

1 **The pace of mitochondrial molecular evolution varies with seasonal migration distance**

2 **Running head: Bird migration and molecular evolution**

3 Teresa M. Pegan¹, Jacob S. Berv^{1,2}, Eric R. Gulson-Castillo¹, Abigail A. Kimmitt¹, Benjamin M.

4 Winger^{1*}

5 ¹ Museum of Zoology and Department of Ecology and Evolutionary Biology, University of
6 Michigan, Ann Arbor, Michigan, USA, 48109

7 ² Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA, 48109

8

9 * Author for correspondence: wingerb@umich.edu, 2018 Biological Sciences Building, 1105 N
10 University Ave, University of Michigan, Ann Arbor MI 48109

11

12 **Abstract**

13 Animals that engage in long-distance seasonal migration experience strong selective pressures on
14 their metabolic performance and life history, with potential consequences for molecular
15 evolution. Species with slow life histories typically show lower rates of synonymous substitution
16 (d_s) than “fast” species. Previous research suggests long-distance seasonal migrants have a
17 slower life history strategy than short-distance migrants, raising the possibility that rates of
18 molecular evolution may covary with migration distance. Additionally, long-distance migrants
19 may face strong selection on metabolically important mitochondrial genes due to their long-
20 distance flights. Using over 1000 mitochondrial genomes, we assessed the relationship between
21 migration distance and mitochondrial molecular evolution in 39 boreal-breeding migratory bird
22 species. We show that migration distance correlates negatively with d_s , suggesting that the slow
23 life history associated with long-distance migration is reflected in rates of molecular evolution.

24 Mitochondrial genes in every study species exhibited evidence of purifying selection, but the
25 strength of selection was greater in short-distance migrants, contrary to our predictions. This
26 result may indicate effects of selection for cold tolerance on mitochondrial evolution among
27 species overwintering at high latitudes. Our study demonstrates that the pervasive correlation
28 between life history and molecular evolutionary rates exists in the context of differential
29 adaptations to seasonality.

30

31 **Keywords:** Life History, Seasonal Migration, Molecular Evolution, d_S , Mitochondria

32

33

34 **Introduction**

35 Species' traits are the product of their genome and their environment, but in turn, traits
36 and the environment also shape the molecular evolution of the genome. For example,
37 metabolically demanding traits influence molecular evolution of mitochondrial genes (e.g. Shen
38 et al. 2009; Chong and Mueller 2013; Strohm et al. 2015). More broadly, traits associated with
39 the slow-fast continuum of life history (Stearns 1983) are correlated with rates of molecular
40 evolution (Bromham 2020) such that life history evolution is thought to alter the pace of a
41 lineage's molecular clock (Hwang and Green 2004; Moorjani et al. 2016). Environmental
42 pressures associated with seasonality can influence life history (Varpe 2017) and metabolic
43 demands (Weber 2009; Chen et al. 2018), suggesting that variation in adaptation to seasonality
44 could have molecular evolutionary consequences. However, the linkages between molecular
45 evolution and differential adaptations to seasonality are rarely explored.

46 In this study, we investigate how patterns of mitochondrial molecular evolution are
47 related to variation in seasonal migration distance. Migratory animals survive harsh seasonal
48 conditions on their breeding grounds by temporarily departing until conditions improve (Winger
49 et al. 2019). Migration distance varies across species, ranging from short-distance movements
50 within an ecoregion to hemisphere-crossing journeys. Long-distance seasonal migration requires
51 high metabolic performance (Weber 2009), with potential implications for the dynamics of
52 selection on the metabolically-important mitochondrial genes (Shen et al. 2009; Strohm et al.
53 2015). Migration distance has also been recognized as an important axis of life history variation
54 (the balance between annual survival and reproduction) in birds (Greenberg 1980; Møller 2007;
55 Bruderer and Salewski 2009; Winger and Pegan 2021). Migration distance may therefore also
56 influence molecular evolutionary rates through effects on life history (Bromham 2020) that are

57 not directly associated with metabolic demands, but this relationship has not been assessed. Here,
58 we assess how migration distance correlates with mitochondrial molecular evolution within the
59 community of migratory birds breeding in the highly seasonal North American boreal region,
60 and we test hypotheses regarding the roles of life history and metabolic adaptation in mediating a
61 relationship between molecular evolution and seasonal migration.

62

63 *Metabolic adaptation, life history, and mitochondrial molecular evolution*

64 Reliance on locomotion (migration) for adaptation to seasonality may influence selection
65 on mitochondrial genes, which play an important role in metabolism. Mitochondria typically
66 experience purifying selection (i.e. selection that reduces genetic variation) because most
67 mutations in these genes are deleterious to fitness (Nei et al. 2010; Nabholz et al. 2013; Popadin
68 et al. 2013). Prior studies have shown that purifying selection tends to be stronger in the
69 mitochondria of mobile animal species compared to less mobile relatives. This pattern has been
70 demonstrated in comparisons between flighted and flightless birds (Shen et al. 2009) and insects
71 (Mitterboeck et al. 2017; Chang et al. 2020), between migratory and nonmigratory fishes
72 (Strohm et al. 2015), and between amphibians (Chong and Mueller 2013) and mollusks (Sun et
73 al. 2017) with different locomotory modes. Within flighted birds, species with slow flight and
74 those that rely on soaring (versus flapping) have been shown to experience relaxed mitochondrial
75 purifying selection compared to faster-flying species (Shen et al. 2009; De Panis et al. 2021).
76 Additionally, Montoya et al. (2022) recently demonstrated that flight habit, as represented by
77 wing morphology, is associated with nonsynonymous mitochondrial evolutionary rate variation
78 in a large clade of South American birds (Furnariidae). These studies suggest that mitochondrial
79 genotype plays an especially important role in fitness for organisms that rely on high-energy

80 locomotion, including migratory birds. Metabolic demand may be strongest in long-distance
81 migrating species if these demands primarily arise from locomotion. However, species that breed
82 at high latitudes and migrate only short distances for the nonbreeding season may require
83 alternative metabolic adaptations for dealing with harsh seasonal conditions since their shorter
84 migrations do not allow them to fully escape cold, resource-depleted winters (Winger et al.
85 2019). The effect of variation in seasonal migration distance on the strength of mitochondrial
86 purifying selection is unknown.

87 A second and distinct way in which seasonal migration may influence molecular
88 evolution is through its relationship with life history and, consequently, molecular evolutionary
89 rate. The slow-fast continuum of life history is commonly characterized by “life-history traits”
90 that underly or correlate with differing rates of growth, survival, and reproduction (Read and
91 Harvey 1989; White et al. 2022). Within major lineages of plants, bacteria, vertebrates, and
92 invertebrates, species with “slow” life history (i.e., long generation time, low annual fecundity,
93 large size; Stearns 1983) also exhibit slower molecular substitution rate than “fast” species (i.e.,
94 those with shorter generation time, higher annual fecundity, and smaller size; Nabholz et al.
95 2008a; Smith and Donoghue 2008; Thomas et al. 2010; Weller and Wu 2015). Within migratory
96 birds breeding in the temperate zone, seasonal migration distance covaries with annual fecundity
97 and survival such that long-distance migrants show “slower” life history (i.e., higher annual
98 survival, lower annual fecundity) than short-distance migrants (Greenberg 1980; Bruderer and
99 Salewski 2009; Winger and Pegan 2021). As such, variation in migration distance across species
100 may affect molecular evolutionary rates because of its association with life history variation.
101 Specifically, the synonymous substitution rate “ d_S ” often correlates with the slow-fast life history
102 continuum (Nikolaev et al. 2007, Bromham et al. 2015, Hua et al. 2015; Table 1). Prior studies

103 suggest that life history may influence d_s through effects on DNA replication rate or selection for
104 mutation avoidance (reviewed in Bromham 2020), because d_s is thought to primarily reflect the
105 underlying mutation rate when synonymous mutations are selectively neutral (Kimura 1983; Nei
106 et al. 2010; Lanfear et al. 2014). Direct estimates of nuclear germline mutation rates support the
107 hypothesis that species-level variation in mutation rate correlates with life-history traits
108 (Bergeron et al. 2023).

109

110 *Predicting the relationship between seasonal migration distance and molecular evolution*

111 Long-distance migratory birds have been shown to exhibit a slower life history than
112 sympatric breeding short-distance migrants (Winger and Pegan 2021, Fig. 1). Thus, long-
113 distance migrants travel farther in each migratory trip than short-distance migrants and may also
114 require more trips per lifetime to achieve the level of lifetime fitness of short-distance migrants
115 (Møller 2007). Owing to the metabolic demands of migration and the importance of repeated
116 migration success for fitness in long-distance migrants, the migratory phenotypes of these
117 species are thought to be under strong variation-reducing natural selection (Conklin et al. 2017).
118 As such, we hypothesize that long-distance migrants exhibit both lower d_s (which could reflect
119 selection against mutation in the mitochondria; Hua et al. 2015) and stronger purifying selection
120 in their mitochondrial genes than short-distance migrants.

121 To test these hypotheses, we examined the relationship between migration distance and
122 rates of molecular evolution of the mitochondrial coding genes in a community of small-bodied
123 migratory songbirds breeding in the boreal forests of North America. The 39 co-distributed
124 species we studied are ideal for investigating the effects of migration distance on molecular
125 evolution because they vary greatly in migration distance (e.g., Fig. 1, Table S1), yet they

126 otherwise share similar breeding habitat, population history, and body mass (Winger and Pegan
127 2021). This system allows us to test hypotheses about migration distance while minimizing
128 variation in other traits that could influence molecular evolution. We assessed effects of
129 migration distance on d_s (synonymous substitution rate) and d_N/d_s (purifying selection) in a
130 Bayesian phylogenetic framework (Lartillot and Poujol 2011) with full mitochondrial gene sets
131 we sequenced for 39 species. Further, we used population genetic datasets from all mitochondrial
132 genes that we generated for 30 of the species (for a total of 1008 samples used across all
133 analyses) to assess effects of migration distance on purifying selection at the population level.
134 Specifically, we assessed π_N/π_S , which is a population genetic summary statistic representing the
135 amount of nonsynonymous versus synonymous polymorphism within a population.

136

137 *Accounting for effects of N_e on substitution rates*

138 Molecular evolution is fundamentally influenced by effective population size (N_e), so it is
139 often difficult to determine whether links between traits and molecular evolutionary rates are
140 mediated by effects of traits on N_e versus other hypothesized mechanisms (e.g., Montoya et al.
141 2022). Therefore, we take advantage of our population-level datasets to directly test for effects of
142 N_e on molecular evolutionary rates and purifying selection, providing valuable context for the
143 interpretation of our results. Variation in N_e can cause variation in substitution rates because the
144 efficiency of natural selection in purging deleterious mutations is determined by the balance
145 between strength of selection and strength of drift, which is reflected in N_e (Ohta 1992).
146 Specifically, studies on empirical populations have demonstrated that populations with small N_e
147 typically show weaker purifying selection (i.e., higher d_N/d_s , e.g., Popadin et al. 2007, Leroy et
148 al. 2021; and higher π_N/π_S , e.g., Chen et al. 2017). Several recent studies found correlations

149 between traits associated with life history and genetic diversity, suggesting that species with
150 “slow” life histories often have low N_e (Romiguier et al. 2014; Brüniche-Olsen et al. 2021; De
151 Kort et al. 2021). There is also evidence that migratory behavior is predictive of population
152 genetic diversity, a parameter associated with N_e (García-Berro et al. 2023). It is therefore
153 important to assess whether molecular rate variation across species can alternatively be explained
154 by confounding variation in N_e .

