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ABSTRACT

The Klamath Mountains Province of Northern California and southern Ore-
gon, USA, consists of generally east-dipping terranes assembled via Paleozoic
to Mesozoic subduction along the western margin of North America. The
Klamath Mountains Province more than doubled in mass from Middle Jurassic
to Early Cretaceous time, due to alternating episodes of extension (e.g., rifting
and formation of the Josephine ophiolite) and shortening (e.g., Siskiyou and
Nevadan events). However, the tectonic mechanisms driving this profound
Mesozoic growth of the Klamath Mountains Province are poorly understood.
In this paper, we show that formation of the Condrey Mountain schist (CMS)
of the central Klamath Mountains Province spanned this critical time period
and use the archive contained within the CMS as a key to deciphering the
Mesozoic tectonics of the Klamath Mountains Province. Igneous samples
from the outer CMS subunit yield U-Pb zircon ages of ca. 175-170 Ma, which
reflect volcanic protolith eruptive timing. One detrital sample from the same
subunit contains abundant (~54% of zircon grains analyzed) Middle Jurassic
ages with Paleozoic and Proterozoic grains comprising the remainder and
yields a maximum depositional age (MDA) of ca. 170 Ma. These ages, in the
context of lithologic and thermochronologic relations, suggest that outer CMS
protoliths accumulated in an outboard rift basin and subsequently underthrust
the Klamath Mountains Province during the Late Jurassic Nevadan orogeny.
Five samples of the chiefly metasedimentary inner CMS yield MDAs ranging
from 160 Ma to 130 Ma, with younger ages corresponding to deeper structural
levels. Such inverted age zonation is common in subduction complexes and,
considering existing K-Ar ages, suggests that the inner CMS was assem-
bled by progressive underplating over a >10 m.y. timespan. Despite this age
zonation, age spectra derived from structurally shallow and deep portions of
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the inner CMS closely overlap those derived from the oldest section of the
Franciscan subduction complex (South Fork Mountain schist). These relations
suggest that the inner CMS is a composite of South Fork Mountain schist slices
that were sequentially underplated beneath the Klamath Mountains Prov-
ince. The age, inboard position, and structural position (i.e., the CMS resides
directly beneath Jurassic arc assemblages with no intervening mantle) of the
CMS suggest that these rocks were emplaced during one or more previously
unrecognized episodes of shallow-angle subduction restricted to the Klamath
Mountains Province. Furthermore, emplacement of the deepest portions of
the CMS corresponds with the ca. 136 Ma termination of magmatism in the
Klamath Mountains Province, which we relate to the disruption of astheno-
spheric flow during slab shallowing. The timing of shallow-angle subduction
shortly precedes that of the westward translation of the Klamath Mountains
Province relative to correlative rocks in the northern Sierra Nevada Range,
which suggests that subduction dynamics were responsible for relocating
the Klamath Mountains Province from the arc to the forearc. In aggregate, the
above relations require at least three distinct phases of extension and/or rifting,
each followed by an episode of shallow-angle underthrusting. The dynamic
upper-plate deformation envisioned here is best interpreted in the context
of tectonic switching, whereby slab steepening and trench retreat alternate
with slab shallowing due to recurrent subduction of buoyant oceanic features.

H 1. INTRODUCTION

Upper-plate domains of subduction zones are sites of significant arc
magmatism, terrane accretion, tectonic underplating, tectonic erosion, delam-
ination, and possibly relamination (e.g., Bird, 1979; von Huene and Lallemand,
1990; Davies and Stevenson, 1992; Stern and Scholl, 2010; Scholl and von
Huene, 2009; Hacker et al., 2011; Jacobson et al., 2011). Mass flux calculations
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involving these processes indicate that, compared with other tectonic settings,
subduction zones are the biggest producers and destroyers of continental lith-
osphere on the planet (Cloos and Shreve, 1988; Kay and Mahlburg-Kay, 1991;
von Huene and Scholl, 1991; Gutscher et al., 2000; Arndt, 2013).

Material fluxes to and from the overriding plate of a subduction zone are
influenced by changes in the dip angle of the downgoing plate (Coney and
Reynolds, 1977; Dewey, 1981; Collins, 2002; Brun and Faccenna, 2008; Schellart
and Strak, 2021). For instance, sufficient shallowing of slab dip tends to inhibit
arc magmatism via impingement of mantle-wedge corner flow, while promot-
ing tectonic erosion through an increase in shear stress along the base of the
upper plate (e.g., Saleeby, 2003). Furthermore, upper-plate shortening leads
to mountain building and an increase in erosion; the resulting flood of detritus
to the trench may drive significant accretion and/or tectonic underplating (e.g.,
Ducea et al., 2009). Conversely, steepening of a slab from a shallow trajectory
(i.e., “slab rollback”) may (re)ignite arc magmatism and lead to upper-plate
extension and migration of the trench oceanward (e.g., Chapman et al., 2021).
In particular, switching from shallow- to steep-angle subduction and vice versa
appears to be an efficient net producer of continental crust (Collins, 2002).

In detail, upper-plate domains of modern subduction zones respond to
changes in downgoing slab dip in diverse ways. For instance, magmatism
in the Trans-Mexican Volcanic Belt has continued in spite of flat subduction
of the Cocos plate beneath it, most likely due to slab melting plus nascent
slab rollback and the associated influx of new asthenosphere (e.g., Ferrari et
al., 2012). Furthermore, sufficient decoupling may result in a lower plate that
glides into the mantle at low-dip with minimal upper-plate deformation, as
appears to be the case along the Mexican flat slab (Pérez-Campos et al., 2008).

Recognition of ancient settings in which subduction trajectory varied is
essential to understanding modern counterparts, as the geologic record per-
mits investigation of the long-term (i.e., millions to tens of millions of years)
effects of changes in slab dip over a range of crustal depths. The Pelona-
Orocopia-Rand (and related) schists of Southern California represent an
excellent example of such an archive of ancient slab shallowing followed by
steepening (Grove et al., 2003; Jacobson et al., 2011; Chapman, 2017).

The Klamath Mountains Province of Northern California—southern Oregon,
USA, apparently underwent rapid alternation between contraction and exten-
sion, most notably from Middle Jurassic to Early Cretaceous time (Saleeby et
al., 1982; Harper and Wright, 1984; Wright and Wyld, 1986; Wright and Fahan,
1988; Hacker and Ernst, 1993; Harper et al., 1994; Hacker et al., 1995; Harper, 2003;
Snoke and Barnes, 2006; Yule et al., 2006; LaMaskin et al., 2021; Surpless et al.,
2024). Tectonic activity coincided with significant magmatic additions to the
plate margin (Harper, 1984; Barnes et al., 1996; Allen and Barnes, 2006; Snoke
and Barnes, 2006; Coint et al., 2013; Barnes and Barnes, 2020). The driving mech-
anisms behind tectonism and magmatism in the Klamath Mountains Province
are controversial, with competing ideas ranging from global plate reorgani-
zation to collision of a large fragment of continental lithosphere (Schweickert
and Cowan, 1975; Wernicke and Klepacki, 1988; Wright and Fahan, 1988; May et
al., 1989; McClelland et al., 1992; Saleeby and Harper, 1993; Hacker et al., 1995;

Wolf and Saleeby, 1995; Shervais et al., 2004; Seton et al., 2012; LaMaskin et al.,
2021; Surpless et al., 2024). Both mechanisms predict extensive deformation
over extended periods, yet observed contractional and extensional episodes
were seemingly confined to a few hundred kilometers along the margin and
occurred rapidly (in many cases, within less than 10 m.y. and often less than
5 m.y.). This paper contributes new U-Pb igneous and detrital zircon data from
the Condrey Mountain schist (CMS), a unit of unknown origin exposed within
a structural window in the central Klamath Mountains Province, as it provides
key constraints on the Middle Jurassic to Early Cretaceous tectonic evolution
of the Klamath Mountains Province. With new time constraints in hand, we
reassess the mechanisms driving orogenesis, the formation of ophiolite-floored
basins, and magmatism in the Klamath Mountains Province in the context of
rapid changes in slab dip. These new data greatly facilitate regional correlation
of the CMS, a longstanding regional geologic problem.

H 2. GEOLOGIC BACKGROUND

2.1. Paleozoic and Mesozoic Assembly of the Klamath Mountains
Province

Numerous long (hundreds to thousands of kilometers), parallel, arcuate
belts of accreted material comprise the North American Cordillera, which
resulted from hundreds of millions of years of convergent margin tectonics
following Neoproterozoic rifting of supercontinent Rodinia and the develop-
ment of an “Atlantic-type” passive margin (Burchfiel et al., 1992; Dickinson,
2004; Blakey and Ranney, 2018). Here, we focus on Paleozoic and Mesozoic
events germane to construction of the Klamath Mountains Province and adja-
cent Franciscan assemblages (Fig. 1).

