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ABSTRACT 

 
Work-related musculoskeletal disorders (WMSDs) are a leading cause of injury for workers 

who are performing physically demanding and repetitive construction tasks. With recent 
advances in robotics, wearable robots are introduced into the construction industry to mitigate 
the risk of WMSDs by correcting the workers’ postures and reducing the load exerted on their 
body joints. While wearable robots promise to reduce the muscular and physical demands on 
workers to perform tasks, there is a lack of understanding of the impact of wearable robots on 
worker ergonomics. This lack of understanding may lead to new ergonomic injuries for workers 
wearing exoskeletons. To bridge this gap, this study aims to assess the workers’ ergonomic risk 
when using a wearable robot (back-support exoskeleton) in one of the most common 
construction tasks, material handling. In this research, a vision-based pose estimation algorithm 
was developed to estimate the pose of the worker while wearing a back-support exoskeleton. As 
per the estimated pose, joint angles between connected body parts were calculated. Then, the 
worker’s ergonomic risk was assessed from the calculated angles based on the Rapid Entire Body 
Assessment (REBA) method. Results showed that using the back-support exoskeleton reduced 
workers’ ergonomic risk by 31.7% by correcting awkward postures of the trunk and knee during 
material handling tasks, compared to not using the back-support exoskeleton. The results are 
expected to facilitate the implementation of wearable robots in the construction industry. 

INTRODUCTION 
 

The construction industry plays a vital role in the US economy by providing a wide range of 
employment opportunities and driving economic growth (Liu et al. 2021b). However, 
construction work is known to be physically demanding and often requires workers to perform 
tasks in dynamic environments with repetitive movements and unusual postures. These factors 
increase the risk of work-related musculoskeletal disorders (WMSDs) for workers (Zhu et al. 
2021). Investigations have shown that construction workers are prone to WMSDs, including 
back and shoulder pains (Kazar and Comu 2021; Zhu et al. 2021). Back pain can be caused by 
lifting heavy construction materials or working in awkward postures for prolonged periods of 
time, while shoulder pain can be caused by using tools that require repetitive arm movements 
(Kazar and Comu 2021). Furthermore, according to the U.S. BLS, WMSDs account for around 
37% of nonfatal injuries and illnesses experienced by construction workers (Bureau of Labor 
Statistics 2020). Therefore, it is essential to identify effective solutions to mitigate the risk of 
WMSDs for construction workers. 
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Recently, wearable robots, also known as exoskeletons, have emerged as a promising 
solution to reduce the risk of WMSDs for workers (Bosch et al. 2016; Liu et al. 2021a; b). 
Exoskeletons can be broadly categorized into two types: active and passive (de Looze et al. 
2016). Active exoskeletons are powered through actuators such as electric motors, pneumatics, 
or hydraulics, which actively provide lift support, weight dispersion, and posture correction for 
workers (de Looze et al. 2016). Passive exoskeletons, on the other hand, do not include actuators 
and instead rely on materials or springs to store energy from human movements and provide 
assistance when required by the worker (Bosch et al. 2016). In the construction industry, active 
exoskeletons are generally preferred over passive exoskeletons due to their ability to actively aid 
workers in handling physical workloads (Antwi-Afari et al. 2017). Specifically, active back-
support exoskeletons (BSEs) are emerging as a major option for reducing the risk of WMSDs for 
workers (Zhu et al. 2021). By transferring the load from the worker's spine to the exoskeleton, 
BSEs can reduce the load exerted on the worker's back and shoulders. In addition, BSEs can 
provide physical support to workers' upper body and spine, which can further help align the 
spine in a more natural position. All these functions allow BSEs to reduce the stress and strain on 
the worker’s back and shoulders (Abdoli-E and Stevenson 2008; Zhu et al. 2021), mitigating the 
risk of WMSDs for construction workers. 

While BSEs can potentially reduce the risk of WMSDs for workers, their implementation on 
construction sites may raise new safety concerns related to workers. The current body of 
knowledge does not provide a comprehensive understanding of the impact of BSEs on worker 
ergonomics, which may increase the possibility of new ergonomic injuries for workers wearing 
exoskeletons. For instance, active BSEs may induce changes in postural strategies adopted by 
users (e.g., BSEs may push body joints beyond their normal range of motion), potentially 
increasing the risk of joint hyperextension (Theurel and Desbrosses 2019). Therefore, to ensure 
that workers are not exposed to new ergonomic risks, it is critical to conduct ergonomic risk 
assessments of workers using BSEs. Unfortunately, few studies have been conducted in the 
construction industry to assess the ergonomic risks of workers wearing BSEs. 

