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Introduction

Data-rich domains such as aviation (Helmreich, 1997), mili-
tary (Alonso et  al., 2006), and healthcare (Despins, 2009) 
rely on multiple operators to coordinate together and accom-
plish a shared goal. With technology and automation becom-
ing increasingly complex, systems and organizations are 
requiring teammates to complete more tasks that rarely stay 
at one constant level of cognitive workload. Rather, these 
environments require operators to manage shifts between 
low and high levels of workload.

There is a need to analyze and account for workload tran-
sitions when studying team performance in complex domains 
(Atweh et al., 2022). To do so, researchers need to find quan-
titative measures that can provide insights on how teammates 
collaborate in real time. In recent years, researchers have 
been using eye tracking technology, an infrared-based tech-
nique that provides a trace of people’s eye movements (Lin 
et al., 2004) to study individual and team responses to work-
load and stress. Specifically, eye tracking provides output in 
terms of fixations and saccades. Fixations are spatially stable 
gaze points during which time visual processing takes place 
(Poole & Ball, 2006) while saccades are the rapid eye move-
ments in between fixations, during which time no visual pro-
cessing occurs (Yarbus, 1967). Tracking a pair’s eye 
movements simultaneously—i.e., dual eye tracking—has 
been explored to study joint attention in collaborative learn-
ing situations (Villamor & Rodrigo, 2022).

Studies that use eye tracking to study pair’s performance 
and attention allocation often use gaze coupling/overlap 
which refers to moments when teammates are looking at the 
same Area of Interest (AOI). Previous work has shown that 
the coupling of gaze between collaborating partners may 
improve the quality of interaction and comprehension 
(Richardson & Dale, 2005), but this is not always the case 
(Villamor & Rodrigo, 2018). To date, the focus has been on 
the percentage of cross-recurrent fixations and similarities 
between the teammates’ trajectories. While these analyses 
are needed, there is a need to also explore the percentage of 
identical scanpath segments over time and the average dura-
tion the teammates are in synch, especially within the con-
text of workload transitions (El Iskandarani et al., 2023).

Analyzing AOIs in unmanned aerial vehicle (UAV) tasks 
is important because it can help to improve the effectiveness 
and efficiency of military operations. UAVs have become 
increasingly important in military operations because they 
can be used for a wide range of tasks, such as reconnais-
sance, surveillance, target acquisition, and weapon delivery. 
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AOI analysis can provide valuable insights into the perfor-
mance of the UAV system and its ability to meet the overall 
team’s goal. Moreover, complex domains, such as military 
operations, can gain a better understanding of the operational 
environment and identify potential threats or opportunities. 
In addition, focusing on AOI based analyses can help iden-
tify specific tasks where operators are not noticing. This 
information can then be used to optimize resource allocation 
and ensure that resources are being used efficiently and 
effectively (Dindar et al., 2022). Cross-recurrence quantifi-
cation analysis (CRQA) AOI-centric metrics offer a means to 
accomplish this goal of supporting operators in real time.

Related Work

Cross-Recurrence Analysis

Cross-recurrence quantification analysis or CRQA is an 
extension of Recurrence Quantification Analysis (RQA) 
(Marwan & Kurths, 2002) that is used to quantify how fre-
quently two systems exhibit similar patterns of change or 
movement in time. CRQA is a useful statistical tool for 
dynamic systems as it is used to find relation or interrelation 
between time series and quantify how the similarity between 
them unfolded over time. It takes two different time series of 
the same information as input and tests between all points of 
the first trajectory with all points of the second trajectory 
forming a cross-recurrence plot (CRP). Ri,j is the recurrence 
plot as defined by Eq. 1 below (Marwan et al., 2007):

Rij = ∈ − −
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where xi and xj are the phase space trajectories of time series 
i and time series j respectively. Θ(x) is the Heaviside function 
and ∈ is the threshold. The states of a natural or engineering 
dynamic system usually change over time. The state of a sys-
tem x can be described by its d state variables,

x1(t), x2(t), . . ., xd(t). The vector x t( )
� ���

 in a d-dimensional 
space is called phase space. The system’s evolving state over 
time traces a path, which is called the phase space trajectory 
of the system.

CRPs can be used for the study of differences between 
two processes or for the alignment and search for the match-
ing sequences of the two data series even when the cross 
correlation fails or if the system is dynamic over time. It has 
been proven that recurrence is a fundamental property of 
dynamic systems, which means that after some time 

the system will reach the state that is arbitrarily close to the 
former states and pass through a similar evolution. CRPs 
permit visualization and quantification of these recurrent 
state patterns. Within the context of collaboration, CRPs 
have been proposed and used as a general method to unveil 
the coordination and interlocking of two people (Hajari et al., 
2016). Moreover, it has been used to analyze this coordina-
tion in the context of eye tracking as well by analyzing CRPs 
generated from comparing gaze patterns of individuals to 
determine how closely two collaborators follow each other. 
It can be used to measure how much and when two subjects 
look at the same spot (Nüssli, 2011).