Neoproterozoic to Devonian basement rocks of the Eastern Klamath terrane,
interpreted as dismembered remnants of island arcs of the Paleo-Pacific (i.e.,
Panthalassa) Ocean, are the cornerstone of the Klamath Mountains upon which
the remainder of the range was built (Moores, 1970; Speed, 1979; Burchfiel et al.,
1992; Wallin and Metcalf, 1998; Wallin et al., 2000; Wright and Wyld, 2006; Grove
etal., 2008; Fig. 1). Prior to docking with the western margin of North America in
Silurian-Devonian time, oceanic assemblages of the Central Metamorphic ter-
rane underplated the Eastern Klamath terrane along an east-dipping subduction
zone (Davis, 1968; Irwin, 2003; Barrow and Metcalf, 2006). The resulting com-
posite terrane was conveyed toward, and collided with, the western margin of
North America via a west-dipping subduction zone, driving Late Permian-Early
Triassic closure of the Golconda—-Slide Mountain basin and eastward thrusting
of deep-water assemblages atop shallow-water passive margin sequences in
the Great Basin and adjacent areas (i.e., the Sonoma orogeny; Speed, 1977;
Wyld, 1991; Burchfiel et al., 1992; Dickinson, 2000). Incorporation of the Eastern
Klamath and Central Metamorphic terranes with the North American plate was
accompanied by formation of the Fort Jones/Stuart Fork accretionary complex,
the along-strike equivalent of the Cache Creek assemblage of the Canadian
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Figure 1. Simplified geologic and tectonic map of the Klamath Mountains Province, Northern California-southern Oregon, USA, modified after Blake et al. (1985) and Snoke
and Barnes (2006). Traces of cross-sections A-A’ and B-B’ (Fig. 2) are overlain. Inset abbreviations: bm—Blue Mountains; ns—northern Sierra. Map abbreviations: C—China
Peak Complex; P—Preston Peak Complex; IM—Ironside Mountain batholith; V—Vesa Bluffs pluton.
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Cordillera (e.g., Johnston and Borel, 2007), and arc magmatism (the “McCloud
arc” of Miller, 1987) above the eastward subducting lithosphere of Panthalassa
(Wright, 1982; Coleman et al., 1988; Goodge, 1989).

The Paleozoic—early Mesozoic nucleus of the Klamath Mountains (i.e., the
three terranes discussed in the previous paragraph) grew significantly during
the Middle Jurassic (ca. 170 Ma) Siskiyou orogeny (Coleman et al., 1988; Wright
and Fahan, 1988; Hacker et al., 1995; Snoke and Barnes, 2006; Barnes et al.,
2006). This event involved sequential accretion of three additional “terranes.”
The first and most easterly is the Sawyers Bar terrane, formerly divided into
the North Fork, Salmon River, and Eastern Hayfork subterranes, which together
represent a Permian oceanic arc, overlying Permian-Triassic deep-sea and ter-
rigenous sedimentary cover, plus outboard accretionary wedge (Coleman et al.,
1988; Ernst, 1990; Hacker and Ernst, 1993, 1995; Scherer and Ernst, 2008; Scherer
et al., 2010; Ernst et al., 2017). Accretion of the Western Hayfork terrane, a ca.
177-167 Ma continent-fringing oceanic arc (Harper and Wright, 1984; Wright
and Fahan, 1988; Barnes and Barnes, 2020), and its dismembered ophiolitic
basement—the Rattlesnake Creek terrane—followed (Wright and Fahan, 1988;
Donato et al., 1996). The Rattlesnake Creek terrane consists of basal serpentinite
matrix mélange, overlying ca. 193-207 Ma mafic volcanic plus and plutonic
assemblages, and volcaniclastic and hemipelagic cover strata that are locally
overprinted by amphibolite-granulite-facies parageneses (lrwin, 1972; Wright,
1982; Coleman et al., 1988; Wright and Wyld, 1994; LaMaskin et al., 2021).

The Rattlesnake Creek terrane is nonconformably overlain by pre-164 Ma
greenschist-facies mafic intrusive and volcanic rocks plus hemipelagic sed-
imentary rocks (the Preston Peak Complex; e.g., Snoke, 1977; Saleeby et al.,
1982) and tectonically underlain by ca. 172-170 Ma amphibolite-facies mafic
volcanic rocks and hemipelagic sediments (the China Peak Complex; Saleeby
and Harper, 1993). Both the China Peak and Preston Peak complexes are inter-
preted as early products of extension that culminated in the ca. 164-162 Ma
Josephine ophiolite, the basement of the Western Klamath terrane (Saleeby
and Harper, 1993). Lithologic and age similarities between the China Peak and
Preston Peak complexes suggest that the former may represent the underthrust
equivalent of the latter (Saleeby and Harper, 1993).

The Siskiyou event was immediately followed by rifting of newly accreted
Rattlesnake Creek-Western Hayfork crust, forming the ca. 164-162 Ma Jose-
phine ophiolite-floored basin. Rifting is envisioned to have occurred at a
high-angle to the margin in a transtensional regime, such that the locus of
spreading separated the active arc into the ca. 165-156 Ma Wooley Creek plu-
tonic belt in the south and the ca. 161-155 Ma Rogue-Chetco arc in the north
(Saleeby et al., 1982; Harper, 1984, 2003; Wright and Wyld, 1986; Wright and
Fahan, 1988; Hacker and Ernst, 1993; Harper et al., 1994; Snoke and Barnes,
2006; Yule et al., 2006; Coint et al., 2013). For this reason, the Josephine basin
has been deemed a site of ancient “interarc” rifting. This is misleading, how-
ever, as an interarc rift conjures images of parallel arcs separated by a rift. More
accurately, rifting likely occurred in the forearc outboard of the Wooley Creek
plutonic belt in the south (e.g., Harper, 2003), traversed the arc, and occurred
in the retroarc inboard of the Rogue-Chetco arc in the north.

Deposition of the Galice Formation ensued in the submarine Josephine
marginal basin, first with ca. 162-157 Ma (Oxfordian) argillite and transitioning
to ca. 160-150 Ma (Oxfordian-Kimmeridgian) turbidite, as regional extensional
stresses yielded to contractile deformation associated with the ca. 157-150 Ma
Nevadan orogeny (Saleeby and Harper, 1993; Harper et al., 1994; Schweickert
et al., 1984; Hacker et al., 1995; Miller and Saleeby, 1995; Shervais et al., 2004;
MacDonald et al., 2006; Gradstein et al., 2020; LaMaskin et al., 2021; Surpless
etal., 2024). The Nevadan event is responsible for thrusting the Western Klam-
ath terrane (including the Rogue-Chetco arc plus consanguineous Josephine
ophiolite and nonconformably overlying Galice formation) beneath previously
accreted materials. There is no consensus at this time regarding the driving
mechanism(s) for Nevadan and Siskiyou events. End-member models invoke
either collisions of oceanic ridges or far-traveled lithospheric blocks such as
the Wrangellia-Alexander superterrane (e.g., Schweickert and Cowan, 1975;
Wernicke and Klepacki, 1988; McClelland et al., 1992; Saleeby and Harper, 1993;
Shervais et al., 2004; Surpless et al., 2024), and/or changes in relative plate
motion (e.g., Wright and Fahan, 1988; Wolf and Saleeby, 1995; Hacker et al.,
1995; LaMaskin et al., 2021).

In Early Cretaceous time, the Klamath Mountains Province relocated
~200 km westward to achieve its current forearc position and concave-east
arcuate curvature relative to correlative rocks in the northern Sierra Nevada
and Blue Mountains (Fig. 1 inset; Jones and Irwin, 1971; Ernst, 2013). Following
this episode, (1) magmatism in the Klamaths abruptly terminated at ca. 136 Ma,
in marked contrast to the Sierra Nevada and Blue Mountains, where magma-
tism continued until Late Cretaceous time (Chen and Moore, 1982; Lund and
Snee, 1988; Barnes et al., 1996; Allen and Barnes, 2006); (2) an accretionary
wedge, represented by the eastern belt of the Franciscan Complex, formed
and grew rapidly along the western edge of the Western Klamath terrane
(Dumitru et al., 2010); (3) the Western Klamath terrane, eastern belt Franciscan
rocks, and the Condrey Mountain schist (discussed in the following section)
cooled from ~400 °C to ~200 °C between ca. 135 Ma and 118 Ma (Helper, 1985;
Harper et al., 1994; Batt et al., 2010a; Dumitru et al., 2010; Tewksbury-Christle
etal., 2021); (4) low-angle normal faulting commenced in the eastern Klamath
Mountains (Cashman and Elder, 2002; Batt et al., 2010b); and (5) topogra-
phy built up during earlier tectonism was lost during an eastward-sweeping
Valanginian-Hauterivian marine transgression across the majority of the
Klamath Mountains Province (Harper et al., 1994; Batt et al., 2010a). The sig-
nificance of these relations and a discussion of possible driving mechanisms
are explored in section 5.4.