To bridge this gap, this study proposes an ergonomic risk assessment approach that integrates 
computer vision, artificial intelligence, and Rapid Entire Body Assessment (REBA) method 
(Hignett and McAtamney 2000). This approach will evaluate the workers’ ergonomic risks while 
performing construction tasks with and without wearing BSEs. To be more specific, the study 
will develop a pose estimation network using computer vision techniques, to estimate the 
workers’ 2D posture. Next, based on the estimated posture, the method will calculate the joint 
angles between connected body parts. Finally, the REBA method will be applied to the 
calculated joint angles to generate a REBA score, which serves as the metric to assess the 
worker's ergonomic risk; a higher score indicates a higher ergonomic risk. This study will apply 
the developed method to a common construction task, a material handling task. Twelve subjects 
will be recruited to perform the task under two scenarios, with and without BSEs. The 
comparison results between the two scenarios will reveal the impact of the BSE on workers’ 
ergonomic risks. This study has the potential to contribute to the understanding of the impact of 
BSEs on worker ergonomics. The findings of the study should facilitate the implementation of 
wearable robots in the construction industry. 

METHODOLOGY 
 

The aim of this study was to evaluate the ergonomic risk of workers using a back-support 
exoskeleton (BSE), and the methodology, illustrated in Figure 1, involved three main steps. 
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Firstly, the authors developed a computer vision-based algorithm to estimate the postures of 
workers while wearing the exoskeleton to perform construction tasks. To achieve this, a multi-
stage convolutional neural network was built based on the authors' previous investigation (Liu 
and Jebelli 2022) to extract 2D postures of workers from 2D images. In the second step, the 
authors leveraged the estimated poses to calculate the joint angles between two connected body 
segments, such as the angle between the neck and shoulder, and the angle between the trunk and 
thigh segments. Finally, in the third step, the authors assessed the workers’ ergonomic risks 
while wearing the exoskeleton by applying the REBA method to the calculated joint angles from 
step two. The following sub-sections will provide detailed explanations of each step. 

Figure 1. Steps for assessing the ergonomic risks of workers wearing or not wearing BSEs.

COMPUTER VISION-BASED POSE ESTIMATION

The architecture of the multi-stage convolutional neural network (CNN) developed for pose 
estimation is shown in Figure 2. The developed network consisted of 16 stages, with the first
eight stages trained to generate a set of 2D vectors, 𝐋 = {L1, … , Lp}, that connected the body 
joints of workers; and the remaining eight stages trained to generate a set of confidence maps,
𝐒 = {S1, … , Sq}, that detected 21 body points of the worker. Each of the first eight stages 
contained three convolution blocks (CB) and two additional convolutional layers (CL) with a 
kernel size of 1 × 1. As shown, CB was comprised of four convolutional layers (CL) with a 5 × 5
kernel, and the outputs of all CL were concatenated (⊕) as the output for the block. Similarly, the 
following eight stages each contained three convolution blocks (CB

′ ) and two convolutional 
layers with a kernel size of 1 × 1. Each of the CB

′ comprised four convolutional layers (CL
′ ) with 

a 9 × 9 kernel. In this study, the design of each stage followed the design of the OpenPose 
method (Cao et al. 2021) and the authors’ previous investigation (Liu and Jebelli 2022). Between 
every two adjacent stages of the above architecture, the authors applied an LSTM module with 
128 hidden units. The LSTM module processed the outputs from the prior stage (stage t) and 
sent the processed results to the following stage (stage t + 1) as input. Previous studies have 
shown that this LSTM module could enhance the geometric stability and continuity of the 2D 
postures extracted from the input 2D images (Liu et al. 2020). At the last stage of the network, 
the set of confidence maps 𝐒 was paired with the set of corresponding 2D vectors 𝐋 to generate 
the 2D postures of workers. Furthermore, the training process of the developed pose estimation 
network was conducted according to the steps employed in the authors’ previous study, as 
described in (Liu and Jebelli 2022; Ojha et al. 2022). The training outputs consisted of the set of 
trained confidence maps 𝐒trained, the set of trained 2D vectors 𝐋trained, and the estimated 2D 
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human pose generated by matching 𝐒trained and 𝐋trained. An example of the estimated 2D pose 
of a worker is presented in Figure 2 as well.

Figure 2. Overall architecture of the multi-stage (16 stages) convolutional neural network.

