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ABSTRACT 

 
While researchers have used various off-the-shelf physiological sensors and prevalent 

machine learning (ML) algorithms to objectively assess construction workers’ health status, there 
remain specific challenges for consistent and accurate health monitoring on the jobsite. The 
existing physiological-based data-driven frameworks for predicting workers’ health status in the 
field are not robust to the distribution shift of physiological signals and face challenges in 
stability, reliability, and accuracy. To overcome these issues, this paper proposes using an 
ensemble learning technique implemented on a support vector machine (SVM) with the Adaptive 
Boosting (AdaBoost) algorithm to develop a resilient predictive performance of the data-driven 
framework. To examine the performance of the framework, physiological signals were collected 
from 10 subjects performing material handling tasks with varying levels of physical fatigue. The 
proposed framework predicted the physical fatigue level with over 88% accuracy, better than 
single machine learning classifiers. This study has significant implications for improving the 
accuracy and stability of physiological-sensing-based health monitoring. 
 
INTRODUCTION 
 

Construction workers suffer from extensive work-related mental and physical stress at the job 
sites, causing a high number of illnesses, injuries, and fatalities (Bureau of Labour 2018). 
Despite the high rate of work-related injuries and illness among construction workers, there is a 
lack of an effective, objective, and continuous approach to assessing and evaluating workers' 
health status at construction sites. The current methods for assessing workers’ physical and 
mental states mostly rely on the use of self-assessment measures (i.e., self-report, questionnaires, 
and rating scales) (Habibi et al. 2014). Such methods can be challenging to implement in the 
field due to their inherently subjective and intrusive nature (Rabeiy 2019). In addition, these 
methods also do not account for workers’ physical and physiological characteristics. Previous 
studies have leveraged non-invasive physiological sensors in conjunction with prevalent machine 
learning algorithms to identify potential safety hazards and to assess workers’ physical and 

Computing in Civil Engineering 2023 631

© ASCE

 Computing in Civil Engineering 2023 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f I
lli

no
is

 A
t U

rb
an

a 
on

 0
6/

27
/2

4.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.
 



mental states at construction jobsites (Jebelli et al. 2018; Shakerian et al. 2021). However, most 
of the current physiological-sensing models rely on a single classifier, such as support vector 
machine (SVM), k-nearest neighbors (kNN), Random Forest (RF), or Naïve Bayes (NB) as 
decoders in physiologically based data-driven models, which are susceptible to several factors 
that may compromise the reliability and accuracy of the health assessments (Li et al. 2019; 
Reddy and Hota 2013). A single classifier may not adequately capture the complexity of 
workers' health conditions, potentially resulting in reduced accuracy (Wang et al. 2015). 
Additionally, a single classifier may be susceptible to overfitting when the training data is 
limited and noisy, leading to poor generalized performance in real-world scenarios (Wang et al. 
2015). Likewise, a single classifier is not robust to the distribution shift of the physiological 
signals (Liu et al. 2021), impeding the capability of accurate health assessments.  

Given such challenges, there is a need to develop more accurate and reliable predictive 
models and algorithms that can securely analyze real-time physiological data for continuous 
health monitoring of workers. To that end, this study utilizes an ensemble learning-based 
framework which utilizes a Support Vector Machine (SVM) with the Adaptive Boosting 
(AdaBoost) algorithm to improve the predictive performance of physiological-sensing-based 
health monitoring. By using multiple weak SVM classifiers and combining them using the 
AdaBoost algorithm, the framework is able to capture complementary information from different 
subsets of the data, resulting in improved classification accuracy and stability. The iterative 
updating of the weights of each weak classifier further enhances the framework's adaptability to 
changing data distributions and enables it to focus more on difficult-to-classify samples. To 
evaluate the performance of the developed framework, electrodermal activity (EDA), 
photoplethysmography (PPG), skin temperature (ST), and respiratory signals were collected 
from 10 subjects performing material handling tasks with varying levels of physical fatigue (low 
and high). The collected physiological signals were decontaminated from noises, resampled into 
determined timeframes, and informative features were extracted and finally interpreted into 
distinct states of physical fatigue levels by employing SVM with AdaBoost algorithms.  

 
AI-DRIVEN PHYSIOLOGICAL SENSING-BASED HEALTH MONITORING OF 
CONSTRUCTION WORKERS  
 

Physiological responses to a workplace stimulus can offer valuable information about the 
holistic health status of an individual (Awolusi et al. 2018; Jebelli et al. 2019). Previous studies 
suggested PPG, EDA, and ST signals could capture information about the body responses to an 
external stressor and be used for assessing the health status of workers (Aryal et al. 2017; Hwang 
and Lee 2017; Jebelli et al. 2019). The advent of advanced wearable sensing technologies and 
robust machine learning algorithms has created great opportunities for sustained health 
monitoring of the field workers (Tixier et al. 2016). Previous studies have used various off-the-
shelf physiological sensors, in conjunction with prevalent machine learning algorithms, to 
identify potential safety hazards and to assess workers’ physical and mental states at construction 
jobsites. To ensure the efficiency and accuracy of physiological sensing-based data-driven 
framework, a fundamental requirement is to accurately decode physiological signals into 
meaningful information. Towards that end, several studies (including the authors’ previous 
study) leveraged machine learning (ML) classifiers, such as Support Vector Machine, Artificial 
Neural Networks, and K-Nearest Neighbor, as decoders in physiologically based data-driven 
models for objectively discerning different levels of workers' physiological states. In this regard, 
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the classification accuracy of the ML classifier exclusively determines the accuracy of data-
driven models. However, such ML classifiers have difficulty in effectively decoding human 
physiological signals with high accuracy and stability. Firstly, a single classifier may fail to 
capture the full complexity of workers’ health conditions, resulting in reduced accuracy and 
reliability (Wang et al. 2015). Second, a single classifier may be prone to overfitting, especially 
when the training data is limited and noisy, leading to poor generalization performance and 
reduced accuracy in real-world scenarios (Wang et al. 2015). Third, a single classifier may be 
sensitive to distribution shifts, which can occur when the distribution of the data changes over 
time or between different populations (Liu et al. 2021). Different workers respond differently to 
the same stressors; even the same worker can react differently to similar stressors during multiple 
exposures (Cohen and Hamrick 2003; Matthews et al. 1986). This causes a distribution shift in 
the data, impeding the capability for accurate assessment of health conditions. In this regard, the 
single ML classifiers leveraged for physiologically based data-driven models cannot consistently 
and accurately decode workers' real-time physiological signals into meaningful information for 
workers' health status.  
 
METHODOLOGY  
 

This study developed an enhanced health monitoring framework for consistently and 
accurately estimating workers’ health status based on their EDA, PPG, and ST signals acquired 
from wearable biosensors. The overview of the proposed ensemble learning-based approach to 
improving the predictive performance of physiological-sensing-based health monitoring is 
shown in Figure 1. The proposed methodology is mainly orchestrated through three consecutive 
steps:  

1) Signal Denoising: To filter out high- and low-frequency noises (electrode, 
electromagnetic, and thermal noises), which could contaminate EDA, ST, and PPG 
signals, the authors leveraged a bandpass filter with lowpass and highpass cut off 
frequencies of 5 filter with the cut-off frequency of 5 Hz, and the 0.05 Hz highpass filter, 
respectively. Furthermore, the Hampel and moving average filters were applied to reduce 
outliers from the extracted signals. Further details on how these filtering techniques were 
applied can be found in our previous studies (Sadat-Mohammadi et al. 2021; Shakerian et 
al. 2021). 

2) Feature Extraction: After artifact removal of the collected signals, all filtered signals were 
resampled into fixed-sized frames of data points (windows) to extract features. 
Informative features were extracted from these signals to train a physiologically based 
data-driven model. The extracted features included measurable metrics in the time 
domain (e.g., mean value, variance, median value, smallest window element, maximum-
to-minimum difference, root-mean-square level, and root-sum-of-squares level) and 
measurable parameters in the frequency domain (e.g., mean and median frequencies). 
The details of the feature extraction step can be found in our previous work (Shakerian et 
al. 2021). 

3) Ensemble Learning: The study integrates SVM with the AdaBoost algorithm to develop 
an improved ensemble learning approach to enhance the predictive performance of 
physiological-sensing-based health monitoring. SVM with AdaBoost involves using 
multiple weak SVM classifiers trained on subsets of the data and combining their 
predictions using the AdaBoost algorithm. The weights of each weak classifier are 
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iteratively updated based on their performance on the training data, resulting in a final 
classifier that is a weighted sum of the weak classifiers. The developed ensemble 
learning-based framework is trained with features extracted from the previous step. More 
details about the pseudocode of the proposed ensemble learning approach can be seen in 
Figure 1. 

 

 
 

Figure 1. Details of the proposed enhanced health monitoring framework. 
 

In the ensemble learning approach, multiple weak SVM classifiers are trained on varying 
distributions of the data, and their predictions are combined using the AdaBoost algorithm, 
which iteratively updates the weights of each weak classifier based on their performance on the 
training data. As outlined in Figure 1, the inputs of the approach are the training samples, with 
the sample distribution: D = {(x1, y1), (x2, y2), … , (xN, yN)}, where x is the matrix of input 
features, and y is the vector of class labels, and the number of iterations T. The developed 
approach first initializes the weight vector α to be uniform, where each weight is 1/N. The 
initialization is done to ensure that all the samples are given equal importance in the initial 
training phase. Line 1 performs T iterations of the AdaBoost. During each iteration, the tth weak 
SVM classifier (SVMt) is trained on the training set with distribution Dt, as indicated in Line 2. 
Once obtained the trained SVMt, the algorithm computes the classification error (εt) of SVMt 
using the equation formulated in Line 3. Line 4 computes the weight vector αt based on the error 
rate εt of the trained weak classifier. The αt is higher for the weak classifier that performs well 
and lower for the weak classifier that performs poorly. Then, in lines 5 and 6, the weight of each 
data point in the distribution (Di

t) is updated by multiplying by a factor that depends on whether 
the chosen weak classifier correctly classifies the particular data point or not. In this vein, the 
correctly classified data point has a factor of e−αt and the misclassified samples have a factor of 
eαt. By doing this, the algorithm will give more importance (eαt) to the misclassified samples, 
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which can help improve the performance of the weak classifier. In Line 7, the final ensemble 
classifier Esvm is computed as a weighted sum of the T weak SVM classifiers, where each weak 
classifier is weighted by its weight αt. The sign(∙) function is used to determine the final class 
label for each sample. The main advantage of the proposed ensemble learning-based SVM with 
AdaBoost data-driven framework is its ability to improve the accuracy and stability of SVM-
based classification models. By combining multiple weak SVM classifiers into a robust classifier 
using the AdaBoost algorithm, the framework can adapt to changing data distributions and focus 
more on data points that are difficult to classify.

CASE STUDY

To examine the performance of the proposed enhanced health monitoring framework, a case 
study procedure was established to collect physiological signals from subjects in the lab-
controlled environment at Penn State University, as illustrated in Figure 2.

Figure 2. Details of the designed material handling task.

Ten able-bodied subjects were required to complete material handling tasks with varying 
levels of physical fatigue. Before starting the case study, informed written consent was obtained 
from all the subjects following the procedure approved by the Institution Review Board (IRB) at 
Penn State. All the subjects had basic construction engineering knowledge and experience in 
conducting manual handling tasks on construction sites. Moreover, none of the participants 
reported any history of mechanical pain or injury. The study used a randomized crossover design 
where each participant performed the task under two scenarios (Figure 2-a): in one scenario,
each subject was required to lift, carry, and lower a 10 lbs. bag of cement for 5 minutes from the 
material storage area to the delivery location; in the other scenario, they were required to perform 
the same task with a 25 lbs. bag of cement. During the task, subjects were asked to wear the 
wristband sensor (Empatica™ E4; Figure 2-b) on their dominant hand. This wearable sensing 
device included a PPG sensor, an EDA sensor, and an infrared thermopile sensor to collect the 
PPG, EDA, and ST signals at a sampling rate of 64, 4, and 4 Hz, respectively. After each 
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scenario, subjects were asked to rate their level of physical fatigue on the Borg Rate of Perceived 
Exertion Scale (Borg RPE Scale; Figure 3-c). Borg RPE Scale was used as a baseline to assess 
subjects' perceived physical fatigue levels. Based on their perceived physical fatigue levels, each 
subject’s EDA, PPG, and ST signals were stacked into a dataset and labeled into Low Fatigue 
Level (RPE scale between 1 and 5) and High Fatigue Level (RPE scale between 6 and 10). Then, 
the authors used the dataset and their corresponding labels to examine the performance of the 
proposed enhanced health monitoring framework, the results of which will be reported in the 
next section. 

RESULTS

The proposed framework was applied to the data collected from the subjects after randomly 
dividing 80% of the data into training datasets and 20% into validation datasets. As stated in the 
previous section, each captured physiological signal (EDA, PPG, and ST) was stacked into the 
dataset and employed to examine the performance of the proposed enhanced health monitoring 
framework. Further, the authors also compared the performance of the proposed framework with 
traditional ML classifiers, which included kNN, Logistic Regression, SVM, SVM with Gaussian
kernel, and Quadratic Discriminant Analysis (QDA). Figure 2-a illustrates the validation 
accuracy of the ML classifiers in estimating the workers' physical fatigue levels for the captured 
physiological signals trained using the five-folder cross-validation technique. As demonstrated in 
Figure 3-a, the proposed Esvm had the highest validation accuracy of 88.67%. Likewise, SVM 
with Gaussian kernel had the second-best performance amongst the ML classifiers, with a 
validation accuracy of 85.9%. Compared to the SVM with Gaussian kernel, the proposed Esvm

achieved a performance gain of around 3%. 

Figure 3. Performance of the proposed enhanced health monitoring framework

To analyze the stability of the performance of Esvm, the authors tested and visualized the 
validation accuracy for every 30 iterations and compared it with the second-best performing
classifier, SVM with Gaussian kernel. Fig 3-b shows the comparison of the performance, where 
the green line represents the validation accuracy of the proposed Ensemble SVM framework, and
the red line represents the validation accuracy of the SVM with Gaussian kernel. The validation 
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accuracy of the Esvm is stable across the iterations, whereas the validation accuracy of the 
second-best performing classifier SVM with Gaussian classifier fluctuates. Such stability in the 
performance of Esvm suggests that the proposed framework has a robust generalization 
performance to the new data and is more likely to be robust to distribution shift.  
 
CONCLUSION 
 

This study aimed to develop an enhanced health monitoring framework for consistently and 
accurately estimating workers’ health status based on their physiological signals acquired from 
wearable biosensors. For this purpose, the authors proposed an ensemble learning-based 
framework that utilizes a Support Vector Machine with the Adaptive Boosting algorithm to 
improve the predictive performance of physiological-sensing-based health monitoring. By 
applying the developed approach to a material handling task with varying levels of physical 
fatigue, the results demonstrate that the proposed framework can promptly estimate the 
likelihood of physical fatigue with an accuracy of 88.26%. The proposed ensemble learning-
based framework offers a promising approach to improve the accuracy and stability of 
physiological-sensing-based health monitoring. This study has significant implications for 
improving the health and safety of construction workers, as continuous health monitoring can 
facilitate timely interventions and prevent illness, injury, and fatalities in the workplace. But 
further research is necessary to validate the proposed framework in larger-scale studies and to 
explore its potential for real-world applications. Future studies could also investigate the impact 
of the proposed framework on the overall health outcomes of construction workers and assess the 
economic feasibility of implementing such a framework in the construction industry.  
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