a source population for expansion; however, these values were not significantly different

from zero, supporting an isolation by distance model or a population expansion model in which
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populations are equidistant from the origin of expansion and are exhibiting comparable levels of

gene flow between populations (Peter and Slatkin 2013; Adams et al. 2023).

(b) Genetic diversity and heterozygosity

Neither nucleotide diversity (pairwise ) estimated per chromosome nor individual-level
heterozygosity differed significantly between populations (Table 1; Fig. S2A: F>57=0.02, p =
0.982; Fig. S2B: F25:=1.09, p = 0.341). Across a latitudinal gradient in the montane west,
heterozygosity scaled positively with latitude (Fig. 4A). Across a longitudinal gradient in the
boreal belt, western samples had significantly higher heterozygosity than eastern samples (Fig.
4B). Finally, there were no significant latitudinal differences across the eastern latitudinal

gradient from North Carolina to Newfoundland (Table 2; Fig. 4C).

(c) Breeding population assignment for nonbreeding samples

We leveraged our thorough sampling of the breeding range to assess the likely breeding
populations for the 4 nonbreeding samples from South America based on their location in a PCA
of all individuals. One nonbreeding bird (collected in Bolivia in November) clustered with the
Appalachian breeding samples from West Virginia, and the remaining three individuals
(collected in Bolivia in November or Paraguay in October) clustered with boreal breeding
samples (Fig. 2A). A PCA containing only the boreal individuals (Fig. 2C) suggested that one
nonbreeding sample likely originated from either Manitoba or the Western Great Lakes, whereas
the other two samples associate with the Western Great Lakes or the northern Appalachians (i.e.,

VT, PA, or OH). However, without distinct clusters in the boreal-only analysis, we refrain from
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confidently assigning these nonbreeding samples to breeding populations more specific than the

broader boreal population.

Discussion

We found evidence of isolation by distance across the breeding range of the Veery, a
long-distance migratory songbird, as well as population clustering of the western, boreal, and
southern Appalachian sampling regions. PCA revealed geographically nested patterns of genetic
clustering (Fig. 2) and a pattern of genetic covariance between individual samples that decayed
with geographic distance (Fig. 3). Our results suggest that breeding site fidelity, which acts to
temper natal and breeding dispersal distances, appears to be sufficiently strong to yield spatial
genetic structure in the absence of extrinsic barriers to dispersal.

Previous phenotypic assessments of the Veery described five subspecies based on
plumage color variation associated with the following regions: (1) Newfoundland and central
Quebec (C. f. fuliginosus), (2) the eastern United States and Canada (including all Appalachian
populations; C. f. fuscescens), (3) Great Plains of Canada and western Great Lakes (C. f- levyi),
(4) British Columbia and the Rocky Mountains (C. f. salicicolus), and the (5) western United
States east of the Cascade Mountains (C.f. subpallidus) (Heckscher et al. 2020). Identification of
phenotypic subspecies, however, has been disputed, as geographic variation in plumage is
obscured by individual variation (Pyle 1997). Alternate phenotypic subspecific delineation
includes a southern Appalachian subspecies from Georgia to West Virginia (C.f. pulichorum)
and excludes C.f. subpallidus (Pyle 1997). Our genetic results are not fully consistent with the
boundaries of these phenotypically described subspecies, as we found only three differentiated

populations across the range of the Veery, with the southern Appalachian population the most
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distinct. The boreal and northern Appalachian PCA (Fig. 2c) revealed that 3 of our 4 samples
from Newfoundland clustered together separately from the other boreal samples, suggesting a
subtle genetic difference in that sampling region. Although our quantitative analysis of
population clustering did not support Newfoundland samples as a discrete population, it is
possible that increased sampling from the Maritime Provinces of Canada would bolster detection
of a distinct genetic cluster associated with the subspecies described from this region.
Additionally, we note that low sampling density in western Canada could potentially produce the
pattern of discrete phylogeographic clustering between the boreal and western U.S. populations,
rather than a continuous pattern of genetic structure between western and boreal populations, if
admixed individuals occur between our sampling in central Alberta and the northwest U.S.
Nevertheless, we conclude that the genetic structure detected in our study does not align with the
phenotypically described subspecies, such that phenotypic differences are unlikely driven by
historical population isolation and differentiation (Zamudio et al. 2016). Instead, subtle plumage
differences across the range could reflect local selection on a small number of plumage genes
without genome-wide divergence (e.g., McCormack et al. 2012; Toews et al. 2016) or
phenotypic plasticity in response to environmental conditions (e.g., Mason and Taylor 2015;
Lépez-Rull et al. 2023).