JOINT ANGLE CALCULATION AND ERGONOMIC RISK ASSESSMENT

Based on the estimated 2D worker posture, we calculated the joint angles related to the 
position of the worker's neck, torso (trunk), upper arms, lower arms, wrists, and lower limbs 
(upper leg, lower leg, and knee) using the following equation:

𝜃 = cos−1 [
𝑎𝑖

𝑗
∙ 𝑏𝑘

𝑙

|𝑎𝑖
𝑗

||𝑏𝑘
𝑙 |

] , 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, … ,16}; 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑘 ≠ 𝑙                    (1)

Where 𝑎𝑖
𝑗 is the vector obtained from the set of trained 2D vectors 𝐋𝐭𝐫𝐚𝐢𝐧𝐞𝐝, pointing from 

joint 𝑖 to joint 𝑗. Likewise, 𝑏𝑘
𝑙 is another vector from the set of 𝐋𝐭𝐫𝐚𝐢𝐧𝐞𝐝, starting from joint 𝑙 to 

joint 𝑘. “|𝑎|” function calculates the norm of the vector 𝑎, and “∙” indicates the dot product 
between the two vectors, 𝑎𝑖

𝑗 and 𝑏𝑘
𝑙 . After calculating the required joint angles from the 

estimated 2D posture, the authors used them to assess workers' ergonomic risk (with and without 
wearing an exoskeleton) based on the REBA approach (Hignett and McAtamney 2000). First, we 
applied the calculated joint angles to generate the assessment scores of trunk flexion, trunk 
lateral flexion, neck flexion, knee flexion, upper-arm flexion and abduction, and lower-arm 
flexion according to the REBA method. For example, if the angle of neck flexion falls within 0-
20 degrees, the score is increased by 1; if the degree exceeds 20 degrees, the score is increased 
by 2. Once the assessment scores of each body part were obtained, these scores were combined 
to calculate a score of whole-body posture using Table A, Table B, and Table C in the REBA 
worksheet (Hignett and McAtamney 2000). These three tables are REBA decision tables, which 
can generate an initial REBA score for the ergonomic risk of the whole-body posture. We then 
adjusted this score using the Activity Score in the REBA worksheet, giving the final REBA score 
for ergonomic risk assessment. If the final score is 1, the ergonomic risk is negligible, indicating 
that the worker has a safe posture. Scores between 2 and 3 indicate low risk; 4 – 7 represent
medium risk; 8 – 10 indicate high ergonomic risk, and scores above 11 suggest very high 
ergonomic risk for workers. For more information on using the REBA method to assess 
ergonomic risks, please refer to (Hignett and McAtamney 2000).
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CASE STUDY

To assess the impact of the exoskeleton on worker ergonomics, the authors designed a
material handling task. During the task, the authors first collected a 2D image dataset to train the 
developed pose estimation network. Subsequently, using the trained network, the authors applied 
the proposed method (as depicted in Figure 1) to the task, with the aim of evaluating the 
ergonomic risks of workers wearing the BSE.

More specifically, the designed material handling task was performed by twelve subjects,
including ten male subjects and two female subjects, with a mean age of 24.3 years and a 
standard deviation of 1.66 years. The subjects’ mean weight was 159 lbs with a standard 
deviation of 29.2 lbs, and their mean height was 5' 9" with a standard deviation of 2.88 inches.
The task was conducted in two scenarios: in the first scenario, each subject was required to
perform the material handling task with the assistance of a BSE; in the second scenario, they 
were asked to perform the same task without the aid of the BSE. Each scenario involved ten
rounds of material handling activities, with subjects required to lift a 25-pound bag of cement 
from the material staging area and deliver it to a cart in each round. The total duration of each 
session lasted approximately 5 minutes. Figure 3-a illustrates the performed material handling 
task, and Figure 3-b shows an image of the applied back-support exoskeleton.

Figure 3. Illustrations of the designed material handling tasks.

A digital camera was leveraged to record videos of subjects performing the material handling 
task. These videos were then processed to generate images at a frame rate of 0.25, resulting in a
2D image dataset applied to train the developed pose estimation network. 4681 images were
collected from all twelve subjects, with each image annotated using the approaches mentioned in
the OpenPose method and the authors’ previous study (Cao et al. 2021; Liu and Jebelli 2022).
Each image was annotated with 21 joints, including 12 body joints (left wrist, right wrist, left 
shoulder, right shoulder, left hip, right hip, left elbow, right elbow, left knee, right knee, left 
ankle, and right ankle), 4 joints for the foot (left toe, right toe, left heel, and right heel), and 5 
joints in the facial area (left and right ears, left and right eyes, and nose). The collected images 
with the corresponding labeled joints were used to train the developed pose estimation network 
to generate 𝐒trained and 𝐋trained as mentioned in the METHODOLOGY. Figure 3-c illustrates 
one example of the training image collected from the material handling task as well as its
corresponding annotations. In addition, the training performance of the network will be reported 
in the RESULT section. After obtaining the trained network, the proposed method was applied to 
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the material handling task. Each subject performed five additional rounds of the material 
handling activities with and without wearing the BSE. The proposed method was used to 
generate the REBA score to assess subjects’ ergonomic risk in each scenario. By comparing the 
REBA score generated from the two scenarios, the authors could assess the impact of the 
exoskeleton on worker ergonomics. The comparison results will also be reported and discussed 
in the RESULTS section.  
 
