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ABSTRACT

While researchers have used various off-the-shelf physiological sensors and prevalent
machine learning (ML) algorithms to objectively assess construction workers’ health status, there
remain specific challenges for consistent and accurate health monitoring on the jobsite. The
existing physiological-based data-driven frameworks for predicting workers’ health status in the
field are not robust to the distribution shift of physiological signals and face challenges in
stability, reliability, and accuracy. To overcome these issues, this paper proposes using an
ensemble learning technique implemented on a support vector machine (SVM) with the Adaptive
Boosting (AdaBoost) algorithm to develop a resilient predictive performance of the data-driven
framework. To examine the performance of the framework, physiological signals were collected
from 10 subjects performing material handling tasks with varying levels of physical fatigue. The
proposed framework predicted the physical fatigue level with over 88% accuracy, better than
single machine learning classifiers. This study has significant implications for improving the
accuracy and stability of physiological-sensing-based health monitoring.

INTRODUCTION

Construction workers suffer from extensive work-related mental and physical stress at the job
sites, causing a high number of illnesses, injuries, and fatalities (Bureau of Labour 2018).
Despite the high rate of work-related injuries and illness among construction workers, there is a
lack of an effective, objective, and continuous approach to assessing and evaluating workers'
health status at construction sites. The current methods for assessing workers’ physical and
mental states mostly rely on the use of self-assessment measures (i.e., self-report, questionnaires,
and rating scales) (Habibi et al. 2014). Such methods can be challenging to implement in the
field due to their inherently subjective and intrusive nature (Rabeiy 2019). In addition, these
methods also do not account for workers’ physical and physiological characteristics. Previous
studies have leveraged non-invasive physiological sensors in conjunction with prevalent machine
learning algorithms to identify potential safety hazards and to assess workers’ physical and
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mental states at construction jobsites (Jebelli et al. 2018; Shakerian et al. 2021). However, most
of the current physiological-sensing models rely on a single classifier, such as support vector
machine (SVM), k-nearest neighbors (kNN), Random Forest (RF), or Naive Bayes (NB) as
decoders in physiologically based data-driven models, which are susceptible to several factors
that may compromise the reliability and accuracy of the health assessments (Li et al. 2019;
Reddy and Hota 2013). A single classifier may not adequately capture the complexity of
workers' health conditions, potentially resulting in reduced accuracy (Wang et al. 2015).
Additionally, a single classifier may be susceptible to overfitting when the training data is
limited and noisy, leading to poor generalized performance in real-world scenarios (Wang et al.
2015). Likewise, a single classifier is not robust to the distribution shift of the physiological
signals (Liu et al. 2021), impeding the capability of accurate health assessments.

Given such challenges, there is a need to develop more accurate and reliable predictive
models and algorithms that can securely analyze real-time physiological data for continuous
health monitoring of workers. To that end, this study utilizes an ensemble learning-based
framework which utilizes a Support Vector Machine (SVM) with the Adaptive Boosting
(AdaBoost) algorithm to improve the predictive performance of physiological-sensing-based
health monitoring. By using multiple weak SVM classifiers and combining them using the
AdaBoost algorithm, the framework is able to capture complementary information from different
subsets of the data, resulting in improved classification accuracy and stability. The iterative
updating of the weights of each weak classifier further enhances the framework's adaptability to
changing data distributions and enables it to focus more on difficult-to-classify samples. To
evaluate the performance of the developed framework, electrodermal activity (EDA),
photoplethysmography (PPG), skin temperature (ST), and respiratory signals were collected
from 10 subjects performing material handling tasks with varying levels of physical fatigue (low
and high). The collected physiological signals were decontaminated from noises, resampled into
determined timeframes, and informative features were extracted and finally interpreted into
distinct states of physical fatigue levels by employing SVM with AdaBoost algorithms.

