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ABSTRACT 

 
The construction industry is known for its disproportionately high fatality and injury rates, 

making it one of the most hazardous industries in the US. Despite the significant risks involved, 
there is a lack of effective health monitoring in construction jobsites. While wearable 
physiological sensing and artificial intelligence advancements have introduced unique 
opportunities to assess workers’ health status, there are still inefficiencies in representing that 
information to support managers’ decision-making. Recently, the concept of digital twin (DT) 
has been used in various construction applications. Given the exponential growth of its enabling 
technologies, DT has great potential to transform worker health monitoring in construction 
jobsites. Therefore, this research investigates the feasibility of integrating workers’ physiological 
responses with DT technology to generate health maps that deliver workers’ aggregated health 
information to managers to reinforce their decision-making. The DT-based health maps are 
expected to enhance workers’ occupational health and safety at construction jobsites. 

INTRODUCTION 
 

The construction industry is one of the most hazardous industries in the U.S., triggering 
extensive physical and mental health challenges for field workers (Zhou et al. 2012). Nearly 40% 
of the construction workforce in the U.S. suffer from severe physical fatigue (Ricci et al. 2007). 
Further, about 70% of construction workers have reported experiencing excessive mental stress 
(Jebelli et al. 2019). Such physical and mental challenges can result in workplace injuries and 
undermine workforce safety and well-being. Therefore, it is necessary to effectively monitor and 
evaluate workers’ health and safety conditions to mitigate work-related injuries and fatalities at 
construction jobsites. 

Despite the significant health and safety risks for field workers, there is a lack of effective 
health-monitoring methods at construction jobsites. The majority of existing methods for 
assessing workers’ physical and mental health status rely on self-assessment measures, such as 
the Borg Rating of Perceived Exertion questionnaire for physical fatigue measurement (Williams 
2017) and the Occupational Stress Indicator questionnaire for mental stress measurement (Evers 
et al. 2000). Nevertheless, due to the subjective and intrusive nature of these techniques, 
applying them in the field and achieving concrete results can be challenging (Rabeiy 2019). 
Thus, there is an increasing need for objective and continuous approaches to assessing workers’ 
health status at construction jobsites. 
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Physiological responses to external stimuli can offer valuable information about the overall 
health status of an individual (Aryal et al. 2017). In this context, the advent of wearable 
biosensors and artificial intelligence (AI) has created unique opportunities to objectively and 
non-intrusively evaluate workers’ health metrics in the field (Ahn et al. 2019). While these 
technologies allow continuous collection and interpretation of workers’ health information, there 
is still a lack of representation methods to effectively deliver the information to safety managers 
to reinforce their decision-making and situational awareness. Given the notable growth of 
supporting technologies (e.g., big data, internet of things), the adoption of digital twin (DT) 
holds promise to effectively characterize a construction worker’s health information in real-time 
through virtual representations of the construction jobsite. 

To address the abovementioned limitations, this study aims to evaluate the feasibility and 
viability of integrating workers’ physiological responses with DT technology to generate worker 
health maps of construction jobsites. To that end, workers’ physiological data are acquired 
through wearable biosensors and interpreted using machine learning algorithms to distinguish 
their physical health status. The results are then paired with corresponding location data and 
represented through informative health maps. The generated maps can help managers promptly 
understand the health condition of the workforce. As such, the proposed DT-based health maps 
are expected to enhance workers’ occupational health and safety at construction jobsites. 
 
DIGITAL TWIN APPLICATIONS IN CONSTRUCTION 
 

Digital Twin (DT) refers to a digital representation of a physical item or assembly created 
utilizing integrated simulations and service data (Vrabič et al. 2018). Over the past few years, DT 
has attracted particular attention in different sectors due to recent developments in big data, the 
Internet of Things (IoT), artificial intelligence, and sensor technologies (Liu et al. 2022). In the 
construction sector, DT is gradually being adopted for various applications, including facilities 
operations and maintenance (Zhao et al. 2022), infrastructure management (Al-Sehrawy et al. 
2021), anomaly detection of the built environments (Lu et al. 2020), and supply chain 
management (Lee and Lee 2021). In addition, the application of building information modeling 
(BIM) has aided the adoption of DT at the design and engineering stage of construction projects 
(Opoku et al. 2021). In this regard, BIM can provide 3D communication for DT, and when 
combined with a wireless sensor network, it can create a real-time active model to provide 
designers with accurate information throughout the design stage of the project. Lastly, many 
studies have implemented the enabling technologies of DT, such as sensors and visualization 
technologies, for construction safety purposes, enabling managers to take appropriate preventive 
actions to diminish the risks of injuries and fatalities (Hou et al. 2020). Considering that health 
monitoring of the construction workforce requires large volumes of data generated from multiple 
resources, the proven capabilities of these technologies can be vital driving forces to adopt DT 
for real-time worker health monitoring at construction jobsites.  
 