2.2. Condrey Mountain Schist

The CMS stands out as an unusual feature of the Klamath Mountains
Province. The unit is exposed as a domal structural window through the
overlying Rattlesnake Creek terrane, beneath the low-angle Condrey Mountain
shear zone (Mortimer and Coleman, 1985; Fig. 2). This structural arrangement
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significantly differs from the usual westward-younging stack of east-dipping
thrust sheets observed in the Klamath Mountains Province. Furthermore, the
CMS resides at lower metamorphic grade and yields younger cooling ages
relative to flanking rocks (Helper, 1985; Hacker et al., 1995; Tewksbury-Christle
etal., 2021). Efforts to fit the CMS into the regional puzzle have focused on lith-
ologic and age similarities with adjacent rocks, resulting in correlations with
the Central Metamorphic terrane (Irwin, 1960), Stuart Fork terrane (Medaris,
1966), the Galice Formation (Klein, 1977; Hotz, 1979; Saleeby and Harper, 1993),
the China Peak Complex (Saleeby and Harper, 1993), and the South Fork
Mountain schist (the oldest Franciscan unit of significant areal size; Suppe
and Armstrong, 1972; Brown and Blake, 1987). The Central Metamorphic and
Stuart fork terranes are now known to be significantly older than the CMS,
which renders earlier correlations untenable (Hotz et al., 1977).

The CMS is subdivided into a structurally deeper, relatively low-grade inner
unit and a structurally higher, relatively high-grade marginal unit, which are
separated by the Condrey internal fault (Helper, 1986; Saleeby and Harper,
1993; Figs. 1 and 2). Both CMS subunits preserve similar prograde, ductile,
non-coaxial deformation and texturally late coaxial flattening fabrics, which
are attributed to subduction-related burial and later structural ascent, respec-
tively (Helper, 1986).

The inner CMS consists chiefly of greenschist-blueschist-grade graphitic
and quartz-mica schist, which was likely produced through metamorphism
of argillite and chert protoliths, which locally contain lenses and tabular slabs
of blueschist (formerly basaltic flows and tuff) and serpentinite (Hotz, 1979;
Helper, 1986; Saleeby and Harper, 1993; Tewksbury-Christle et al., 2021). The
array of rock types observed within the inner CMS, and the paucity of clastic
material therein, point to sedimentation in an open ocean starved of terrige-
nous input atop a basement and/or including olistoliths of oceanic lithosphere.

The outer CMS mantles the inner unit and includes greenschist-amphibolite-
facies metamorphosed basaltic tuffs, pillow lavas, and rare comagmatic intrusive
equivalents and plagiogranite. These igneous protoliths dominate the outer
CMS, though they are locally interrupted by lenses of hemipelagic material
(now silicic and graphitic quartz-mica schist) and one prominent (~10-km-long
x 0.5-km-wide in map view) semi-pelitic horizon exhibiting graded beds, which
likely represents deep-water turbidite deposits (Hotz, 1979; Helper, 1985). The
range of lithologies observed in the outer CMS suggests oceanic deposition
proximal to an eruptive center with sporadic input of terrigenous material.

Along the “Scott River appendage,” the outer CMS reaches amphibo-
lite facies as the Condrey Mountain shear zone is approached from below
(Saleeby and Harper, 1993; Figs. 2 and 3). Metamorphic grade also increases

Chapman et al. | U-Pb geochronology of the Condrey Mountain schist
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down-section within the Rattlesnake Creek terrane, preserving upper amphib-
olite- and locally granulite-facies parageneses, as the Condrey Mountain shear
zone is approached from above (Hotz, 1979; Mortimer and Coleman, 1985;
Garlick et al., 2009). These relations require a sharp, inverted metamorphic
field gradient spanning structurally deep, low-grade inner CMS and higher
grade outer CMS.

B 3. METHODS
3.1. U-Pb Geochronology

Ten samples were collected for U-Pb zircon analysis: (1) three samples from
the outer CMS (two from a plagiogranite inclusion transposed into the main
foliation of surrounding actinolite schist previously investigated by Saleeby
and Harper [1993], and one from the semi-pelite of Helper [1985]); (2) five sam-
ples from the inner unit (three from the “Dry Lake” area of Helper [1985], the
deepest exposed level of the CMS, and two from structurally higher); (3) one
sample from the Gold Flat amphibolite (Burton, 1982) of uncertain affinity
(either representing the base of the Rattlesnake Creek terrane or the top of the
outer CMS); and (4) one sample of uncertain origin from a structurally com-
plex zone ~5 km east of Happy Camp, California (representing hemipelagic
protoliths of either the Galice formation or CMS). Table 1 provides coordinates
for all localities sampled.

Zircon grains were extracted using standard mineral separation techniques:
crushing, sieving, magnetic separation, processing through heavy liquids, and
hand picking. Separates were then mounted in epoxy, polished, and imaged
on the Macalester Keck Lab JEOL 6610LV scanning electron microscope (SEM)
before analysis.

U-Pb geochronology of igneous and detrital zircon was conducted by laser
ablation-multicollector-inductively coupled plasma-mass spectrometry (LA-
MC-ICP-MS) at the Arizona LaserChron Center (ALC) following the methods
outlined in Gehrels et al. (2006). Zircon grains were ablated using a 193 nm

ArF laser with a pit depth of ~12 pm and spot diameters of 35 um for sample
14CM21 and 20 pm for all other samples. Fragments of in-house Sri Lanka
(SL) and Forest Center (Duluth Complex; FC-1) zircon standards, with iso-
tope dilution-thermal ionization mass spectrometry (ID-TIMS) ages of 563.5
+ 3.2 Ma and 1099 + 0.6 Ma (20), respectively, were analyzed once per every
five unknown analyses to correct for instrument mass fractionation (Paces and
Miller, 1993; Gehrels et al., 2008). A secondary standard, R33 (Black et al., 2004),
with an ID-TIMS age of 418.9 + 0.4 Ma (2c), was analyzed once per every 50
unknown analyses. A weighted mean 2°Pb/?®U age of 420.4 + 3.5 Ma (20, mean
square of weighted deviates [MSWD] = 0.22) was calculated from a total of 29
analyses of R33 performed at the ALC. Data reduction was done using in-house
ALC Microsoft Excel programs and Isoplot/Ex Version 3 (Ludwig, 2003). This
process included calculation of average intensity, correction for background
interference, and calculation of isotopic ratios and ages. Analyses with >10%
uncertainty, 20% discordance, and/or 5% reverse discordance were excluded.
Normalized, cumulative probability and multidimensional scaling plots were
constructed with detritalPy (Sharman et al., 2018) using *’Pb/?*°Pb ages for
grains older than 900 Ma and 2°°Pb/?®U ages for grains younger than 900 Ma.

Detrital geochronology provides constraints on the maximum depo-
sitional ages (MDAs) of (meta)sedimentary rocks, though a wide range of
techniques exists for calculating MDAs (e.g., Dickinson and Gehrels, 2009;
Sharman et al., 2018; Coutts et al., 2019; Vermeesch, 2021). Methods based
on the youngest single grain (YSG), the youngest clusters of grains, and Tuff-
Zirc or AgePick algorithms were avoided as they drift to younger ages as the
number of analyses increases (Vermeesch, 2021). Similarly, estimates based
on the weighted mean or mode of the youngest peak of a probability den-
sity plot were not used due to underlying issues of probability density plots
(Vermeesch, 2012). We present MDAs in Table 2 calculated via the youngest
statistical population (YSP; Coutts et al., 2019) and maximum likelihood algo-
rithm (MLA; Vermeesch, 2021) techniques, as these methods are least likely
to yield ages younger than the true depositional age. The “interpreted age”
column in Table 2 factors in MDA calculations and regional thermochrono-
logic data, if available.

TABLE 1. SAMPLE LOCATIONS AND DESCRIPTIONS

Sample Abbreviation Rock unit Description UTM Zone UTM Easting UTM Northing
15KM14 1 WM CMS Graphitic schist 10T 494664 4644493
15KM11 2 WM CMS Graphitic schist 10T 495747 4637173
14CM16 3 Inner CMS Graphitic schist 10T 501716 4642816
19KM5 4 Inner CMS Graphitic schist 10T 503222 4641838
19KM4 5 Inner CMS Graphitic schist 10T 503868 4641015
15KM23 6 Outer CMS Semipelite of Helper (1985) 10T 490621 4642545
19KM3 7 Unknown; Outer CMS Quartzofeldspathic schist 10T 476118 4627262
15KM49/14CM1 8 Outer CMS Metamorphosed felsic stock 10T 499148 4621960
14CM21 9 Unknown; Outer CMS Gold Flat amphibolite of Burton (1982) 10T 491966 4614462

Notes: WM—White Mountain; CMS—Condrey Mountain schist; UTM—Universal Transverse Mercator.
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TABLE 2. DEPOSITIONAL AGE CONSTRAINTS FOR DETRITAL ROCKS STUDIED

YSG YSG2c YSP* 26 MSWD MLA* 20

Most relevant deposition- Interpreted depositional age

Sample  Abbreviation Rock unit N
(Ma) (Ma)

15KM23 6 Outer CMS 135 161.6 8.4 169.5 1.9
15KM14 1 WM CMS 90 156.5 7.9 159.8 35
15KM11 2 WM CMS 119 1411 5.1 1445 3.2
14CM16 3 Inner CMS 73 131.7 7.8 139.5 4.0
19KM5 4 Inner CMS 274 129.5 8.5 135.1 21
19KM4 5 Inner CMS 283 128.9 2.9 130.7 21
19KM3 7 Unknown 184 151.4 16.2 162.1 1.6

(Ma) bracketing age
(Ma)

1.0 170.8 2.0 156-1521 Middle or Upper Jurassic
0.6 159.8 3.5 1448 Upper Jurassic
1.2 153.4 2.6 1448 Upper Jurassic or Lower Cretaceous
1.7 1425 5.0 128* Lower Cretaceous
1.0 135.5 23 128# Lower Cretaceous
1.6 130.2 35 128* Lower Cretaceous
1.0 164.2 1.6 Not available Upper Jurassic

Notes: See text for discussion of maximum depositional age calculations. MSWD—mean square of weighted deviates; N—number of grains analyzed; YSG—youngest single
grain; YSP—youngest statistical population (Coutts et al., 2019); MLA—maximum likelihood algorithm (Vermeesch, 2021); WM—White Mountain; CMS—Condrey Mountain schist.
*YSP (Coutts et al., 2019) and MLA (Vermeesch, 2021) uncertainties include both analytical and systematic uncertainties.