155 Finally, we use estimates of N_e to test the assumption of neutral evolution at synonymous
156 sites, which is a fundamental assumption underlying the hypothesis that d_S reflects mutation rate
157 (Kimura 1983; Nei et al. 2010; Lanfear et al. 2014). If synonymous substitutions evolve
158 neutrally, we expect that d_S should not show a relationship with N_e because the processes that
159 lead to a relationship between N_e and substitution rate involve natural selection.

160

161 **Methods**

162 *Study system*

163 We focused on 39 species of migratory birds breeding in the North American boreal
164 forest, representing 11 families (Table S1). These are the same species for which a correlation
165 between migration distance and the slow-fast life history continuum—*independent* of body
166 size—has been demonstrated using data on annual fecundity and survivorship (Winger and
167 Pegan 2021). We focus our analyses on co-distributed populations of the eastern boreal belt of
168 North America (Omernik 1987, Fig. S1). Some species’ breeding ranges extend into other
169 ecoregions (e.g., the mountain west or the temperate forests south of the boreal zone), but in
170 these cases, we only analyze samples from the boreal portion of the range to assess sympatric
171 populations. The species in the dataset exhibit broad variation in migration distance, with their

172 geographic range centroids shifting between 1048 km and 7600 km between the breeding and
173 non-breeding periods (Fig. 2, Table S1; Winger and Pegan 2021). These centroid shifts represent
174 migratory strategies ranging from short-distance movements within the temperate region to the
175 movement of an entire population across ocean and land barriers from North America to South
176 America. All species are less than 100 g in mass (range of mean mass across species is 6-87
177 grams; Table S1) and are broadly similar in habitat use. They are all territorial species with
178 socially monogamous breeding systems, which suggests that they probably do not vary
179 substantially in population sex ratio (which can affect N_e), although empirical sex ratio data is
180 not available for these species. Small songbirds are typically capable of breeding in their second
181 year, and this is true of all species in our study that have been assessed (Billerman et al. 2022).
182 Additionally, our study species share relatively similar demographic histories, with population
183 expansions estimated to have mostly occurred during the period of glacial retreat that preceded
184 the Last Glacial Maximum (~57,000 years before present; Kimmitt et al. 2023).
185

186 *Life history covariates: Migration distance and mass*

187 Direct measurements of migration distance of individuals are lacking for most of the species in
188 our system, so we used the distance between the centroid of a species' breeding range and the
189 centroid of its nonbreeding range to represent the migration distance of the species. Although the
190 distance between centroids does not represent individual variation in migration distance within a
191 species, this metric captures broad differences in migratory strategies between species. Our
192 method for calculating the distance between range centroids is described in detail in Winger and
193 Pegan (2021). We included mass as a covariate in our analyses because body mass and rates of
194 molecular evolution are often associated (Figuet et al. 2014; Nabholz et al. 2016), and the

195 relationships between survival and fecundity and migration distance demonstrated by Winger
196 and Pegan (2021) were recovered after accounting for variation in mass. We obtained mass data
197 from Dunning (2008) and Billerman et al. (2022).

198

199 *Sampling and DNA sequencing*

200 Our analysis of the relationship between migration distance and d_S requires one
201 mitochondrial genome for each species in the study, while analyses of N_e and π_N/π_S require
202 population-level sampling. For our analysis of d_S , we obtained whole mitochondrial genomes
203 from one individual of each of the 39 species in our study by sequencing DNA from tissue
204 samples associated with a museum specimen, as described below. These specimens were
205 collected during the breeding season from near the longitudinal center of the boreal forest
206 (Manitoba, Minnesota, or Michigan; Tables S1,S2). For two species (*Contopus cooperi* and
207 *Euphagus carolinus*), we used specimen-vouchered tissue samples of individuals salvaged
208 during migration in Michigan from collision mortalities.

209 For our population-level analyses, we generated a large dataset of 999 additional
210 mitochondrial genomes for 30 of the 39 species, building on a dataset of 19 species from
211 Kimmitt et al. (2023). Our larger dataset includes complete coding sequences for 8 to 49
212 individuals per species (mean 33 individuals per species; Table S1). These individuals were
213 sampled during the breeding season across a longitudinal transect of the boreal forest from
214 Alberta to the northeastern United States (Fig. S1, Table S2). Except for 24 blood samples from
215 New York state, all sequences we used came from frozen or ethanol-preserved tissue samples
216 associated with museum voucher specimens provided by several museum institutions (Table S2;
217 *Acknowledgments*).

218 We obtained high-depth mitochondrial genomes captured as a byproduct from low-
219 coverage whole genome sequencing, as described in detail in Kimmitt et al. (2023). Briefly,
220 sequencing libraries were prepared using a modified Illumina Nextera library preparation
221 protocol (Schweizer et al. 2021) and sequenced on HiSeq or NovaSeq machines using services
222 provided by Novogene and the University of Michigan Advanced Genomics Core. We used
223 NOVOPlasty v4.3.1 (Dierckxsens et al. 2016) to assemble mitochondrial contigs, specifying a
224 target genome size of 20-30 kb and using a k-mer of 21. We provided NOVOPlasty with a
225 conspecific mitochondrial seed sequence (Table S1) for each species. We annotated the contigs
226 built by NOVOPlasty using Geneious Prime 2020.2.2 (<https://www.geneious.com>) with copies
227 of mitochondrial genes from GenBank (Table S1). Whenever applicable in the filtering and
228 analysis steps described below, we used options specifying the vertebrate mitochondrial code.

229 Our initial dataset across all species contained mitochondrial sequences from 1229 total
230 individuals. To ensure data quality, we used BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) to
231 check species identity and we removed samples with evidence of species misidentification,
232 chimerism, or introgression from related species (14 samples removed). We aligned and
233 translated sequences with the R package DECIPHER v2.18.1 (Wright 2016), and we visually
234 inspected each alignment, ensuring that sequences contained no premature stop codons or other
235 alignment issues. We used DECIPHER to remove partial stop codons and the untranslated C in
236 the ND3 sequence of woodpecker (Picidae) species (Mindell et al. 1998). As our population
237 analyses require complete data matrices, we excluded individuals with incomplete datasets (those
238 with assemblies that were missing genes and/or with ambiguous base calls; 202 samples
239 removed). We removed five individuals during population structure analysis, described below.
240 This data filtering resulted in 1008 complete mitochondrial coding sequences: 999 individuals

241 across 30 species used in the population genomic analyses plus one sequence for each of the 9
242 additional species we used only in the interspecific Coevol analyses. We concatenated the 13
243 mitochondrial coding sequences for analysis. The full list of samples, including those removed
244 from the analyses, can be found in Table S2.

245

246 *Estimating θ as a proxy for N_e*

247 We used θ as a proxy for effective population size (N_e). N_e can be calculated based on θ
248 and mutation rate (Watterson 1975, Nabholz et al. 2008b; Table 1), but accurate estimates of
249 mitochondrial mutation rate are lacking for most non-model organisms. Accordingly, many
250 empirical studies interested in N_e focus on genetic diversity, which is thought to reflect the
251 harmonic mean of N_e over time and which does not require mutation rate information to calculate
252 (e.g., Ellegren and Galtier 2016; Hague and Routman 2016). We hereafter use the genetic
253 diversity parameter θ as a proxy for N_e . We used LAMARC v2.1.10 (Kuhner 2006) to estimate θ
254 for each species. LAMARC estimates θ in a maximum likelihood framework using information
255 about the intervals between coalescence events from sampled genealogies, which the program
256 generates from population sequence data (Felsenstein 1992; Kuhner et al. 1995; Kuhner 2006).
257 We imported our population-level full mitochondrial coding sequence data into LAMARC after
258 converting our concatenated fasta files into the phylip format for each species. We used the
259 program's likelihood-based method in 10 initial chains (samples = 500, discard = 1000, interval
260 = 20) and 2 final chains (samples = 10,000, discard = 1000, interval = 20). We used the F84
261 model of molecular evolution, and we provided a separate transition/transversion ratio for each
262 species using values we calculated from population mitochondrial coding sequence datasets
263 using the R package 'spider' (Table S1; Brown et al. 2012). All other input parameters were left

264 at their default values. We examined the output for each species to check for chain convergence,
265 and we ran two replicate chains for each species to make sure they produced consistent results.
266 For five species (*Leiothlypis ruficapilla*, *Setophaga castanea*, *Setophaga coronata*, *Setophaga*
267 *fusca*, and *Vireo olivaceus*), we repeated LAMARC for 25 initial chains instead of 10 to improve
268 convergence and used the values from these longer runs.

269 Estimation of θ can be biased by purifying selection, and the magnitude of this bias may
270 vary across species due to differences in purifying selection and sample size (Subramanian
271 2016). To evaluate whether these biases influence our results, we compared θ to π_S , or nucleotide
272 diversity at synonymous polymorphisms, which is not biased by purifying selection assuming
273 that synonymous sites are evolving neutrally. We estimated π_S from each species using the
274 python package egglib v3.1.0 (De Mita and Siol 2012) and calculated Pearson's correlation
275 coefficient between θ and π_S . We also repeated Coevol models (described below) with each
276 proxy of N_e to assess whether the choice of proxy influences our results.

277

278 *Population Structure*

279 Our population-level analyses (estimation of θ and π_N/π_S) assume no geographic
280 population genetic structure within the samples used. To check this assumption, we calculated
281 mitochondrial genetic distance between all individuals within each species using “nei.dist()”
282 from the R package poppr v2.9.3 (Kamvar et al. 2014) and created a neighbor-joining tree with
283 “nj()” from the R package ape v5.6-2 (Paradis and Schleip 2019). We identified and removed 4
284 individuals from *Regulus satrapa* and one individual from *Oporornis agilis*, all from Alberta in
285 the far western part of our sampling area, that were genetically distinct from all other samples in

286 their respective species. Otherwise, there was little evidence of geographic genetic structure in
287 the mitochondrial genome in these species.

288

289 *Estimating d_S and d_N/d_S and their correlations with traits associated with life history*

290 We used Coevol v1.6 (Lartillot and Poujol 2011) to evaluate associations between
291 migration distance and molecular evolutionary rates using a single representative of each species.
292 Coevol uses a Bayesian phylogenetic framework to estimate d_S and d_N/d_S and to simultaneously
293 measure the relationship between these traits and covariates of interest (migration distance, mass,
294 and θ). We included mass to account for the expected relationship between mass and molecular
295 rates (Nabholz et al. 2016). Models with mass also provide a useful point of comparison,
296 allowing us to ask whether migration distance correlates with d_S and d_N/d_S to the same extent as
297 (or more or less than) this well-studied life-history trait. Similarly, including θ in the models
298 allows us to assess whether variation in N_e accounts for differences in molecular evolutionary
299 rates.

300 We provided Coevol with one complete concatenated mitochondrial coding sequence
301 from each species and a phylogenetic tree (Fig. 2) we generated with data from birdtree.org (Jetz
302 et al. 2012) as described in Pegan and Winger (2020). In brief, we sampled 2000 trees
303 comprising all North American bird species from the Jetz et al. dataset, and we used the python
304 package “DendroPy” (Sukumaran and Holder 2010) to generate a consensus tree. We then
305 trimmed this tree to include only the 39 species used in this study. Importantly, Coevol uses the
306 phylogenetic tree for topological information but estimates relative branching times from the
307 sequence data (Lartillot and Poujol 2021). Coevol also does not require prior information about
308 mutation rates. We investigated the potential effects of phylogenetic tree topology on our results

309 by sampling 10 random marginal trees from the original tree dataset (trimmed to include only
310 relevant species) and re-running Coevol on each tree, which we found to produce consistent
311 results (Table S3).

312 We created two data subsets for Coevol models: one subset contained all species in the
313 study and included mass and migration distance as covariates. The other subset included the 30
314 species for which we had population-level data available; for these, we included θ as a covariate
315 in addition to mass and migration distance. We also repeated these analyses using π_S as a proxy
316 for N_e instead of θ . For each data subset, we ran Coevol four times: two repeated analyses with
317 the option “dnds” (estimating d_S ; models 1 and 2, Table 2) and two with “dsom” (estimating
318 d_N/d_S ; models 3 and 4, Table 2). We let each analysis run for approximately 20000 steps and
319 examined the resulting trace files to ensure convergence and evaluate estimated sample sizes
320 (ESS). All models converged, and all parameters had ESS > 300. We removed the first 500 steps
321 of each analysis and thinned the posterior sample to retain every 10th step to reduce
322 autocorrelation. Replicate analyses produced highly similar estimates, and the values we report
323 here represent the mean value of estimates made by each replicate. We present full Coevol model
324 output in Tables S4-S6.

325 The method implemented in the Coevol software estimates correlation coefficients
326 between substitution rates and each covariate, as well as partial correlation coefficients (which
327 hold constant the effects of other covariates in the model). Each correlation or partial correlation
328 coefficient is accompanied by a posterior probability. In the case of Coevol, posterior
329 probabilities near 0 indicate strong support for a negative relationship, while posterior
330 probabilities near 1 indicate strong support for a positive relationship (Lartillot and Poujol 2021).

331

332 π_N/π_S

333 π_N/π_S is measured by comparing polymorphisms among individuals within a species

334 rather than by comparing between species in a phylogenetic framework (and thus cannot be

335 estimated by Coevol). We estimated π_N/π_S from each species with population-level fasta

336 alignments, using the python package egglip v3.1.0 (De Mita and Siol 2012) to create a

337 “CodingDiversity” class with attributes describing nucleotide diversity at codons with

338 synonymous or nonsynonymous polymorphisms. Predictions about the effect of purifying

339 selection on polymorphisms are more complex than predictions about substitution rates because

340 within-population variation can be purged by strong directional selective sweeps in addition to

341 purifying selection (Kryazhimskiy and Plotkin 2008). We predict a negative relationship between

342 migration distance and the π_N/π_S ratio, indicating stronger selection (directional or purifying) on

343 mitochondrial function in long-distance migrants. We used linear modeling to test for an effect

344 of migration distance, mass, and θ on π_N/π_S (Tables S7, S8). Prior to linear modeling, we centered

345 and scaled our predictors using the function “standardize” from the R package “robustHD”

346 (Alfons 2021) with the mean value of each predictor as the center. We used a similar linear

347 modeling approach to test whether θ exhibits a relationship with mass or migration distance to

348 ensure that apparent relationships between these traits and molecular rates are not confounded by

349 correlation with θ .

350 For each response variable (θ and π_N/π_S ; Tables S7, S8), we first created a model with all

351 covariates of interest. We then used the function “phylosig()” from the R package phytools v0.7-

352 70 (Revell 2010) to test for phylogenetic signal in the model’s residuals (Revell 2012). For both

353 response variables, the estimate of λ (phylogenetic signal) was low (< 0.2), and the p-value for

354 evidence of phylogenetic signal was > 0.8, so we proceeded with linear modeling rather than

355 using models with phylogenetic covariance matrices. For each response variable, we created a
356 null (intercept-only) model with no predictors and models with all possible combinations of our
357 predictors of interest, and we used the function “model.sel()” from the R package MuMIn
358 v1.43.17 (Bartón 2019) to compare the models’ AICc.

359

360 **Results**

361

362 For each model, we report correlation coefficients between traits of interest (migration
363 distance, mass, or θ) and molecular evolutionary rates (d_S or d_N/d_S) and assess their strength
364 based on posterior probabilities (pp), which are close to 0 in the case of a strong negative
365 correlation and close to 1 in the case of a strong positive correlation. We also report partial
366 correlation coefficients and their posterior probabilities, which indicate the relationship between
367 variables of interest after accounting for the effects of all other covariates.

368 The Pearson correlation coefficient between θ and π_S was high (0.77; $p < 0.0001$),
369 suggesting that these two variables are consistent proxies of N_e . We found that results of Coevol
370 models with θ as a covariate were consistent with results of models using π_S , so we conclude that
371 results of analyses with θ are not driven by biases in the estimation of θ . We hereafter focus on
372 models using θ , and full results of Coevol models using π_S instead of θ are presented in Table S6.

373

374 *Correlations between migration distance and molecular evolutionary rates (d_S and d_N/d_S)*

375 Our analyses show that migration distance negatively correlates with d_S across the 39
376 species we studied, consistent with our initial predictions (Fig. 2, Fig. S2). For Coevol models
377 with the full species set, the correlation coefficient relating migration distance to d_S was -0.39

378 with a posterior probability (*pp*) of 0.018, indicating strong support for a negative relationship.
379 The partial correlation coefficient (which accounts for mass) between migration distance and d_S
380 was -0.47 (*pp* = 0.0090).

381 We did not detect evidence of a relationship between migration distance and d_N/d_S
382 (correlation coefficient = 0.096, *pp* = 0.63). The partial correlation coefficient (accounting for
383 mass) between migration distance and d_N/d_S indicated that this relationship was not well
384 supported (partial correlation coefficient = 0.26, *pp* = 0.82).

385 Results from the Coevol models of the subset of 30 species for which we had estimates of
386 θ were consistent with results produced by the full subset (39 species) models, although support
387 for the correlation between d_S and migration distance was slightly weaker. In the model
388 estimating d_S , migration distance had a correlation coefficient of -0.43 (*pp* = 0.02) and a partial
389 correlation coefficient of -0.31 (*pp* = 0.11). In the model estimating d_N/d_S , we did not find
390 support for a relationship with migration distance, as this variable had a correlation coefficient of
391 -0.15 (*pp* = 0.32) with d_N/d_S and a partial correlation coefficient of -0.010 (*pp* = 0.52) with d_N/d_S .
392

393 *Correlations between mass and molecular evolutionary rates (d_S and d_N/d_S)*

394 Coevol models with the full species set support the expected negative relationship
395 between mass and d_S (correlation coefficient = -0.28, *pp* = 0.065; Fig. 2). This relationship
396 weakens when effects of migration distance are accounted for (i.e., with partial correlation
397 coefficient = -0.18, *pp* = 0.20). We did not find a strong correlation between mass and d_N/d_S
398 (correlation coefficient = -0.25, *pp* = 0.19; partial correlation coefficient = -0.072, *pp* = 0.41). In
399 models of d_S with the subset of 30 species that included θ as a predictor, mass had a correlation
400 coefficient of -0.17 (*pp* = 0.21) and a partial correlation coefficient (which controls for the

401 effects of migration distance) of -0.23 ($pp = 0.15$). In models of d_N/d_S from this subset, mass had
402 a correlation coefficient of 0.16 ($pp = 0.7$) and a partial correlation coefficient of 0.26 ($pp =$
403 0.84).

404

405 *The influence of N_e on molecular evolutionary rates*

406 In models using the subset of 30 species with population-level data, we did not find
407 evidence for a correlation between θ and d_S (correlation coefficient = -0.23, $pp = 0.15$; partial
408 correlation coefficient = -0.12, $pp = 0.67$). This result is consistent with neutral evolution of
409 synonymous sites among the species we studied. By contrast, we found strong support for the
410 nearly neutral theory's predicted negative relationship (Ohta 1992; Popadin et al. 2007; Leroy et
411 al. 2021) between θ and d_N/d_S (correlation coefficient = -0.60, $pp = 0.025$; partial correlation
412 coefficient = -0.57, $pp = 0.031$; Fig. 3), indicating stronger purifying selection in species with
413 higher N_e .

414

415 *Linear modeling of π_N/π_S*

416 In comparison of AICc, the highest-ranked model of π_N/π_S showed a strongly supported
417 negative relationship between θ and π_N/π_S (Fig. 4, Table S7, model weight 0.55), as predicted if
418 purifying selection is stronger in species with higher N_e . Compared to a model with θ alone, a
419 model with both θ and migration distance shows an increase in multiple r^2 from 0.15 to 0.28 and
420 a decrease in AICc by more than two units, suggesting the inclusion of migration distance
421 improves model fit. However, contrary to our prediction, migration distance has a weak positive
422 relationship with π_N/π_S (Fig. 4). The estimated coefficient relating θ and π_N/π_S in the best-fit
423 model is -0.027 (std error = 0.01) and the estimated effect of migration distance from the best-fit

424 model is 0.022 (std error = 0.01). Model comparison did not support the inclusion of mass as a
425 predictor of π_N/π_S (Table S7).

426

427 *N_e does not confound patterns of rate correlations*

428 We used linear modeling to test whether migration distance or mass show a relationship
429 with θ , our proxy of N_e . We did not find strong evidence that mass or migration distance are
430 correlated with θ among the 30 species we studied. The null model for θ (an intercept-only
431 model with no predictors) showed the lowest AICc, suggesting that the addition of mass and
432 migration distance as predictors did not improve model fit (Table S8, model weight 0.45).
433 However, the model with migration distance as a predictor was within 2 AICc units of the null
434 model and showed a model weight of 0.30, indicating considerable model uncertainty. The
435 estimated effect of migration distance on θ was positive but had a negligible effect size in the
436 second-best model (estimate = 0.0017, std error = 0.0013 model multiple $r^2 = 0.054$).

437

438 **Discussion**

439

440 *Seasonal migration distance correlates with mitochondrial d_S*

441 We examined the relationship between life history and patterns of mitochondrial
442 sequence evolution within North American boreal birds. These species occupy a region where
443 strong seasonality demands specialized adaptations that carry life history tradeoffs (Varpe 2017;
444 Winger and Pegan 2021). Our results implicate the life-history axis of seasonal migration
445 distance as a novel correlate of mitochondrial synonymous substitution rate (d_S). Previous work
446 demonstrates that, even after accounting for body size, long-distance migrants in this system

447 have slower life history strategies than short-distance migrants, showing higher annual adult
448 survival and lower fecundity (Winger and Pegan 2021). Here, we find that the slow life history
449 of long-distance migrants is accompanied by a slower rate of neutral molecular evolution in the
450 mitochondria of these species compared with that of shorter-migrating species in the region.
451 Indeed, among the 39 species we studied, the correlation between migration distance and d_S is
452 stronger than the correlation between mass and d_S , which is notable given that the relationship
453 between mass and substitution rate has been documented in previous work (Nabholz et al. 2016).
454 As such, we suggest that the association between migration distance and the slow-fast life history
455 continuum extends to effects on d_S .

456

457 *What evolutionary processes link migration distance with mitochondrial d_S ?*

458 Substitution rates are fundamentally influenced by mutation rate, which provides new
459 molecular variants with potential to become substitutions, and by natural selection, which
460 influences whether variants are fixed as substitutions or lost. The correlation between migration
461 distance and d_S therefore reflects one or both processes. d_S is often treated as a proxy for
462 mutation rate alone based on the assumption that natural selection does not operate on
463 synonymous sites (Nei et al. 2010), but in some cases, synonymous sites are known to evolve
464 non-neutrally (Chamary et al. 2006; Künstner et al. 2011; Wei et al. 2014; Wynn and Christensen
465 2015). If synonymous sites are not evolving neutrally, nearly neutral theory suggests that the
466 relationship between d_S and migration distance could be explained by larger N_e in long-distance
467 migrants (Ohta 1992). We tested the key assumption that synonymous sites evolve neutrally by
468 assessing the relationship between d_S and our proxy for N_e (θ) (Table S4). We found no
469 correlation, suggesting that synonymous sites are indeed evolving neutrally in our system. We

470 also found no correlation between θ and migration distance (Table S8). Together, these results
471 suggest that variation in d_S among species with different migration distances is not well
472 explained by variation in natural selection or effective population size. Rather, we suggest that
473 the negative relationship between migration distance and d_S may reflect a negative relationship
474 between migration distance and mutation rate.

475

476 *Why might long-distance migrants have a lower mitochondrial mutation rate?*

477 We predicted that migration distance would correlate with d_S because of its relationship
478 with the slow-fast continuum of life history in these species independent of body size (Winger
479 and Pegan 2021). In turn, a species' position on the slow-fast life history continuum is
480 hypothesized to affect mutation rate (Bromham 2020). There are several potential mechanisms to
481 explain the link between life history and mutation rate, and the relative importance of each is not
482 clear (Bromham 2020). The "copy error effect" hypothesis suggests that the explanation is
483 related to generation time, assuming that "fast" species with short generation times and young
484 age at first reproduction experience higher rates of germline replication (and thus replication-
485 induced mutation) than species with "slow" life histories (Li et al. 1996; Thomas et al. 2010;
486 Lehtonen and Lanfear 2014).

487 However, recent studies comparing cell division rates with directly-measured mutation
488 rates suggest that replication-induced copy errors may not be the only driver of differences in
489 mutation rate between lineages (Wu et al. 2020; Wang et al. 2022). The "mutation avoidance"
490 hypothesis offers another non-exclusive explanation for lower d_S in organisms with slow life
491 history based on higher mutation costs in longer-lived species (Bromham 2020). Under this
492 hypothesis, organisms with slow life history are predicted to have adaptations that reduce the

493 introduction of mutations from DNA damage or DNA replication and repair processes (Galtier et
494 al. 2009; Tian et al. 2019; Zhang et al. 2021; Cagan et al. 2022). Long-distance migrants may be
495 especially sensitive to the costs of mitochondrial mutation, which may cause mitochondrial
496 senescence (Galtier et al. 2009; Hua et al. 2015), because of the high physical performance
497 demanded by their migratory behavior across their entire lifespans (Møller 2007; Conklin et al.
498 2017). Further research is necessary to understand what processes contribute to the apparent
499 reduction of mutation rate in species at the slow end of the slow-fast continuum of life history.

500 Another possible link between migration distance and mutation rate is oxidative damage
501 from metabolism, which is recognized as a potential source of mutation rate variation (Martin
502 and Palumbi 1993, Gillooly et al. 2005, Berv and Field 2018; but see Lanfear et al. 2007, Galtier
503 et al. 2009). Thus, a potential explanation for our results—lower mitochondrial ds in long-
504 distance migrants—is that long-distance migrants incur less metabolically-induced DNA damage
505 than short-distance migrants. This explanation is initially surprising in light of studies showing
506 that migratory birds experience oxidative damage from endurance flight (Jenni-Eiermann et al.
507 2014; Skrip and McWilliams 2016). However, we suggest that three plausible and non-exclusive
508 scenarios could lead to lower metabolically-induced DNA damage in long-distance compared to
509 short-distance migrants. First, long-distance migrants may have better adaptations for flight
510 efficiency (Weber 2009; Elowe et al. 2023), reducing the oxidative damage they experience per
511 mile traveled. Second, the mutation avoidance hypothesis predicts that long-distance migrants
512 may have more efficient DNA repair mechanisms than short-distance migrants, which could
513 reduce metabolically-induced mutation rates even when long-distance flight does induce high
514 oxidative stress. Last, short-distance migrants in our boreal study system may experience greater
515 oxidative damage arising from their increased need for winter cold tolerance than long-distance

516 migrants that winter in the tropics. The mitochondria also play an important role in the metabolic
517 challenge of maintaining homeostasis during cold weather and resource shortages (Bicudo et al.
518 2001; Chen et al. 2018). Short-distance boreal migrants likely face more of these kinds of
519 challenges than long-distance migrants during migration and winter (Winger and Pegan 2021).
520 Despite the view that long-distance migration is an extreme performance challenge, its
521 alternative—spending the winter within the temperate zone—is also an extreme metabolic
522 challenge for small-bodied homoeothermic endotherms that do not hibernate (Dawson and
523 Yacoe 1983; Winger et al. 2019). Further investigation of the comparative metabolic challenges
524 faced by short versus long-distance boreal migrants is needed to clarify whether and how
525 migration distance influences metabolically-induced mutation in the mitochondria.

526

527 *Purifying selection is not stronger in long-distance migrants*

528 Whereas evolutionary rate at synonymous sites (d_S) may primarily reflect mutation rate,
529 evolution at nonsynonymous sites is expected to strongly reflect natural selection because
530 nonsynonymous mutations alter the amino acid sequence of a gene's protein product. We found
531 that the ratio of nonsynonymous to synonymous substitutions (d_N/d_S) among our species is
532 universally much less than 1 (Fig. 3), indicating that the mitochondrial genes we studied are
533 under purifying selection in all species in the system. We similarly found low ratios of
534 nonsynonymous to synonymous polymorphisms within each population (π_N/π_S ; Fig. 4), which is
535 also consistent with purifying selection. Moreover, both d_N/d_S and the π_N/π_S ratio are strongly
536 correlated with θ , our proxy for N_e (Fig. 3, 4), as expected under nearly neutral theory (Ohta
537 1992). A nuance of our results is that d_N/d_S reflects the accumulation of substitutions across the
538 entire history of a lineage, whereas population parameters such as θ and π_N/π_S may be more

539 strongly influenced by recent demographic processes. However, that we and others (e.g.,
540 Popadin et al. 2007; Leroy et al. 2021) find empirical evidence for the relationship between θ
541 and d_N/d_S predicted by nearly neutral theory, despite this potential mismatch in evolutionary
542 timescales, suggests that similar demographic processes may shape empirical estimates of
543 genetic diversity and molecular evolutionary rates.

544 Our results are consistent with the general finding that mitochondrial genes tend to
545 experience strong purifying selection (Nabholz et al. 2013; Popadin et al. 2013). However, we
546 did not find evidence supporting our prediction that long-distance migrants would show stronger
547 purifying selection (i.e., lower d_N/d_S and π_N/π_S) than short-distance migrants. This finding may
548 reflect the reality that all species in our system face generally strong mitochondrial purifying
549 selection, such that the endurance flights of long-distance migrants do not incur much stronger
550 selection than the level that exists among all the species we studied. Our results also imply that
551 short-distance migrants in the boreal region do not experience *relaxed* purifying selection on
552 mitochondrial genes compared to long-distance migrants. As noted above, short-distance boreal
553 migrants contend with metabolic challenges associated with cold winter temperatures which may
554 also exert selection on the mitochondria (Chen et al. 2018), as well as the metabolic demands of
555 flight.

556

557 *Migration distance and the costs of mitochondrial mutations*

558 In this study, we based our predictions on several complementary hypotheses about the
559 costs of mutation in species with slow life history and high demand for physiological
560 performance, such as long-distance migrants. From the perspective of molecular evolution, the
561 mutation avoidance hypothesis (Bromham 2020) and studies on the relationship between lifespan

562 and mutation rate (Nabholz et al. 2008a; Galtier et al. 2009; Tian et al. 2019; Zhang et al. 2021)
563 predict that phenotype-altering genetic variation is harmful enough to induce selection for
564 mutation avoidance in organisms with slow life history. From the perspective of population
565 biology, the hypothesis proposed by Conklin et al. (2017) predicts that “slow” species with high
566 performance demands experience a strong selective filter on phenotypic performance in early
567 life, reducing phenotypic variation in these populations. While Conklin et al. (2017) frame their
568 hypothesis around reduction of phenotypic variation, a similar prediction about reduction of
569 genetic variation emerges from a series of studies showing that mitochondrial purifying selection
570 is stronger in species with higher locomotory metabolic demands (Shen et al. 2009; Chong and
571 Mueller 2013; Strohm et al. 2015; Mitterboeck et al. 2017; Sun et al. 2017; Chang et al. 2020; De
572 Panis et al. 2021). Together, these hypotheses led us to predict that the costs of mitochondrial
573 mutation in long-distance migrants, which have slow life histories, would cause them to exhibit
574 slower mitochondrial mutation rates and stronger mitochondrial purifying selection than short-
575 distance migrants.

576 Our predictions were only partially supported. The negative relationship we found
577 between migration distance and d_S is consistent with lower mitochondrial mutation rate in long-
578 distance migrants, but we did not find evidence that these species experience stronger
579 mitochondrial purifying selection than do short-distance migrants. To reconcile these findings
580 and advance our understanding of how long-distance migration influences molecular
581 evolutionary dynamics, further research is needed on the relative metabolic demands of long-
582 distance flight versus cold tolerance and on the consequences of mitochondrial genetic variation
583 for migratory phenotype. Additionally, studying molecular rates across the nuclear genome will

584 help clarify which dynamics we report here are related to selection on the mitochondrial genome
585 and which reflect more general interactions between life history and molecular evolution.

586

587 *Conclusions: seasonal adaptation provides novel context for studying the links between life*
588 *history and molecular evolutionary rates*

589 Adaptation to seasonality entails life history tradeoffs (Varpe 2017). Organisms balance
590 these tradeoffs in different ways, creating variation in life history strategy within communities
591 that inhabit seasonal environments (e.g., Winger and Pegan 2021). Our study demonstrates that
592 life history variation related to seasonality can influence molecular evolutionary rates, which has
593 implications for the accurate reconstruction of evolutionary history (Berv and Field 2018; Shafir
594 et al. 2020; Ritchie et al. 2022). More broadly, communities adapted to seasonal habitats provide
595 an important context to investigate potential drivers of the relationship between life history and
596 molecular evolution. Co-distributed species show varying adaptations to seasonality—e.g., cold
597 tolerance, migration, hibernation—and they express these strategies to different degrees (Auteri
598 2022). Cold adaptations can influence biological processes hypothesized to be relevant for
599 germline replication rate or mutation rate (e.g., Wang et al. 2022), even among species that show
600 little variation in commonly-studied life history proxies such as body mass. Comparative studies
601 using seasonal communities can therefore allow us to draw new insights into how life history
602 tradeoffs affect mutation rate, one of the most fundamental processes in evolution.

603

604 **Author contributions:** Ideas conceived by TMP, JSB, ERGC, and BMW; data generated by
605 TMP and AAK; data analyzed by TMP and JSB; manuscript written by TMP and BMW;
606 manuscript revised by all authors.

607

608 **Conflict of interest statement:** The authors have no conflict of interests to declare.

609

610 **Data accessibility statement:** Sequence data are available on GenBank. Accession numbers
611 may be found in Table S2. Code and other associated data are available at Dryad DOI:
612 10.5061/dryad.cvdncjt99

613

614 **Acknowledgements:**

615 We thank Natalie Hofmeister, Kristen Wacker, Matt Hack, Susanna Campbell, Andrea
616 Benavides Castaño, Zach Hancock, and the lab of Stephen Smith for helpful discussion. Teia
617 Schweizer, Christine Rayne, and Kristen Ruegg provided lab assistance. For field sampling
618 permits, we thank the United States Fish and Wildlife Service, the United States Forest Service,
619 the Minnesota Department of Natural Resources, the Michigan Department of Natural
620 Resources, the Canadian Wildlife Service of Environment and Climate Change Canada, Alberta
621 Fish and Wildlife, and Manitoba Fish and Wildlife. Field sampling was approved by the
622 University of Michigan Animal Care and Use Committee. For providing additional samples, we
623 thank the American Museum of Natural History (Brian Smith, Joel Cracraft, Paul Sweet, Peter
624 Capainolo, Tom Trombone), Royal Alberta Museum (Jocelyn Hudon), University of California,
625 Berkeley Museum of Vertebrate Zoology (Rauri Bowie and Carla Cicero), Cleveland Museum of
626 Natural History (Andrew Jones, Courtney Brennan), Cornell University Museum of Vertebrates
627 (Irby Lovette, Vanya Rohwer, Mary Margaret Ferraro, Charles Dardia), University of Michigan
628 Museum of Zoology (Brett Benz, Janet Hinshaw), University of Minnesota Bell Museum of
629 Natural History (Keith Barker), and the New York State Museum (Jeremy Kirchman). For

630 assistance in the field, we thank Brett Benz, Courtney Brennan, Susanna Campbell, Shane
631 DuBay, Ethan Gyllenhaal, Mary Margaret Ferraro, Laura Gooch, Andrew Jones, Heather Skeen,
632 Vera Ting, and Brian Weeks. Next-generation sequencing for this project was partially carried
633 out in the Advanced Genomics Core at the University of Michigan. This research was also
634 supported in part through computational resources and services provided by Advanced Research
635 Computing (ARC), a division of Information and Technology Services (ITS) at the University
636 of Michigan, Ann Arbor.

637

638 **Funding:**

639 This material is based upon work supported by the National Science Foundation under Grant No.
640 2146950 to BMW. This research was supported by the Jean Wright Cohn Endowment Fund,
641 Robert W. Storer Endowment Fund, Mary Rhoda Swales Museum of Zoology Research Fund
642 and William G. Fargo Fund at the University of Michigan Museum of Zoology, and the William
643 A and Nancy R Klammm Endowment, Cleveland Museum of Natural History. TMP was supported
644 by the NSF Graduate Research Fellowship (DGE 1256260, Fellow ID 2018240490) and a
645 University of Michigan Rackham Graduate Student Research Grant.

646

647 **References**

648 Alfons, A. 2021. robustHD: An R package for robust regression with high-dimensional data. *J.
649 Open Source Softw.* 6:3786.

650 Auteri, G. G. 2022. A conceptual framework to integrate cold-survival strategies: Torpor,
651 resistance and seasonal migration. *Biol. Lett.* 18:20220050.

652 Bartón, K. 2019. MuMIn: Multi-Model Inference. R package.

653 Bergeron, L. A., S. Besenbacher, J. Zheng, P. Li, M. F. Bertelsen, B. Quintard, J. I. Hoffman, Z.
654 Li, J. St. Leger, C. Shao, J. Stiller, M. T. P. Gilbert, M. H. Schierup, and G. Zhang. 2023.
655 Evolution of the germline mutation rate across vertebrates. *Nature* 615:285–291.
656 Berv, J. S., and D. J. Field. 2018. Genomic Signature of an Avian Lilliput Effect across the K-Pg
657 Extinction. *Syst. Biol.* 67:1–13.
658 Bicudo, J. E. P. W., C. R. Vianna, and J. G. Chaui-Berlinck. 2001. Thermogenesis in birds.
659 *Biosci. Rep.* 21:181–188.
660 Billerman, S., B. Keeney, P. Rodewald, and T. Schulenberg (eds). 2022. *Birds of the World*.
661 Cornell Lab of Ornithology, Ithaca, NY.
662 Bromham, L. 2020. Causes of Variation in the Rate of Molecular Evolution. Pp. 45–64 in S. Y.
663 W. Ho, ed. *The Molecular Evolutionary Clock*. Springer Cham.
664 Bromham, L., X. Hua, R. Lanfear, and P. F. Cowman. 2015. Exploring the Relationships
665 between Mutation Rates, Life History, Genome Size Environment, and Species Richness in
666 Flowering Plants. *Am. Nat.* 185:508–524.
667 Brown, S. D. J., R. A. Collins, S. Boyer, M. C. Lefort, J. Malumbres-Olarte, C. J. Vink, and R.
668 H. Cruickshank. 2012. Spider: An R package for the analysis of species identity and
669 evolution, with particular reference to DNA barcoding. *Mol. Ecol. Resour.* 12:562–565.
670 Bruderer, B., and V. Salewski. 2009. Lower annual fecundity in long-distance migrants than in
671 less migratory birds of temperate Europe. *J. Ornithol.* 150:281–286.
672 Brüniche-Olsen, A., K. F. Kellner, J. L. Belant, and J. A. Dewoody. 2021. Life-history traits and
673 habitat availability shape genomic diversity in birds: Implications for conservation. *Proc. R.
674 Soc. B Biol. Sci.* 288:20211441.
675 Cagan, A., A. Baez-Ortega, N. Brzozowska, F. Abascal, T. H. H. Coorens, M. A. Sanders, A. R.

676 J. Lawson, L. M. R. Harvey, S. Bhosle, D. Jones, R. E. Alcantara, T. M. Butler, Y. Hooks,
677 K. Roberts, E. Anderson, S. Lunn, E. Flach, S. Spiro, I. Januszczak, E. Wrigglesworth, H.
678 Jenkins, T. Dallas, N. Masters, M. W. Perkins, R. Deaville, M. Druce, R. Bogeska, M. D.
679 Milsom, B. Neumann, F. Gorman, F. Constantino-Casas, L. Peachey, D. Bochynska, E. S. J.
680 Smith, M. Gerstung, P. J. Campbell, E. P. Murchison, M. R. Stratton, and I. Martincorena.
681 2022. Somatic mutation rates scale with lifespan across mammals. *Nature* 604:517–524.
682 Chamary, J. V., J. L. Parmley, and L. D. Hurst. 2006. Hearing silence: Non-neutral evolution at
683 synonymous sites in mammals. *Nat. Rev. Genet.* 7:98–108.
684 Chang, H., Z. Qiu, H. Yuan, X. Wang, X. Li, H. Sun, X. Guo, Y. Lu, X. Feng, M. Majid, and Y.
685 Huang. 2020. Evolutionary rates of and selective constraints on the mitochondrial genomes
686 of Orthoptera insects with different wing types. *Mol. Phylogenet. Evol.* 145:106734.
687 Chen, J., S. Glémin, and M. Lascoux. 2017. Genetic diversity and the efficacy of purifying
688 selection across plant and animal species. *Mol. Biol. Evol.* 34:1417–1428.
689 Chen, J., P. Ni, T. N. T. Thi, E. V. Kamaldinov, V. L. Petukhov, J. Han, X. Liu, N. Sprem, and
690 S. Zhao. 2018. Selective constraints in cold-region wild boars may defuse the effects of
691 small effective population size on molecular evolution of mitogenomes. *Ecol. Evol.*
692 17:8102–8114.
693 Chong, R. A., and R. L. Mueller. 2013. Low metabolic rates in salamanders are correlated with
694 weak selective constraints on mitochondrial genes. *Evolution* 67:894–899.
695 Conklin, J. R., N. R. Senner, P. F. Battley, and T. Piersma. 2017. Extreme migration and the
696 individual quality spectrum. *J. Avian Biol.* 48:19–36.
697 Dawson, W. R., and M. E. Yacoe. 1983. Metabolic adjustments of small passerine birds for
698 migration and cold. *Am. J. Physiol. - Regul. Integr. Comp. Physiol.* 14:R755–R767.

699 De Kort, H., J. G. Prunier, S. Ducez, O. Honnay, M. Baguette, V. M. Stevens, and S. Blanchet.

700 2021. Life history, climate and biogeography interactively affect worldwide genetic

701 diversity of plant and animal populations. *Nat. Commun.* 12:1–11.

702 De Mita, S., and M. Siol. 2012. EggLib : processing , analysis and simulation tools for

703 population genetics and genomics. *BMC Genet.* 13:1–12.

704 De Panis, D., S. A. Lambertucci, G. Wiemeyer, H. Dopazo, F. C. Almeida, C. J. Mazzoni, M.

705 Gut, I. Gut, and J. Padró. 2021. Mitogenomic analysis of extant condor species provides

706 insight into the molecular evolution of vultures. *Sci. Rep.* 11:17109.

707 Dierckxsens, N., P. Mardulyn, and G. Smits. 2016. NOVOPlasty : de novo assembly of organelle

708 genomes from whole genome data. *Nucleic Acids Res.* 45:10.1093/nar/gkw955.

709 Dunning, J. B. J. 2008. CRC Handbook of Avian Body Masses. CRC Press, Boca Raton, FL.

710 Ellegren, H., and N. Galtier. 2016. Determinants of genetic diversity. *Nat. Rev. Genet.* 17:422–

711 433.

712 Elowe, C. R., D. J. E. Groom, J. Slezacek, and A. R. Gerson. 2023. Long-duration wind tunnel

713 flights reveal exponential declines in protein catabolism over time in short- and long-

714 distance migratory warblers. *Proc. Natl. Acad. Sci.* 120:e2216016120.

715 Felsenstein, J. 1992. Estimating effective population size from samples of sequences:

716 Inefficiency of pairwise and segregating sites as compared to phylogenetic estimates. *Genet.*

717 *Res.* 59:139–147.

718 Figuet, E., J. Romiguier, J. Y. Dutheil, and N. Galtier. 2014. Mitochondrial DNA as a tool for

719 reconstructing past life-history traits in mammals. *J. Evol. Biol.* 27:899–910.

720 Galtier, N., R. W. Jobson, B. Nabholz, S. Glémin, and P. U. Blier. 2009. Mitochondrial whims:

721 Metabolic rate, longevity and the rate of molecular evolution. *Biol. Lett.* 5:413–416.

722 García-Berro, A., V. Talla, R. Vila, H. K. Wai, D. Shipilina, K. G. Chan, N. E. Pierce, N.
723 Backström, and G. Talavera. 2023. Migratory behaviour is positively associated with
724 genetic diversity in butterflies. *Mol. Ecol.* 32:560–574.

725 Gillooly, J. F., A. P. Allen, G. B. West, and J. H. Brown. 2005. The rate of DNA evolution :
726 Effects of body size and temperature on the molecular clock. *Proc. Natl. Acad. Sci.*
727 102:140–145.

728 Greenberg, R. 1980. Demographic aspects of long-distance migration. Pp. 493–504 in A. Keast
729 and E. S. Morton, eds. *Migrant Birds in the Neotropics*. Smithsonian Institution.

730 Hague, M. T. J., and E. J. Routman. 2016. Does population size affect genetic diversity ? A test
731 with sympatric lizard species. *Heredity*. 116:92–98..

732 Hua, X., P. Cowman, D. Warren, and L. Bromham. 2015. Longevity is linked to mitochondrial
733 mutation rates in rockfish: A test using poisson regression. *Mol. Biol. Evol.* 32:2633–2645.

734 Hwang, D. G., and P. Green. 2004. Bayesian Markov chain Monte Carlo sequence analysis
735 reveals varying neutral substitution patterns in mammalian evolution. *Proc. Natl. Acad. Sci.*
736 U. S. A. 101:13994–14001.

737 Jenni-Eiermann, S., L. Jenni, S. Smith, and D. Costantini. 2014. Oxidative stress in endurance
738 flight: An unconsidered factor in bird migration. *PLoS One* 9:1–6.

739 Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global diversity of
740 birds in space and time. *Nature* 491:444–448.

741 Kamvar, Z. N., J. F. Tabima, and N. J. Grünwald. 2014. Poppr: An R package for genetic
742 analysis of populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ*
743 2014:1–14.

744 Kimmitt, A. A., T. M. Pegan, A. W. Jones, K. S. Wacker, C. L. Brennan, J. Hudon, J. J.

745 Kirchman, K. Ruegg, B. W. Benz, R. R. Herman, and B. M. Winger. 2023. Genetic
746 evidence for widespread population size expansion in North American boreal birds prior to
747 the Last Glacial Maximum. *Proc. R. Soc. B Biol. Sci.* 290:20221334.

748 Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press.

749 Kryazhimskiy, S., and J. B. Plotkin. 2008. The population genetics of dN/dS. *PLoS Genet.*
750 4:e1000304.

751 Kuhner, K., J. Yarnato, and J. Felsenstein. 1995. Estimating Effective Population Size and
752 Mutation Rate From Sequence Data Using Metropolis-Hastings Sampling. *Genetics*
753 1490:1421–1430.

754 Kuhner, M. K. 2006. LAMARC 2.0: Maximum likelihood and Bayesian estimation of
755 population parameters. *Bioinformatics* 22:768–770.

756 Künstner, A., B. Nabholz, and H. Ellegren. 2011. Significant selective constraint at 4-fold
757 degenerate sites in the avian genome and its consequence for detection of positive selection.
758 *Genome Biol. Evol.* 3:1381–1389.

759 Lanfear, R., H. Kokko, and A. Eyre-Walker. 2014. Population size and the rate of evolution.
760 *Trends Ecol. Evol.* 29:33–41.

761 Lanfear, R., J. A. Thomas, J. J. Welch, T. Brey, and L. Bromham. 2007. Metabolic rate does not
762 calibrate the molecular clock. *Proc. Natl. Acad. Sci.* 104:15388–15393.

763 Lartillot, N., and R. Poujol. 2011. A phylogenetic model for investigating correlated evolution of
764 substitution rates and continuous phenotypic characters. *Mol. Biol. Evol.* 28:729–744.

765 Lartillot, N., and R. Poujol. 2021. Coevol: Correlated evolution of substitution rates and
766 quantitative traits (v1.6 manual).

767 Lehtonen, J., and R. Lanfear. 2014. Generation time, life history and the substitution rate of

768 neutral mutations. *Biol. Lett.* 10:3–6.

769 Leroy, T., M. Rousselle, M. K. Tilak, A. E. Caizergues, C. Scornavacca, M. Recuerda, J. Fuchs,
770 J. C. Illera, D. H. De Swardt, G. Blanco, C. Thébaud, B. Milá, and B. Nabholz. 2021. Island
771 songbirds as windows into evolution in small populations. *Curr. Biol.* 31:1303–1310.

772 Li, W. H., D. L. Ellsworth, J. Krushkal, B. H. J. Chang, and D. Hewett-Emmett. 1996. Rates of
773 nucleotide substitution in primates and rodents and the generation-time effect hypothesis.
774 *Mol. Phylogenet. Evol.* 5:182–187.

775 Lüdecke, D. 2018. *ggeffects: Tidy Data Frames of Marginal Effects from Regression Models.* *J.*
776 *Open Source Softw.* 3:772.

777 Martin, A. P., and S. R. Palumbi. 1993. Body size, metabolic rate, generation time, and the
778 molecular clock. *Proc. Natl. Acad. Sci. U. S. A.* 90:4087–4091.

779 Mindell, D. P., M. D. Sorenson, and D. E. Dimcheff. 1998. An extra nucleotide is not translated
780 in mitochondrial ND3 of some birds and turtles. *Mol. Biol. Evol.* 15:1568–1571.

781 Mitterboeck, T. F., S. Liu, S. J. Adamowicz, J. Fu, R. Zhang, W. Song, K. Meusemann, and X.
782 Zhou. 2017. Positive and relaxed selection associated with flight evolution and loss in insect
783 transcriptomes. *Gigascience* 6:1–14.

784 Møller, A. P. 2007. Senescence in relation to latitude and migration in birds. *J. Evol. Biol.*
785 20:750–757.

786 Montoya, P., D. A. Cadena, S. Claramunt, and D. A. Duchene. 2022. Environmental niche and
787 flight intensity are associated with molecular evolutionary rates in a large avian radiation.
788 *BMC Ecol. Evol.* 22:95.

789 Moorjani, P., C. E. G. Amorim, P. F. Arndt, and M. Przeworski. 2016. Variation in the molecular
790 clock of primates. *Proc. Natl. Acad. Sci. U. S. A.* 113:10607–10612.

791 Nabholz, B., H. Ellegren, and J. B. W. Wolf. 2013. High levels of gene expression explain the
792 strong evolutionary constraint of mitochondrial protein-coding genes. *Mol. Biol. Evol.*
793 30:272–284.

794 Nabholz, B., S. Glémén, and N. Galtier. 2008a. Strong variations of mitochondrial mutation rate
795 across mammals - The longevity hypothesis. *Mol. Biol. Evol.* 25:120–130.

796 Nabholz, B., R. Lanfear, and J. Fuchs. 2016. Body mass-corrected molecular rate for bird
797 mitochondrial DNA. *Mol. Ecol.* 25:4438–4449.

798 Nabholz, B., J. F. Mauffrey, E. Bazin, N. Galtier, and S. Glemin. 2008b. Determination of
799 mitochondrial genetic diversity in mammals. *Genetics* 178:351–361.

800 Nei, M. 2005. Selectionism and neutralism in molecular evolution. *Mol. Biol. Evol.* 22:2318–
801 2342.

802 Nei, M., Y. Suzuki, and M. Nozawa. 2010. The Neutral Theory of Molecular Evolution in the
803 Genomic Era. *Annu. Rev. Genomics Hum. Genet.* 11:265–289.

804 Nikolaev, S. I., J. I. Montoya-Burgos, K. Popadin, L. Parand, E. H. Margulies, S. E. Antonarakis,
805 G. G. Bouffard, J. R. Idol, V. V. B. Maduro, R. W. Blakesley, X. Guan, N. F. Hansen, B.
806 Maskeri, J. C. McDowell, M. Park, P. J. Thomas, and A. C. Young. 2007. Life-history traits
807 drive the evolutionary rates of mammalian coding and noncoding genomic elements. *Proc.*
808 *Natl. Acad. Sci. U. S. A.* 104:20443–20448.

809 Ohta, T. 1992. The nearly neutral theory of molecular evolution. *Annu. Rev. Ecol. Syst.* 23:263–
810 286.

811 Omernik, J. M. 1987. Ecoregions of the conterminous United States. Map (scale 1:7,500,000).
812 *Ann. Assoc. Am. Geogr.* 77:118–125.

813 Omernik, J. M., and G. E. Griffith. 2014. Ecoregions of the Conterminous United States:

814 Evolution of a Hierarchical Spatial Framework. *Environ. Manage.* 54:1249–1266.

815 Paradis, E., and K. Schleip. 2019. ape 5.0: an environment for modern phylogenetics and
816 evolutionary analyses in R. *Bioinformatics* 35:526–528.

817 Pegan, T. M., and B. M. Winger. 2020. The influence of seasonal migration on range size in
818 temperate North American passerines. *Ecography* 43:1191–1202.

819 Popadin, K., L. V. Polishchuk, L. Mamirova, D. Knorre, and K. Gunbin. 2007. Accumulation of
820 slightly deleterious mutations in mitochondrial protein-coding genes of large versus small
821 mammals. *Proc. Natl. Acad. Sci. U. S. A.* 104:13390–13395.

822 Popadin, K. Y., S. I. Nikolaev, T. Junier, M. Baranova, and S. E. Antonarakis. 2013. Purifying
823 selection in mammalian mitochondrial protein-coding genes is highly effective and
824 congruent with evolution of nuclear genes. *Mol. Biol. Evol.* 30:347–355.

825 Read, A. F., and P. H. Harvey. 1989. Life history differences among the eutherian radiations. *J.*
826 *Zool.* 219:329–353.

827 Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. *Methods Ecol.*
828 *Evol.* 1:319–329.

829 Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other
830 things). *Methods Ecol. Evol.* 3:217–223.

831 Ritchie, A. M., X. Hua, and L. Bromham. 2022. Investigating the reliability of molecular
832 estimates of evolutionary time when substitution rates and speciation rates vary. *BMC Ecol.*
833 *Evol.* 22:1–19.

834 Romiguier, J., P. Gayral, M. Ballenghien, A. Bernard, V. Cahais, A. Chenuil, Y. Chiari, R.
835 Dernat, L. Duret, N. Faivre, E. Loire, J. M. Lourenco, B. Nabholz, C. Roux, G.
836 Tsagkogeorga, L. A. Weinert, K. Belkhir, N. Bierne, N. Galtier, S. Gle, A. A. T. Weber, L.

837 A. Weinert, K. Belkhir, N. Bierne, S. Glémén, and N. Galtier. 2014. Comparative population
838 genomics in animals uncovers the determinants of genetic diversity. *Nature* 515:261–263.

839 Schweizer, T., M. G. DeSaix, and K. C. Ruegg. 2021. LI-Seq: A Cost-Effective, Low Input DNA
840 method for Whole Genome Library Preparation. *bioRxiv*, doi:
841 <https://doi.org/10.1101/2021.07.06.451326>.

842 Shafir, A., D. Azouri, E. E. Goldberg, and I. Mayrose. 2020. Heterogeneity in the rate of
843 molecular sequence evolution substantially impacts the accuracy of detecting shifts in
844 diversification rates. *Evolution* 74:1620–1639.

845 Shen, Y. Y., P. Shi, Y. B. Sun, and Y. P. Zhang. 2009. Relaxation of selective constraints on
846 avian mitochondrial DNA following the degeneration of flight ability. *Genome Res.*
847 19:1760–1765.

848 Skrip, M. M., and S. R. McWilliams. 2016. Oxidative balance in birds: An atoms-to-organisms-
849 to-ecology primer for ornithologists. *J. F. Ornithol.* 87:1–20.

850 Smith, S. A., and M. J. Donoghue. 2008. Rates of molecular evolution are linked to life history
851 in flowering plants. *Science* 322:86–89.

852 Stearns, S. C. 1983. The Influence of Size and Phylogeny on Patterns of Covariation among
853 Life-History Traits in the Mammals. *Oikos* 41:173–187.

854 Strohm, J. H. T., R. A. Gwiazdowski, and R. Hanner. 2015. Fast fish face fewer mitochondrial
855 mutations: Patterns of dN/dS across fish mitogenomes. *Gene* 572:27–34.

856 Subramanian, S. 2016. The effects of sample size on population genomic analyses - implications
857 for the tests of neutrality. *BMC Genomics* 17:1–13. *BMC Genomics*.

858 Sukumaran, J., and M. T. Holder. 2010. DendroPy: A Python library for phylogenetic
859 computing. *Bioinformatics* 26:1569–1571.

860 Sun, S., Q. Li, L. Kong, and H. Yu. 2017. Limited locomotive ability relaxed selective
861 constraints on molluscs mitochondrial genomes. *Sci. Rep.* 7:1–8.

862 Thomas, J. A., J. J. Welch, R. Lanfear, and L. Bromham. 2010. A generation time effect on the
863 rate of molecular evolution in invertebrates. *Mol. Biol. Evol.* 27:1173–1180.

864 Tian, X., D. Firsanov, Z. Zhang, Y. Cheng, L. Luo, R. Tan, M. Simon, S. Henderson, J. Steffan,
865 J. Tam, K. Zheng, A. Cornwell, A. Johnson, Z. Mao, B. Manta, W. Dang, Z. Zhang, J. Vijg,
866 K. Moody, B. Kennedy, D. Bohmann, and V. N. Gladyshev. 2019. SIRT6 is Responsible
867 for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. *Cell* 177:622–
868 638.

869 Varpe, Ø. 2017. Life history adaptations to seasonality. *Integr. Comp. Biol.* 57:943–960.

870 Wang, R. J., Y. Peña-Garcia, M. G. Bibby, M. Raveendran, R. A. Harris, H. T. Jansen, C. T.
871 Robbins, J. Rogers, J. L. Kelley, and M. W. Hahn. 2022. Examining the Effects of
872 Hibernation on Germline Mutation Rates in Grizzly Bears. *Genome Biol. Evol.* 14:1–12.

873 Waples, R. S. 2022. What is N_e , anyway? *J. Hered.* 113:371–379.

874 Watterson, G. A. 1975. On the Number of Segregating Sites in Genetical Models without
875 Recombination. *Theor. Popul. Biol.* 7:256–276.

876 Weber, J. M. 2009. The physiology of long-distance migration: Extending the limits of
877 endurance metabolism. *J. Exp. Biol.* 212:593–597.

878 Wei, L., J. He, X. Jia, Q. Qi, Z. Liang, H. Zheng, Y. Ping, S. Liu, and J. Sun. 2014. Analysis of
879 codon usage bias of mitochondrial genome in *Bombyx mori* and its relation to evolution.
880 *BMC Evol. Biol.* 14:1–12.

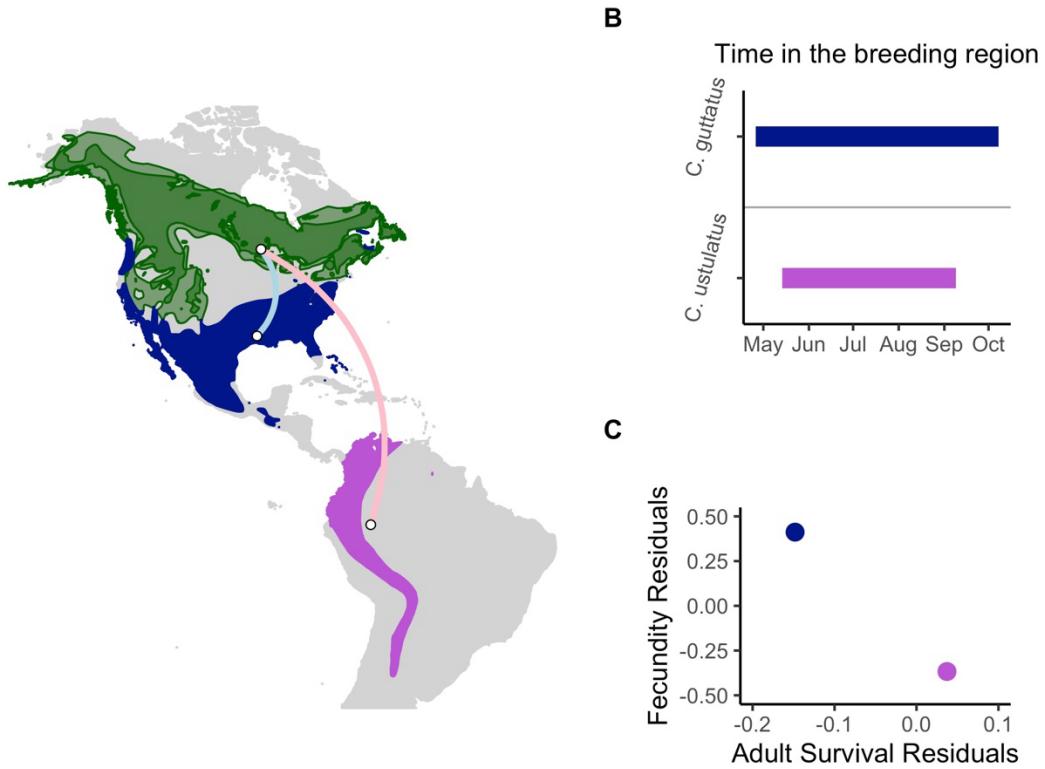
881 Weller, C., and M. Wu. 2015. A generation-time effect on the rate of molecular evolution in
882 bacteria. *Evolution* 69:643–652.

883 White, C. R., L. A. Alton, C. L. Bywater, E. J. Lombardi, and D. J. Marshall. 2022. Metabolic
884 scaling is the product of life-history optimization. *Science* 377:834–839.

885 Winger, B. M., G. G. Auteri, T. M. Pegan, and B. C. Weeks. 2019. A long winter for the Red
886 Queen: rethinking the evolution of seasonal migration. *Biol. Rev.* 94:737–752.

887 Winger, B. M., and T. M. Pegan. 2021. Migration distance is a fundamental axis of the slow-fast
888 continuum of life history in boreal birds. *Ornithology* 138:1–18.

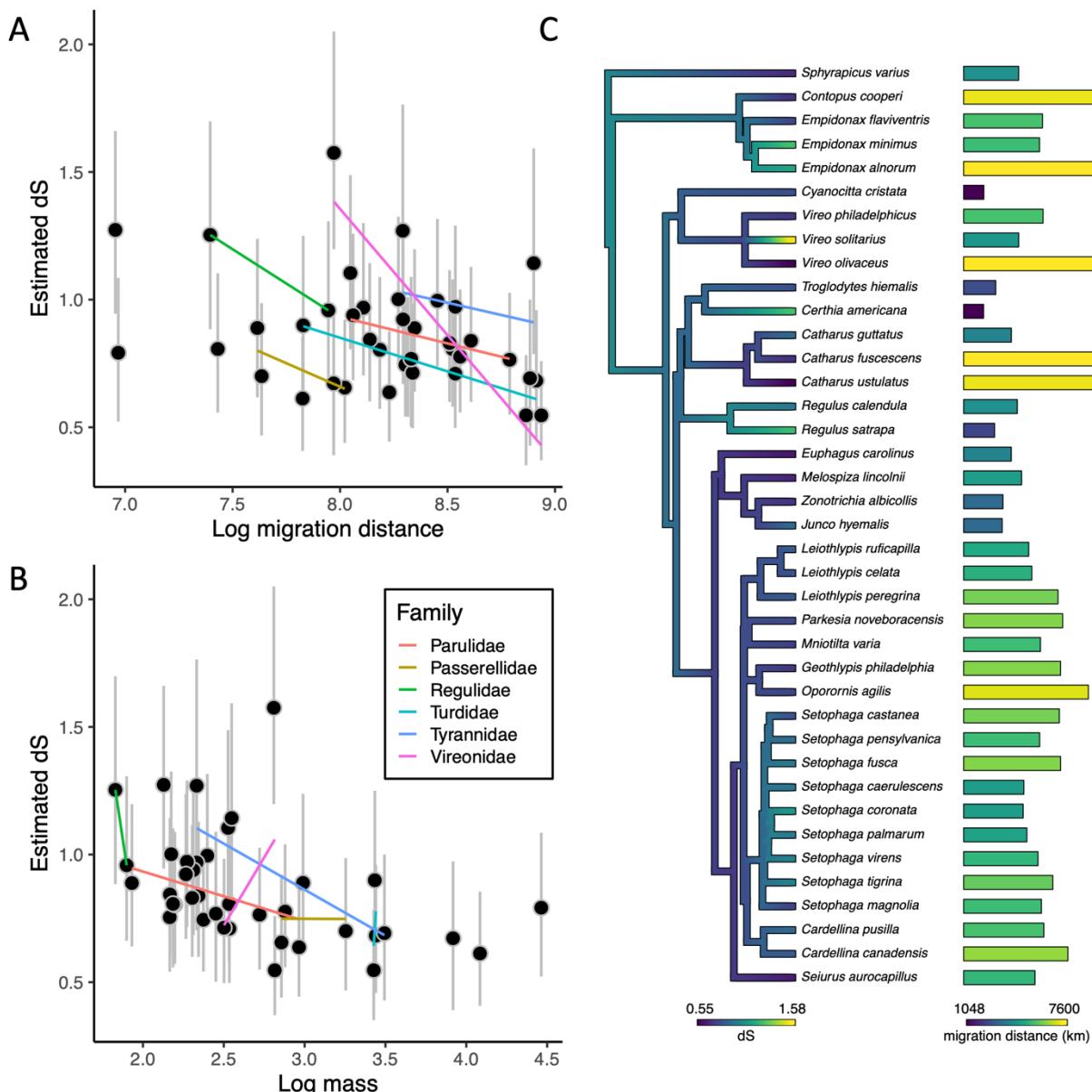
889 Wright, E. S. 2016. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. *R J.*
890 8:352–359.


891 Wu, F. L., M. Przeworski, P. Moorjani, M. Przeworski, A. I. Strand, L. A. Cox, L. A. Cox, C.
892 Ober, J. D. Wall, A. I. Strand, and P. Moorjani. 2020. A comparison of humans and
893 baboons suggests germline mutation rates do not track cell divisions. *PLoS Biol.* 18:1–38.

894 Wynn, E. L., and A. C. Christensen. 2015. Are Synonymous Substitutions in Flowering Plant
895 Mitochondria Neutral? *J. Mol. Evol.* 81:131–135.

896 Zhang, L., X. Dong, X. Tian, M. Lee, J. Ablaeva, D. Firsanov, S. G. Lee, A. Y. Maslov, V. N.
897 Gladyshev, A. Seluanov, V. Gorbunova, and J. Vijg. 2021. Maintenance of genome
898 sequence integrity in long- and short-lived rodent species. *Sci. Adv.* 7:eabj3284.

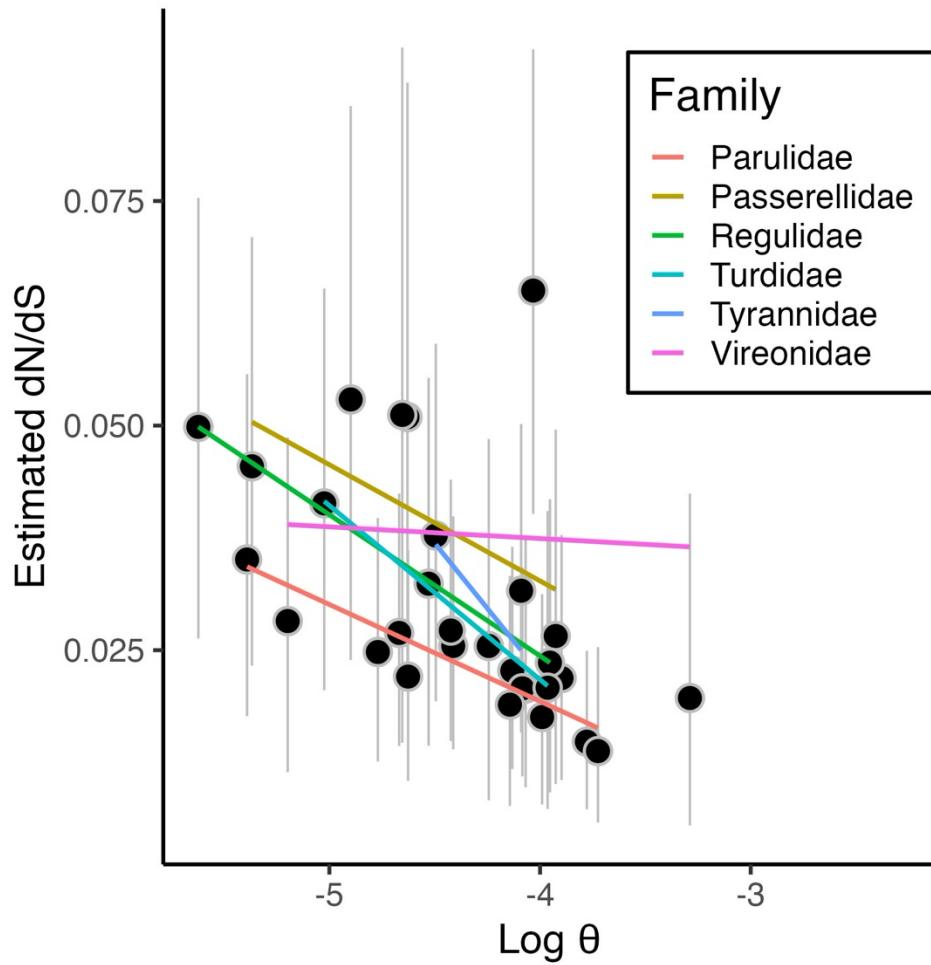
899


900

901
902
903
904
905
906
907
908
909
910
911
912
913

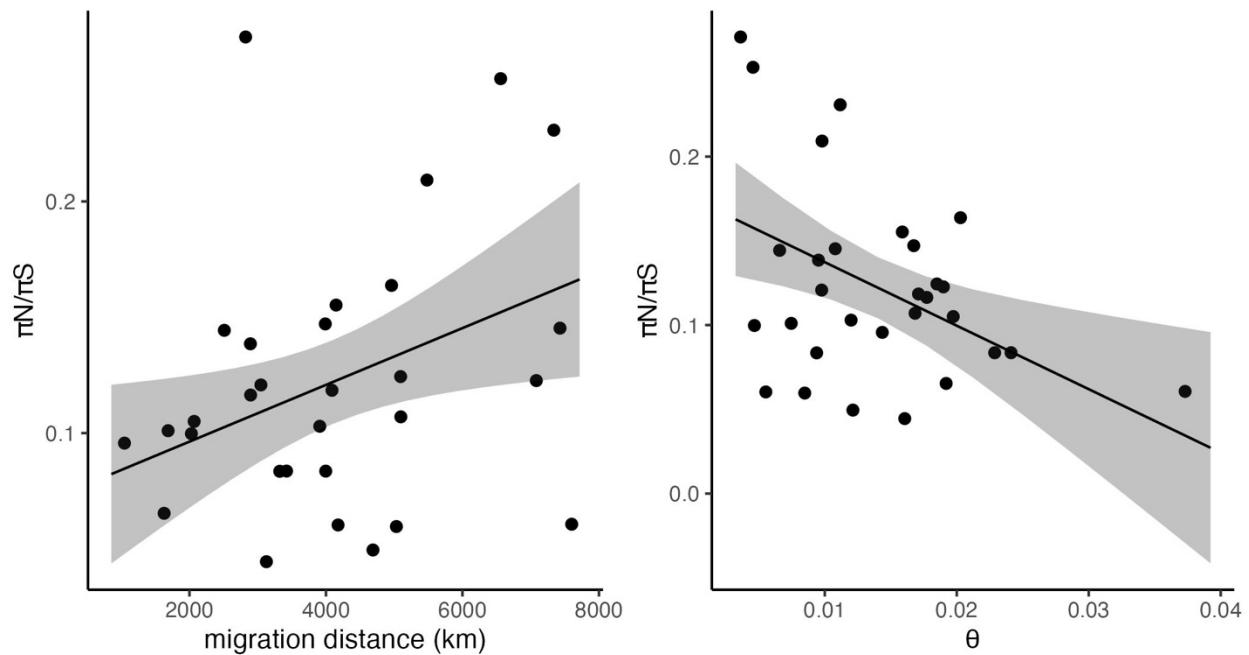
Figure 1. An example contrast between a shorter-distance migrant *Catharus guttatus* and a closely related longer-distance migrant *Catharus ustulatus swainsoni* illustrates the relationship between migration distance and life history in our study system. Both species have broadly overlapping breeding ranges (green), but *C. guttatus* (dark blue nonbreeding range) migrates a shorter distance (blue migratory route) than *C. u. swainsoni* (purple nonbreeding range, pink migratory route) (panel A). Accordingly, *C. guttatus* spends more time in its breeding range than *C. u. swainsoni* (panel B). With more time in the breeding range and the possibility of raising a second brood, the short-distance migrant has higher fecundity but lower adult survival—i.e., faster life history—than the long-distance migrant (panel C, showing model residuals from mass-corrected analysis of fecundity and survival). The short-distance migrant spends the winter in colder, more resource-depleted regions than the long-distance migrant.

914 Figure and data adapted from Winger and Pegan (2021). Our sampling for this study occurred
915 only within the eastern boreal belt (Fig. S1).


916

920 **Figure 2.** d_S versus traits associated with life history (A, B) and a phylogenetic tree showing d_S
 921 and migration distance for each species (C). In panels A and B, posterior mean tip estimates of d_S
 922 (black dots) from Coevol are shown compared to migration distance (A), and mass (B) from
 923 models using our full species set. Gray vertical bars indicate 95% credible intervals for each

924 estimate. These analyses reveal that both migration distance and mass have a negative
925 relationship with d_S . Plotted lines use linear models to visualize the relationship between
926 estimated tip d_S and a given covariate within each family of birds (when represented in our
927 dataset by two or more species), demonstrating a consistently negative relationship between d_S
928 and migration distance within and among major clades in our system. In panel C, the
929 phylogenetic tree was created in phytools (Revell 2012) and is colored based on posterior mean
930 tip and node estimates of d_S from Coevol.


931

932
933

934 **Figure 3.** d_N/d_S versus θ . Posterior mean tip estimates (black dots) of d_N/d_S are shown compared
935 to θ from a Coevol model including species for which we could estimate θ . Gray vertical bars
936 indicate 95% credible intervals for each estimate. As in Fig. 2, plotted lines use linear models to
937 visualize the relationship between mean tip d_N/d_S and θ within each family of birds (when
938 represented in our dataset by two or more species), demonstrating a consistently negative
939 relationship between θ and d_N/d_S within and among major clades in our system.

940

941

942 **Figure 4.** The relationship between π_N/π_S and migration distance (left) and θ (right). π_N/π_S is
 943 strongly influenced by θ , as expected if purifying selection removes more nonsynonymous
 944 variation in species with larger N_e . π_N/π_S increases with migration distance, after accounting for
 945 effects of θ . Regression lines and 95% confidence intervals show the marginal effect of each
 946 variable as calculated by “`ggpredict()`” from the R package `ggeffects` v0.16.0 (Lüdecke 2018)
 947 using the best-fit model, which included both predictors.

948

949 **Table 1.** Definitions of abbreviations for molecular substitution rates and population genetic
 950 parameters and predictions for their relationships with migration distance.
 951

Concept	Abbr.	Description and assumptions	Predictions (this study)
Synonymous substitution rate	ds	Assuming synonymous sites evolve neutrally, ds primarily reflects μ (Nei et al. 2010; Lanfear et al. 2014)	Negative relationship between migration distance and ds
Nonsynonymous substitution rate	d_N	Assuming nonsynonymous sites are generally deleterious, d_N is influenced by both μ and N_e (reviewed in Nei 2005)	NA
d_N/ds ratio	d_N/ds	Assuming nonsynonymous mutations are generally deleterious, d_N/ds reflects strength of purifying selection on d_N while accounting for variation in μ . Low d_N/ds = strong purifying selection. (Nei 2005; Kryazhimskiy and Plotkin 2008)	Negative relationship between θ and d_N/ds , reflecting the influence of N_e on d_N/ds . Negative relationship between migration distance and d_N/ds , indicating positive relationship between migration distance and purifying selection strength.
Mutation rate	μ	May be influenced by life history; reviewed in (Bromham 2020)	NA, μ not measurable in our data
Effective population size	N_e	Defined as the ideal population size experiencing the same level of genetic drift as observed in the data (Waples 2022). Estimated in mitochondrial data as θ / μ . (Watterson 1975; Nabholz et al. 2008a)	NA, see θ
Theta	θ	Population genetic parameter representing genetic variation. Assuming low variation in μ , variation in θ primarily reflects variation in N_e	Negative relation between θ and d_N/ds and between θ and π_N/π_S
Synonymous nucleotide diversity	π_S	Population genetic parameter representing population-level nucleotide diversity at synonymous sites.	NA
Nonsynonymous nucleotide diversity	π_N	Population genetic parameter representing population-level nucleotide diversity at synonymous sites.	NA
π_N/π_S ratio	π_N/π_S	Reduction of π_N compared to π_S is expected to reflect natural selection, but the relationship is more complex than with d_N/ds	Negative relationship between migration distance and π_N/π_S , indicating positive relationship between migration distance and selection. Negative relationship between θ and π_N/π_S , indicating purifying selection on nonsynonymous polymorphisms.

952
 953

954 **Table 2.** A summary of analyses. Models 1 and 2 use Coevol test our hypothesis that
 955 synonymous substitution rate (d_S) is influenced by migration distance, with mass and θ as
 956 additional covariates. Models 3 and 4 use the same approach with Coevol to estimate
 957 correlations between traits of interest and d_N/d_S . Models including θ use only 30 species because
 958 we did not have population-level data available to estimate θ for all 39 species. Coevol does not
 959 analyze molecular evolutionary parameters based on population-level data, so we used linear
 960 modeling to test whether traits of interest influence π_N/π_S (model 5). Finally, we also used linear
 961 modeling to test for potential confounding relationships between θ and life history-associated
 962 traits of interest (mass and migration distance; model 6).

		Data subset	Method
1	$d_S \sim \text{migration distance} + \text{mass}$	full (39 species)	Coevol
2	$d_S \sim \text{migration distance} + \text{mass} + \theta$	theta (30 species)	Coevol
3	$d_N/d_S \sim \text{migration distance} + \text{mass}$	full (39 species)	Coevol
4	$d_N/d_S \sim \text{migration distance} + \text{mass} + \theta$	theta (30 species)	Coevol
5	$\pi_N/\pi_S \sim \text{migration distance} + \text{mass} + \theta$	theta (30 species)	linear modeling
6	$\theta \sim \text{migration distance} + \text{mass}$	theta (30 species)	linear modeling

963

964