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Abstract. Given a finite collection {Xi}i∈I of metric spaces, each of which has finite
Nagata dimension and Lipschitz free space isomorphic to L

1, we prove that their union
has Lipschitz free space isomorphic to L

1. The short proof we provide is based on the
Pełczyński decomposition method. A corollary is a solution to a question of Kaufmann
about the union of two planar curves with tangential intersection. A second focus of the
paper is on a special case of this result that can be studied using geometric methods.
That is, we prove that the Lipschitz free space of a union of finitely many quasiconformal
trees is isomorphic to L

1. These geometric methods also reveal that any metric quotient
of a quasiconformal tree has Lipschitz free space isomorphic to L

1. Finally, we analyze
Lipschitz light maps on unions and metric quotients of quasiconformal trees in order to
prove that the Lipschitz dimension of any such union or quotient is equal to 1.
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1. Introduction. This paper continues the study of Lipschitz functions
on quasiconformal (QC) trees as initiated in [FG23] (see Sections 2 and 4
below for relevant definitions), expanding the scope of our results to include
Lipschitz functions on unions and metric quotients of metric spaces of finite
Nagata dimension. We study unions and quotients of QC trees as a special
case.

Using the Pełczyński decomposition method, we first prove a general re-
sult (Theorem A) about the Lipschitz free space of a union of metric spaces
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with finite Nagata dimension. Via [FG23, Theorem C], Theorem A enables
us to determine the Lipschitz free space of a finite union of QC trees (Theo-
rem B). While the proof of Theorem A is conveniently short, it is also rather
abstract in nature. Therefore, we also provide a more geometric proof of The-
orem B that does not rely on the Pełczyński decomposition method. This
geometric proof relies instead upon tools available in the context of doubling
metric spaces and provides insight into the metric geometry of QC trees. In
particular, our methods shed light on the geometry of branch points in a QC
tree (see Theorem 4.17 and its use in the proof of Theorems B, C, and E).

We also study Lipschitz light mappings defined on a union of finitely
many QC trees or a metric quotient of a single QC tree. Building on results
in [FG23] and [Fre22], we are able to prove that the Lipschitz dimension of
such a union or quotient is equal to 1. Via the results of [CK13] (see also
the discussion in [Dav21, Section 1.2]), this provides another proof that a
union of QC trees bi-Lipschitz embeds into L1(Z) for some measure space Z.
Regarding embeddings, we also remind the reader that, by [DEBV23, Theo-
rem 1.2], any QC tree admits a bi-Lipschitz embedding into some Euclidean
space. Thus, by [LP01, Theorem 3.2], any union of finitely many QC trees
embeds into some Euclidean space.

In the following subsections we present and discuss our main results in
more detail.

1.1. Lipschitz free space results. Given a QC tree T , one of the main
results of [FG23] is that the Lipschitz free space F(T ) is isomorphic to L1(Z)
for some measure space Z. This result can be obtained by viewing T as a
union of countably many QC arcs {µi}i∈I whose arrangement within T ex-
hibits controlled geometry. In particular, intersecting arcs µi and µj exhibit
a certain orthogonality property reminiscent of the geometric conditions de-
scribed in [Kau14, Proposition 5.1] and [Wea18, Lemma 3.12]. In this setting,
the space F(

⋃
i∈I µi) is isomorphic to the ℓ1-sum

⊕1
i∈I F(µi).

However, in the absence of a controlled geometric relationship between
constituent subsets of a union X =

⋃
i∈I Xi, methods such as those refer-

enced above cannot be directly applied in order to conclude that the free
space on X decomposes into the sum of free spaces on {Xi}i∈I . This was
noted by Kaufmann in the preprint [Kau14] in connection with the metric
space

Cusp := {(x, 0) | 0 f x} ∪ {(x, x2) | 0 f x} ¢ R2.

Kaufmann poses the question of whether or not the Lipschitz free space
of a space such as Cusp is isomorphic to a subspace of L1. One of the
main results of the present paper implies a positive answer to Kaufmann’s
question. Indeed, we prove the following.



Lipschitz functions on unions and quotients 3

Theorem A. Suppose X is a separable metric space such that X =
X1 ∪ X2. If, for i = 1, 2, the space Xi has finite Nagata dimension and

F(Xi) ≈ L1(Zi) for some measure space Zi, then F(X) ≈ L1(Z) for some

measure space Z.

In Corollary 3.9, we prove another result of this type about unions of
spaces admitting bi-Lipschitz embeddings into Rn (or more generally, into
a self-similar, doubling, bi-Lipschitz homogeneous space, see the paragraph
preceding Corollary 3.9 for the definitions). As indicated above, Theorem A
immediately implies the following.

Corollary 1.1. F(Cusp) ≈ L1(Z) for some measure space Z.

The proof of Theorem A relies on the Pełczyński decomposition method
(Lemma 3.6) – a standard tool in Banach space theory used to establish
isomorphisms. However, the isomorphism produced by that method is a bit
abstract and lacks geometric content. The following theorem is a special
case of Theorem A, and we give a more geometric proof that does not invoke
Pełczyński.

Theorem B. Suppose X is a metric space. If X =
⋃

i∈I Ti, where {Ti}i∈I
is a finite collection of QC trees, there exists a measure space Z such that

F (X) ≈ L1(Z).

We emphasize that Theorem B assumes nothing about the arrangement
of the trees {Ti}i∈I in relation to one another. As will be evident in the proof
below, this is made possible by the topological fact that any non-degenerate
closed and connected subset of a tree is itself a tree. In the course of proving
Theorem B (in a manner independent from Theorem A), we also prove the
following result (see Definition 2.3 for metric quotients).

Theorem C. Suppose T is a QC tree. If M ¢ T is closed, then F(T/M)
≈ L1(Z) for some measure space Z.

The proof of Theorem C relies upon a certain separation property of
the branch points in a QC tree, which may be of some interest in its own
right (see Theorem 4.17). Finally, in Theorem 3.10, we prove a result similar
to Theorem C for quotients of metric spaces by subsets with finite Nagata
dimension.

1.2. Lipschitz dimension results. In [FG23] it is also shown that
the Lipschitz dimension dimL of any given QC tree T is equal to 1. As
in the study of F(T ), the proof of this result utilizes a geometrically con-
trolled decomposition of T into QC arcs. With this decomposition in hand,
Lipschitz light mappings on the constituent QC arcs (provided by [Fre22,
Theorem 2.2]) can be combined to obtain a Lipschitz light map f : T → R.
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In [Dav21], David poses the following question: Given metric spaces X1

and X2, is it true that dimL(X1 ∪X2) = max {dimL(X1), dimL(X2)}? The
second main result of our paper answers this question in the affirmative when
the spaces X1 and X2 are QC trees. Indeed, we prove the following.

Theorem D. Suppose X is a metric space. If X =
⋃

i∈I Ti, where {Ti}i∈I
is a finite collection of QC trees, then dimL(X) = 1.

We also calculate the Lipschitz dimension of any metric quotient of a QC
tree.

Theorem E. If T is a QC tree and M¢T is closed, then dimL(T/M)=1.

Our proof of Theorem E makes use of an apparently new characterization
of uniformly disconnected spaces (see Proposition 5.13). This may be of some
interest in its own right.

The organization of the paper is as follows. We provide definitions and
notation in Section 2. We then study Lipschitz functions on unions of metric
spaces and prove Theorem A in Section 3 (via Corollary 3.8). We prove Theo-
rems B and C (via Theorem 4.22) in Section 4. Finally, we prove Theorems D
and E in Section 5.

2. Preliminaries. Here we define a few general concepts that will be
frequently referenced in what follows.

2.1. Lipschitz functions and Lipschitz free spaces. Given a metric
space (X, d) with fixed basepoint x0 ∈ X, we denote by Lip0(X) the space
of all Lipschitz functions f : X → R such that f(x0) = 0. Here a function
f : X → R is said to be L-Lipschitz, for some L g 1, provided that, for all
u, v ∈ X, we have |f(u)− f(v)| f Ld(u, v). The space Lip0(X) is a Banach
space when equipped with the norm

∥f∥Lip0(X) := sup
u ̸=v

|f(u)− f(v)|

d(u, v)
.

When X is understood from the context, we denote this norm by ∥f∥Lip.
Given a closed subset A ¢ X containing x0, we will also work with the
subspace

LipA(X) :=
{
f ∈ Lip0(X) | f |A = 0

}
.

The Lipschitz free space of X, denoted F(X), is the canonical Banach
space predual of Lip0(X) (and the unique predual when X is bounded). The
space F(X) can be realized as the closed linear span of the point evalua-
tion maps ¶x ∈ Lip0(X)∗ defined by ¶x(f) = f(x), where x ∈ X. The map
¶ : X → F(X) sending x to ¶x is an isometric embedding, and it satisfies
the following universal property: for every Lipschitz map f : X → V into
a Banach space with f(x0) = 0, there exists a unique bounded linear map
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Tf : F(X) → V such that Tf ◦¶ = f , and moreover ∥Tf∥ = Lip(f). Through-
out the paper, we equip Lip0(X) with the weak∗-topology coming from the
duality F(X)∗ = Lip0(X), and we note that this topology on bounded sub-
sets of Lip0(X) is the topology of pointwise convergence. It follows easily
that LipA(X) is weak∗-closed for every closed A ¢ X.

It is well-known that the isomorphism type of F(X) is invariant under bi-
Lipschitz homeomorphisms of X. That is, if X is bi-Lipschitz homeomorphic
to Y , then F(X) is linearly isomorphic to F(Y ). See [GK03] or [Wea18,
Chapter 3] for further background on Lipschitz free spaces, and note that
such spaces are also referred to as Arens–Eells spaces.

2.2. Auxiliary metric definitions. Given a metric space X, a point
x ∈ X, and r > 0, we write B(x; r) to denote the (closed) metric ball in X
of radius r centered at x. That is,

B(x; r) := {y ∈ X | d(x, y) f r}.

We write N to denote the set of non-negative integers {0, 1, 2, . . . }. We often
use the notation {xi}i∈I to mean a sequence indexed by elements of I ¢ N.
Unless otherwise indicated, we have I = {0, 1, . . . ,max(I)} for max(I) < ∞,
or I = N.

Definition 2.1. Given a metric space X, two subsets A,B ¢ X, and
ε ∈ (0, 1], a subset N ¢ B \ A is said to be an ε-Whitney net in B with

respect to A provided that, for any pair of points u ̸= v ∈ N ,

d(u, v) g ε ·max {d(u,A), d(v,A)},

and N is maximal with respect to this property.

We note that such anN always exists by Zorn’s lemma. Furthermore,A∪N
is a closed set whenever A is closed. The following lemma demonstrates that
a Whitney net in B with respect to A accumulates near A if dist(A,B) = 0.

Lemma 2.2. Suppose A,B ¢ X and N is an ε-Whitney net in B with

respect to A, for some ε ∈ (0, 1). For any x ∈ B \A, there exists u ∈ N such

that d(x, u) f ε′ d(x,A), where ε′ := ε/(1− ε).

Proof. Let x ∈ A\B. If x ∈ N , the conclusion holds trivially with u = x.
Otherwise, the maximality of N implies that there exists u ∈ N such that

d(x, u) < ε ·max {d(x,A), d(u,A)}.