TK-Ar and Ar-Ar hornblende (Helper, 1985; Saleeby and Harper, 1993)
SK-Ar white mica (Lanphere et al., 1968)
#K-Ar white mica (Helper, 1985)

B 4. RESULTS
4.1. Petrography and Metamorphic Petrology

Samples 14CM16, 15KM11, 156KM14, 19KM4, and 19KM5 were all collected
from the internal metasedimentary CMS unit. Of these, samples 14CM16,
19KM4, and 19KM5 are from the Dry Lake area of Helper (1986), the deepest
exposed portion of the CMS. At this location, these hemipelagic protoliths
are recumbently folded with metamorphosed mafic volcanic assemblages
that equilibrated at pressure-temperature (P-T) conditions of 380-450 °C and
6-11 kbar (Helper, 1986; Tewksbury-Christle et al., 2021; Fig. 4A). Additional con-
straints are placed on the P-Ttrajectory of metamorphism in the CMS through
thermodynamic modeling. The Gibbs free-energy minimization software pack-
age Theriak-Domino (de Capitani and Brown, 1987) and the thermodynamic
end-member and solution models of the accompanying tc321p2 database
(Thermocalc database as distributed in version 3.33) were used to construct
P-T pseudosections in the NCKFMASH system.

Dry Lake metasedimentary rocks contain chiefly medium- to fine-grained
quartz, albitic plagioclase, phengitic to paragonitic white mica, carbonaceous
material, and chlorite, which locally exhibits pseudomorphs after pyrite of up to
1 cm in diameter. Minor phases include epidote, zoisite, titanite, and stilpnome-
lane. Thermodynamic modeling, using bulk compositions reported by Hotz
(1979), shows this mineral paragenesis to be stable at the conditions reported
above for metavolcanic units, which corroborates the assertion that metavolca-
nic and metasedimentary assemblages at Dry Lake represent metamorphosed
relict stratigraphy (Helper, 1986; Fig. 5). These samples exhibit well-developed
flattening fabrics containing tight to isoclinal and disharmonic folds that are best
expressed by intervals rich in white mica and carbonaceous material (Fig. 4B).

Samples 15KM14 and 156KM11 were collected from the structural top of the
inner CMS in the vicinity of White Mountain, <1 km from the Condrey internal

fault, and exhibit mylonitic foliation characterized by spaced white (quartz plus
albite) and pale- to medium-green (chlorite, white mica, and carbonaceous
material) domains with local preservation of tight isoclinal folds (Fig. 4C). Pyrite
pseudomorphs similar to those at the Dry Lake area were observed in the out-
crop from which sample 15KM14 was extracted. Notably, these samples lack
epidote group minerals, which suggests that peak metamorphic temperatures
in the vicinity of White Mountain were ~100 °C higher, at similar pressure, than
those achieved in the Dry Lake area (Fig. 5).

The bulk of the outer CMS consists of albitic plagioclase, actinolite, chlorite,
epidote, and white mica with minor quartz and titanite, which is consistent
with equilibration of these metavolcanic assemblages under greenschist-facies
conditions (Fig. 5). Sample 15KM23 is from a semi-pelitic interval in the other-
wise metabasaltic marginal unit of the CMS (Fig. 2; Helper, 1985, 1986). This
sample exhibits alternating, highly cleaved chlorite- and carbonaceous-rich
domains and microlithons containing subequal proportions of quartz and chlo-
rite (Fig. 4D). Plagioclase is apparently lacking from this sample, and epidote
is observed as a minor phase throughout the sample and appears to have
statically overgrown cleaved and microlithon domains that formed earlier.

Sample 14CM21, collected from the Gold Flat amphibolite of either the
uppermost CMS or lowermost Rattlesnake Creek terrane, is a coarse blastomy-
lonitic amphibolite gneiss containing chiefly pargasitic amphibole, anorthitic
plagioclase, and epidote, with minor apatite and ilmenite, and rare coarse
(~1 cm) garnet porphyroblasts (Figs. 4E and 4F). The Gold Flat amphibolite
equilibrated at peak metamorphic conditions of 630 + 50 °C at 7.3 £ 1.0 kbar,
which correspond to transitional albite—epidote amphibolite/upper amphibolite-
facies conditions (Klapper and Chapman, 2017) and overlap the H,0O-saturated
solidus for outer CMS metabasite (Fig. 5).

Samples 14CM17 and 15KM49 were collected from a coarse-grained felsic
interval displaying a foliation concordant with that of encasing outer CMS
actinolite schist. These relations point to an intrusive protolith that invaded
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Figure 4. Thin-section photomicrographs of petrologic and structural features in the Condrey Mountain Schist, central Klamath
Mountains Province, and adjacent lithologies. (A) Transitional blueschist-greenschist-facies metabasalt from the Dry Creek subunit
in plane-polarized light. (B) Disharmonic folds in Dry Lake metasedimentary rocks in plane-polarized light. Circular “spotlight” inset
is shown in cross-polarized light. (C) Intrafolial isoclinal folds in metasedimentary rocks from the White Mountain subunit in plane-
polarized light. (D) Highly cleaved (dark) and microlithon (light green) domains in semipelitic rocks of the outer Condrey Mountain
Schist in plane-polarized light. Spotlight is shown in cross-polarized light. (E) Garnet-bearing Gold Flat amphibolite in plane-polarized
light. Note tapered deformation twins in plagioclase plus amoeboid grain boundaries in undulose quartz (both shown in cross-polarized
light spotlights), which suggests deformation at elevated shear stress and temperature. (F) Large garnet porphyroblast in Gold Flat
amphibolite in plane-polarized light (note that garnet in this unit locally achieves diameters of ~1 cm). (G) Leucogneiss of the outer
Condrey Mountain Schist exposed north of Scott Bar showing plagioclase- and mica-dominated assemblage. Chlorite pseudomorph
after pyrite at center, in plane-polarized light. (H) Metasedimentary assemblages of uncertain origin exposed along Klamath River
assemblage, in plane-polarized light. Note ruptured isoclinal fold adjacent to “cm” annotation. Mineral abbreviations: Ab—albite;
Act—actinolite; Bt—biotite; cm—carbonaceous material; Chl—chlorite; Ep—epidote; GIn—sodic amphibole (glaucophane/crossite);
Grt—garnet; Hbl—hornblende; lim —ilmenite; PI—plagioclase; Py —pyrite; Qtz—quartz; wm —white (phengitic) mica.
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Figure 5. Calculated pressure-temperature (P-T) pseudosections for (A) inner and (B) outer
Condrey Mountain schist (CMS) compositions. Dry Creek P-T estimate of Helper (1986)
is overlain in part A. Gold Flat P-T estimate of Klapper and Chapman (2017) is overlain in
part B. Modeled bulk compositions are from Hotz (1979).

>
>

the outer CMS prior to underthrusting and metamorphism. These samples
are dominated by quartz and albitic plagioclase with subsidiary white mica,
biotite, chlorite, and pyrite (Fig. 4G).

The NE margin of a reentrant of Western Klamath terrane assemblages
paralleling the Klamath River (the “Klamath River Appendage” of Saleeby
and Harper, 1993) is of uncertain affinity. While most maps assign exposed
greenschist-facies hemipelagic rocks to the Galice Formation, Hill (1984) inter-
prets these rocks as a <b-km-wide window of inner CMS lying structurally
above the Galice Formation and beneath the China Peak Complex. Sample
19KM3 was collected from this window with the aim of clarifying the affinity
of these rocks (Fig. 2). This sample contains a greenschist-facies assemblage
of quartz, chlorite, white mica, carbonaceous material, and minor epidote,
arranged in tightly folded quartz-rich and micaceous domains (Fig. 4H).

4.2. Zircon U-Ph Geochronology

Results from U-Pb zircon analysis of the CMS and samples of unknown
affinity are reported below, summarized in Table S1 in the Supplemental
Material," and illustrated in Figures 6 and 7.

4.2.1. CMS Igneous Analysis

15KM49 and 14CM17. These samples of meta-plagiogranite yielded 46 and
107 concordant U-Pb zircon ages, respectively, from which a concordia age of
171.8 £ 0.8 (20) was calculated (Fig. 6). This age is identical within uncertainty to
a 172 + 2 Ma age reported by Saleeby and Harper (1993) from an ~100-m-scale
gneissic metadiorite sill collected <5 km from the locality studied.