AI-DRIVEN PHYSIOLOGICAL SENSING-BASED HEALTH MONITORING OF
CONSTRUCTION WORKERS

Physiological responses to a workplace stimulus can offer valuable information about the
holistic health status of an individual (Awolusi et al. 2018; Jebelli et al. 2019). Previous studies
suggested PPG, EDA, and ST signals could capture information about the body responses to an
external stressor and be used for assessing the health status of workers (Aryal et al. 2017; Hwang
and Lee 2017; Jebelli et al. 2019). The advent of advanced wearable sensing technologies and
robust machine learning algorithms has created great opportunities for sustained health
monitoring of the field workers (Tixier et al. 2016). Previous studies have used various off-the-
shelf physiological sensors, in conjunction with prevalent machine learning algorithms, to
identify potential safety hazards and to assess workers’ physical and mental states at construction
jobsites. To ensure the efficiency and accuracy of physiological sensing-based data-driven
framework, a fundamental requirement is to accurately decode physiological signals into
meaningful information. Towards that end, several studies (including the authors’ previous
study) leveraged machine learning (ML) classifiers, such as Support Vector Machine, Artificial
Neural Networks, and K-Nearest Neighbor, as decoders in physiologically based data-driven
models for objectively discerning different levels of workers' physiological states. In this regard,
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the classification accuracy of the ML classifier exclusively determines the accuracy of data-
driven models. However, such ML classifiers have difficulty in effectively decoding human
physiological signals with high accuracy and stability. Firstly, a single classifier may fail to
capture the full complexity of workers’ health conditions, resulting in reduced accuracy and
reliability (Wang et al. 2015). Second, a single classifier may be prone to overfitting, especially
when the training data is limited and noisy, leading to poor generalization performance and
reduced accuracy in real-world scenarios (Wang et al. 2015). Third, a single classifier may be
sensitive to distribution shifts, which can occur when the distribution of the data changes over
time or between different populations (Liu et al. 2021). Different workers respond differently to
the same stressors; even the same worker can react differently to similar stressors during multiple
exposures (Cohen and Hamrick 2003; Matthews et al. 1986). This causes a distribution shift in
the data, impeding the capability for accurate assessment of health conditions. In this regard, the
single ML classifiers leveraged for physiologically based data-driven models cannot consistently
and accurately decode workers' real-time physiological signals into meaningful information for
workers' health status.

METHODOLOGY

This study developed an enhanced health monitoring framework for consistently and
accurately estimating workers’ health status based on their EDA, PPG, and ST signals acquired
from wearable biosensors. The overview of the proposed ensemble learning-based approach to
improving the predictive performance of physiological-sensing-based health monitoring is
shown in Figure 1. The proposed methodology is mainly orchestrated through three consecutive
steps:

1) Signal Denoising: To filter out high- and low-frequency noises (electrode,
electromagnetic, and thermal noises), which could contaminate EDA, ST, and PPG
signals, the authors leveraged a bandpass filter with lowpass and highpass cut off
frequencies of 5 filter with the cut-off frequency of 5 Hz, and the 0.05 Hz highpass filter,
respectively. Furthermore, the Hampel and moving average filters were applied to reduce
outliers from the extracted signals. Further details on how these filtering techniques were
applied can be found in our previous studies (Sadat-Mohammadi et al. 2021; Shakerian et
al. 2021).

2) Feature Extraction: After artifact removal of the collected signals, all filtered signals were
resampled into fixed-sized frames of data points (windows) to extract features.
Informative features were extracted from these signals to train a physiologically based
data-driven model. The extracted features included measurable metrics in the time
domain (e.g., mean value, variance, median value, smallest window element, maximum-
to-minimum difference, root-mean-square level, and root-sum-of-squares level) and
measurable parameters in the frequency domain (e.g., mean and median frequencies).
The details of the feature extraction step can be found in our previous work (Shakerian et
al. 2021).

3) Ensemble Learning: The study integrates SVM with the AdaBoost algorithm to develop
an improved ensemble learning approach to enhance the predictive performance of
physiological-sensing-based health monitoring. SVM with AdaBoost involves using
multiple weak SVM classifiers trained on subsets of the data and combining their
predictions using the AdaBoost algorithm. The weights of each weak classifier are
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iteratively updated based on their performance on the training data, resulting in a final
classifier that is a weighted sum of the weak classifiers. The developed ensemble
learning-based framework is trained with features extracted from the previous step. More
details about the pseudocode of the proposed ensemble learning approach can be seen in
Figure 1.