If d(x,A) g d(u,A), then we are done. If not, then we have

d(u,A) f d(x, u) + d(x,A) < ε · d(u,A) + d(x,A),

and so

d(u,A) <
1

1− ε
d(x,A).

It follows that d(x, u) < ε′d(x,A), where ε′ := ε/(1− ε).
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We will also make frequent use of the notion of a metric quotient, both
in our study of Lipschitz free spaces and of Lipschitz dimension.

Definition 2.3. Given a metric space (X, d) and a closed subset E ¢ X,
the metric quotient (X/E, Ä) is defined as the quotient space X/∼, where
x ∼ y if and only if x, y ∈ E or x = y, and the distance Ä is defined by

Ä([a], [b]) := min {d(a, b), d(a,E) + d(b, E)}.

Here we write [a] to denote the equivalence class of the point a ∈ X. Given
a subset A ¢ X, we write [A] := {[a] | a ∈ A} ¢ X/E.

Remark 2.4. One can easily verify that the quotient map Ã : X →
X/E satisfies the following universal property: a map f : X/E → Y into
a metric space is Lipschitz if and only if f ◦ Ã : X → Y is Lipschitz, and
Lip(f) = Lip(f ◦Ã). It follows from this that LipE(X) is isometrically weak∗-
isomorphic to Lip0(X/E).

The proof of the following lemma, while a bit tedious, is a straightforward
consequence of the relevant definitions. For the sake of brevity, we omit the
details.

Lemma 2.5. Suppose Z is a metric space and X ¢ Y ¢ Z are closed.

Then the natural identification between Z/Y and (Z/X)/(Y/X) is an isom-

etry.

3. Lipschitz functions on unions and quotients of metric spaces.

We say that a metric space X has Nagata dimension n ∈ N with constant

µ < ∞ if, for every s > 0, there exists a cover C of X such that diam(C) f
µ · s for every C ∈ C and, for every A ¢ X with diam(A) f s, we have
|{C ∈ C | C ∩ A ̸= ∅}| f n + 1. If such n and µ exist, we say that X has
finite Nagata dimension.

See [LS05, Definition 1.1] along with references for more on the theory of
Nagata dimension. For our purposes, it suffices to record relevant examples
that will be used throughout our paper. Recall that a metric space X is
D-doubling if every metric ball in X of radius r can be covered by at most
D metric balls in X of radius r/2. Recall that an ultrametric space (X, d) is
one in which d(x, z) f max {d(x, y), d(y, z)} for all x, y, z ∈ X.

We will make use of the following facts.

Lemma 3.1.

• D-doubling spaces have Nagata dimension n with constant µ, where n de-

pends on D and µ is universal [LS05, Lemma 2.3].
• Ultrametric spaces have Nagata dimension 0 with constant 1 (take the

cover C of all balls of radius s).
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• Finite unions of spaces with finite Nagata dimension have finite Nagata

dimension [LS05, Proposition 2.7].
• A space admitting an L-bi-Lipschitz embedding into a space with Nagata

dimension n with constant µ has Nagata dimension n with constant µ′,
where µ′ depends only on µ and L [LS05, Lemma 2.1].

The next lemma highlights the most important consequence (for our
purposes) of a space having finite Nagata dimension, and any assumption of
finite Nagata dimension in what follows is used only through this lemma.

Lemma 3.2. Suppose Z is a metric space and X ¢ Z is a closed subset

with finite Nagata dimension. Then there exists a weak∗-weak∗-continuous L-

bounded linear extension operator E : Lip0(X) → Lip0(Z), where L depends

only on the Nagata dimension n and constant µ of X. Moreover, F(Z) ≈
F(X)·F(Z/X), where the isomorphism constant depends only on L.

Proof. Since X has finite Nagata dimension, [NS11, Corollary 5.2] implies
that there exists an L-Lipschitz map Z → F(X) that restricts to the identity
on X, where L depends only on n and µ. Then by the universal property
of Lipschitz free spaces, we get an L-bounded linear map F(Z) → F(X)
that restricts to the identity on F(X). Dualizing, we get a weak∗-weak∗-
continuous L-bounded linear extension operator E : Lip0(X) → Lip0(Z).
This proves the first statement. The isomorphism F(Z) ≈ F(X)·F(Z/X)
then follows from [Kau15, Lemma 2.2], with the isomorphism constant de-
pending only on L.

The next two lemmas establish bi-Lipschitz equivalences of spaces involv-
ing Whitney nets that will prove useful in the proof of Theorem 3.5.

Lemma 3.3. For every separable metric space Z, closed subset X ¢ Z,

and ε-Whitney net N in Z with respect to X, the metric quotient (X∪N)/X
is bi-Lipschitz equivalent to an ultrametric space and F((X∪N)/X) ≈ ℓ1(S)
for some countable indexing set S.

Proof. Let [n1], [n2] ∈ (X ∪N)/X. Then

Ä([n1], [n2]) = min {d(n1, n2), d(n1, X) + d(n2, X)},

and hence by definition of Whitney nets we get

2max {d(n1, X), d(n2, X)} g Ä([n1], [n2]) g ε ·max {d(n1, X), d(n2, X)}.

It is obvious that the assignment ([n1], [n2]) 7→ max {d(n1, X), d(n2, X)}
defines an ultrametric on (X ∪ N)/X, and hence the previous inequalities
prove the desired bi-Lipschitz equivalence. The second statement follows
from [CD16, Theorem 2].

Lemma 3.4. Let Z be a metric space and X,Y ¢ Z closed subsets. Given

ε ∈ (0, 1/2] and any ε-Whitney net N in Y with respect to X, the identity
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map

id :
Y

Y ∩ (X ∪N)
→

X ∪ Y

X ∪N

is a surjective isometry.

Proof. That id is well-defined and 1-Lipschitz is clear. That id is surjec-
tive follows from the fact that N ¢ Y . That id is 1-co-Lipschitz follows from
Lemma 2.2 and the assumption that ε f 1/2.

We arrive at our first main result on free spaces over unions. It plays a
major role in the proof of Theorem B.

Theorem 3.5. Let Z be a separable metric space and X,Y ¢ Z closed

subsets. If |X| = ∞ and X,Y have finite Nagata dimensions, then there

exists a closed subset F ¢ Y such that F(X ∪ Y ) ≈ F(X)·F(Y/F ).

Proof. Let N be a 1
2 -Whitney net in Y with respect to X. Since ultra-

metric spaces have Nagata dimension 0 and Nagata dimension is preserved
under bi-Lipschitz homeomorphisms (see Lemma 3.1), Lemma 3.3 implies
that (X ∪N)/X has finite Nagata dimension (and thus we may later apply
Lemma 3.2). Since |X| = ∞, there exists a Banach space W such that

F(X) ≈ W · ℓ1

by [CDW16, Theorem 1.1(i)]. By Lemma 3.3, there is a countable set S such
that

F((X ∪N)/X) ≈ ℓ1(S).

Therefore,

ℓ1 · ℓ1(S) ≈ ℓ1.

Combining these three isomorphisms yields

F(X)·F((X ∪N)/X) ≈ F(X)· ℓ1(S)(3.1)

≈ W · ℓ1 · ℓ1(S) ≈ W · ℓ1 ≈ F(X).

Then we have

F(X ∪ Y )
Lem. 3.2
≈ F(X)·F

(
X ∪ Y

X

)

Lems. 3.2, 2.5

≈ F(X)·F

(
X ∪N

X

)
·F

(
X ∪ Y

X ∪N

)

(3.1),Lem. 3.4

≈ F(X)·F

(
Y

Y ∩ (X ∪N)

)
.

In order to proceed towards proving Theorem A (via Corollary 3.8), we
require the following version of the Pełczyński decomposition method. We
include the proof for the convenience of the reader.
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Lemma 3.6. Suppose that V is a Banach space isomorphic to the count-

ably infinite ℓ1-direct sum of itself (e.g. V = L1 or ℓ1) and that W is a direct

summand of V . Then V ≈ W · V .

Proof. Let U be a Banach space such that V ≈ U ·W . Then we have

W · V ≈ W · (V · V · V · · · · )

≈ W · ((U ·W )· (U ·W )· (U ·W )· · · · )

≈ W · (U · (W · U)· (W · U)· · · · )

≈ (W · U)· (W · U)· (W · U)· · · ·

≈ V · V · V · · · · ≈ V.

The next general result is a corollary of Theorem 3.5 and Lemma 3.6.

Corollary 3.7. Let Z be a separable metric space and X,Y ¢ Z closed

subsets. Suppose that the following hold:

• X and Y have finite Nagata dimensions.

• F(X) is isomorphic to the ℓ1-sum
⊕1

i∈NF(X).
• F(Y ) is isomorphic to a direct summand of F(X).

Then F(X ∪ Y ) ≈ F(X).

Proof. Our assumptions obviously imply that |X| = ∞, and thus the
hypotheses of Theorem 3.5 are met. By that theorem, there exists a closed
subset F ¢ Y such that F(X ∪ Y ) ≈ F(X) · F(Y/F ). By Lemma 3.2,
F(Y ) ≈ F(F ) · F(Y/F ), showing that F(Y/F ) is a direct summand of
F(Y ), and thus a direct summand of F(X) by assumption. Then by the
Pełczyński decomposition method (Lemma 3.6),

F(X ∪ Y ) ≈ F(X)·F(Y/F ) ≈ F(X).

We finally arrive at our corollary equivalent to Theorem A. The proof
will use standard Banach-space-theoretical facts about L1-spaces. The reader
may consult [JL01, AO01] for references.

Corollary 3.8. Let Z be a separable metric space and X,Y ¢ Z closed

subsets. If X,Y have finite Nagata dimensions and if F(X),F(Y ) are iso-

morphic to L1-spaces, then F(X ∪ Y ) is isomorphic to an L1-space.

Proof. If one of |X|, |Y | is finite, then the conclusion is obvious. Hence,
we may assume |X|, |Y | = ∞. Since Z is separable, so are X,Y , and thus
F(X),F(Y ) are isomorphic to separable, infinite-dimensional L1-spaces.
There are two cases to consider: (i) at least one of F(X),F(Y ) is iso-
morphic to L1([0, 1]), and (ii) F(X) ≈ F(Y ) ≈ ℓ1. In case (i), if we
assume without loss of generality that F(X) ≈ L1([0, 1]), then F(Y ) is
a direct summand of F(X). In case (ii), obviously F(Y ) is also a direct
summand of F(X). In all cases, we may assume without loss of generality
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that F(Y ) is a direct summand of F(X) and that F(X) ≈
⊕1

i∈NF(X).
Thus, the hypotheses of Corollary 3.7 are met, and the conclusion fol-
lows.

Next, we have another corollary identifying the isomorphism type of
unions of spaces that admit bi-Lipschitz embeddings into a special class of
metric spaces. Let M be a metric space. We say that M is self-similar if there
exists a constant R > 1 and a bijection f : M → M with d(f(x), f(y)) =
Rd(x, y) for all x, y ∈ M and f(x0) = x0, and we say that M is bi-Lipschitz

homogeneous if for all x, y ∈ M , there exists a bi-Lipschitz homeomorphism
f : M → M with f(x) = y. Examples of self-similar, doubling, bi-Lipschitz
homogeneous metric spaces include Rn and Carnot groups (see [AACD21,
p. 7306], [LD17]).