4.2.2. CMS Detrital Analyses

15KM23. This sample is from the western portion of the marginal CMS
unit and is the structurally highest metasedimentary sample studied here.
Concordant ages from 135 zircon grains range from 161.4 + 4.8 Ma to 2898.3
+12.0 Ma (10; Fig. 7). The sample yields YSP and MLA MDAs of 169.5 + 0.6 Ma

'Supplemental Material. U-Pb zircon data from the Condrey Mountain schist and adjacent units.

Please visit https://doi.org/10.1130/GEOS.S.25316140 to access the supplemental material, and
contact editing @geosociety.org with any questions.
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Figure 6. U-Pb zircon concordia plots (from laser ablation-inductively coupled plasma-mass
spectrometry analysis) from (A) Gold Flat amphibolite melanosomes, and (B) leucogneiss
collected from ~0.4 miles north of Scott Bar (Fig. 3). Individual analyses are shown as
unfilled black ellipses; calculated concordia ages are shown as white ellipses with black
fill. MSWD —mean square of weighted deviates.

and 170.8 = 0.7 Ma (10), respectively. Notably, these values are based on a
large cluster of ~50 ages that overlap at the 1c level and are probably too
conservative. The majority of grains analyzed (54%) yield Jurassic ages, with
the most pronounced peak centered at 168 Ma. Paleozoic populations (21% of
the total) exhibit minor peaks at 268 Ma, 320 Ma, 329 Ma, 390 Ma, and 486 Ma.
“Timanian/Pan-African-age” (i.e., 540-700 Ma) grains make up 5% of the total.
Proterozoic populations include a broad swath of “Grenville-age” (i.e., 950-
1300 Ma) grains (7%) plus distinct peaks at 1350 Ma, 1500 Ma, and 1630 Ma,
which correspond to 5%, 3%, and 5% of grains analyzed, respectively. Four
isolated Archean grains range from 2500 Ma to 2900 Ma.

15KM14. MDAs of 159.8 + 1.6 Ma (10) were calculated from this sample (YSP
and MLA methods produce identical results), which yielded 90 concordant
U-Pb zircon ages ranging from 156.5 + 3.9 Ma to 2484.1 + 24.9 Ma (10). This
sample is characterized by a spiky distribution of U-Pb ages, with peaks at ca.
160 Ma, 410 Ma, 1020 Ma, 530 Ma, and 620 Ma. Jurassic, Paleozoic, Timanian/
Pan-African, and Grenville age components comprise 10%, 30%, 11%, and 24%
of the total, respectively. Scattered Proterozoic grains with ages of >1100 Ma
plus one ca. 2750 Ma grain comprise 28% of the grains analyzed.

15KM11. This sample yielded 119 concordant U-Pb zircon ages suitable for
provenance analysis and the largest disparity among MDAs calculated (YSP:
144.5 + 1.5 Ma; MLA: 153.4 + 1.1 Ma; 106). Grains analyzed range in age from
141.1 £ 2.5 Ma to 2958.2 + 20 Ma (10). In this sample, 24.3% of the grains are
Jurassic, exhibiting a distinct peak at ca. 158 Ma and an auxiliary peak at
ca. 190 Ma. Paleozoic ages comprise 18% of the total and exhibit numerous
minor age peaks at ca. 275 Ma, 325 Ma, and 365-440 Ma. A distinct population
of Timanian/Pan-African ages (8%) with a peak at ca. 610 Ma, Grenville-age
grains (16%), and less prominent peaks at ca. 1450 Ma, 1500 Ma, and 1680 Ma
comprise the bulk of the remaining ages. This sample also yielded three ca.
2000 Ma and two 2900 Ma ages.

14CM16. This sample was collected from the summit of Condrey Mountain
at the northern edge of the Dry Lake area (Helper, 1986), which is the deepest
exposed portion of the Condrey Mountain structural window. The 73 concor-
dant U-Pb zircon ages from this sample range from 131.7 + 3.9 Ma to 2078.2
+ 44.3 Ma (16) and yield MDAs, calculated using the YSP and MLA methods,
of 139.5 + 1.9 Ma and 142.5 + 2.4 Ma (10), respectively. As in other samples
analyzed from the CMS, the largest peak in terms of area is Jurassic (22% of
the total), with a peak falling at ca. 160 Ma. Auxiliary early Mesozoic age peaks
are observed at ca. 225 Ma and 250 Ma. Paleozoic populations (15% of the
total) are concentrated at ca. 340 Ma, 430 Ma, and 510 Ma. A population of
Timanian/Pan-African ages comprises 16% of the grains analyzed and exhib-
its a conspicuous ca. 600 Ma peak. Grenville-age grains exhibit a peak at ca.
1030 Ma and account for 19% of the sample. Scattered Proterozoic ages with
one low-relief peak at 1450 Ma comprise most of the remaining ages.

19KM5. This sample was collected 2 km SE of sample 14CM16, within the
Dry Lake area, and yielded 274 U-Pb ages suitable for provenance analysis.
These ages span 129.5 + 4.3 Ma to 3295.4 + 12.1 Ma (10) and yield YSP and
MLA MDAs of 135.1 £ 0.9 Ma and 135.5 + 1.0 Ma (10), respectively. In order
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of decreasing prominence, the age peaks exhibited by this sample are at ca.
158 Ma (with a broad Jurassic shoulder comprising 18% of total grains), 240 Ma,
Grenville-age grains (26%) with peaks at 1020 Ma and 1150 Ma, Paleozoic ages
(15%) with a 390 Ma peak, and Timanian/Pan-African populations (7%) at ca.
550 Ma and 610 Ma. Pre-Grenville-age grains are generally scattered, with
discernable peaks at ca. 1440 Ma, 1660 Ma, and 1910 Ma, and with an array
of Neoarchean ages.

19KM4. This sample was collected 1 km SE of the previous sample, again
from the Dry Lake area, and yielded 284 concordant U-Pb ages ranging from
128.2 + 2.2 Ma to 2862.6 + 10.3 Ma (10). Respectively, YSP and MLA MDAs
of 130.7 £ 0.9 Ma and 130.2 + 1.7 Ma (1c) were calculated from this sample.
Jurassic, Paleozoic, Timanide/Pan-African-age, and Grenville-age populations
comprise 14%, 23%, 14%, and 19% of the total, respectively. This sample exhib-
its three sharp Phanerozoic peaks of diminishing prominence at 158 Ma, 260 Ma,
and 400 Ma, plus another prominent Neoproterozoic peak at 600 Ma. Broader
subsidiary peaks, ordered by decreasing amplitude, occur at ca. 1060 Ma,
1440 Ma, 1200 Ma, 1660 Ma, 2110 Ma, and 2710 Ma.

4.2.3. Samples of Unknown Affinity

14CM21. This sample of sheared migmatitic gneiss of the Gold Flat amphib-
olite of either the upper portion of the outer CMS or the deepest portion of the
Rattlesnake Creek terrane yielded a unimodal ca. 167-209 Ma spread of ages
from 14 cathodoluminescent (CL)-dark, oscillatory-zoned zircon-core domains,
from which a concordia age of 171.1 = 1.6 Ma (2c) was determined. Thin
(<20 pm), CL-bright domains exist on nearly all grains analyzed; two analyses
of such domains yielded relatively high-U/Th ratios (~5-7) and ages of 150.0
+2.1 Ma and 163.8 + 3.3 Ma. The textures and geochemistry observed in zircon
rims suggest that these domains are of metamorphic origin, though insuffi-
cient ages were determined for calculation of the timing of recrystallization.

19KM3. Respectively, YSP and MLA MDAs of 162.1 + 0.4 Ma and 164.2
+ 0.4 Ma (10) were calculated from this sample, which yielded 184 concordant
U-Pb zircon ages ranging from 150.6 + 12.2 Ma to 2747.3 + 13.4 Ma (10). This
sample exhibits a dominant peak at ca. 166 Ma, with Jurassic grains compris-
ing 48% of the total, and an auxiliary peak at ca. 260 Ma. Scattered Paleozoic
(12%) peaks concentrated at ca. 350 Ma and 450 Ma, Grenville-age grains (6%)
with a peak at ca. 950 Ma, and pre-Grenville-age grains with peaks at 1480 Ma
and 1780 Ma comprise most remaining grains. Timanian/Pan-African grains
are rare in this sample, comprising only 3%.

5. DISCUSSION

In this section, we address: (1) local geologic problems pertaining to the
affinities of the Gold Flat amphibolite and schist exposed at the NE margin of
the Klamath River appendage, (2) infer the ages and sources of the CMS to

evaluate possible regional correlations, (3) discuss the mechanisms that likely
controlled assembly of the CMS, and (4) provide a model for emplacement of
the CMS in the context of Mesozoic plate motions.