RESULTS 
 

Figure 4 illustrates the training performance of the proposed network in estimating subjects' 
2D postures (with and without a BSE) during the material handling task. In this study, the pose 
estimation performance of the network was measured using the Percentage of Correct Keypoints 
with a 0.5 threshold (PCK0.5) metric. The PCK0.5 metric is a commonly accepted measure for 
assessing pose estimation accuracy, which measures the percentage of estimated joint locations 
within a certain distance of the true location (Yang and Ramanan 2013). Higher values indicate 
better performance. As depicted in Figure 4-a, when the subjects performed the material 
handling task without wearing the exoskeleton, the method achieved an average PCK0.5 value of 
over 82.0 for all joints for twelve subjects. Among them, the method had the lowest precision for 
assessing the left ankle joint (PCK0.5 = 77.2), and the highest precision for assessing the left and 
right hip joints (PCK0.5 = 87.3). Likewise, when the subjects performed the material handling 
task with the exoskeleton (Figure 4-b), the method achieved an average PCK0.5 value of over 
81.5 for all joints for 12 subjects. According to the investigations reported in (Cao et al. 2021; 
Jiang and Messner 2023; Liu and Jebelli 2022), these results suggest that the proposed method is 
capable of accurately estimating the subjects’ 2D postures when subjects execute the material 
handling task with and without the BSE, which is crucial for assessing ergonomic risks. 

 

 
 

Figure 4. Training performance of the developed deep network in 2D pose estimation. 
 

Once the trained network was obtained, the authors applied the proposed method to assess 
the impact of the BSE on worker ergonomics during the material handling task. As introduced, 
the proposed method estimated subjects’ postures and generated the REBA score accordingly, 
with higher values indicating higher ergonomic risks. Figure 5-a reports the REBA scores across 
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all 12 subjects while they were performing the task with the BSE (scenario 1). The score for each 
subject was the average of all REBA scores assessed during the 5-round material handling task.
Additionally, Figure 5-a includes several examples of the estimated 2D postures with the 
corresponding REBA score under this scenario. Likewise, Figure 5-b shows the REBA scores
across all twelve subjects without the BSE (scenario 2) and examples of the estimated 2D 
postures with the corresponding REBA score. By comparing the REBA scores assessed from 
these two scenarios, the results showed that, on average, the exoskeleton reduced the workers' 
ergonomic risk by 31.7% for twelve subjects. This improvement is attributed to the BSE’s ability 
to correct awkward postures of the trunk and knee, as indicated by red circles in Figures 5-a and 
5-b, compared to not using the BSE during the material handling task.

Figure 5. REBA scores for subjects performing construction tasks with and without BSEs.

CONCLUSION

This study aimed to assess the impact of the back-support exoskeleton (BSE) on worker 
ergonomics when performing physically demanding construction tasks. To achieve this, the 
authors developed a vision-based ergonomic risk assessment method capable of estimating
workers’ postures during the task and generating the ergonomic risk assessment based on joint 
angles calculated from the estimated postures. By applying the developed method to a material 
handling task, the study demonstrated that the BSE could correct subjects’ awkward postures in 
the trunk and knee during the task. Relying on this, the BSE reduced workers’ ergonomic risk by 
over 30.0% compared to not using the BSE. The results of this study contributed to the 
understanding of the impact of wearable robots (e.g., BSEs) on worker ergonomics. The 
implementation of exoskeletons in the construction industry has the potential to enhance 
workers’ health and safety, as well as improve productivity. Future research can investigate the 
impact of BSEs on worker ergonomics in various construction tasks, including rebar-tying and 
bricklaying tasks. In addition, the authors also suggest involving more subjects in these tasks to
generate more robust investigations on the impact of BSEs on worker ergonomics. In conclusion, 
this study designed an approach to evaluate workers' ergonomic risks while performing 
construction tasks with and without BSEs. The results provide insight into the potential benefits 
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of the exoskeletons for enhancing worker ergonomics and can facilitate the safe and efficient 
implementation of wearable robots in the construction industry. 
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