Corollary 3.9. Let Z be a complete metric space and M a self-similar,

doubling, bi-Lipschitz homogeneous metric space. Suppose X0, X1, . . . , Xk

¢ Z are closed subsets such that each Xi admits a bi-Lipschitz embedding ϕi

into M and ϕ0(X0) has nonempty interior. Then F(
⋃k

i=0Xi) ≈ F(M).

Proof. The proof is by induction on k. The base case k = 0 holds by
[AACD21, Corollary 5.6]. Suppose that the conclusion holds for some k g 0.
Let X0, X1, . . . , Xk, Xk+1 ¢ Z be a collection of subsets satisfying the hy-

potheses of the corollary. Set X :=
⋃k

i=0Xi and Y := Xk+1. By the inductive

hypothesis, F(X) ≈ F(M), and thus F(X) ≈
⊕1

i∈NF(X) by [AACD21,
Corollaries 5.5, 5.6]. Since Y bi-Lipschitzly embeds into M , Lemma 3.2 im-
plies that F(Y ) is a direct summand of F(X). Hence, the hypotheses of

Corollary 3.7 are satisfied, and therefore F(
⋃k+1

i=0 Xi) = F(X ∪ Y ) ≈ F(X)
≈ F(M).

We conclude this section with an analogous result for metric quotients.
Recall that a metric space X is purely 1-unrectifiable if for every subset
A ¢ R and Lipschitz map f : A → X, we have H1(f(A)) = 0, where H1 de-
notes 1-dimensional Hausdorff measure. Equivalently, there is no bi-Lipschitz
embedding A → X where A ¢ R has positive Lebesgue measure (see, for
example, [AGPP22, Lemma 1.11] for a discussion of this equivalence).

Theorem 3.10. Let X be an infinite, separable, complete metric space

and M ¢ X a closed subset with finite Nagata dimension. Suppose F(X) is

isomorphic to an L1-space. If X is purely 1-unrectifiable, then F(X/M) ≈
ℓ1(S) for some countable set S, and if H1(f(A)\M) > 0 for some Lipschitz

f : R £ A → X, then F(X/M) ≈ L1([0, 1]).

Proof. By Lemma 3.2, F(X) ≈ F(M)·F(X/M). Then either F(X) ≈
ℓ1 or F(X) ≈ L1([0, 1]). By [AGPP22, Theorem C], the first case happens ex-
actly when X is purely 1-unrectifiable. If |X/M | < ∞, then we trivially have
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F(X/M) ≈ ℓ1(F ) for some finite set F , so we may assume that |X/M | = ∞.
In this case, F(X/M) is isomorphic to ℓ1 by [AO01, Theorem 15]. Assume
we are in the second case where H1(f(A) \ M) > 0 for some Lipschitz
f : R £ A → X. Then neither X nor X/M is purely 1-unrectifiable, and
so F(X) ≈ L1([0, 1]) and X/M contains a bi-Lipschitz copy of a positive
measure subset of R, which implies F(X/M) contains an isomorphic copy
of L1([0, 1]) by [God10, Corollary 3.4] (see also [AGPP22, Theorem C]). In
this case, we get F(X/M) ≈ L1([0, 1]) by [AO01, p. 129].

In light of Theorem C, we note the following corollary. In the statement, an
R-tree is a complete metric space (T, d) such that any two points x, y ∈ T are
the endpoints of a unique Jordan arc, and this arc is isometric to the interval
[0, d(x, y)] (in other words, it is a geodesic). Thus, R-trees are 1-bounded
turning, but, in contrast to QC trees (see Section 4 for these definitions),
R-trees need not be doubling, or even proper.

Corollary 3.11. Suppose T is a separable R-tree containing more than

one point, and M ª T is a closed subset not equal to T . Then F(T/M) ≈
L1([0, 1]).

Proof. By [God10, Corollary 3.3], F(T ) is isomorphic to an L1-space,
and by [LS05, Theorem 3.2], the Nagata dimension of T is 1 (in particular,
it is finite). Furthermore, T \ M is a nonempty open subset, and hence it
contains an isometric copy of some sufficiently small interval (a, b) ¢ R. The
conclusion follows from Theorem 3.10.

4. Lipschitz functions on unions and quotients of QC trees. To-
ward a proof of Theorem B that does not rely upon the Pełczyński decom-
position method, we define relevant terminology and prove auxiliary results
over the course of the next few subsections.

4.1. Metric geometry of QC trees. Given B g 1, a metric space X
is B-bounded turning provided that any pair of points u, v ∈ X is contained
in some compact and connected set E ¢ X such that diam(E) f Bd(u, v).

A Jordan arc is a homeomorphic image of the unit interval [0, 1]. A metric
space T is a tree if it is compact, connected, locally connected, and every
pair of distinct points in T forms the endpoints of a unique Jordan arc in T .
Note that, given this definition, any tree is separable. Given a tree T , the
leaves L(T ) are the points p ∈ T such that T \ {p} remains connected. The
branch points B(T ) are the points p ∈ T such that T \ {p} consists of at
least three connected components. Note that a Jordan arc is a tree with no
branch points and exactly two leaves.

We are now ready to define the following key terms.
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Definition 4.1. A metric space µ is a quasiconformal (QC ) arc if it is
a bounded turning and doubling Jordan arc.

The reader may object to this terminology in light of the fact that QC
arcs are more commonly referred to as quasi-arcs. However, for the purposes
of this paper, we employ this terminology in order to align with that of the
following definition as found in [BM20].

Definition 4.2. A metric space T is a quasiconformal (QC ) tree if it
is a bounded turning and doubling tree. If T is C-bounded turning and
D-doubling, then we say that T is a (C,D)-QC tree.

The following result is a consequence of [BM20, Lemma 2.5].

Lemma 4.3. If (T, d) is a C-bounded turning tree, then there exists a

distance d′ such that (T, d′) is 1-bounded turning and 1
C
d′ f d f d′.

Next, we embark on a study of the set B(T ) of branch points of a given
tree T and the relationship of this set with the set L(T ) of leaves. This study
culminates in Theorem 4.17, which provides a key ingredient in our proofs
of Theorems B and C.

Lemma 4.4. Let T be a tree, and E a closed subset of T .

(i) There are countably many components of T \ E.

(ii) For any ε > 0, there are at most finitely many components of T \E of

diameter at least ε.
(iii) Two points x, y ∈ T \E are contained in the same component of T \E

if and only if [x, y] ¢ T \ E.

(iv) If U is a component of T \E, then the closure U is a subtree of T with

∂U ¢ ∂U ¢ E.

(v) If E is a single point of T , then each component of T \ E contains a

leaf of T .

Proof. These assertions follow from [BM20, Lemma 2.3(i, ii)] and other
facts noted in [BM20, pp. 260–261].

Lemma 4.5. Suppose x1, x2, x3 are three distinct points in a tree T . If

xi ̸∈ [xj , xk] for i ̸∈ {j, k}, then the union [x1, x2] ∪ [x1, x3] ∪ [x2, x3] is a

tree containing exactly one branch point given by the singleton contained in

[x1, x2] ∩ [x1, x3] ∩ [x2, x3].

Proof. This follows from Lemma 4.4 and [BM20, Lemma 2.4]. We leave
the straightforward details to the reader.

We note that Lemma 4.5 implies that any tree containing no branch
points and exactly two leaves is a Jordan arc.

Lemma 4.6. Suppose T is a tree, and {xi}i∈N ¢ T is a sequence of points

converging to x ∈ T . Then diam([xi, x]) → 0 as i → ∞.
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Proof. Since T is locally connected, for any ε > 0, there exists an open
and connected neighborhood U ¢ B(x; ε) ¢ T containing x. For large
enough i, we have xi ∈ U . Since U is open and connected in T , it is arc-
connected (see [Nad92, Theorem 8.26]). It follows from the uniqueness of
arcs in T that [xi, x] ¢ U , and so the diameter of [xi, x] is less than 2ε. The
lemma follows.

Definition 4.7. Given a tree T and a subset M ¢ L(T ), the convex hull

of M in T is defined as hull(M) =
⋃

a,b∈M [a, b].

Lemma 4.8. Given a tree T , if M ¢ L(T ) is closed in T , then hull(M)
¢ T is a subtree of T and L(hull(M)) = M .

Proof. We first prove that hull(M) is closed. Suppose a sequence of points
{xi}i∈N ¢ hull(M) converges to some point x ∈ T . For each i ∈ N, there
exist points ai, bi ∈ M such that xi ∈ [ai, bi]. Since M is compact, (up to a
subsequence) we can assume there exist points a, b ∈ M such that ai → a
and bi → b as i → ∞. If a = b, then it follows from Lemma 4.6 that
xi → a = x ∈ hull(M).

Thus we assume a ̸= b. If ai = a and/or bi = b for all sufficiently
large i, then our argument simplifies. Thus we assume ai ̸= a and bi ̸= b
for all i. Via Lemma 4.5, this gives rise to points a′i, b

′
i ∈ [a, b] such that

a′i := [a, b]∩ [a, ai]∩ [ai, b] and b′i := [a, b]∩ [a, bi]∩ [bi, b]. Lemma 4.6 implies
that the diameters of [ai, a

′
i] ¢ [ai, a] and [bi, b

′
i] ¢ [bi, b] tend to 0 as i → ∞.

Note that [ai, bi] ¢ [ai, a
′
i] ∪ [a′i, b

′
i] ∪ [b′i, bi]. If there exist arbitrarily large i

such that xi ̸∈ [a′i, b
′
i], then it follows that x ∈ {a, b} ¢ hull(M). On the

other hand, if xi ∈ [a′i, b
′
i] ¢ [a, b] for all sufficiently large i, then it follows

that x ∈ [a, b] ¢ hull(M). In either case, we conclude that x ∈ hull(M) and
so hull(M) is closed in T .

Next, we prove that hull(T ) is (arcwise) connected. Since any closed and
connected subset of T is a subtree (see [BT21, Lemma 3.3]), this will suffice
to prove that hull(M) is a subtree of T . Let x, y ∈ hull(T ). By definition,
there exists {ax, bx, ay, by} ¢ M such that x ∈ [ax, bx] and y ∈ [ay, by]. Order
[x, y] from x to y. Write x′ to denote the last point of [x, y] in [ax, bx] and
write y′ to denote the first point of [x, y] in [ay, by]. Here we allow for the
possibilities that x′ = x, y′ = y, or x′ = y′. In any case,

hull(M) £ [ax, ay] = [ax, x
′] ∪ [x′, y′] ∪ [y′, ay],

and so

[x, y] = [x, x′] ∪ [x′, y′] ∪ [y′, y] ¢ hull(M).

To finish the proof of the lemma, we show that L(hull(M)) = M . First,
we note that [BM22, Lemma 3.2(2)] implies that M ¢ L(hull(M)). Next,
given p ∈ L(hull(M)), there exist points a, b ∈ M such that p ∈ [a, b] ¢
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hull(M). If p ̸∈ {a, b}, then Lemma 4.4(iii) implies that p ̸∈ [a, b]. This
contradiction implies p ∈ M . It follows that L(hull(M)) = M .