5.1. Affinities of Samples of Unknown Origin
5.1.1. Affinity of the Gold Flat Amphibolite

The Gold Flat amphibolite was assigned by Barrows (1969) and Burton
(1982) to the base of the Rattlesnake Creek terrane, in the upper plate of the
Condrey Mountain shear zone, on the basis of structural position and the
presence of garnet-bearing, amphibolite-facies assemblages. However, it is
conceivable that the Gold Flat amphibolite represents the amphibolite-facies
culmination of a documented north-to-south metamorphic field gradient that
begins in greenschist-facies, outer CMS assemblages near the confluence of
the Scott and Klamath rivers (Barrows, 1969; Saleeby and Harper, 1993). Indeed,
our U-Pb data from oscillatory-zoned zircon-core domains from the Gold Flat
amphibolite point to igneous crystallization of this unit at ca. 171 Ma (Fig. 6),
an age that is ~20 m.y. younger than the youngest dated igneous protoliths
from the Rattlesnake Creek terrane (cf. Wright and Wyld, 1994) and overlapping
ages from igneous protoliths of the outer CMS. The “Scott River granophyre”
of Saleeby and Harper (1993), a relatively large leucosome sampled from the
Gold Flat amphibolite, yielded a slightly discordant multifraction age of 157
+3/-2 Ma, which these workers attributed to some combination of inheritance
plus open-system behavior. New results from single zircon crystals extracted
from the same leucosome material yield U-Pb ages of 155.3 + 0.3 Ma (Gates
et al., 2019). We interpret the array of ages determined from the Gold Flat
amphibolite to reflect the mixing of igneous and metamorphic grain domains.
The above lithologic and geochronologic relations strongly suggest that the
Gold Flat unit does not belong to the Rattlesnake Creek terrane in the upper
plate of the Condrey Mountain shear zone and instead represents migmatitic
amphibolite-facies equivalents of the outer CMS. Alternatively, the Gold Flat
amphibolite may represent an exposure of ca. 170 Ma intrusive material, such
as the Vesa Bluffs pluton or Ironside Mountain batholith, which sporadically
intrude the Rattlesnake Creek terrane.

5.1.2. Affinity of the NE Klamath River Appendage

Accurate regional tectonic models depend critically on the correct identifi-
cation of rocks exposed along the NE margin of the Klamath River appendage
(Figs. 1 and 2). The assertion of Hill (1984) that the inner CMS intervenes
between the Galice Formation and China Peak Complex has significant impli-
cations for: (1) the relative age of the CMS, Galice Formation, and Nevadan
orogeny, and (2) the magnitude of slip along Nevadan structures responsible
for Galice burial.
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Sample 19KM3 vyields a Late Jurassic MDA and shows significant age-
spectrum overlap with both the Galice Formation (LaMaskin et al., 2021; Surpless
etal., 2024) and, to a lesser degree, the lens of semipelite within the outer CMS
(sample 15KM23, this study; Figs. 7-9; Table 2). These samples are all character-
ized by significant populations of Jurassic ages (approximately half of the grains
analyzed) and Paleoproterozoic and older ages, with low proportions of Paleozoic
plus Timanian/Pan-African- and Grenville-age grains. The age spectra and MDAs
derived from the inner CMS do not match those of sample 19KM3 as closely.

Hence, detrital zircon ages in sample 19KM3 are most compatible with a
Klamath River appendage Galice and/or an outer CMS metasedimentary origin.
The paleogeographic/tectonic scenario that led to similarities in detrital zircon
age spectra among the Galice Formation of the Klamath River assemblage,
outer CMS metasediments, and sample 19KM3 will be explored further in the
sections that follow.

5.2. Age and Provenance of the Condrey Mountain Schist
5.2.1. Outer Condrey Mountain Schist

Igneous samples from the outer CMS yield U-Pb ages of ca. 1771-170 Ma
(Saleeby and Harper, 1993; this work; Fig. 6), which we interpret to reflect the
timing of eruption and emplacement of mafic volcanic and intrusive protoliths.
One detrital sample (15KM23), recovered from the “semipelite” interval of Helper
(1985) in the center of the outer CMS, yields an MDA of ca. 170 Ma. Given the
approximately unimodal Middle-to-Late Jurassic age peak derived from this
sample, we infer that its hemipelagic protolith was sourced largely from the
adjacent ca. 170 Ma Western Hayfork arc and possibly consanguineous China
Peak Complex (discussed further in the following paragraph), with input of pre-
Jurassic grains from the eastern Klamath Mountains Province or further inboard.

The outer CMS shares a similar range of lithologies with the China Peak
Complex, for example, metamorphosed mafic volcanic and intrusive rocks and
subordinate metasedimentary rocks and felsic dikes, an overlapping range
of igneous ages, and an identical structural position beneath the Rattlesnake
Creek terrane along a regional thrust fault. Alternatively, the Western Hayfork
terrane may represent a suitable correlative to the outer CMS, given that each
consists of ca. 170 Ma volcaniclastic strata and tuffaceous intervals of basal-
tic to andesitic composition. However, the China Peak Complex and Western
Hayfork terrane may be consanguineous, and distinguishing between them is
therefore futile. However, we consider a Western Hayfork terrane-outer CMS
link less likely given that the Western Hayfork terrane resides structurally
above the Rattlesnake Creek terrane (e.g., Donato, 1987; Saleeby and Harper,
1993; Barnes and Barnes, 2020).

Correlation of the outer CMS with underthrust China Peak assemblages
leads us to infer the following paleogeographic setting for the formation of
the outer CMS unit, which was adapted from Donato (1987) and Saleeby and
Harper (1993).

At ca. 175 Ma, a few million years prior to formation of the outer CMS pro-
toliths, the Klamath Mountains Province consisted of four terranes inboard of
the Rattlesnake Creek terrane, upon which the Western Hayfork arc was being
constructed. The arrangement of this framework plus the high-Mg andes-
itic and adakitic geochemistry of the Western Hayfork terrane likely reflects
eastward subduction of young, hot Farallon oceanic lithosphere (Barnes and
Barnes, 2020). At ca. 172 Ma, a phase of extension affected this framework,
perhaps due to some combination of: (1) a rapid change in the absolute
motion of North America (May and Butler, 1986; Saleeby and Harper, 1993);
and (2) upper-lower plate coupling above an aging, and cooling, subducting
Farallon plate (i.e., slab rollback). Extensional tectonism localized within the
Western Hayfork and Rattlesnake Creek terranes, forming sheeted dikes of
the China Peak and Preston Peak complexes and covering the region with
volcaniclastic to hemipelagic sediment. Rifting was interrupted by the ca.
170 Ma Siskiyou event, which led to regional shortening and thrusting of the
Western Hayfork terrane >15 km beneath the Sawyers Bar terrane, followed
by minor thrusting of the Rattlesnake Creek terrane beneath the Western
Hayfork terrane, and stitching of these terranes by batholith-scale intrusives
(Wright, 1982; Wright and Fahan, 1988; Barnes and Barnes, 2020). At ca. 164 Ma,
shortening waned and extension resumed, resulting in the generation of the
Josephine ophiolite and hemipelagic precursors to the Galice Formation,
while the Rogue-Chetco and Wooley Creek volcano-plutonic belts flanked
the Josephine basin.

Following rifting and formation of the Josephine basin, extension yielded to
shortening once again with the ca. 157 Ma onset of the Nevadan event. Cooling
ages from the outer CMS and the base of the Rattlesnake Creek terrane strongly
suggest that these units were juxtaposed at this time (Helper, 1985; Saleeby
and Harper, 1993; Hacker et al., 1995). The presence of China Peak protoliths
within the Condrey Mountain window requires at least 50 km of underthrusting
along the Condrey Mountain shear zone. This shear zone juxtaposes the outer
CMS with the exposed, rootless base of the Wooley Creek plutonic belt and
its Rattlesnake Creek terrane framework. Removal of the base of the Wooley
Creek belt and emplacement of the outer CMS with no intervening mantle
strongly suggests that shearing must have occurred at an anomalously low
angle. We suggest that the heat required for greenschist-upper amphibolite-
facies metamorphism in the outer CMS and outboard equivalents in the China
Peak Complex was supplied from the upper plate, which had been recently
invaded by the 165-156 Ma Wooley Creek plutonic belt.

5.2.2. Inner Condrey Mountain Schist: Provenance

Metasedimentary rocks in the inner CMS, including both White Moun-
tain and Dry Lake subunits, are lithologically similar and yield overlapping
distributions of detrital zircon grains from structurally deep to shallow levels.
All samples analyzed from the inner CMS exhibit a prominent Middle-Late
Jurassic age peak that is centered at ca. 160 Ma. This Jurassic population was
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most likely sourced from ca. 165-156 Ma plutons and ca. 156-152 Ma late-stage
intrusives of the Wooley Creek belt (Hacker et al., 1995; Irwin and Wooden,
1999; Snoke and Barnes, 2006; MacDonald et al., 2006; Coint et al., 2013), with
probable input from the ca. 161-155 Ma Rogue-Chetco arc and/or plagiogranite
derived from underlying Josephine ophiolite basement (Harper et al., 1994).
Additional contributions from eroded Jurassic plutons of the Sierra Nevada
arc and retroarc are also likely, as Hf isotopic analysis of Middle-Late Jurassic
grains extracted from the Galice Formation requires an origin outside of the
Klamath Mountains Province (Surpless et al., 2024).