CRQA defines several measures that can be assessed 
along the diagonal and vertical dimensions of the recurrence 
plot. For the diagonal dimension, we have recurrence rate, 
determinism, average and longest diagonal length, and 
entropy. For the vertical dimension, we have: laminarity 
(LAM) and trapping time (TT) (Marwan & Kurths, 2002; 
Table 1). We classified LAM and TT as AOI-centric CRQA 
metrics as they are largely determined by where the person is 
looking (i.e., AOI). Table 1 provides a description of these 
metrics.

To calculate LAM and TT, first a vertical line (with v the 
length of the vertical line) marks a time interval in which a 
state does not change or changes very slowly: xi


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The total number of vertical lines P(v) of the length v in 
the plot is then given by Eq. 2 below where N is the number 
of points on the phase space trajectory (Marwan et al., 2007):
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LAM is the ratio between the recurrence points forming 
the vertical structures and the entire set of recurrence 
points. he computation of LAM is realized for those v that 
exceed a minimal length vmin in order to decrease the influ-
ence of the tangential motion. which can be computed 
using Eq. 3 below:
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TT is the average length of vertical structures, and its 
computation also requires the consideration of a minimal 
length vmin, as in the case of LAM. TT estimates the mean 

Table 1.  Description of AOI-based CRQA Metrics.

CRQA Metric Description

Laminarity (LAM) Refers to the percentage of recurrence points forming vertical lines which denotes the percentage of time 
pairs stay in the same regions.

Trapping Time (TT) Represents the average time two trajectories stay in the same region. TT is an indication of the prolonged 
duration where the pairs tend to focus on certain regions of the screen.
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time that the system will abide at a specific state or how long 
the state will be trapped and is given by Eq. 4 below:
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Application of CRQA and Analysis of Team 
Coordination

Richardson and Dale (2005) first used CRP to analyze gaze 
similarity two people. They studied the relationship between 
a speaker and a listener based on their eye movements and 
found that the coupling between a speaker’s and a listener’s 
eye movements was an indicator of listener engagement. 
Later, CRQA was used to quantify team collaboration 
(Pietinen et al., 2010). It was found that a high rate of over-
lapping fixation could possibly be a sign of efficient collabo-
ration but could also could inform of problems in 
comprehension (Zheng et  al., 2016). Another study used 
gaze cross-recurrence analysis to measure the coupling of the 
programmers’ focus of attention. Their findings also showed 
that pairs who used text selection to perform collaborative 
references have high levels of gaze cross-recurrence.

More recent studies started focusing on using CRQA in 
the analysis of environmental factors that affect team perfor-
mance such as prior knowledge (Villamor & Rodrigo, 2018), 
speech and communication strategies (Russell et al., 2012), 
and leadership techniques (Dindar et al., 2022). However, no 
research has yet to explore how workload transitions and 
data overload affect teams in data-driven domains. Thus, our 
work aims to use the novel analysis of CRQA to understand 
how teammates adapt to changes in workload over time 
using AOI-centric. The goal of the present work is to apply 
CRQA to eye-tracking data of pairs of operators in the con-
text of command and control of unmanned aerial vehicles 
(UAVs) while they are subject to workload transitions. 
Ideally, we can start to quantify the adaptation process teams 
go through in response to changes in workload. We expect 
that both LAM and TT would increase as workload increases 
(Villamor & Rodrigo, 2018; Zheng et al., 2016).

Methodology

Participants

Ten pairs of undergraduate students (20 students total) at the 
University of Virginia were recruited for the study (M = 21.3 
years, SE = 0.24 years). Each pair consisted of one male and 
one female who did not previously know each other. The 
experiment lasted from 75-90 minutes and participants were 
compensated $10/hour for their time. This study was 
approved by the University of Virginia’s Institutional Review 
Board (IRB-SBS #3480).

Experimental Setup

The design of the simulation was based on the ‘Vigilant 
Spirit Control Station’ the Air Force uses to develop inter-
faces to control multiple UAVs (Feitshans et al., 2008; Figure 1). 
Pairs were collocated, but each participant viewed separate 
monitors and used separate mice to input responses. The 
simulation was networked so participants could see inputs 
from their partner in real-time (e.g., when Participant 1 
responded to a chat message, Participant 2 could see his/her 
response in realtime).

Two desktop-mounted FOVIO eye trackers with a sam-
pling rate of 60 Hz were used to collect point of gaze data. 
The average degree of error for this eye tracker is 0.78° (SD 
= 0.59°; Eyetracking, 2011).

UAV Tasks and Point Values

Each pair was responsible for completing a primary task and 
three secondary tasks—i.e., four tasks total—for up to 16 
UAVs (Figure 1). Although all tasks were the pair’s respon-
sibility, only one participant from each pair had to complete 
each task. The primary task was the target detection task 
where pairs monitored UAV video feeds and indicated 
whether a target—

i.e., a semi-transparent cube—was present. The second-
ary tasks included a rerouting task (avoiding the no-fly zone), 
fuel leak task (maintaining UAV health), and chat message 
task (responding to chat messages). These tasks and their 
structure emulate the multitasking, dynamic, and interdepen-
dent environment of a UAV command and control.

Table 2 shows the point value associated with each task. 
Points were assigned to emphasize the priority of the primary 
task (i.e., target detection) as well as to convey the severity 
of incorrectly or not attending to a task (e.g., UAV flies 
through no-fly-zone). Also, we informed pairs that the high-
est scoring pair would earn an additional $10 to incentivize 
performance. Response times for each task for each pair 
were recorded as well.

Workload Conditions

Workload was manipulated by varying the number of active 
UAVs for the primary target detection task. There were two 
workload conditions: low and high. For the low workload 
condition, 3-5 UAVs were active at all times and for the high 
workload condition 13-16 UAVs were active at all times. 
Pairs always completed the low workload condition before 
the high workload condition and each condition was 15 min-
utes long.

Experimental Procedure

Participants of each pair read and signed the consent form and 
were then briefed about the study’s goals and task 
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expectations. Participants then independently completed a 
fiveminute training session. By the end of the training ses-
sion, participants had to demonstrate they could achieve 70% 
accuracy for all tasks. We then informed the pairs about how 
the simulation was networked and provided them three min-
utes to introduce themselves to one another and discuss any-
thing they deemed necessary. There were no restrictions on 
how the participants could interact during these three minutes 
and they could choose to coordinate strategies before the 
experimental portion of the study. Afterwards, the partici-
pants completed the low workload condition, were provided a 
short break, and then completed the high workload condition. 
Participants could communicate verbally with each other dur-
ing the experimental portions of the study. The same tasks 
appeared at both stations, but a participant could not see the 
cursor movements of their teammate. At the conclusion of the 
study, participants were compensated for their time.

Data Analysis

After we gathered the eye tracking data from the FOVIO eye 
tracker, we filtered the datasets and removed invalid entries. 
The data loss across all participants and trials was on average 
11.9% (SD = 11.2%). We detected fixations and saccades 
using the code developed by the Riggs Lab. This code is used 

to analyze eye tracking data collected from experimental 
studies with participants and it serves two main purposes: (1) 
filtering the eye tracking dataset and (2) detecting fixations 
and saccades based on Nyström and Holmqvist’s (2010) 
velocity-based and data-driven adaptive algorithm. The 
code, implemented in Python, first takes the raw eye tracking 
files as input, and filters out empty or invalid recordings. 
Then, it passes the data through a Butterworth smoothing fil-
ter and calculates the angular velocities in preparation for the 
data-driven iterative algorithm, which keeps iterating until 
the absolute difference between the newly calculated veloc-
ity threshold and the previous one converges to less than 1°.

The data that we gathered from the FOVIO eye tracker is 
2D, which are the x- and y-coordinates of the eye tracking 
fixation point. However, to better understand the problem 
and to be able use the CRP package, we projected the data 
from 2D into a 1D space. Because the x- and y- coordinates 
are not necessarily correlated, applying Principal Component 
Analysis (PCA) to reduce dimensionality is not feasible. 
Moreover, any sort of projection to reduce dimensionality 
will introduce some error into the system. Therefore, the 
only two possible distance metrics are either the Euclidean or 
Manhattan distance to calculate the distance (d) between 
eye’s fixation point and the origin. Based on the literature, 
the Euclidean distance is widely used in this case and is 

Figure 1.  The experimental setup with the testbed shown on two networked computers.

Table 2.  Point System for UAV Simulation.

Response Points Per Response

Correctly recognizing a target +100
Correctly recognizing a non-target +50
Completing any secondary task (i.e., reroute, fuel leak, and chat message) +30
An incorrect or no response to any task (e.g., false positive or no response to the target detection task, UAV flies 

through a no-fly-zone, or a UAV health is not maintained)
–100
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shown to effectively project the data based on Eq. 5 below 
(Crowley, 2008; Shockley, 2004):

Euclideandistance(d)= x + y2 2 	 (5)

We proceeded to get the cross-recurrence plots for each 
pair and used Marwan et al.’s (2007) CRP MATLAB toolbox 
for that end and computed the CRQA metrics.

Results

The mean of total points scored in the low workload condi-
tion was 24,942 (SD = 2,003) and for high workload it was 
63,991 (SD = 7,772). The mean response time in the low 
workload condition was 2.13 (SD = 0.194) and for high 
workload it was 3.11 (SD = 0.22). Welch paired t-tests 
revealed significant differences in total points (t(9) = −19.24, 
p < .001) and response time (t(9) = −16.51, p < .001) means 
between low and high workload.

The mean LAM value for the low workload condition was 
0.903 (SD = 0.059) and for the high workload it was 0.932 
(SD = 0.032) as shown in Figure 2. The mean TT value for 
the low workload condition was 9.154 seconds (SD = 1.398) 
and for the high condition it was 10.492 (SD = 2.192) as 
shown in Figure 3.

To determine whether there is a difference in the CRQA 
results between low and high workload scenarios, paired 
t-tests were performed for both metrics. There was a statisti-
cally significant difference between the TT means of the low 
and high workload ((9) = −2.39, p = 0.041), but not between 
the LAM means for low and high workload (t(9) = −2.043, 
p = 0.071).

Discussion & Conclusion

The goal of this work sought to understand whether and to what 
extent AOI-based CRQA metrics in terms of recurrent fixations, 
scanpath similarities, and durations of agreement of pairs work-
ing on a command and control task change when workload 
changed. The results here show that TT is significantly higher 
when workload increased. A high trapping time is an indicator 
that team members are spending a longer duration on a particu-
lar AOI before transitioning to another AOI. This meant that 
pairs spent more time on the same AOIs in high workload sce-
narios. Therefore, they were collaborating on the same task 
together; however, we do not know based on TT whether this 
improved performance or not. For example, a high TT may indi-
cate that team members are spending a longer time discussing a 
particular issue with regards to a certain task or it could indicate 
they are getting “trapped” in a certain task which could limit the 
team’s ability to adapt to changing circumstances (i.e., work-
load transitions) or to effectively collaborate.

Based on the TT results, it seems that team members need 
to spend an extended period of time working together to ide-
ally develop a strategy to account for increase in workload. 
The findings suggest that TT is sensitive to workload changes 

and can quantify how teams adapt to workload changes. This 
validates CRQA under AOI-based metrics such as TT and 
highlights the need for research in order to inform the design 
of displays by integrating methods where teammates can 
know where their teammates are looking such as gaze sharing 
(Atweh et al., 2023; Siirtola et  al., 2019). For example, 
D’Angelo and Begel (2017) developed a system where a pair 
of programmers were shown what the other was looking at 
while they worked, and they found providing this shared gaze 
information aids in coordination and effective communica-
tion. Moreover, Akkil et al. (2016) developed a shared gaze 
interface called GazeTorch which facilitated the collaboration 
in physical tasks. Several other studies found that shared gaze 
improved performance and remote collaboration in several 
domains (Lee et  al., 2017). Consequently, future investiga-
tions could explore the extent to which attentional focus on 
the primary task may inadvertently lead to reduced attentional 
resources allocated to secondary tasks. This exploration could 
help inform the development of support systems and training 
interventions that ensure operators maintain situational 
awareness across multiple tasks, mitigating the risk of over-
looking critical information.

Figure 2.  Mean values of the Laminarity (LAM) CRQA Metric. 
The error bars represent the standard error of the mean values.

Figure 3.  Mean values of the Trapping Time (TT) CRQA Metric. 
The error bars represent the standard error of the mean values 
and * denotes significant differences.
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Future work should also examine the effect of workload 
transitions in complex and data-driven environments with a 
larger sample size. Because we had a limited sample size, we 
were unable to perform AOI-centric CRQA analysis on the 
best and worst performing pairs to determine if CRQA met-
rics are predictors of performance. With a larger sample size, 
we may find that there is a significant difference between 
workload levels for LAM as it neared significance with this 
initial analysis. If significant, the LAM analysis would pro-
vide insights on where the participants were scanning on the 
display, but also how are they scanning by pinpointing the 
rate of transitions to and from the same and different AOIs.

Overall, this work shows that, as workload increases, 
pairs tend to struggle more and spend more time on certain 
AOIs. Therefore, our work highlights a need to further study 
teams in high workload environments aiming to better 
understand and support team coordination. The findings 
also provide support for design solutions that encourage 
teammates to scan a display in a similar or identical fashion 
between AOIs. Future research needs to further explore how 
to effectively use this information and consider other poten-
tial environmental features, e.g., the impact of seeing a part-
ner’s gaze in real-time. Furthermore, this work also provides 
more future work in terms of team dynamics and integra-
tion of experts with novices by showing novices the scan-
ning approach of expert teammates as the workload 
increases. The findings support the potential of technology 
to rely on these metrics to inform and improve collabora-
tion. Nevertheless, our work highlights the value of real-
time measures in data-driven and multitasking domains to 
better understand differences in collaboration success which 
in turn can inform technology to effectively assist operators 
with changing workloads in real-time and hopefully gets us 
one step closer towards quantifying collaboration in com-
plex domains.
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