DIGITAL TWIN FOR CONSTRUCTION WORKFORCE HEALTH MONITORING 
 

The construction sector is characterized by a dynamic and complex work environment, 
generating vast amounts of information for safety managers. Given that occupational risks are 
only present when workers are on-site, it is crucial for managers to have a proper understanding 
of the geographic location of workers on jobsites. In this regard, several positioning methods, 
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such as the global positioning system (GPS), ultra-wideband (UWB) technology, and vision-
based systems, have been used to track individuals on the jobsite (Park and Brilakis 2016). 
Combined with these technologies, DT has proven to be an effective solution for avoiding 
collisions and improving safety monitoring in the construction industry.  

In addition to the location of workers, their actions and behaviors also play a significant role 
in accidents on jobsites. Consequently, identifying and preventing unsafe actions and behaviors 
of workers using the DT technology has become the focus of several construction worker health 
monitoring studies. Akanmu et al. (2020) proposed a DT framework for reducing 
musculoskeletal injuries among construction workers. By tracking the kinematics of workers’ 
body segments and assessing their ergonomic exposures, the proposed framework could identify 
ergonomic risks and communicate them to workers via an augmented virtual replica within their 
field of view. Sharotry et al. (2020) also developed a DT framework for real-time analysis of an 
operator’s movements during a manual material handling task. The framework was able to 
provide real-time feedback on proper lifting motions, enabling the evaluation of the risk of 
musculoskeletal disorders in manual material handling tasks. 
 
METHODOLOGY 
 

This study investigates the feasibility of developing DT-based health maps of construction 
jobsites to enhance construction workforce health monitoring. The framework connects the 
physical world entities (i.e., workers) and their attributes to the digital world using the Internet of 
Things (IoT) and biosensors to generate informative health maps of the workforce. The hazard 
hotspot locations and the aggregated health status of the workers can synchronously update the 
DT-based health maps to support managers’ decision-making regarding the health and safety of 
the construction jobsite. Figure 1 shows the overall framework of the proposed methodology. 

 

 
 

Figure 1. Overview of the proposed methodology 
 

Data Collection. Previous research has shown the potential of physiological sensing methods 
for assessing various worker health parameters, including cognitive load (Liu et al. 2021), mental 
stress (Jebelli et al. 2018), and muscle fatigue (Jebelli and Lee 2019). In this study, physical 
stress on workers’ back muscles was of particular interest due to its high prevalence among 
workers. Therefore, a material handling task in an indoor construction work environment was 
selected for worker physiological sensing and health map generation. The material handling task, 
which is a common task in the construction industry, involved repetitive motions and awkward 
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postures that could lead to significant levels of physical stress on the workers. Six healthy 
subjects participated in this study. None of the participants had any mental or physical disorder 
that could adversely affect their task performance. The participants were equipped with a 
wearable EMG sensor that was attached to their back muscles using adhesive pads. They were 
also provided with a motion-capturing system for position tracking. During the task performance, 
the participants were asked to lift cement bags weighing 14 kg (30 lb.), carry them for 6 m (20 
ft), and put them down repeatedly. Meanwhile, the EMG sensor continuously collected data at a 
rate of 1000 Hz, which were transferred to a nearby computer in real-time. The material handling 
task could last about 3 minutes, during which participants performed multiple rounds of lifting, 
carrying, and placing heavy bags. Figure 2 shows the data collection procedure and equipment.

Figure 2. Data collection procedure and equipment, (A) subject lifting material bags (left 
side) and carrying them (right side), (B) different steps of the proposed material handling 

task, namely lifting, carrying, and placing 30 lb. bags.

Worker Health Status Assessment. To assess workers’ health status (i.e., physical stress on 
their back), the electrical activity of the back muscles was measured using an Electromyography 
(EMG) sensor. The EMG sensor provides valuable information about muscle contraction and 
relaxation and can help identify physical stress on a worker during construction activities. Since 
the recorded EMG signals were contaminated with noises from sources other than muscle 
activity, the authors applied various filtering methods, including a bandpass filter and a Hampel 
filter, to acquire high-quality signals. More specifically, a bandpass filter with a lower cutoff 
frequency of 0.5 Hz and a higher cutoff frequency of 250 Hz was applied to reduce external 
signal artifacts. A Hampel filter was also used to eliminate signal outliers. Following the artifact 
removal, EMG signals were rectified and normalized relative to maximal voluntary contraction 
(MVC). The authors then extracted several features from processed signals in time and frequency 
domains to interpret the recorded EMG data. Accordingly, mean absolute value (MAV), root 
mean square (RMS), standard deviation (SD), zero crossing (ZC), mean frequency (MEF), and 
median frequency (MDF) were calculated from windows of EMG signals with different sizes. 
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Afterward, an unsupervised learning algorithm, i.e., k-means, was employed to group EMG 
data points into two clusters based on their similarities. The number of clusters was set to two (K 
= 2) because the selected construction task included lifting and putting down heavy items (high 
physical stress on back muscles) and carrying those items (low physical stress on back muscles). 
The k-means algorithm iteratively grouped EMG data based on the distance between data points 
and the center of the clusters. The objective function of the k-means can be represented as: 

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝑆
∑ ∑ |𝑥 − 𝜇𝑖|

2
𝑥∈𝑆𝑖

𝑘
𝑖=1                                                 (1) 

 
Where k represents the number of clusters, S is the set of data points, and µ is the centroid of 

each cluster. The algorithm was run for a maximum of 100 iterations, and the final clustering 
was chosen based on the minimum sum of squared distances between data points and their 
cluster centers. 

Digital Twin-based Health Map Development. Collecting workers’ location data is critical 
for creating a geospatial health map of a construction jobsite. This study employed an inertial 
measurement unit (IMU)-based motion-capturing system to collect indoor positioning data. IMU 
sensors can provide precise measurements of accelerations, angular velocities, and magnetic 
field strengths, which are essential for determining the orientation and motion of an individual in 
an indoor environment. By using a network of wearable IMU sensors, it is possible to collect 
real-time data on the position and orientation of workers, which can be used to create an indoor 
map of their locations. This data was transmitted wirelessly to a central computer or cloud-based 
platform, where it was processed. The location of the worker was extracted manually and 
integrated with the results of the clustering approach. Consequently, a script was developed to 
read the x-y coordinates and the corresponding labels and mark the location data pertinent to the 
high physical stress on a scatter plot. A heatmap was then overlaid at the top of the scatter plot, 
showing the frequency of the data points in each block. A color bar was also added to the 
heatmap to show the normalized values of the frequency scale, where 0 represents the minimum, 
and 1 represents the maximum frequency. 
 
RESULTS AND DISCUSSION 
 

In this study, the k-means clustering algorithm was employed to group EMG data into two 
clusters (K = 2). To that end, the EMG signals were segmented into windows of varying lengths, 
namely 0.5 s, 1 s, 2 s, 3 s, 4 s, and 5 s, and features were extracted from each window using the 
procedures described earlier. The results showed that the optimal window size for the clustering 
algorithm was 2 s, which yielded the highest Silhouette score of 0.72 (Figure 3-A). This indicates 
that the data points within the clusters were more similar to each other than to those in the other 
cluster, demonstrating good cluster separation. In contrast, the Silhouette score decreased with 
smaller or larger window sizes. The weaker performance may be due to the loss of important 
information with shorter windows or the introduction of irrelevant information with longer 
windows, resulting in decreased cluster separation and increased overlap between clusters. 
Figure 3-B also shows the scatter plot of the EMG feature space, where the orange and blue 
points represent the data points belonging to cluster 1 (high physical stress) and cluster 2 (low 
physical stress), respectively. These results suggest that the k-means clustering algorithm has 
potential applications in evaluating muscle fatigue and physical stress in various occupational 
settings. 
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Figure 3. (A) Silhouette scores of the k-means clustering for different window sizes of EMG 

Signals, (B) scatter plot of the EMG data for two of the representative features 
 

In addition, the k-means clustering results were integrated with the acquired location data to 
generate a health map of the work environment that visualizes high physical stress levels during 
the material handling task. The health map revealed two areas where subjects experienced high 
physical stress. The first high-stress area was where subjects frequently lifted heavy bags, and 
the second one was where they were asked to place the bags. The health map also provided a 
visual representation of the distribution of high physical stress across the work environment, 
exposing areas of the workplace that may require further improvement. The results suggest that 
the proposed approach can effectively identify high physical stress areas on the jobsite that can 
be used to inform targeted interventions to reduce worker injuries and improve workplace safety. 

 

 

Figure 4. Generated health map of an indoor construction environment for identifying the 
high physical stress location and distribution. 

 
CONCLUSION 
 

This study explored the feasibility of using DT-based health maps for monitoring the health 
status of construction workers. The results demonstrate the potential of employing wearable 
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biosensors and DT technology to capture, analyze, and visualize construction workers’ physical 
stress in near-real-time. This novel integration can provide a comprehensive view of workers’ 
health status for the managers and help identify potential health risks early, enabling preventive 
measures to reduce the incidence of work-related injuries and illnesses at construction jobsites. 
Besides, integrating DT technology with indoor mapping can facilitate the visualization of stress 
hotspots throughout the construction work environments, providing decision-makers with a 
better understanding of the logistics of the jobsites. As such, this study contributes to the field by 
demonstrating the feasibility and potential benefits of using DT-based health maps for 
monitoring and improving the health and safety of the construction workforce. Future research 
can expand on this work by incorporating more physiological metrics as well as data from other 
sources to develop a more comprehensive health monitoring system. In addition, investigating 
the usability and acceptability of the proposed DT-based system among workers and 
management, and addressing privacy and security concerns, are critical areas for future research. 
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