The majority of detrital zircon grains contained within the inner CMS are
pre-Mesozoic, some of which (e.g., Paleoproterozoic and older grains) may be
explained by westward shedding of material eroded from the Siskiyou and/or
Nevadan orogenic highlands to the east (Figs. 8 and 9). However, it should
be noted that the inner CMS contains higher proportions of Grenville-age
and Permian-Triassic detrital zircon grains and lower proportions of Paleop-
roterozoic grains than are observed in pre-CMS assemblages of the Klamath
Mountains, such as the Fort Jones/Stuart Fork and Sawyers Bar terranes
(Scherer and Ernst, 2008; Scherer et al., 2010; Ernst, 2017). Furthermore, the
inner CMS contains distinct Paleozoic and Timanian/Pan-African age peaks,
centered at 400 Ma and 600 Ma, respectively.

These relations require inmixing of at least one additional source com-
ponent containing abundant Grenville-age, Permian-Triassic, Paleozoic, and
Timanian/Pan-African-age detrital zircon grains. Recycled Triassic backarc
basin strata of Nevada and eastern California (Manuszak et al., 2000; Darby et
al., 2000; Gehrels and Pecha, 2014; Dickinson and Gehrels, 2008; LaMaskin et
al., 2011) and/or Jurassic erg materials of the Colorado Plateau and adjacent
areas (e.g., Dickinson and Gehrels, 2003, 2009) are excellent candidates for the
extraregional input(s) required to fully explain detrital zircon age spectra of the
inner CMS. Incorporation of one or both of these components likely involved
erosion in the backarc region, perhaps within the Luning-Fencemaker thrust
belt (e.g., Wyld, 2002; Wyld et al., 2003) or the Mogollon Highlands (Mauel et
al., 2011), and westward routing of the resulting detritus along the flanks of
the elevated Klamath—northern Sierra Nevada Mountains before entering the
Josephine basin. This recycled backarc signal observed in the inner CMS is
likewise noted in clastic materials of the Franciscan Eastern belt, the Galice
Formation, and the basal Great Valley Group. This detrital component was,
therefore, ubiquitous within the Late Jurassic-Early Cretaceous forearc realm,
and strongly suggests the arc was not yet prominent enough to block detritus
from the continental interior (DeGraaff-Surpless et al., 2002; Surpless et al.,
2006, 2024; Dumitru et al., 2010; Orme and Surpless, 2019; LaMaskin et al.,
2021; Figs. 8 and 9).

Early Cretaceous detrital zircon grains are found only at deep structural
levels of the inner CMS. These grains most likely originated from some
combination of two sources: (1) ca. 142-136 Ma plutons of tonalitic to gran-
odioritic composition (Snoke and Barnes, 2006) that are exposed throughout
the Klamaths, and/or (2) volcanic ash that erupted from the ca. 130-140 Ma
westernmost edge of the Sierran arc, which is now largely buried beneath

Great Valley forearc basin strata (Saleeby, 2007). An airfall origin for ca. 137 Ma
and younger zircon in the South Fork Mountain schist is inferred by Dumitru
et al. (2010) based on the abundance of very small grains of these ages in
radiolarian chert, a rock type that is not known for incorporating significant
clastic material.

Some models for the Jurassic to Cretaceous tectonic evolution of the
Klamath Mountains Province call on collision of the southern flank of the
Wrangellia-Alexander composite terrane (e.g., Tipper, 1984; Wernicke and
Klepacki, 1988; McClelland et al., 1992). This model predicts some detri-
tal contributions from the Wrangellia-Alexander terrane to sediment being
deposited in intervening basins (e.g., the Galice Formation, the South Fork
Mountain schist [SFMS], and the CMS) during its approach. Recent detrital
zircon geochronology from late Paleozoic strata of the southern Wrangellia-
Alexander terrane, exposed on Vancouver Island (British Columbia, Canada),
reveals abundant Carboniferous ages (ca. 344-317 Ma) and very few pre-
400 Ma grains (Alberts et al., 2021). This Carboniferous component is not
recognized in the Galice formation, SFMS, or CMS, which suggests that
either Paleozoic strata of the Wrangellia-Alexander terrane were not exposed
during collision, that Wrangellia-Alexander terrane-derived sediment was
not shed toward the Klamath Mountains Province, or that the terrane did
not collide at the paleolatitude of the Klamath Mountains in the Jurassic to
Cretaceous time frame.

5.2.3. Inner Condrey Mountain Schist: Age

Structurally shallow samples (i.e., subjacent to the Condrey internal fault
and in the vicinity of White Mountain; Fig. 2) yield older MDAs than those from
the Dry Lake area (ca. 160-153 Ma versus ca. 143-130 Ma; Table 2; Fig. 10). It
is conceivable that the entire inner CMS pile was deposited synchronously
and that the local environment in which structurally shallow samples were
deposited did not receive significant quantities of Early Cretaceous detrital
zircon. We consider this unlikely, since K-Ar white mica ages vary from ca.
141 Ma beneath the Condrey internal fault to ca. 128 Ma in the Dry Lake area
(Lanphere et al., 1968; Helper, 1985). These age relations suggest that the out-
ermost portion of the inner CMS was buried, grew metamorphic white mica,
and cooled through K-Ar closure prior to deposition of Dry Lake area protoliths.
We suggest that samples directly beneath the Condrey internal fault represent
a package of material that is distinct from that observed at deeper structural
levels. In reality, the inner CMS is likely composed of more than two tectonic
slices, as noted by Tewksbury-Christle et al. (2021), though sheared boundaries
separating packages have not been directly observed, perhaps due to poor
exposure or because they are gradational. Coupling Ar-Ar thermochronology
with detrital zircon U-Pb geochronology would provide a means of resolving
additional slices if they are present. Regardless, regional correlation of the
inner CMS and its subunits has significant implications for the late Mesozoic
tectonic development of the Klamath Mountains Province.
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Figure 9. Multidimensional scaling plot with samples plotted as pie diagrams. Pie diagram
bin colors correspond to those beneath kernel density estimate curves in Figures 7 and
8. Axes are dimensionless D,,,, distances (Vermeesch, 2013). Data sources: samples 1-7
(Tables 1 and 2)—this study; Mesozoic and older rocks of the central and eastern Klam-
ath Mountains (CEk)—Gehrels and Miller (2000), Wallin et al. (2000), Grove et al. (2008),
Scherer and Ernst (2008), Scherer et al. (2010), Ernst et al. (2017); Erg—Dickinson and
Gehrels (2009); Galice Formation (Galice) —LaMaskin et al. (2021), Surpless et al. (2024);
Great Valley Group (GVG)—Orme and Surpless (2019); Rattlesnake Creek terrane cover
(RCt)—LaMaskin et al. (2021); South Fork Mountain schist (SFMS)—Dumitru et al. (2010);
Triassic backarc rocks (TrNV) and Wrangellia— Alberts et al. (2021).

5.2.4. The Inner CMS: Galice or Franciscan?

The protoliths of the inner CMS, lower hemipelagic section of the Galice
Formation, and the SMFS each consist chiefly of argillite and chert and there-
fore do not facilitate regional correlation. However, the abundance of turbidite
in the upper portion of the Galice Formation and its absence from the CMS
window render correlation of these units unlikely.

The structurally deep Dry Lake area contains the youngest material of the
CMS. Detrital zircon age spectra and Early Cretaceous MDAs calculated from
this area overlap those from the SFMS (Dumitru et al., 2010; Chapman et al.,
2021b). This observation, in addition to structural and lithologic similarities
between these units, strongly suggest that this portion of the CMS represents

Franciscan assemblages displaced ~100 km inboard of the nearest previously
recognized exposures of South Fork Mountain schist.

The structurally shallow White Mountain area yields MDAs older than those
of structurally deep samples and overlapping those reported for the Galice
Formation (LaMaskin et al., 2021; Surpless et al., 2024). However, the detrital
zircon age spectra of White Mountain subunit samples more closely overlap
those of the Dry Lake subunit and SFMS than those of the Galice Formation. For
these reasons, we consider a White Mountain CMS-Galice correlation unlikely.

It is conceivable that sedimentary protoliths in the White Mountain area
were deposited synchronously with those in the Dry Lake area, with the former
not receiving detrital zircons of Early Cretaceous age. Indeed, Tewksbury-
Christle et al. (2024) document a minute quantity (<1%) of Early Cretaceous
detrital zircon grains within the White Mountain subunit.

Alternatively, the White Mountain area may represent a slice of pre-SFMS
Franciscan, perhaps the Skaggs Springs schist. The Skaggs Springs schist of
the Franciscan eastern belt represents a possible precursor to the much more
voluminous, yet comparable metamorphic-grade South Fork Mountain schist
(Dumitru et al., 2010). Compared to the South Fork Mountain schist, the Skaggs
Springs schist yields an older MDA (ca. 144 Ma) and a younger main age peak
(ca. 152 Ma versus 162 Ma; Snow et al., 2010). Notably, however, these differ-
ences are based on just 38 analyses available from the Skaggs Springs schist,
which renders the relationships among the inner CMS and these important
Franciscan units uncertain.

One could argue that the inner CMS is not equivalent to the SFMS, as the
former yields older (141-128 Ma; Helper, 1985) white mica K-Ar ages than Ar-Ar
ages from the latter (ca. 123 Ma; Dumitru et al., 2010). However, this difference
may result from limited data (three or fewer samples from both units) and/or
the indirect comparability of data sets (K-Ar versus Ar-Ar).

Itis also possible that the CMS represents SFMS protoliths that subducted
a few million years earlier than the remainder of the SFMS. Our favored inter-
pretation, explored in the sections that follow, is that the CMS was emplaced
during a phase of shallow-angle subduction with limited strike-parallel extent.
Such an episode could conceivably result in localized CMS subduction prior
to regional SFMS emplacement. Furthermore, the presence of Franciscan
assemblages in the Condrey Mountain window, which likely continued at least
~50 km east of the window (observed as an ~3-km-thick, low-velocity layer;
Fuis et al., 1987), requires significant low-angle underthrusting of subduction-
accretion assemblages.

5.3. Middle—Late Jurassic Tectonic Evolution of the Klamath Mountains
Province and Emplacement of the Outer Condrey Mountain Schist

The CMS appears to be a composite of three distinct units. First,
emplacement of the outer CMS subunit, which is inferred to be greenschist—
amphibolite-grade equivalents of the China Peak Complex, beneath the
Rattlesnake Creek terrane most likely occurred during the Nevadan event.
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Figure 10. Summary of regional
ages and events as well as maxi-
mum depositional ages from this
study. Timing of Klamath Moun-
tains Province (KMP) tectonic events
was compiled from sources given
in the text. Maximum depositional
ages and associated uncertainties
are from Table 2. YSG—youngest
single grain; YSP—youngest statis-
tical population; MLA—maximum
likelihood algorithm. Igneous ages
are from U-Pb zircon analysis (see
Fig. 6). Jurassic and Cretaceous
boundary ages are from Gradstein
et al. (2020). E—Early; M—Middle;
L—Late; CMS—Condrey Moun-
tain schist; GVG—Great Valley
Group; SFMS—South Fork Moun-
tain schist RCt—Rattlesnake Creek
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Next, a section of probable eastern Franciscan belt equivalents (White Moun-
tain subunit) underthrust the outer CMS after ca. 153-144 Ma (Table 1), possibly
in the waning stages of the Nevadan event. Assembly of the CMS culminated
with tectonic underplating of the innermost Dry Lake CMS subunit of Francis-
can affinity, which is constrained to the interval between MDAs of ca. 140 Ma
and ca. 128 Ma K-Ar cooling ages. We explore the tectonic implications of this
apparent three-stage emplacement history of the CMS below.

Regional tectonism was clearly very dynamic preceding and during under-
thrusting of the outer and White Mountain subunits of the CMS and involved
rapid changes from extension and formation of the China Peak Complex to
shortening (Siskiyou phase), which was followed again by extension (Jose-
phine basin formation) and culminated with convergence (burial of the outer
CMS, Western Klamath terrane, and the White Mountain unit of the inner CMS).
Notably, the change from ca. 170 Ma Siskiyou convergence to ca. 164 Ma
Josephine extension to ca. 157 Ma Nevadan convergence over a brief time
interval has long been recognized (e.g., Wright and Fahan, 1988; Hacker and
Ernst, 1993; Snoke and Barnes, 2006). However, current models for the Jurassic
tectonic development of the Klamath Mountains Province face challenges in
explaining the swift transitions between periods of contraction and extension,
as well as the spatial restriction of deformation.

The driver(s) of Siskiyou and Nevadan events are unclear, with debate sur-
rounding the relative roles of changes in plate motion versus the collision of
exotic lithosphere, namely the Wrangellia-Alexander superterrane. Changes
in the rate and/or orientation of convergence between western North America
and the Panthalassan realm at ca. 170 Ma and 150 Ma (e.g., May et al., 1989;
Seton et al., 2012) have been invoked to explain Siskiyou and Nevadan defor-
mation. If a global plate reorganization did indeed occur, why was deformation
localized to a <500-km-long domain of the margin? Shouldn’t the Siskiyou
and/or Nevadan events have lasted longer? Shouldn’t these events have been
bracketed and interrupted by similarly brief and localized extensional episodes?
Similar challenges arise with collisional models, as modern (e.g., the Alpine
and Himalayan) and ancient (e.g., the Grenville, Appalachian-Caledonian, and
Laramide) examples span thousands of kilometers and several tens of millions
of years. Furthermore, recent U-Pb detrital zircon geochronology from the
Rattlesnake Creek and Western Klamath terranes strongly suggests a western
North America-fringing origin for these terranes, which rules out the possibility
that they represent far-traveled materials such as a portion of the Wrangellia-
Alexander superterrane (LaMaskin et al., 2021).

In light of the issues noted in the above paragraph, with models invoking
changes in plate motion or superterrane collision, we suggest that rapidly alter-
nating periods of localized extension and shortening are better understood in
the context of “tectonic switching” (Collins, 2002). In this context, the Siskiyou
event was preceded by a brief ca. 172 Ma extensional episode, as evidenced
by sheeted dike complexes of the Preston Peak and China Peak complexes and
the diverse array of magmas (Barnes and Barnes, 2020) generated in the West-
ern Hayfork (extensional?) arc. Extensional tectonism may have been related
to slab retreat and/or oceanward stepping of subduction (e.g., Donato, 1987).

The Siskiyou event occurred at ca. 170 Ma with docking of fringing Rattlesnake
Creek and Western Hayfork terranes. Encroachment of these terranes with
earlier accreted materials was most likely accomplished through subduction
of a small (less than a few hundred kilometers in diameter), yet buoyant and
rough oceanic feature (e.g., a plateau, aseismic ridge, seamount chain, or
fracture zone) embedded in subducting Panthalassa lithosphere, which would
have enhanced basal traction along the subduction interface. Subduction of
relatively smooth and thin oceanic lithosphere followed shortly after passage
of this hypothetical oceanic feature; ensuing slab retreat induced an ~5 m.y.
phase of upper-plate extension and formed the Josephine basin. Relatively
steep subduction enabled asthenospheric counterflow and devolatilization
melting, leading to magmatism in the Wooley Creek plutonic belt and Rogue-
Chetco arc. At ca. 157 Ma (the Nevadan event), upper-plate magmatism waned,
and extension yielded to shortening due to subduction of another buoyant and
rough oceanic feature, underthrusting the outer CMS and the Western Klamath
terrane. The punctuated and localized effects of impingement of multiple small
oceanic features with the Middle-Late Jurassic margin of North America at the
paleolatitude of the Klamath Mountains finds analogs in modern rough patches
of subducting oceanic lithosphere, such as the Australian and Philippine Sea
plates (LaMaskin et al., 2011; Lallemand et al., 2018). Alternatively, buckling
of the downgoing slab along mantle-density interfaces may have played an
additional role (e.g., Schellart and Strak, 2021).

In summary, the Jurassic evolution of the Klamath Mountains Province
exhibits the hallmark traits of a region that has experienced tectonic switching,
namely localized and rapidly alternating contraction and extension. An argu-
ment could be made, though, that the rough patches of seafloor crucial for
tectonic switching were subducted into the mantle, rendering the model untest-
able. However, a fragment of the Middle Jurassic seafloor is preserved in the
Rattlesnake Creek terrane. The existence of dismembered ophiolitic mélange
in the Rattlesnake Creek terrane strongly suggests that the seafloor being
conveyed toward the North American margin was a highly irregular surface.

5.4. Shallow-Angle Subduction Model for Early Cretaceous Assembly
of the Inner Condrey Mountain Schist, Franciscan Accretion, and
Klamath-Sierran Separation

Magmatism resumed as deformation associated with the Nevadan orogeny
waned, permitting intrusion of primarily mafic magmas belonging to the ca.
151-144 Ma western Klamath suite (Barnes et al., 2006). Following intrusion of
the western Klamath suite, the locus of magmatism migrated slightly (a few
tens of kilometers) eastward and evolved toward more felsic compositions
(ca. 142-136 Ma tonalite-trondhjemite—granodiorite and granodioritic suites;
Barnes et al., 1992). Magmatism in the Klamath Mountains Province abruptly
terminated at ca. 136 Ma (Allen and Barnes, 2006).

We infer the relations described above to have resulted sequentially from:
(1) post-Nevadan slab rollback and associated extensional magmatism within
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the opening mantle wedge; (2) slab shallowing and related arc migration
plus incorporation of previously subcreted materials (e.g., Allen and Barnes,
2006); and (3) shallow/flat subduction, impingement, and/or removal of the
circulating mantle wedge, and arc shutdown. Shortly after the cessation of
magmatism, several additional noteworthy events occurred in the Klamath
Mountains Province (Figs. 10 and 11).

First, the continental margin transitioned from non-accretion to an accre-
tionary mode marked by the emplacement of the oldest slices of Franciscan
Complex (i.e., the SFMS) beneath the Klamath Mountains Province along the
Coast Range fault (Dumitru et al., 2010; Chapman et al., 2021b). These authors
argue, based on observations from modern forearcs (e.g., Clift and Vannuc-
chi, 2004; