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Abstract— In this paper, we propose a cooperative Multi-
Agent Reinforcement Learning (MARL) approach based
on Distributed Model Predictive Control (DMPC). In the
proposed framework, the local MPC schemes are formulated
based on the dual decomposition method in the context
of DMPC and will be used to derive the local state (and
action) value functions required in a cooperative Q-learning
algorithm. We further show that the DMPC scheme can yield
a framework based on the Value Function Decomposition
(VFD) principle so that the global state (and action) value
functions can be decomposed into several local state (and
action) value functions captured from the local MPCs. In
the proposed cooperative MARL, the coordination between
individual agents is then achieved based on the multiplier-
sharing step, a.k.a inter-agent negotiation in the DMPC
scheme.

Index Terms— Multi-Agent Q-Learning, Distributed MPC,
Cooperative Control

I. INTRODUCTION

REINFORCEMENT Learning (RL) has become a popular
machine learning method for Markov Decision Processes

(MDPs) and seeks to improve the closed-loop performance of
the control policy deployed on the MDPs as observations are
collected [1]. Most RL methods use Deep Neural Networks
(DNNs) to approximate the optimal policy or state (and action)
value functions underlying the MDP. Motivated by the success
of RL for single-agent systems, the RL community has recently
started investigating Multi-Agent RL (MARL) and developed
new algorithms for the control of networks of systems [2].

Authors in [3] adopted a value factorization based on
the IGM (Individual-Global-Max) principle to implement a
cooperative multi-agent Q-learning, where the individual value
functions were parameterized by the DNN. To coordinate
multiple agents, a cooperative Q-learning was developed based
on the cooperative repeated games in [4]. A distributed actor-
critic algorithm using DNNs as function approximators was
proposed in [5]. A decentralized/distributed and collaborative
MARL was proposed in [6] where a network of multiple agents
aims to maximize the global reward function cooperatively.
However, the structure of the proposed algorithms above are
based on the DNN where these DNN-based MARL algorithms
cannot provide a safe learning framework in order to handle the
local agent constraints and ensure closed-loop robust stability.
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Furthermore, there is no systematic or physically meaningful
way to choose the initial values and the number of hidden
layers of a DNN.

In the context of single agent RL, [7] proposed the idea
of using Model Predictive Control (MPC) schemes as value
function/policy approximators and formally justified that an
MPC scheme can generate the optimal state (and action) value
functions and optimal policy underlying an MDP even if
the MPC model does not capture the true system dynamics
accurately. Successful applications built on this result include
[8]–[10]. In this paper, we present an approach to provide a
cooperative multi-agent framework for the MPC-based RL algo-
rithms above. In the context of multi-agent systems, Distributed
MPC (DMPC) is a well-known control approach to cope
with challenges associated with interconnected systems. Dual
decomposition is a method for solving DMPC problems, where
a coupled constraint between the agents can be formulated as
a dual problem [11].

The main contributions of this work are as follows: In the
context of multi-agent Q-learning, we propose an approach
to develop a distributed MPC-based multi-agent Q-learning,
which allows us to decompose the global state (and action)
value functions. Moreover, we use a DMPC scheme to
approximate the local state (and action) value functions with
lower complexity and computational efforts for learning the
local MPCs in a cooperative manner. It is noted that the
proposed cooperative MARL based on DMPC scheme can
be formulated in both the Q-learning and Policy Gradient (PG)
frameworks. More precisely, we show that the structure of
the DMPC can be leveraged to introduce some local MPC-
based value function approximators required in a cooperative
Q-learning. In the context of PG, one can also use the same
structure to capture the local optimal policies, which are
delivered from the local MPC schemes.

This paper is organized as follows. In Section II, a distributed
MPC scheme based on dual decomposition method is described.
The DMPC parameterization and the idea of using DMPC as
state (and action) value function approximators in the context
of MARL are described in Section III. In Section IV, the
performance of the proposed algorithm is illustrated using a
numerical example.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we provide formulations for centralized
control problem and the use of dual decomposition method to
break the centralized problem into several local optimization
problems.
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A. Centralized Control
Let the state and input of the agent i be denoted by xi and

ui, respectively. Suppose a deterministic model of the system
dynamics is available as xk+1

i = f i(x
k
i , u

k
i ). A cooperative

DMPC scheme can be based on a centralized optimization
problem or set of decentralized problems that need to be solved
at time instant k. Let us consider a cooperative multi-agent
system with m agents and inequality coupling constraints as
Cxk ≤ c, where xk =

[
xk
1 , · · · ,xk

m

]⊤
, where xk ∈ Rnx ,

nx =
∑m

i=1 nxi
. The matrix C ∈ Rnc×nx , and c ∈ Rnc

describes nc coupling constraints. The centralized optimal
control problem can be cast as [12]

min
x̂,û

m∑
i=1

Ti

(
x̂k+N
i

)
+

k+N−1∑
ℓ=k

li

(
x̂ℓ
i , û

ℓ
i

)
(1a)

s.t. x̂ℓ+1
i = f i

(
x̂ℓ
i , û

ℓ
i

)
, x̂k

i = xk
i , (1b)

hi

(
x̂ℓ
i , û

ℓ
i

)
≤ 0, hi

(
x̂k+N
i

)
≤ 0, gi

(
ûℓ
i

)
≤ 0, (1c)

Cx̂ℓ ≤ c (1d)

where N is the prediction horizon, and Ti, li, hi and gi
denote the respective terminal cost, stage cost, mixed inequality
constraint and input inequality constraint for agent i. Solving
(1) yields a sequence of optimal input predictions and corre-
sponding state predictions as

û⋆ = {(ûk:k+N−1
1 )⋆, . . . , (ûk:k+N−1

m )⋆} (2)

x̂⋆ = {(x̂k:k+N
1 )⋆, . . . , (x̂k:k+N

m )⋆}

where the first element (ûk
i )

⋆ of the input sequence û⋆
i is

applied to each agent. At each physical time instant k, a new
state xk

i is received, and problem (1) is solved again, producing
a new û⋆

i and (ûk
i )

⋆ for each agent. However, repeatedly
solving the centralized MPC problem (1) can fail for large-
scale systems where the communication bandwidth is restricted.
To address this issue, we use a decentralized DMPC scheme
based on dual decomposition. We show next how to modify
(1) to arrive at a decentralized problem.

B. Dual Decomposition
We can relax the coupling constraints (1d) of the central-

ized optimization problem (1) by introducing the associated
Lagrange multipliers µℓ ∈ Rnc . Let Ω ∈ RNnc be a
compact representation of the Lagrange multipliers such that
Ω =

[
(µk)⊤, · · · , (µk+N )⊤

]⊤
. We then rewrite the original

problem (1) as

VΩ (Ω, s) = (3a)

min
x̂,û

m∑
i=1

(
Ti

(
x̂k+N
i

)
+

k+N−1∑
ℓ=k

li

(
x̂ℓ
i , û

ℓ
i

))

+

k+N∑
ℓ=k

(µℓ)⊤
(
Cx̂ℓ − c

)
s.t. x̂ℓ+1

i = f i

(
x̂ℓ
i , û

ℓ
i

)
, x̂k

i = ski , (3b)

hi

(
x̂ℓ
i , û

ℓ
i

)
≤ 0, hi

(
x̂k+N
i

)
≤ 0, gi

(
ûℓ
i

)
≤ 0 (3c)

where ski , i = 1, . . . ,m are the local states of the cooperative
agents at every time instant k and VΩ (Ω, s) reads as an optimal
value of the problem (3). Then, the problem (3) is completely
separable as both objective and constraints can be distributed
among the m agents. Indeed, the objective function is separable
as the matrix C can be split into blocks C = [C1, · · · , Cm] such
that Cx̂k =

∑m
i=1 Cix̂

k
i , where Ci ∈ Rnc×nxi . To evaluate

a subgradient of VΩ (Ω, s), the problem (3) is solved for a
given realization of Ω. We then take the derivative of the
objective function of problem (3) with respect to Ω such that
a subgradient of VΩ is obtained as[

(Cx̂⋆,k − c)⊤, · · · , (Cx̂⋆,k+N − c)⊤
]⊤
∈ ∂ (VΩ)

(
Ωk
)

(4)

where ∂ (VΩ)
(
Ωk, s

)
denotes the subdifferential of VΩ at

Ω. The dual of the original centralized problem (1) can be
formulated as

max
Ω≥0

VΩ (Ω, s) . (5)

Hence, the original problem (1) can be solved in a distributed
manner by solving its dual using a subgradient method. In a
subgradient approach, steps of appropriate length are taken
in the direction of a subgradient of the dual problem which
corresponds to iteratively updating the Lagrange multipliers
Ωk. This method can then be implemented in a distributed
manner since a subgradient of the dual problem (5) is given
by (4), which is separable as Cx̂⋆,k:k+N =

∑m
i=1 Cix̂

⋆,k:k+N
i .

The local optimization problem can then be expressed as

min
x̂i,ûi

Ti

(
x̂k+N
i ,µk+N

)
+ (6a)

k+N−1∑
ℓ=k

li

(
x̂ℓ
i , û

ℓ
i

)
+ (µℓ)⊤Cix̂

ℓ
i

s.t. x̂ℓ+1
i = f i

(
x̂ℓ
i , û

ℓ
i

)
, x̂k

i = ski , (6b)

hi

(
x̂ℓ
i , û

ℓ
i

)
≤ 0, hi

(
x̂k+N
i

)
≤ 0, gi

(
ûℓ
i

)
≤ 0 (6c)

where the multipliers at every inter-agent negotiation can be
updated using a projected subgradient step as

Ω← max (0,Ω+ βZ) , (7a)

Z =

m∑
i=1

Cix̂
⋆,k:k+N
i − c, (7b)

where β > 0 is the step size and Z ∈ RNnc . Note that the
projected subgradient above is a method to solve the optimiza-
tion problem (5) by iteratively updating the multipliers. More
specifically, the equations above describe how a consensus on
the coupling constraints can be reached when the corresponding
Lagrangian multipliers converge to their optimal values Ω⋆

after some iterations, e.g., the inter-agent negotiation between
the agents is terminated, e.g., max(Z) ≤ ϵ.

It is worth mentioning that one can adopt Newton’s methods
to speed up the inter-agent negotiation by exploiting curvature
information in addition to the gradient in the dual decom-
position framework [13]. Moreover, an Alternative Direction
Method of Multipliers (ADMM) may be leveraged in the
DMPC scheme to improve convergence properties in terms of
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speed and stability [14]. However, the basic concept behind
the proposed DMPC-based cooperative Q-learning is still valid
using the methods above.

III. PROPOSED DMPC-BASED Q-LEARNING METHOD

In this section, we describe our developed multi-agent Q-
learning method based on the DMPC scheme to approximate
the state (and action) value functions with local MPC schemes.

A. Local Approximators based on DMPC

To capture the local value functions in a distributed and
cooperative manner, we formulate a parameterized version of
(6) at Ω⋆ as

V θi
i

(
ski ,Ω

⋆
)
= min

x̂i,ûi,σi

γNT θi
i

(
x̂k+N
i ,σk+N

i ,µ⋆,k+N
)
(8a)

+

k+N−1∑
ℓ=k

γℓ−kLθi
i

(
x̂ℓ
i , û

ℓ
i ,µ

⋆,ℓ,σℓ
i

)
s.t. x̂ℓ+1

i = fθi
i

(
x̂ℓ
i , û

ℓ
i

)
, x̂k

i = ski , (8b)

hθi
i

(
x̂ℓ
i , û

ℓ
i

)
≤ σℓ

i , hθi
i

(
x̂k+N
i

)
≤ σk+N

i , (8c)

gi

(
ûk+ℓ−1
i

)
≤ 0, σℓ

i ≥ 0, ℓ = k, . . . , k +N (8d)

where

Lθi
i = lθii

(
x̂ℓ
i , û

ℓ
i

)
+ (µ⋆,ℓ)⊤Cθi

i x̂ℓ
i + p⊤σℓ

i (9a)

T θi
i = T θi

c,i

(
x̂N
i

)
+ (µ⋆,N )⊤Cθi

i x̂N
i + p⊤σN

i (9b)

where θi is a set of parameters assigned to the terminal cost,
the stage cost, the model and the inequality constraints.

Remark 1. Assume that constraints hθi
i

(
x̂ℓ
i , û

ℓ
i

)
≤ 0 and

hθi
i

(
x̂k+N
i

)
≤ 0 are relaxed as per (8c) by introducing some

slack variables σℓ
i , and the term

∑N
ℓ=1 p

⊤σℓ
i is added to the

cost. Then, if p < ∞ is large enough, the solution of (8)
is unchanged whenever feasible and recursive feasibility is
guaranteed [15].

The solution of (8) yields the sequences of optimal input
predictions (ûi)

⋆ = {(ûk
i )

⋆, . . . , (ûk+N−1
i )⋆} at Ω⋆. The first

element defines the policy for each agent as

πθi

(
ski ,Ω

⋆
)
= (ûk

i )
⋆
(
ski ,Ω

⋆,θi

)
. (10)

We next consider this optimal policy delivered by the DMPC
scheme as an action ak

i in the context of reinforcement learning,
which is selected according to the above policy with the possible
addition of exploratory moves. Then, an action value function
approximation can be formulated as

Qθi
i

(
ski ,a

k
i ,Ω

⋆
)
= min

x̂i,ûi,σi

(8a) (11a)

s.t. (8b)− (8d), ûk
i = ak

i (11b)

Note that the proposed approximators (8) and (11) satisfy
the fundamental equalities underlying the Bellman equations
as

πθi

(
ski ,Ω

⋆
)
= argmin

ak
i

Qθi
i

(
ski ,a

k
i ,Ω

⋆
)
, (12a)

V θi
i

(
ski ,Ω

⋆
)
= min

ak
i

Qθi
i

(
ski ,a

k
i ,Ω

⋆
)
. (12b)

B. Cooperative Q-Learning based on DMPC
In this section, we propose a cooperative classical off-policy

Q-learning algorithm, which is based on the on-the-fly temporal-
difference learning method. Let s = col {s1, · · · , sm} ∈ S be
defined as the state of the multi-agent system, where si ∈ Si
denotes the state of agent i. Similarly, the action of the whole
system is defined as a = col {a1, · · · ,am} ∈ A, where ai ∈
Ai denotes the action of agent i. Let Li (s,a) be the local
cost of agent i. In a cooperative learning scenario, all agents
aim to minimize the global cost function as

L
(
sk,ak

)
=

m∑
i=1

Li

(
sk,ak

)
. (13)

Let V N
(
xk
)

and V N,I
i

(
xk
i

)
be the value functions associated

with the centralized and decentralized problems (1) and (6),
respectively. Considering ak,ak

i as additional constraints for
these problems, the corresponding action value functions
are QN

(
xk,ak

)
and QN,I

i

(
xk
i ,a

k
i

)
. Note that I denotes

the iteration number for the inter-agent negotiation stage.
According to the duality theorem, we then have that

m∑
i=1

V N,I
i

(
xk
i

)
≤ V N

(
xk
)
, (14a)

m∑
i=1

QN,I
i

(
xk
i ,a

k
i

)
≤ QN

(
xk,ak

)
, (14b)

for any I . However, we propose to use the parameterized
DMPC schemes to approximate the optimal state (and action)
value functions above. Hence, the global state (and action)
value functions delivered by a centralized MPC parameterized
in θ can be decomposed into the sum of local state (and action)
value functions for each agent delivered by (8) and (11) at Ω⋆

as

V ⋆
(
sk
)
≈ V θ

(
sk
)
=

m∑
i=1

V θi
i

(
ski ,Ω

⋆
)
, (15a)

Q⋆
(
sk,ak

)
≈ Qθ

(
sk,ak

)
=

m∑
i=1

Qθi
i

(
ski ,a

k
i ,Ω

⋆
)

(15b)

Let Qθ
(
sk,ak

)
and Qθi

i

(
ski ,a

k
i ,Ω

⋆
)

be the approximated
global and local action value functions associated to the
centralized and distributed MPC schemes, respectively. Propo-
sition 1 then shows consistency between the centralized policy
and the distributed policy. According to (15), the proposed
parameterized state (and action) value functions captured from
the DMPC scheme satisfy the additive decomposition required
in the Individual-Global-Max (IGM) principle [16]. We next
show that the IGM principle holds in the proposed DMPC-based
cooperative Q-learning. It is noted that the IGM condition is
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introduced as Individual-Global-Min (IGMi) in our framework,
in which the aim is to minimize the global stage cost function.

Proposition 1. Considering the state (and action) value
decomposition (15), the IGMi principle holds such that

argmin
ak

Qθ
(
sk,ak

)
=

 argminak
1
Qθ1

1

(
sk1 ,a

k
1 ,Ω

⋆
)

...
argminak

m
Qθm

m

(
skm,ak

m,Ω⋆
)

(16)

Proof. Let us consider the global action value function asso-
ciated with the centralized multi-agent MPC with m agents
as

Qθ
(
Qθ1

1

(
sk1 ,a

k
1 ,Ω

⋆
)
, · · · , Qθm

m

(
skm,ak

m,Ω⋆
))

(17)

≥ Qθ

(
min
ak

1

Qθ1
1

(
sk1 ,a

k
1 ,Ω

⋆
)
, · · · , Qθm

m

(
skm,ak

m,Ω⋆
))

· · · ≥

Qθ

(
min
ak

1

Qθ1
1

(
sk1 ,a

k
1 ,Ω

⋆
)
, · · · ,min

ak
m

Qθm
m

(
skm,ak

m,Ω⋆
))

.

Hence, the mixing action value function constructed based on
the additive decomposition has a unified minimizer as

min
ak

Qθ
(
sk,ak

)
:= (18)

min
ak

Qθ
(
Qθ1

1

(
sk1 ,a

k
1 ,Ω

⋆
)
, · · · , Qθm

m

(
skm,ak

m,Ω⋆
))

=

Qθ

(
min
ak

1

Qθ1
1

(
sk1 ,a

k
1 ,Ω

⋆
)
, · · · ,min

ak
m

Qθm
m

(
skm,ak

m,Ω⋆
))

Adopting the multi-agent policy as

πθ = (πθ1 , · · · ,πθm) =

 argminak
1
Qθ1

1

(
sk1 ,a

k
1 ,Ω

⋆
)

...
argminak

m
Qθm

m

(
skm,ak

m,Ω⋆
)


(19)

and considering the Bellman equalities (12), the following
result then holds

Qθ
(
Qθ1

1

(
sk1 ,πθ1 ,Ω

⋆
)
, · · · , Qθm

m

(
skm,πθm ,Ω⋆

))
=

Qθ
(
V θ1
1

(
sk1 ,Ω

⋆
)
, · · · , V θm

m

(
skm,Ω⋆

))
=

Qθ

(
min
ak

1

Qθ1
1

(
sk1 ,a

k
1 ,Ω

⋆
)
, · · · ,min

ak
m

Qθm
m

(
skm,ak

m,Ω⋆
))

= min
ak

Qθ
(
sk,ak

)
(20)

Thus, πθ = argminak Qθ
(
sk,ak

)
, which proves the proposi-

tion. ■

Proposition 2. Let us define the global Temporal Difference
(TD) error at the time instant k as

δk = L
(
sk,ak

)
+ γV θ

(
sk+1

)
−Qθ

(
sk,ak

)
, (21)

where 0 < γ ≤ 1 is the discount factor. The local parameter
update is then obtained as

θi ← θi + αδk∇θi
Qθ
(
sk,ak

)
, (22)

where the scalar α > 0 is the learning rate and

∇θi
Qθ
(
sk,ak

)
=
∂Qθi

i

∂θi
+

∂Qθi
i

∂Ω⋆

∂Ω⋆

∂θi
(23)

+

m∑
j=1,j ̸=i

∂Q
θj
j

∂Ω⋆

∂Ω⋆

∂θi
.

Proof. Let us define the centralized gradient step as

∆θ = αδk∇θQ
θ
(
sk,ak

)
. (24)

The DMPC-based state (and action) value function approxima-
tion then provides an additive decomposition in (15) so that
the gradient step above can be split as

∆θ =

∆θ1

...
∆θm

 =

αδ
k∇θ1

Qθ
(
sk,ak

)
...

αδk∇θmQθ
(
sk,ak

)
 = (25)


∑m

i=1 αδ
k∇θ1

Qθi
i

(
ski ,a

k
i ,Ω

⋆
)

...∑m
i=1 αδ

k∇θmQθi
i

(
ski ,a

k
i ,Ω

⋆
)
 .

It is obvious that the DMPC scheme provides a connection
line between the agents via multiplier-sharing. Therefore, the
local sensitivities above are delivered using the chain rule as

∇θi
Q

θj
j

(
skj ,a

k
j ,Ω

⋆
)
=

∂Q
θj
j

∂Ω⋆

∂Ω⋆

∂θi
, (26a)

∇θiQ
θi
i

(
ski ,a

k
i ,Ω

⋆
)
=

∂Qθi
i

∂θi
+

∂Qθi
i

∂Ω⋆

∂Ω⋆

∂θi
. (26b)

Considering the equations (25) and (26), the local gradient
step (23) holds. ■

In the above cooperative TD learning algorithm, the baseline
stage cost L

(
sk,ak

)
(total reward in the context of multi-agent

RL) is defined as a function of state-action pair in order to
provide an evaluation signal upon the cooperative RL. More
specifically, the baseline cost affects the multi-agent system
behavior and control policy via RL parameter updating, where
the global TD error is appeared. We next provide details on
how to compute the above sensitivities.

C. Sensitivity Computation

To compute the sensitivities needed in the proposed DMPC-
based multi-agent Q-learning, let Lθi

i be the local Lagrange
function associated with the parameterized DMPC scheme (11)
as

Lθi
i = ϕi + λ⊤

eqi
Gθi

i + λ⊤
ineqi

Hθi
i (27)

where ϕi, λeqi and λineqi denote the total cost in (8a), the dual
variables of the equality constraints and the dual variables of
the inequality constraints, respectively. The vectors Gθi

i and
Hθi

i collect the equality and inequality constraints, respectively.
We then label Γi = {x̂i, ûi,σi} the primal variables for the
DMPC. The associated primal-dual variables then read as
zi =

{
Γi,λeqi ,λineqi

}
. The sensitivities of the action value

function Qθi
i captured from the DMPC scheme (11) w.r.t. the
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parameters θi, and the optimal multipliers are then obtained
by the sensitivity analysis as

∂Qθi
i

∂θi
=

∂Lθi
i

∂θi
,

∂Qθi
i

∂Ω⋆ =
∂Lθi

i

∂Ω⋆ , (28)

where the optimal multipliers Ω⋆ are considered as additional
parameters in the parametric Nonlinear Programming (NLP) so
that the total parameters assigned to each parameterized DMPC
scheme are {θi,Ω

⋆}. To compute the sensitivity of the optimal
multipliers Ω⋆ w.r.t. the parameters θi, one can use the Implicit
Function Theorem (IFT) on the Karush Kuhn Tucker (KKT)
conditions underlying the parametric NLP. It is noted that this
sensitivity is globally obtained from a centralized sensitivity
analysis upon the parameterized version of the centralized
problem (1). Let z = {z1, . . . ,zm,Ω⋆} be the total primal-
dual variables of (1). Assuming that Linear Independence
Constraint Qualification (LICQ) and Second Order Sufficient
Condition (SOSC) hold at z⋆, then, the following holds:

∂z⋆

∂θ
= −∂κθ

∂z

−1 ∂κθ

∂θ
, (29)

where κθ =
[
∇ΓLθ,Gθ,diag (Λineq)H

θ, (Ω⋆)⊤M θ
]⊤

is the
KKT matrix associated with the parameterized version of (1).
Note that Mθ gathers the coupling constraints (1d). We denote
the global Lagrange function, the total equality constraints,
the total inequality constraints and the dual variables of the
inequality constraints by Lθ, Gθ, Hθ and Λineq, respectively.
As Ω⋆ is part of z⋆, the corresponding sensitivity ∂Ω⋆

∂θi
can

be extracted from the gradient ∂z⋆

∂θ
.

IV. SIMULATION RESULTS

To examine the viability of the proposed DMPC-based
cooperative Q-learning approach, we consider a heterogeneous
multi-agent scenario where three linear systems with different
dynamics must satisfy their local constraints and the coupling
equality constraints (a desired distance between their first states)
in a cooperative manner. We then consider only the equality
part of the coupling inequality constraint (1d) as Cx̂ℓ = c.
However, the local state constraints and coupling constraints
will be violated due to model inaccuracies and disturbances.
Let us consider three agents with the following dynamics

xk+1
1 =

[
0.9 0.35
0 1.1

]
xk
1 +

[
0.0813
0.2

]
uk
1 +

[
ek1
0

]
(30a)

xk+1
2 =

[
0.91 0.33
0 0.98

]
xk
2 +

[
0.0611
0.23

]
uk
2 (30b)

xk+1
3 =

[
0.88 0.3
0 1.1

]
xk
3 +

[
0.0837
0.21

]
uk
3 (30c)

and choose an imperfect model for three local MPC schemes
as

xk+1 =

[
1 0.25
0 1

]
xk +

[
0.0312
0.25

]
uk, (31)

where the disturbance ek1 is random, uncorrelated and uniformly
distributed in the interval [−0.1, 0]. Let us label the states
of the agents as x1 = [x1,1, x1,2]

⊤, x2 = [x2,1, x2,2]
⊤ and

x3 = [x3,1, x3,2]
⊤. We then consider the local constraints

0 ≤ x1,1 ≤ 0.5, 0 ≤ x2,1 ≤ 2.5 and −2.5 ≤ x3,1 ≤ 0 on
the first agent, second agent and third agent, respectively. The
control input constraint −1 ≤ u1,2,3 ≤ 1 is considered for
all agents, and coupling constraints are defined as relative
distances d12 = 2, d13 = 2 and d23 = 4. The global MARL
cost function is then defined as

L(xk,uk) =10 ∥xc∥22 (32)

+

m∑
i=1

Li

(
xk
i ,u

k
i

)
+ p⊤ ·max

(
0, hi

(
xk
i ,u

k
i

))
where
xc = [x11 − x21 − d12, x11 − x31 − d13, x21 − x31 − d23]

⊤.
The local cost functions Li can be, for instance, a quadratic
function, and the penalty vector is set to p = [100, 100]. To
show the performance of the proposed cooperative Q-learning
algorithm, we first run a learning stage shown in figures 1
and 2, where we use a total of 3× 104 samples to adjust the
local MPCs in a cooperative manner. As observed, the local
constraint of the first agent 0 ≤ x1,1 and the coupling equality
constraints are violated at the beginning of the learning stage.
We then observe that these violations are decreased during the
learning, and finally constraint satisfaction is achieved at the
end of the learning process. Hence, the global TD error and
the global stage cost move towards zero as shown in Fig. 2.
To demonstrate the performance of the parameterized MPC
schemes after learning stage, we then consider different initial
conditions for three agents and run 100 time instants as shown
in figures 3 and 4. It is observed that the coupling constraints
(solid lines) in Fig. 3 are satisfied while the agents with MPC
schemes without learning (dashed lines) cannot satisfy these
equality constraints at 2 and 4. As illustrated in Fig. 4, the first
agent without learning has a constraint violation (dashed line)
on 0 ≤ x1,1 while this violation is disappeared (solid line)
when the learned MPC is used. It is noted that a cooperative
multi-agent system cannot be learned using the existing MPC-
based RL approach as it has not been formulated to deal
with cooperative MDPs. However, the proposed DMPC-based
MARL addresses this issue so that the local MPCs are learned
in a cooperative manner. As observed, the proposed DMPC-
based MARL can improve the closed-loop performance, i.e.,
minimizing the total cost function L, as shown in Fig. 2.

V. CONCLUDING REMARKS

This work developed a multi-agent RL approach based on a
DMPC scheme leading to a cooperative Q-learning algorithm.
The dual decomposition method was adopted to make consensus
between the agents for minimizing a global cost function in a
cooperative manner. In the proposed DMPC-based Q-learning,
the local state (and action) value functions were approximated
by the local MPCs dedicated to each agent, and all agents were
shown to agree on accomplishing a global task while the local
constraints were satisfied as well.
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