Inputs 4> Signal Denoising > Feature Extraction +—> Ensemble Learning  +> Outputs
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Algorithm 1 - Ensemble learning approach
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Figure 1. Details of the proposed enhanced health monitoring framework.

In the ensemble learning approach, multiple weak SVM classifiers are trained on varying
distributions of the data, and their predictions are combined using the AdaBoost algorithm,
which iteratively updates the weights of each weak classifier based on their performance on the
training data. As outlined in Figure 1, the inputs of the approach are the training samples, with
the sample distribution: D = {(xX1,¥1), (X2,V2), ... , Xn, Yn)}, Where X is the matrix of input
features, and y is the vector of class labels, and the number of iterations T. The developed
approach first initializes the weight vector a to be uniform, where each weight is 1/N. The
initialization is done to ensure that all the samples are given equal importance in the initial
training phase. Line 1 performs T iterations of the AdaBoost. During each iteration, the t™ weak
SVM classifier (SVM,) is trained on the training set with distribution D!, as indicated in Line 2.
Once obtained the trained SVMy, the algorithm computes the classification error (g;) of SVM;
using the equation formulated in Line 3. Line 4 computes the weight vector a; based on the error
rate € of the trained weak classifier. The a; is higher for the weak classifier that performs well
and lower for the weak classifier that performs poorly. Then, in lines 5 and 6, the weight of each
data point in the distribution (D}) is updated by multiplying by a factor that depends on whether
the chosen weak classifier correctly classifies the particular data point or not. In this vein, the
correctly classified data point has a factor of e™*t and the misclassified samples have a factor of
e%t. By doing this, the algorithm will give more importance (e*t) to the misclassified samples,
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which can help improve the performance of the weak classifier. In Line 7, the final ensemble
classifier Egyp, is computed as a weighted sum of the T weak SVM classifiers, where each weak
classifier is weighted by its weight a;. The sign(-) function is used to determine the final class
label for each sample. The main advantage of the proposed ensemble learning-based SVM with
AdaBoost data-driven framework is its ability to improve the accuracy and stability of SVM-
based classification models. By combining multiple weak SVM classifiers into a robust classifier
using the AdaBoost algorithm, the framework can adapt to changing data distributions and focus
more on data points that are difficult to classify.

CASE STUDY

To examine the performance of the proposed enhanced health monitoring framework, a case
study procedure was established to collect physiological signals from subjects in the lab-
controlled environment at Penn State University, as illustrated in Figure 2.

10 1bs. bafg
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Figure 2. Details of the designed material handling task.

Ten able-bodied subjects were required to complete material handling tasks with varying
levels of physical fatigue. Before starting the case study, informed written consent was obtained
from all the subjects following the procedure approved by the Institution Review Board (IRB) at
Penn State. All the subjects had basic construction engineering knowledge and experience in
conducting manual handling tasks on construction sites. Moreover, none of the participants
reported any history of mechanical pain or injury. The study used a randomized crossover design
where each participant performed the task under two scenarios (Figure 2-a): in one scenario,
each subject was required to lift, carry, and lower a 10 lbs. bag of cement for 5 minutes from the
material storage area to the delivery location; in the other scenario, they were required to perform
the same task with a 25 Ibs. bag of cement. During the task, subjects were asked to wear the
wristband sensor (Empatica™ E4; Figure 2-b) on their dominant hand. This wearable sensing
device included a PPG sensor, an EDA sensor, and an infrared thermopile sensor to collect the
PPG, EDA, and ST signals at a sampling rate of 64, 4, and 4 Hz, respectively. After each
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scenario, subjects were asked to rate their level of physical fatigue on the Borg Rate of Perceived
Exertion Scale (Borg RPE Scale; Figure 3-c). Borg RPE Scale was used as a baseline to assess
subjects' perceived physical fatigue levels. Based on their perceived physical fatigue levels, each
subject’s EDA, PPG, and ST signals were stacked into a dataset and labeled into Low Fatigue
Level (RPE scale between 1 and 5) and High Fatigue Level (RPE scale between 6 and 10). Then,
the authors used the dataset and their corresponding labels to examine the performance of the
proposed enhanced health monitoring framework, the results of which will be reported in the
next section.

RESULTS

The proposed framework was applied to the data collected from the subjects after randomly
dividing 80% of the data into training datasets and 20% into validation datasets. As stated in the
previous section, each captured physiological signal (EDA, PPG, and ST) was stacked into the
dataset and employed to examine the performance of the proposed enhanced health monitoring
framework. Further, the authors also compared the performance of the proposed framework with
traditional ML classifiers, which included kNN, Logistic Regression, SVM, SVM with Gaussian
kernel, and Quadratic Discriminant Analysis (QDA). Figure 2-a illustrates the validation
accuracy of the ML classifiers in estimating the workers' physical fatigue levels for the captured
physiological signals trained using the five-folder cross-validation technique. As demonstrated in
Figure 3-a, the proposed Eg,, had the highest validation accuracy of 88.67%. Likewise, SVM
with Gaussian kernel had the second-best performance amongst the ML classifiers, with a
validation accuracy of 85.9%. Compared to the SVM with Gaussian kernel, the proposed Egyp,
achieved a performance gain of around 3%.

¢
a) Accuracy (validation) of the ML b) Performance of the proposed Ensemble SVM

classifiers and SVM with Gaussian classifier
Validation oo T | Legend | Ensemble SVM——SVMwith Gaussian
Accuracy <
Ensemble SVM 88.26%! o
KNN (k=3) 75.9% §
Logistic Regression 84.1% <™
SVM (linear kernel) 84.6% g
SVM with Gaussian 85.9%?2 S
QDA 83.8% : S
!Ensemble SWVML the proposed method had the best accuracy : 1 z 3 4 5 6 7 8 9 10
FSYM i Caussian had fhe second based accuracy amongst . Iteration (Interval = 30)

Figure 3. Performance of the proposed enhanced health monitoring framework

To analyze the stability of the performance of Eg,,,, the authors tested and visualized the
validation accuracy for every 30 iterations and compared it with the second-best performing
classifier, SVM with Gaussian kernel. Fig 3-b shows the comparison of the performance, where
the green line represents the validation accuracy of the proposed Ensemble SVM framework, and
the red line represents the validation accuracy of the SVM with Gaussian kernel. The validation
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accuracy of the Eg,,, is stable across the iterations, whereas the validation accuracy of the
second-best performing classifier SVM with Gaussian classifier fluctuates. Such stability in the
performance of Eg,, suggests that the proposed framework has a robust generalization
performance to the new data and is more likely to be robust to distribution shift.

CONCLUSION

This study aimed to develop an enhanced health monitoring framework for consistently and
accurately estimating workers’ health status based on their physiological signals acquired from
wearable biosensors. For this purpose, the authors proposed an ensemble learning-based
framework that utilizes a Support Vector Machine with the Adaptive Boosting algorithm to
improve the predictive performance of physiological-sensing-based health monitoring. By
applying the developed approach to a material handling task with varying levels of physical
fatigue, the results demonstrate that the proposed framework can promptly estimate the
likelihood of physical fatigue with an accuracy of 88.26%. The proposed ensemble learning-
based framework offers a promising approach to improve the accuracy and stability of
physiological-sensing-based health monitoring. This study has significant implications for
improving the health and safety of construction workers, as continuous health monitoring can
facilitate timely interventions and prevent illness, injury, and fatalities in the workplace. But
further research is necessary to validate the proposed framework in larger-scale studies and to
explore its potential for real-world applications. Future studies could also investigate the impact
of the proposed framework on the overall health outcomes of construction workers and assess the
economic feasibility of implementing such a framework in the construction industry.
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