Lemma 4.9. Suppose T is a 1-bounded turning tree. Given u, v ∈ B(T ),
if d([u, v],L(T )) > ε, then there exist pairwise disjoint arcs {¼j}j∈J =
{[aj , bj ]}j∈J such that, for any i, j ∈ J , we have

(1) diam(¼j) = ε,
(2) ¼j ∩ [u, v] = {aj} ∈ B(T ), and

(3) ε f d(bi, bj) f 2ε+ diam([u, v]).

Furthermore, |J | = |B(T ) ∩ [u, v]|.

Proof. Let {aj}j∈J := B(T ) ∩ [u, v]. By [BM20, Proposition 2.2] and
[Nad92, Theorem 10.23], the index set J is countable. For each j ∈ J , choose
a component Γj of T \ {aj} that is disjoint from [u, v]. Such a component
exists because aj ∈ B is a branch point. It is easy to verify that the sets
{[u, v], Γj}j∈J are pairwise disjoint. Of course, any component of the com-
plement of a point in a compact tree must contain a leaf (Lemma 4.4(v)),
and thus Γj ∩ L(T ) ̸= ∅ for all j ∈ J . This implies

sup
p∈Γj

d(aj , p) g d(aj ,L(T )) > ε,

where in the last inequality we have used the fact that aj ∈ [u, v], and the
assumption that d([u, v],L(T )) > ε. Since each Γj is connected, we may use
the intermediate value theorem and find bj ∈ Γj such that d(aj , bj) = ε.
Next observe that [bj , aj ] ∪ [aj , ai] ∪ [ai, bi] is the unique arc from bj to bi
for any i ̸= j in J . This is true because the sets {[u, v], Γj}j∈J are pairwise
disjoint, [bj , aj) ¢ Γj , and [aj , ai] ¢ [u, v]. Thus, using the 1-bounded turning
property again and the triangle inequality, we deduce that

ε f d(bi, bj) f 2ε+ d(u, v) = 2ε+ diam([u, v])

for all i ̸= j in J . If we set ¼j := [aj , bj ], the conclusions of the lemma
follow.

The following lemma is a restatement of [ACPCS01, Proposition 3.4].

Lemma 4.10. Suppose T is a tree such that L(T ) is closed in T . Then the

accumulation points of B(T ) are contained in L(T ), and thus L(T ) ∪ B(T )
is closed in T .

By [BM20, Proposition 2.2] and [Nad92, Theorem 10.23], the set B(T )
is countable for any tree T . This implies that B(T ) is totally disconnected.
The following concepts allow us to quantify the disconnectivity.

Definition 4.11. Given ³ ∈ (0, 1], a finite sequence {xi}i∈I of points in
a metric space X is said to be a relative ³-chain if, for each i < max(I) < ∞,
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we have d(xi, xi+1) f ³ · d(x0, xmax(I)). A relative ³-chain is nondegenerate

if its endpoints are distinct.

Definition 4.12. A metric space X is said to be ³-uniformly discon-

nected if X contains no nondegenerate relative ³-chains.

Remark 4.13. We concede that our use of the adjective relative in the
above definition is a bit non-standard. However, we include this modifier in
order to distinguish Definition 4.12 from Definition 5.1 below.

Remark 4.14. It is immediate from the definition and the triangle in-
equality that any nondegenerate relative ³-chain {xi}i∈I in any metric space
satisfies 1

α
f |I| − 1.

Lemma 4.15. Let (X, d) be a metric space. Let B,E ¢ X with E closed,

and ³ ∈
(
0, 18

]
. If there exists a nondegenerate relative ³-chain contained in

[B∪E] ¢ X/E, then there exists a nondegenerate relative 8³-chain {wj}j∈J
contained in B ¢ X with d(w0, E) > 2d(w0, wmax(J)).

Proof. Assume that there exist [x] ̸= [y] ∈ [B∪E] and {[zi]}i∈I ¢ [B∪E]
an ³-chain from [x] to [y]. Without loss of generality, we may assume that
Ä([x], [E]) g Ä([y], [E]) and [zi] ̸= [zj ] for all i ̸= j ∈ I, and therefore

(4.1) Ä([x], [E]) g 1
2Ä([x], [y]).

From here we consider two cases: the set
{
i ∈ I | Ä([x], [zi]) g

1
2Ä([x], [E])

}

is empty or is nonempty. Suppose the first case holds. Then the triangle
inequality implies Ä([zi], [zj ]) < Ä([x], [E]) and Ä([zi], [E]) > 1

2Ä([x], [E]) for
all i, j ∈ I, which in turn implies

max
i,j∈I

Ä([zi], [zj ]) < 2min
i∈I

Ä([zi], [E]).

This inequality together with the definition of Ä can be seen to imply that
Ä([zi], [zj ]) = d(zi, zj) for all i, j ∈ I. Then the conclusion follows in this case
with {wj}j∈J = {zi}i∈I .

Now assume that we are in the second case. Set i∗ := min {i ∈ I |
Ä([x], [zi]) g 1

2Ä([x], [E])}. As before, we see that Ä([zi], [zj ]) = d(zi, zj) for

all i, j < i∗. Set {wj}j∈J := {zi}
i∗−1
i=0 . It remains to show that {wj}i∈J is a

nondegenerate relative 8³-chain. First we estimate d(w0, wmax(J)):

d(w0, wmax(J)) = Ä([x], [zi∗−1]) g Ä([x], [zi∗ ])− Ä([zi∗−1], [zi∗ ])(4.2)

g 1
2Ä([x], [E])− ³Ä([x], [y])

(4.1)

g 1
4Ä([x], [y])−

1
8Ä([x], [y]) =

1
8Ä([x], [y]).

Note that this proves the nondegeneracy of {wj}i∈J . Then, for all j<max(J),
we have

d(wj , wj+1) = Ä([zj ], [zj+1]) f ³Ä([x], [y])
(4.2)

f 8³d(w0, wmax(J)).
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Lemma 4.16. Let T be a 1-bounded turning tree, u, v ∈ T , and ³ ∈ (0, 1).
If there exists an ³-chain {xi}i∈I from u to v, then there exists an ³-chain

{x′i}i∈I from u to v contained in [u, v]. Furthermore, if {xi}i∈I ¢ B(T ), then

{x′i}i∈I ¢ B(T ).

Proof. Let (xi)i∈I be an ³-chain of branch points in T from u to v. The
idea is to project the chain onto [u, v] via a 1-Lipschitz retraction g : T →
[u, v] with the help of Lemma 4.5. We define the retraction with four cases:

g(x) :=





x if x ∈ [u, v],

u if u ∈ [x, v],

v if v ∈ [u, x],

[u, v] ∩ [x, v] ∩ [u, x] otherwise.

Note that g is well-defined by Lemma 4.5 by interpreting [u, v]∩ [x, v]∩ [u, x]
as the unique point in that singleton set (and not the singleton set itself).
Note also that by Lemma 4.5, g(x) is a branch point whenever x, u, v are
branch points. Once we show that g is 1-Lipschitz, the chain {g(xi)}i∈I wit-
nesses the conclusion. Let x, y ∈ T . We check two cases: [x, y]∩[u, v] is empty
or nonempty. In the first case, we have g(x) = g(y), and so the 1-Lipschitz
condition is trivially satisfied. In the second case, we have [g(x), g(y)] ¢ [x, y],
and so the 1-bounded turning assumption verifies the 1-Lipschitz condition.

Theorem 4.17. Let T be a (1, D)-QC tree with branch set B and leaf

set L. Then [B ∪ L] is 1
8D3 -uniformly disconnected in T/L.

Proof. Assume that the conclusion is false, so that there exists a non-
degenerate relative 1

8D3 -chain in [B ∪ L]. Then by Lemma 4.15, there exists

a nondegenerate relative 1
D3 -chain {wj}j∈J contained in B with d(u, L) >

2d(u, v), where u, v are the endpoints of the chain. By the triangle inequality,
d([u, v], L) > d(u, v). By Lemma 4.16, we may assume that {wj}j∈J ¢ [u, v].
By Lemma 4.9, we obtain a collection of points {bi}i∈I such that, for all
i ̸= i′ ∈ I, we have d(u, v) f d(bi, bi′) f 3d(u, v). This upper bound im-
plies that {bi}i∈I is contained in a ball of radius 3d(u, v). Thus, by the
D-doubling property, {bi}i∈I is contained in the union of at most D3 balls of
radii 3

8d(u, v). The lower bound d(u, v) f d(bi, bi′) implies that each of these
balls contains at most one bi, and thus |I| f D3. But by Remark 4.14, we
have D3 f |J | − 1 f |I| − 1, a contradiction.

4.2. Proof of Theorem C. Having established Theorem 4.17, we now
turn to the study of Lipschitz functions on metric quotients of trees. This
study will culminate in the proof of Theorem 4.22, which immediately yields
a proof of Theorem C. We begin with the following definition.
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Definition 4.18. Given a collection {(Xi, di, pi)}i∈I of pointed metric
spaces, the sum

∐
i∈I(Xi, pi) is the pointed metric space defined by the

disjoint union of {Xi}i∈I with basepoint e given by the identification of
basepoints {pi}i∈I . Furthermore, given (a, b) ∈ Xi × Xj , the distance Ã is
defined by

Ã(a, b) :=

{
di(a, b) if i = j,

di(a, pi) + dj(b, pj) if i ̸= j.

Lemma 4.19. Let T denote a 1-bounded turning tree and M ¢ T a closed

subset. The space T/M is 2-bi-Lipschitz equivalent to
∐

i∈I(Ti/Mi, [Mi]).
Here {Ti}i∈I denotes the closures of the countably many connected compo-

nents of T \M , and, for each i ∈ I, we write Mi := Ti ∩M .

Proof. We first note that {Ti}i∈I is countable by Lemma 4.4(i). Fur-
thermore, there is a natural identification of

∐
i∈I(Ti/Mi, [Mi]) with T/M

as sets. Note that p := [M ] ¢ T/M corresponds to the basepoint e of∐
i∈I(Ti/Mi, [Mi]) via this identification.
Given x, y ∈ T/M , we first suppose y = p. In this case, it is easy to see

that Ä(x, p) = Ã(x, e). Therefore, suppose x, y ∈ T/M \ {p}. Let Tj and Tk

denote the components of T \M containing x and y, respectively. If Tj = Tk,
then, since T is 1-bounded turning, Lemma 4.4(iii, iv) implies that

Ä(x, y) = min {d(x, y), d(x,M) + d(y,M)}

= min {d(x, y), d(x,Mi) + d(y,Mi)} = Ã(x, y).

If Tj ̸= Tk, then Lemma 4.4 implies that [x, y] ∩ M ̸= ∅. In particular,
[x, y] ∩Mj ̸= ∅ ≠ [x, y] ∩Mk. Since T is 1-bounded turning,

(4.3) d(x, y) g max {d(x,Mj), d(y,Mk)} g 1
2(d(x,Mj) + d(y,Mk)).

We deduce from (4.3) and Lemma 4.4(iii)(iv) that
1
2Ã(x, y) f Ä(x, y) f Ã(x, y).

The desired conclusion follows.

Definition 4.20. Given C,D g 1, a (C,D)-QC wreath is the quotient
of a (C,D)-QC tree by a two-point subset of L(T ).

Lemma 4.21. Let T be a (1, D)-QC tree and M ¢ L(T ) be closed in T .

Let S = hull(M) and B = B(S). Then T/(B∪M) is 2-bi-Lipschitz equivalent

to a sum
∐

i∈I(Xi, pi), where I is countable and each Xi is either a (1, D)-QC

tree or a (1, D)-QC wreath.

Proof. It follows from Lemmas 4.10 and 4.4(i) that S \ (B ∪ M) is a
collection of countably many pairwise disjoint open arcs whose endpoints are
contained in B ∪M . We claim that each component of T \ (B ∪M) contains
at most one component of S \ (B ∪ M). Indeed, suppose a component of
T \ (B ∪ M) contains components S1 and S2 of S \ (B ∪ M). Given any
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x1 ∈ S1 and x2 ∈ S2, Lemma 4.4(iii) implies that [x1, x2] ¢ T \ (B ∪ M).
Since it is also true that [x1, x2] ¢ S\(B∪M), we again apply Lemma 4.4(iii)
to conclude S1 = S2.

Let T ′ denote the closure of a component of T \ (B ∪M). We consider
two cases.

Case 1: T ′ contains a component of S \ (B ∪M). Denote the closure of
this component of S \ (B∪M) by S′. By the first paragraph of the proof and
by Lemma 4.4(iv), there exist points s0, s1 ∈ B ∪M such that S′ = [s0, s1].
Again by Lemma 4.4(iv), the set T ′ is a subtree of T . We also note that the
points {s0, s1} are leaves of T ′. Indeed, (B ∪M) ∩ T ′ ¢ ∂T ′ ¢ L(T ′).

We claim that T ′ ∩ (B ∪M) = {s0, s1}. To see this, suppose there exists
a point x0 ∈ T ′ ∩ (B ∪ M) ¢ L(T ′) such that x0 is not an endpoint of S′.
Since s0, s1, and x0 are leaves of T ′, we have s0 ̸∈ [x0, s1], s1 ̸∈ [x0, s0], and
x0 ̸∈ [s0, s1]. By Lemma 4.5, the open arc (s0, s1) contains a branch point
of S. This contradicts the fact that (s0, s1)∩B = ∅. Therefore, we verify our
claim that T ′ ∩ (B ∪M) = {s0, s1} =: P ′. We conclude that the image of T ′

in the quotient T/(B ∪M) is the (1, D)-QC wreath T ′/P ′.

Case 2: T ′ does not contain any component of S \ (B ∪M). Then

(4.4) T ′ does not intersect any component of S \ (B ∪M).

We claim that T ′ intersects B∪M in exactly one point. Since T is connected,
this intersection is non-empty. If T ′ ∩ (B ∪M) contains points x0 ̸= x1, then
[x0, x1] ¢ S∩T ′. Since not every point of (x0, x1) can be a branch point of S
(see [Nad92, Theorem 10.23]), and (x0, x1) ∩M = ∅, it follows that (x0, x1)
intersects a component of S \ (B ∪ M). This contradicts (4.4). Therefore,
we verify our claim that P ′ := T ′ ∩ (B ∪M) contains exactly one point. We
conclude that the image of T ′ in T/(B ∪M) is the (1, D)-QC tree T ′/P ′.

Write {Ti}i∈I to denote the countable collection of the closures of con-
nected components of T \ (B ∪ M), and, for each i ∈ I, define Pi :=
Ti ∩ (B ∪ M). By Lemma 4.19, the quotient T/(B ∪ M) is 2-bi-Lipschitz
equivalent to

∐
i∈I(Ti/Pi, [Pi]). Cases 1 and 2 above confirm that each Ti/Pi

is either a (1, D)-QC wreath or a (1, D)-QC tree.

By taking preduals and appealing to Lemma 4.3, the following theorem
provides a proof of Theorem C.

Theorem 4.22. Suppose T is a (1, D)-QC tree. If M ¢ T is closed, then

Lip0(T/M) is weak∗-isomorphic to L∞(Z) for some measure space Z.

Proof. By Lemma 4.4, the closures of the (countably many) components
of T \M are (1, D)-QC trees {Ti}i∈I . Let Mi denote the subset of the leaves
of Ti that are contained in M . Note that Mi is closed in Ti, since M is closed
and Mi = Ti∩M . Lemma 4.19 implies that T/M is 2-bi-Lipschitz equivalent
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to the sum
∐

i∈I Ti/Mi. It then follows from [Wea18, Proposition 2.8(b)] that

(4.5) Lip0(T/M) ≈
⊕

i∈I

Lip0(Ti/Mi),

where the isomorphism constant is absolute (throughout this proof, “≈” de-
notes a weak∗-weak∗-continuous isomorphism between dual Banach spaces).

Let Si = hull(Mi) in Ti and write Bi to denote the branch points of Si.
Observe that, by Theorem 4.17, for each i ∈ I, the space [Bi∪Mi] ¢ Si/Mi ¢
Ti/Mi is 1

8D3 -uniformly disconnected. Then by [DS97, p. 161], the space
[Bi ∪Mi] is 8D3-bi-Lipschitz equivalent to an ultrametric space, and hence
has Nagata dimension 0 with constant depending only on D (and thus we
may apply Lemma 3.2). By Lemmas 4.8, 4.10, 2.5, 3.2, and Remark 2.4, for
each i ∈ I, we have

Lip0(Ti/Mi) ≈ Lip0([Bi ∪Mi])· Lip[Bi∪Mi](Ti/Mi)(4.6)

= Lip0([Bi ∪Mi])· Lip0(Ti/(Bi ∪Mi)).

Here the isomorphism constant depends only on the doubling constant D.

Lemma 4.21 tells us that Ti/(Bi ∪Mi) is 2-bi-Lipschitz equivalent to the
sum

∐
j∈Ji

Xi,j , where each Xi,j is either a (1, D)-tree or a (1, D)-wreath.
By [Wea18, Proposition 2.8(b)], we conclude that

(4.7) Lip0(Ti/(Bi ∪Mi)) ≈
⊕

j∈Ji

Lip0(Xi,j).

Again the isomorphism constant is absolute.

Suppose Xi,j is a wreath. By definition, for any i ∈ I and j ∈ Ji, there
exists a (1, D)-QC tree Ti,j and a two-point subset Pi,j ¢ L(Ti,j) such that
Xi,j = Ti,j/Pi,j . We may assume that Pi,j contains the basepoint xi,j ∈ Ti,j

at which all Lipschitz functions in Lip0(Ti,j) are zero. Hence, Lip0(Xi,j) is
a weak∗-closed subspace of Lip0(Ti,j) with codimension 1. By [FG23, Theo-
rem C], Lip0(Ti,j) ≈ L∞(Z ′

i,j) for some measure space Z ′
i,j with isomorphism

constant depending only on D. It follows that Lip0(Xi,j) ≈ L∞(Zi,j) for some
measure space Zi,j with isomorphism constant depending only on D.

Suppose now that Xi,j is a tree. In this case, then, again referencing
[FG23, Theorem C], we conclude that Lip0(Xi,j) ≈ L∞(Zi,j) for some mea-
sure space Zi,j with isomorphism constant depending only on D.

In either case, it now follows from (4.7) that, for some measure space Zi,
we have

(4.8) Lip0(Ti/(Bi ∪Mi)) ≈
⊕

j∈Ji

L∞(Zi,j) ≈ L∞(Zi),

where the isomorphism constants depend only on D.
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As observed earlier, each space [Bi ∪Mi] is 8D3-bi-Lipschitz equivalent
to an ultrametric space. It then follows from [CD16, Theorem 2] that

(4.9) Lip0([Bi ∪Mi]) ≈ ℓ∞(Si)

for some countable index set Si. Here the isomorphism constant again de-
pends only on D.

Since all relevant isomorphism constants depend only on the doubling
constant D, we conclude that

Lip0(T/M)
(4.5)

≈
⊕

i∈I

Lip0(Ti/Mi)

(4.6),Lem. 2.5

≈
⊕

i∈I

(
Lip0([Bi ∪Mi])· Lip0(Ti/(Bi ∪Mi))

)

(4.8)

≈
⊕

i∈I

(Lip0([Bi ∪Mi])· L∞(Zi))

(4.9)

≈
⊕

i∈I

(ℓ∞(Si)· L∞(Zi)) ≈ L∞(Z)

for some measure space Z.

4.3. Proof of Theorem B. Suppose the indexing set is I = {0, 1, . . . , k}.
We will prove the theorem by induction on k. For the base case, note that the
conclusion holds for T0 by [FG23, Theorem C]. Assume that the conclusion
holds for the union

X :=
⋃

i<k

Ti.

Thus the sets X,Y = Tk satisfy the assumptions of Theorem 3.5, and we
conclude that

F
(⋃

ifk

Ti

)
≈ F(X)·F(Tk/M)

for some closed M ¢ Tk. The inductive hypothesis and Theorem C imply

F
(⋃

ifk

Ti

)
≈ L1(Zk−1)· L1(Z ′

k) ≈ L1(Zk)

for some measure spaces Zk−1, Z ′
k and Zk. This completes the inductive

step.

5. Lipschitz light maps on unions and quotients of QC trees

5.1. Lipschitz light maps and Lipschitz dimension. We begin with
some terminology that underlies the concept of a Lipschitz light map.

Definition 5.1. Given ¶ > 0, we say that a finite sequence {ui}i∈I is a
¶-chain provided that, for each i < max(I), we have d(xi, xi+1) f ¶.
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A subset U of a metric space X is ¶-connected if every pair of points in U
is contained in a ¶-chain in U . A ¶-component of X is a maximal ¶-connected
subset of X.

Definition 5.2. A map f : X → Y between metric spaces is Lipschitz

light if there exist constants L,Q > 0 such that

(1) f is L-Lipschitz, and
(2) for every r > 0 and E ¢ Y such that diam(E) f r, the r-components of

f−1(E) have diameter at most Qr.

We say that such an f is L-Lipschitz and Q-light. A collection {fi}i∈I of
maps is said to be uniformly Lipschitz light if there exist L,Q > 0 such
that, for every i ∈ I, the map fi is L-Lipschitz and Q-light.

Remark 5.3. In [Dav21, Section 1.4], David points out that the above
definition of a Lipschitz light map is equivalent to the following for maps
into Euclidean space: There exist L,Q > 0 such that f is L-Lipschitz and,
for every bounded subset E ¢ Rd, the diam(E)-components of f−1(E) have
diameter at most Q · diam(E).

It is easy to check that f2 ◦ f1 is L1L2-Lipschitz L1Q1Q2-light whenever
f1 is L1-Lipschitz Q1-light and f2 is L2-Lipschitz Q2-light. We will use this
fact throughout.

Definition 5.4. A metric space X has Lipschitz dimension at most n, in
symbols dimL(X) f n, if there exists a Lipschitz light map f : X → Rn. The
Lipschitz dimension of X is the minimal such n, with the usual convention
that min ∅ = ∞.

A few reasons that Lipschitz dimension is of theoretical significance are
provided by the embedding results for spaces of Lipschitz dimension at
most 1 contained in [CK13] and certain nonembedding results for spaces
of infinite Lipschitz dimension that are contained in [Dav21].

5.2. Proof of Theorem D. We begin this section with two general
lemmas on Lipschitz light maps that will be used in the proof of Theorem D.

Lemma 5.5. Suppose X is a metric space, A,B ¢ X, ε ∈ (0, 1], and

N is an ε-Whitney net in B with respect to A. Let c ∈ (1,∞), and let

Ã : A∪N → A be any map satisfying d(u, Ã(u)) f c·d(u,A) for all u ∈ A∪N .

Then Ã is a (2c+ ε)/ε-Lipschitz (2c+ ε)/ε-light map.

Proof. First we note that, for all x, y ∈ A∪N , regardless of whether x, y
belong to A or N , the Whitney net inequality

(5.1) d(x, y) g ε ·max {d(x,A), d(y,A)}
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still holds. Then by this and the definition of Ã, we have

d(Ã(x), Ã(y)) f d(Ã(x), x) + d(x, y) + d(Ã(y), y) f

(
2c

ε
+ 1

)
d(x, y).

Therefore, Ã is (2c+ ε)/ε-Lipschitz.
To see that Ã is light, fix any ¶ > 0 and choose any E ¢ A such that

diam(E) f ¶. Let {zi}i∈I denote any ¶-chain in Ã−1(E) ¢ A∪N . We observe,
for any 1 f i f max(I), that

¶ g d(zi−1, zi)
(5.1)

g ε ·max {d(zi−1, A), d(zi, A)}.

Therefore, every point of {zi}i∈I is within distance ¶/ε of A. By the definition
of Ã, for all i, j ∈ I, we therefore obtain

d(zi, zj) f d(zi, Ã(zi)) + d(Ã(zi), Ã(zj)) + d(zj , Ã(zj))

f
2c¶

ε
+ d(Ã(zi), Ã(zj)) f

(
2c

ε
+ 1

)
¶,

where the final inequality follows from the fact that {Ã(zi), Ã(zj)} ¢ E and
diam(E) f ¶. This shows that Ã is (2c+ ε)/ε-light.

Lemma 5.6. Let f : X → Y be a map between metric spaces. If there

exist Q < ∞ and subsets A,B ¢ X such that X = A ∪ B, f |A is Q-light,

and f |B is Q-light, then f is (2Q(Q+ 2) + 1)-light.

Proof. Let Q,A,B be as above. Without loss of generality, we may as-
sume that A ∩ B = ∅. Let ¶ > 0, and choose E ¢ Y with diam(E) f ¶.
Let {xi}i∈I be a ¶-chain in f−1(E). We need to show that diam({xi}i∈I) f
(2Q(Q+2)+1)¶. We may assume, for our purposes, that x0, xmax(I) ∈ {xi}i∈I
are such that diam({xi}i∈I) = d(x0, xmax(I)). Partition I into I = IA ⊔ IB
such that {xi}i∈IA ¢ A and {xi}i∈IB ¢ B. Without loss of generality, we
may assume that

(5.2) diam({xi}i∈IA) g diam({xi}i∈IB ).

Obviously, this implies IA ̸= ∅. If IB = ∅, then we have diam({xi}i∈I) =
diam({xi}i∈IA) f Q¶ f (2Q(Q+ 2) + 1)¶ from the fact that f |A is Q-light,
and we are done. We may assume, then, that IB ̸= ∅. Since IA, IB ̸= ∅, there
must exist consecutive points xi′ , xi′+1 such that xi′ ∈ A and xi′+1 ∈ B, or
vice versa. If x0, xmax(I) ∈ A or x0, xmax(I) ∈ B, then (5.2) implies that

diam({xi}i∈I) = d(x0, xmax(I)) f diam({xi}i∈IA).

If x0 ∈ A and xmax(I) ∈ B (or vice versa), then (assuming without loss of
generality that x0, xi′ ∈ A and xmax(I), xi′+1 ∈ B) (5.2) implies that

diam({xi}i∈I) = d(x0, xmax(I)) f d(x0, xi′) + d(xi′ , xi′+1) + d(xi′+1, xmax(I))

f 2 diam({xi}i∈IA) + ¶.
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Hence, it suffices to prove

diam({xi}i∈IA) f Q(Q+ 2)¶.

Of course, since f |A is Q-light, this will follow if we can prove that {xi}i∈IA
is a (Q + 2)¶-chain. But this is easy to see: suppose xj , xj′ are consecutive
points in (xi)i∈IA . If j′ = j + 1, then d(xj , xj′) f ¶. If j′ g j + 2, then

the points {xi}
j′−1
i=j+1 form a ¶-chain in B. Therefore, the Q-lightness of f |B

implies that diam({xi}
j′−1
i=j+1) f Q¶. We conclude that

d(xj , xj′) f d(xj , xj+1) + d(xj+1, xj′−1) + d(xj′−1, xj′)

f ¶ +Q¶ + ¶ = (Q+ 2)¶.

We now proceed to focus more specifically on QC trees and arcs, rely-
ing heavily on results from [FG23] and [Fre22]. We will need the following
technical lemmas.

Lemma 5.7. Given a C-bounded turning Jordan arc µ, r g 0, and

{a, b} ¢ R such that 0 f |a − b| = r · diam(µ), there exists an L-Lipschitz

Q-light map f : µ → R such that f maps the endpoints of µ to a and b. The

constants L and Q depend only on C and max {1, r}.

Proof. This follows from the proof of [Fre22, Theorem 2.2]. While the
proof as written applies to bounded turning Jordan circles, the same con-
struction can be applied to bounded turning Jordan arcs.

By post-composing with a translation, it suffices to assume that a = 0.
Via the construction from [Fre22] (modified as indicated above), there exists
an L′-Lipschitz Q′-light map f : µ → R, where L′, Q′ depend only on C, such
that the endpoints of µ map to {0, diam(µ)}. First suppose r g 1. Then the
map r ·f is an L-Lipschitz Q-light map, where L,Q depend only on C and r,
sending the endpoints of µ to {0, r · diam(µ)} = {a, b}, which proves the
lemma in this case. Now assume that 0 f r f 1. Then we post-compose f
with the 1-Lipschitz 3-light map

x 7→

{
x, x f r+1

2 diam(µ),

(r + 1) diam(µ)− x, x g r+1
2 diam(µ),

producing an L-Lipschitz Q-light map, where L,Q depend only on C, sending
the endpoints of µ to {0, r · diam(µ)} = {a, b}.

Lemma 5.8. Given a ¶-chain {zk}k∈K in a 1-bounded turning tree T ,

every point of the arc [z0, zmax(K)] is within distance ¶ of the set {zk}k∈K .

Proof. Let w ∈ [z0, zmax(K)] be fixed. Write g : T → [z0, zmax(K)] to
denote the 1-Lipschitz retraction defined in the proof of Lemma 4.16. If
z0 = zmax(K), then w = zmax(K) ∈ {zk}k∈K . If z0 ̸= zmax(K), then orient
[z0, zmax(K)] from z0 to zmax(K). Choose k0 ∈ K to be the largest index such
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that g(zk) f w in [z0, zmax(K)] for all k f k0. If k0 = max(K), then

w = g(zmax(K)) = zmax(K) ∈ {zk}k∈K .

Suppose k0 < max(K). Then w ∈ [g(zk0), g(zk0+1)]. As argued in the proof of
Lemma 4.16, the fact that g(zk0) ̸= g(zk0+1) implies that [g(zk0), g(zk0+1)] ¢
[zk0 , zk0+1]. In particular, w ∈ [zk0 , zk0+1]. Therefore, the assumption that T
is 1-bounded turning implies that

d(w, zk0) f diam([zk0 , zk0+1]) = d(zk0 , zk0+1) f ¶.

In conclusion, whether or not z0 = zmax(K), we have d(w, {zk}k∈K) f ¶.

The following result is a version of Lemma 5.6 that is tailored to the
geometry of a bounded turning tree.

Lemma 5.9. Suppose that T is a C-bounded turning QC tree, and that

X ¢ T is closed. If there exists a map F : T → R that is L0-Lipschitz

Q0-light when restricted to X or the closure of any component of T \ X,

then F : T → R is L-Lipschitz Q-light. Here, L and Q are determined only

by C, L0, and Q0.

Proof. By Lemma 4.3, we may assume that T is 1-bounded turning.
Write {Ui}i∈I to denote the countably many connected components of T \X
(cf. Lemma 4.4). To see that F is L-Lipschitz (for some L depending only
on C and L0), let x, y ∈ T . If both x and y are in X, or both are in a
single Ui, then this is clear. Suppose x ∈ X and y ∈ Ui (for some i ∈ I). By
Lemma 4.4(iv), there exists a point z ∈ [x, y] ∩ (X ∩ U i). Then, since T is
1-bounded turning, we obtain

|F (x)− F (y)| f |F (x)− F (z)|+ |F (z)− F (y)| f 2L0d(x, y).

Finally, suppose x ∈ Ui and y ∈ Uj for some i ̸= j ∈ I. By Lemma 4.4(iv)
again, there exist zi ∈ [x, y] ∩ (X ∩ U i) and zj ∈ [x, y] ∩ (X ∩ U j). Then,
since T is 1-bounded turning, we obtain

|F (x)−F (y)| f |F (x)−F (zi)|+|F (zi)−F (zj)|+|F (zj)−F (y)| f 3L0d(x, y).

Thus F : T → R is L-Lipschitz with L = 3L0.
To see that F is Q-light (for some Q depending only on C, L0, and Q0),

fix ¶ > 0 and let E ¢ R be such that diam(E) f ¶. Let {xj}j∈J denote a
¶-chain in F−1(E). For our purposes, we may assume that

diam({xj}j∈J) = d(x0, xmax(J)).

Furthermore, by Lemma 4.16, we may assume {xj}j∈J ¢ [x0, xmax(J)]. In-
deed, since T is 1-bounded turning, we have

diam([x0, xmax(J)]) = d(x0, xmax(J)) = diam({xj}j∈J).

In order to simplify our argument below, we may also assume (without
affecting the diameter) that {xj}j∈J proceeds monotonically from x0 to
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xmax(J) along [x0, xmax(J)]. Since F is L-Lipschitz, Lemma 5.8 implies that

[x0, xmax(J)] ¢ F−1(E′), where E′ ¢ R is the set of points within distance
L¶ of E.

If [x0, xmax(J)] is contained in X, or in the closure of a single Ui, then
we are done (see [FG23, Lemma 5.9]). Assume this is not the case, and
let {(ak, bk)}k∈K denote the finitely many components of (x0, xmax(J)) \ X
containing at least one point of {xj}j∈J . Note that, by assumption,

(5.3) (x0, xmax(J)) ̸∈ {(ak, bk)}k∈K ̸= ∅.

For each k ∈ K, write Uik to denote the component of T \ X containing
(ak, bk). Since F is Q0-light on each closure U ik , it follows that

d(ak, bk) = diam([ak, bk]) f 3LQ0¶.

Here we use the facts that [ak, bk] ¢ F−1(E′) and diam(E′) f 3L¶.
Therefore, by replacing each subchain {xj}j∈J ∩ (ak, bk) with the points

{ak, bk}, we obtain a 3LQ0¶-chain {zj}j∈J ′ ¢ [x0, xmax(J)] from x0 to xmax(J).
We note that, by construction, all points of {zj}j∈J ′ are contained in X,
except possibly z0 = x0 and/or zmax(J ′) = xmax(J). Since F is Q0-light on X,

{zj}j∈J ′ ¢ F−1(E′), and diam(E′) f 3LQ0¶, we conclude that

diam({xj}j∈J) = d(x0, xmax(J)) = diam({zj}j∈J ′)

f diam({z1, . . . , zmax(J ′)−1}) + 6LQ0¶

f 3LQ2
0¶ + 6LQ0¶ f 9LQ2

0¶.

Here we are also using the fact that |J ′| g 2, which follows from (5.3). Set
Q = 9LQ2

0; we conclude that F : T → R is Q-light.

Lemma 5.10. Suppose T is a (C,D)-QC tree, and L(T ) is closed in T . If

there exists an L0-Lipschitz Q0-light map f : L(T ) → R, then f extends to

an L-Lipschitz Q-light map F : T → R, where L and Q depend only on C,

D, L0, and Q0.

Proof. By Lemma 4.3, we may assume that T is 1-bounded turning. By
Lemma 3.2, there exists an L′′-Lipschitz extension of f to L(T )∪B(T ), where
L′′ depends only on D and L0. Write G : L(T )∪B(T ) → R for this extension.
We claim that G is Q′′-light for Q′′ determined by C, D, L0, and Q0.

Before verifying our claim, we first explain how it implies the conclusion
of the lemma. To this end, we first note that T \ (L(T ) ∪ B(T )) consists of
countably many pairwise disjoint arcs. The closures of these arcs, denoted
by {µj}j∈J , are (1, D)-QC arcs whose endpoints {pj , qj}j∈J are contained
in L(T ) ∪ B(T ). For each j ∈ J , write aj := G(pj) and bj := G(qj). Since
G is L′′-Lipschitz on L(T ) ∪ B(T ), Lemma 5.7 implies the existence of an
L′-Lipschitz Q′-light map Fj : µj → R such that (Fj)|{pj ,qj} = G|{pj ,qj}. Here
L′ and Q′ depend only on C, D, and L0 (and not on j). Thus we define a
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map F : T → R such that, for each j ∈ J , we have F |γj = Fj . Furthermore,
F |L(T )∩B(T ) = G. Via Lemma 5.9, our claim implies that F is L-Lipschitz
Q-light, with L and Q determined only by C, D, L0, and Q0.

To verify our claim (and thus prove the lemma), let ¶ > 0 be fixed, and
choose any E ¢ R such that diam(E) f ¶. Let {zk}k∈K denote any ¶-chain
in G−1(E) ¢ L(T ) ∪ B(T ). For the purpose of bounding the diameter of
{zk}k∈K , we may assume that diam({zk}k∈K) = d(z0, zmax(K)). Indeed, if
diam({zk}k∈K) = d(zn, zm) for some n < m ∈ K, then we simply replace
{z0, . . . , zmax(K)} (if necessary) with {zn, . . . , zm}.

Case 1: No point of {zk}k∈K is within distance D4¶ of L(T ). We may
(and do) assume that D g 2. Thus {zk}k∈K consists entirely of branch points
in T . By Lemma 4.16, we obtain a ¶-chain {z′k}k∈K ¢ [z0, zmax(K)], again
consisting solely of branch points in T . Here z′0 = z0 and z′max(K) = zmax(K).

By Lemma 5.8, every point of [z0, zmax(K)] is within distance ¶ of some point
in {zk}k∈K . Therefore,

(5.4) d([z0, zmax(K)],L(T )) > (D4 − 1)¶ g ¶.

By way of contradiction, assume that d(z0, zmax(K)) g D4¶. Let u de-
note the first point of [z0, zmax(K)] (moving from z0 to zmax(K)) such that

d(z0, u) = D4¶. Since {z′k}k∈K is a ¶-chain, the arc [z0, u] contains at least
D4 distinct points from {z′k}k∈K . In particular, [z0, u] contains at least D4

branch points of T . By (5.4), Lemma 4.9, and the fact that T is 1-bounded
turning, we obtain points {bi}i∈I ¢ T such that, for all i, i′ ∈ I, we have

(D4 − 1)¶ f d(bi, bi′) f 2(D4 − 1)¶ + d(z0, u) f 4(D4 − 1)¶.

Furthermore, |I| g D4. By the fact that T is D-doubling, we also have
|I| f D3, a contradiction. We conclude that, if no point of {zk}k∈K is within
distance D4¶ to L(T ), then diam({zk}k∈K) < D4¶.

Case 2: At least one point of {zk}k∈K is within distance D4¶ of L(T ).
If all points are within distance D4¶ of L(T ), then we may skip to the next
paragraph. If not, let K ′ ¢ K be a maximal (with respect to inclusion)
sequence of consecutive indices such that no point of {zk}k∈K′ is within
distance D4¶ of L(T ). By Case 1,

(5.5) diam({zk}k∈K′) f D4¶.

As K ′ ̸= K, some point of the ¶-chain {zk}k∈K′ is within distance (D4+1)¶ of
L(T ). Therefore, (5.5) implies that every point of {zk}k∈K′ is within distance
(1+ 2D4)¶ of L(T ). Since this holds for any such K ′ ¢ K, we conclude that
all points of {zk}k∈K are within distance (1 + 2D4)¶ of L(T ).

We write D′ := 1 + 2D4. Via nearest point projections we obtain a
sequence {wk}k∈K ¢ L(T ). It is clear that {wk}k∈K is a (1 + 2D′)¶-chain.
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Furthermore, since G is L′′-Lipschitz, we can see that |G(zk) − G(wk)| f
L′′d(zk, wk) f L′′D′¶ for each k ∈ K. Thus {wk}k∈K ¢ G−1(E′), where E′

is defined to be the set of points at distance at most L′′D′¶ from E. Note
that

(5.6) diam(E′) f diam(E) + 2L′′D′¶ f (1 + 2L′′D′)¶.

Since G|L(T ) = f , f is Q0-light, and (1+2D′)¶ f (1+2L′′D′)¶, we conclude
that

diam({wk}k∈K) f Q0(1 + 2L′′D′)¶.

It follows that

diam({zk}k∈K) f Q0(1 + 2D′ + 2L′′D′)¶

in the case that some point of {zk}k∈K is within distance D4¶ of L(T ).

If we set Q := Q0(1 + 2D′ + 2L′′D′), the conjunction of Cases 1 and 2
confirms that any ¶-chain {zk}k∈K ¢ G−1(E) has diameter at most Q¶.
Moreover, Q is determined solely by L0, Q0, C, and D.

Lemma 5.11. Suppose T is a (C,D)-QC tree, and M ¢ L(T ) is closed

in T . Then every L0-Lipschitz Q0-light map f : M → R extends to an

L-Lipschitz Q-light map F : T → R. Here L and Q depend only on L0, Q0,

C, and D.

Proof. Set S := hull(M) ¢ T . By Lemmas 4.8 and 5.10, there exists
an L′′-Lipschitz Q′′-light map G : S → R such that G|M = f , where L′′

and Q′′ depend only on C, D, L0 and Q0. Let {Ui}i∈I denote the connected
components of T \S. Write {Ti}i∈I to denote their closures. By Lemma 4.4,
each Ti is a subtree of T . By [Nad92, Theorem 10.10], each intersection
Vi := Ti ∩ S is connected, and thus also a subtree of T . It follows from
the connectedness of Ui that Vi ¢ L(Ti), and so the subtree Vi must be
degenerate. That is, Vi consists of a single point. In this way we define, for
each i ∈ I, the point pi ∈ Ti ∩ S. By [FG23, Theorem 5.10], for each i ∈ I,
there exists an L′-Lipschitz Q′-light map Fi : Ti → R, where L′ and Q′

depend only on C and D. Up to translating images in R, we may assume
that Fi(pi) = G(pi). Thus we obtain a continuous map F : T → R such that
F |S = G and, for every i ∈ I, F |Ti

= Fi. By Lemma 5.9, the map F : T → R

is L-Lipschitz Q-light for L and Q determined solely by C, D, L0, and Q0.

Proof of Theorem D. Let T1, . . . , Tk ¢ Z be a finite collection of QC trees
inside an ambient metric space Z. We will prove that

⋃k
i=1 Ti has Lipschitz

dimension 1 by induction on k. By [FG23, Theorem D], the conclusion holds

when k = 1. Now let k g 2, set X :=
⋃k−1

i=1 Ti and T := Tk, and assume that
X has Lipschitz dimension 1. Let f : X → R be a Lipschitz light map.

Let N be a 1
2 -Whitney net in T with respect to X, and let Ã : X∪N → X

be any map with d(u, Ã(u)) f 2d(u,X) for all u ∈ X ∪ N . Note that this
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implies Ã|X is the identity map on X. By Lemma 5.5, the map Ã is Lipschitz
light. Then f ◦ Ã : X ∪ N → R is Lipschitz light, being the composition of
Lipschitz light maps.

Set Y := T ∩ (X ∪ N) = (T ∩ X) ∪ N . It is easy to see that Y is a
closed subset of T . Since Y is closed in T , the closures of the countably
many components of T \ Y , say {Si}i∈I , are subtrees of T (see Lemma 4.4).
For each i ∈ I, set Mi := Si∩Y ¢ L(Si). By Lemma 5.11, for each i ∈ I, the
map (f ◦ Ã)|Mi

extends to an L-Lipschitz Q-light map fi : Si → R, where
L,Q < ∞ are independent of i. Gluing these fi and f ◦Ã together, we obtain
a well-defined map F : T ∪X → R satisfying F |Si

= fi and F |X∪N = f ◦ Ã.
By Lemma 5.9, the restriction F |T is Lipschitz light, and by Lemma 5.6, the
entire map F is Q′-light for some Q′ < ∞.

It remains to verify that F is Lipschitz. To this end, let x, y ∈ T ∪X.
Without loss of generality, there are three cases to consider: x, y ∈ T ,
x ∈ T \X and y ∈ X, or x, y ∈ X. The Lipschitz inequalities for the first
and third cases hold since F |T and F |X are Lipschitz. Thus, we proceed to
consider the second case. By Lemma 2.2, there exists u ∈ N such that

(5.7) d(x, u) f d(x,X) f d(x, y).

Let L′ be the maximum of the Lipschitz constants of F |T and F |X∪N . Then
since x, u ∈ T and y, u ∈ X ∪N , we have

|F (x)− F (y)| f |F (x)− F (u)|+ |F (u)− F (y)| f L′d(x, u) + L′d(u, y)

f L′d(x, u) + L′d(u, x) + L′d(x, y)
(5.7)

f 3L′d(x, y),

completing the proof of Theorem D.

5.3. Proof of Theorem E. We bootstrap our way towards a proof of
Theorem E. First, we prove that the Lipschitz dimension of a QC wreath
is equal to 1. Then, via a series of lemmas, we reduce the general case to a
consideration of QC wreaths and QC trees.

Lemma 5.12. If X is a QC wreath obtained from a (C,D)-QC tree T ,

then there exists an L-Lipschitz Q-light map g : X → R such that L and Q
depend only on C and D.

Proof. We may write X = T/P , where P = {a, b} ¢ L(T ). Let Ä denote
the quotient metric on T/P . By [FG23, Theorem D] (see also [FG23, Theo-
rem 5.10]), there exists an L-Lipschitz Q′-light map f : T → R, where L and
Q′ depend only on C and D. Then we post-compose f with the 1-Lipschitz
3-light map

x 7→

{
x if x f (f(a) + f(b))/2,

f(a) + f(b)− x if x g (f(a) + f(b))/2,
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obtaining an L-Lipschitz Q′′-light map g : T → R with g(a) = g(b), where
L,Q′′ depend only on C,D. Then g descends to a map ḡ : T/P → R, defined
by the property g = ḡ ◦ Ã, where Ã : T → T/P is the projection. It follows
from Remark 2.4 that Lip(ḡ) = Lip(g) = L.

To prove Q-lightness of ḡ, we need the following claim.

Claim. For all ¶ g 0 and all ¶-chains {[zk]}k∈K ¢ T/P for which

Ä(P, {[zk]}k∈K) f ¶, we have

Ã−1({[zk]}k∈K) = Ẽa ∪ Ẽb,

where Ẽa, Ẽb are 2¶-connected sets with d(a, Ẽa) f ¶ and d(b, Ẽb) f ¶.

We prove this by induction on |K|. The base case |K| = 1 is straightfor-
ward. Now suppose that |K| g 2. By the inductive hypothesis, we have

Ã−1({[zk]}k<max(K)) = Ẽa ∪ Ẽb for some 2¶-connected sets Ẽa, Ẽb with

d(a, Ẽa) f ¶ and d(b, Ẽb) f ¶. Since {[zk]}k∈K is a ¶-chain, we see that
Ä([zmax(K)−1], [zmax(K)])f ¶. Let u∈Ã−1([zmax(K)−1]) and v∈Ã−1([zmax(K)]).

If [zmax(K)] = P , then Ã−1({[zk]}k∈K) = (Ẽa∪{a})∪ (Ẽb∪{b}), which satis-

fies the desired conclusion. Hence, we may assume that {v} = Ã−1([zmax(K)]).
We have

¶ g Ä([zmax(K)−1], [zmax(K)]) = min {d(u, v), d(u, P ) + d(v, P )},

which implies that (i) d(u, v) f ¶, (ii) d(v, b) f ¶, or (iii) d(v, a) f ¶.

Suppose (i) holds. By the inductive hypothesis, u ∈ Ẽa ∪ Ẽb, and without

loss of generality we may assume that u ∈ Ẽa. Then Ẽa∪{v} is 2¶-connected

and Ã−1({[zk]}k∈K) = (Ẽa ∪ {v}) ∪ Ẽb, proving the claim in this case. Now

suppose (ii) holds. Then d(v, b) f ¶, and thus Ẽb ∪ {v} is 2¶-connected and

Ã−1({[zk]}k∈K) = Ẽa ∪ (Ẽb ∪ {v}), proving the claim in this case. The last
case (iii) follows from a similar argument.

With this Claim in hand, we can prove that ḡ is Q-light. Let ¶ g 0 and
E ¢ R with diam(E) f ¶. Let {[zk]}k∈K ¢ ḡ−1(E) be a ¶-chain. We consider
two cases: (i) Ä(P, {[zk]}k∈K) g ¶ and (ii) Ä(P, {[zk]}k∈K) f ¶. Assume (i)
holds. Then for all k < max(K), we have

¶ g Ä([zk], [zk+1]) = min {d(zk, zk+1), d(zk, P ) + d(zk+1, P )}

g min {d(zk, zk+1), 2¶},

implying that {zk}k∈K is a ¶-chain in g−1(E). Since g is Q′′-light, this in
turn implies

diam({[zk]}k∈K) f diam({zk}k∈K) f Q′′¶,

proving Q′′-lightness in this case. Now suppose (ii) holds. By the Claim,

Ã−1({[zk]}k∈K) = Ẽa∪ Ẽb, where Ẽa, Ẽb are 2¶-connected sets with d(a, Ẽa)

f ¶ and d(b, Ẽb) f ¶. Then since Ẽa, Ẽb ¢ g−1(E) and g is Q′′-light, we
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see that diam(Ẽa), diam(Ẽb) f 2Q′′¶. This inequality together with the fact

that d(a, Ẽa), d(b, Ẽb) f ¶ implies

diam({[zk]}k∈K) = diam(Ã(Ẽa ∪ Ẽb)) f 4Q′′¶ + 2¶,

proving (4Q′′ + 2)-lightness in this final case.

We will also use the following, which may be of independent interest as
it provides a new characterization of uniform disconnectedness.

Proposition 5.13. Let ³ ∈ (0, 1) and suppose X is a metric space. If Y
is an ³-uniformly disconnected subset of X, then the quotient map Ã : X →
X/Y is 1-Lipschitz Q-light for Q = 9/³+8. Conversely, if Ã : X → X/Y is

1-Lipschitz Q-light, then Y is ´-uniformly disconnected for any ´ < 1/Q.

Proof. We first assume that Y is ³-uniformly disconnected. Note that Ã
is clearly 1-Lipschitz (regardless of any assumptions on Y ). To show that Ã
is Q-light, we begin with the following claim.

Claim. For every ε > 0, each ε-component of Y has diameter no greater

than ε/³.

To verify this claim, let a, b be arbitrary points in an ε-component C of Y ,
and let {zk}k∈K be an ε-chain in Y connecting a to b. Since Y is ³-uniformly
disconnected, there must exist some 1 f k0 f max(K) such that

ε g d(zk0−1, zk0) > ³d(a, b),

hence d(a, b) < ε/³. Since a, b ∈ C we arbitrary, this shows diam(C) f ε/³.
Next, let ¶ > 0 be given, and let [E] ¢ X/Y be such that diam([E]) f ¶.

Let U denote a ¶-component of Ã−1([E]). We consider two cases for U .

Case 1: There exists a point z ∈ U such that d(z, Y ) g 4¶. In this
case, we first note that for any points x, y within distance 2¶ of z, we have
Ä([x], [y]) = d(x, y). Indeed, this follows immediately from the definition of
the quotient distance Ä. Thus Ã restricted to B := B(z; 2¶) is an isometry,
and the diameter of any ¶-chain {zk}k∈K in Ã−1([E])∩B is preserved by Ã.
Since Ã({zk}k∈K) ¢ [E] and diam([E]) f ¶, we note that

(5.8) any ¶-chain in Ã−1([E]) ∩B has diameter at most ¶.

Let u, v ∈ U be arbitrary, and let {wj}j∈J be a ¶-chain in U containing
u, v, z, which exists since u, v, z ∈ U and U is a ¶-component of Ã−1([E]).
Suppose, by way of contradiction, that {wj}j∈J ̸¢ B. By re-indexing, we
may assume that wj0 = z and {zj0 , . . . , zmax(J)} ̸¢ B for some j0 < max(J).
Write j1 to denote the first index after j0 such that d(wj1 , z) > 2¶. Since
{wj}j∈J is a ¶-chain, the triangle inequality implies that d(wj1−1, wj0) > ¶.
Since {wj0 , . . . , wj1−1} is a ¶-chain in Ã−1([E])∩B, we contradict (5.8). Thus
{wj}j∈J ¢ B. By (5.8), we conclude that d(u, v) f ¶. Since u, v ∈ U were
arbitrary, this implies that, in Case 1, we have diam(U) f ¶.
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Case 2: For every point z ∈ U , we have d(z, Y ) < 4¶. In this case, let
{zk}k∈K denote any ¶-chain in U . By assumption, each zk is within distance
4¶ of a point z′k ∈ Y . Therefore, we induce a 9¶-chain {z′k}k∈K consisting
of points in Y . By the Claim above, we have diam({z′k}k∈K) f 9¶/³. This
implies that, in Case 2, we have diam(U) f (8 + 9/³)¶.

Combining Cases 1 and 2, we conclude that any ¶-component of Ã−1([E])
has diameter at most (9/³+ 8)¶. It follows that Ã is (9/³+ 8)-light.

To conclude the proof of the lemma, we assume that Ã : X → X/Y is
1-Lipschitz Q-light. Fix any two points x, y ∈ Y . Let ¶ > 0 = diam([Y ]) be
given, and let {zk}k∈K denote a ¶-chain from x to y in Y ¢ Ã−1([Y ]). By
assumption, diam({zk}k∈K) f Q¶. Therefore, ¶ g d(x, y)/Q. The desired
conclusion follows.

Lemma 5.14. Suppose X =
∐

i∈I Xi. If there exist uniformly L-Lipschitz

Q′-light maps fi : Xi → R, then there exists an L-Lipschitz Q-light map

f : X → R, where Q depends only on L and Q′.

Proof. This lemma is merely a special case of [FG23, Theorem F] (see also
[FG23, Theorem 4.4]), since the spaces {Xi}i∈I form a 2-geometric tree-like
decomposition of X.

Proof of Theorem E. Let T denote a (C,D)-QC tree. By Lemma 4.3,
we may assume that T is 1-bounded turning. By Lemma 4.19, we know
that T/M is 2-bi-Lipschitz equivalent to

∐
i∈I Ti/Mi, where {Ti}i∈I denotes

the closures of the countably many connected components of T \ M , and
Mi := Ti ∩M ¢ L(Ti). Let Si denote hull(Mi) ¢ Ti, and write Bi to denote
B(Si). By Lemmas 2.5 and 4.21, each (Ti/Mi)/((Mi∪Bi)/Mi) = Ti/(Mi∪Bi)
is 2-bi-Lipschitz equivalent to

∐
j∈Ji

Xi,j , where each Xi,j is either a (1, D)-
QC tree or (1, D)-QC wreath. If Xi,j is a tree, then by [FG23, Theorem 5.10],
there exists an L-Lipschitz Q-light map fi,j : Xi,j → R such that L and Q
depend only on C and D. If Xi,j is a wreath, then, by Lemma 5.12, there
exists an L0-Lipschitz Q0-light map fi,j : Xi,j → R such that L0 and Q0

depend only on C and D. By Lemma 5.14, for each i ∈ I, there exists an L1-
Lipschitz Q1-light map gi : Ti/(Mi∪Bi) → R, where L1 and Q1 depend only
on C and D. Write Ã to denote the quotient map Ã : Ti/Mi → Ti/(Mi ∪Bi)
(here we again use Lemma 2.5). By Theorem 4.17 and Proposition 5.13, the
map Ã is 1-Lipschitz Q2-light, with Q2 depending only on C and D. Thus,
it is easy to check that the composition gi ◦Ã : Ti/Mi → R is Lipschitz light,
with constants depending only on C, and D. Finally, again appealing to
Lemma 5.14, there exists a Lipschitz light map g : T/M → R with constants
depending only on C and D. In particular, dimL(T/M) = 1.
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