Our data also allowed us to determine the general breeding origins of the very few
wintering site genetic samples available. Understanding migratory connectivity—the geographic
links between wintering, stopover, and breeding sites—is critical (Webster and Marra 2005;
Marra et al. 2006; Somveille et al. 2021), as conditions on the wintering grounds can have carry-
over effects on breeding season fitness (Norris and Taylor 2006; Harrison et al. 2011; Ambrosini

et al. 2019). Individual tracking can reveal movement patterns across the annual cycle
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(Stutchbury et al. 2009; Fraser et al. 2012; Batbayar et al. 2021; Rushing et al. 2021), but is both
time intensive and accompanied by several challenges associated with sample size and data
recovery (Ruegg et al. 2017). The Veery’s complex movements between two wintering regions
in the tropics (Heckscher et al. 2011; Heckscher et al. 2015; Hobson and Kardynal 2015) add
another challenge to using tracking information to identify the breeding population of an
individual. Genetic data from whole-genome sequencing has been used previously to identify an
individual’s population of origin (e.g., Manel et al. 2002; Nielsen et al. 2009; Hess et al. 2011;
Ruegg et al. 2014) and might be a robust alternative method to tracking methods, as it is cost
effective at a large scale and can be used to detect subtle breakpoints in continuous population
structure (Turbek et al. 2023). Using PCA to identify putative population of origin of
nonbreeding samples, we identified one individual from the southern Appalachian population
and three individuals from the boreal population (Fig. 2). This clustering of nonbreeding
samples with breeding samples allowed putative regional breeding assignment despite absence of
distinct genetic clusters within the boreal population. Population assignment is typically
conducted using a panel of genetic markers or loci that consistently differ between distinct
populations (Veale et al. 2012; Chen et al. 2018a; Sylvester et al. 2018); however, these
techniques are ineffectual across wide ranges without pronounced population structure, such as
the boreal forest belt for the Veery. By combining IcWGS with range-wide sampling, PCAs can
detect finer structure, such that regional breeding area assignment might be possible in regions
with high gene flow.

We also evaluated geographic patterns of genetic diversity to test whether contemporary
genetic patterns reflect historic isolation of populations in glacial refugia. Phylogeographic

hypotheses have suggested that populations geographically closer to putative refugia (i.e., source
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populations) should harbour higher levels of genetic diversity due to founder effects and greater
geographic isolation (i.e., ‘southern richness and northern purity’ hypothesis) (Hewitt 1999;
Excoffier 2004; Eckert et al. 2008; Provan and Bennett 2008; Excoffier et al. 2009). We
therefore hypothesized that if the southern Rockies and southern Appalachia were glacial refugia
for the Veery, we would detect lower genetic diversity in the boreal population in comparison.
Using cluster-based analyses, we first found that the western, boreal, and Appalachian
populations did not differ in any measures of genetic diversity (Table 1, Fig. S2), inconsistent
with this hypothesis (Hewitt 2004; Provan and Bennett 2008; Ralston et al. 2021). Geographic
gradients in genetic diversity, however, might further show signatures of range expansion
dynamics (Provan and Bennett 2008; Peter and Slatkin 2015; Adams et al. 2023). We found that
individual heterozygosity was positively correlated with latitude across the western montane
region and negatively with longitude across the boreal forest belt (Fig. 4). These patterns also do
not align with expected patterns of higher genetic diversity in the south associated with
northward postglacial expansion (Miller et al. 2020; Adams et al. 2023). However, comparable
or higher genetic diversity has also been observed at the leading expansion front (Vandepitte et
al. 2017; Wang et al. 2017; Bors et al. 2019) likely due to continued high gene flow with the
source population (Miller et al. 2020; Adams et al. 2023). Expansions that occur at a rapid pace
are also likely to retain higher heterozygosity at the expansion front (Goodsman et al. 2014).
Therefore, our heterozygosity results may alternatively provide weak support for rapid
expansions out of western and northeastern refugia. The directionality index, however, was close
to zero between all pairwise comparison (y < 0.05), suggesting that the data might better fit an
isolation by distance rather than expansion model (Peter and Slatkin 2013; Adams et al. 2023).

Ultimately, our results do not provide compelling evidence for a glacial refugium in
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Newfoundland or the southern Rockies, because the subtle patterns found are also consistent
with continuous processes of gene flow between populations across the range.

In conclusion, we were able to resolve detailed spatial genetic structure in the Veery
despite the high dispersal potential in this species, and we observed evidence for both continuous
and discontinuous structure across the range. Given the resolution that we achieved through low-
coverage, whole-genome sequencing and range-wide sampling, we were also able to assign
regions of origin to individuals collected on their wintering grounds, which has important
implications for assessing migratory connectivity at a larger scale than enabled by traditional
tracking methods. Finally, based on the patterns of population differentiation and genetic
diversity in this species, we conclude that gene flow, isolation by distance, and site fidelity likely
play a more important role in shaping current population genetic structure and diversity in this

species than historic isolation.
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;gg Figure 1. Map of sampling locations for the Very (Catharus fuscescens) in North America. The
756  approximate breeding range is highlighted in light gray (BirdLife International). Each point

757  represents an individual, but in some cases, multiple individuals were collected from the same
758  location, such that points are overlapping. Dotted lines indicate approximate boundaries of the
759  western U.S., boreal, and southern Appalachian populations identified by clustering analyses
760  (Fig. 2). Four individuals sampled on their wintering grounds are not included in the map but
761  were sampled in the Amazon Basin in Bolivia and Paraguay in October—November.

762



763

764

765

766

767

768

769

o
(9]

A

[
) 0.1 e ®
Population
Washington 4
° o k]
Oregon o 2 @ 0.50
Idaho T ,‘ A ® o4 =
® Colorado g 00 > 3 3
o () ) [
® Alerta 8 8 8
@ Manitoba 5 g g
@ Western Great Lakes & ) T @ 0.25
> ® > >
@ vermont 2 od ® X 02 R
Nova Scotia g 59 g
Newfoundland [S) -~ -
Pennsylvania/Ohio c\" C\II c\l,
West Virginia 8 8 (9 8 0.00 (\\)
) 02 o®h .0 m ®
North Carolina 0.0 ® o ) \”A\;A Q\)
A south America ® ® % [
e o
0.1 -0.1 -0. -0.2 -0.1 0.0 0.1 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
PC1 3 37% variance explained PC1 - 8.72% variance explained PC1 - 3.53% variance explained
1.00 |l|||||m T o e
M 0.75
0.50
0.25
s, 0.00 = =4= ==
W e O W O TN G T

Figure 2. Principal Component Analysis (PCA) (top) and admixture plots (K = 2) (bottom) for (A) all samples and (B) all samples
excluding the southern Appalachian samples (i.e., excluding West Virginia and North Carolina). (C) PCA of boreal and northern
Appalachian samples only. Since we did not identify distinct populations within the boreal group (K=1), no admixture plot is included
for panel C. Nonbreeding birds collected in the South America are displayed as black triangles to identify potential population of
origin. The x-axis and y-axis in panel A is reversed so that points are displayed to reflect the geographic origins. The U-shaped curve

shown in panel A, the nested genetic structure in Panel B and C, and the level of admixture across the geographic range suggests
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isolation by distance across the species’ range. The southern Appalachian (West Virginia and North Carolina) were supported as a
distinct population from all other samples (A), and the western samples (Washington, Oregon, Idaho and Colorado) were supported as
a distinct population when southern Appalachian samples were removed (B). By contrast, all boreal samples were identified as a

single population but with evidence of isolation by distance.
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Figure 3. Genetic distance (as measured by 1—- PCA covariance) between pairs of individuals is
significantly positively correlated with geographic distance (A) using the range-wide dataset
(corresponding to panel A in Fig. 2) and (B) the boreal, northern Appalachian, and western US
sampling location data (corresponding to panel B in Fig. 2). The correlation recovered from the
Mantel test is stronger in the subset of data in panel B (Pearson’s correlation coefficient, r =
0.78) compared to the range-wide data (Pearson’s correlation coefficient, » = 0.38) because of

distinct population structure associated with the southern Appalachian population.
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Figure 4. Gradients of heterozygosity across (A) the western montane region by latitude, (B) the boreal forest belt by longitude, and
(C) the eastern montane region (southern Appalachians northeast to Newfoundland) by latitude. Heterozygosity scales positively with
latitude across the western montane region. Heterozygosity is also significantly higher in the west than the east across the boreal forest
belt. There is no significant relationship between heterozygosity and latitude across the eastern montane region. Points are colored

according to their sampling region.
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789  Tables

790

791  Table 1. Nucleotide diversity (pairwise #;) estimated per chromosome and individual-level
792  heterozygosity estimated as the number of polymorphic sites divided by the total sites in each
793  individual’s 1D site frequency spectrum.

794
Population Pairwise 6, Individual heterozygosity (mean + s.e.)
Western U.S. 0.013 0.012+1.82x 10*
Boreal 0.013 0.013+7.48x 10
Southern Appalachian 0.013 0.012+2.46x 10*
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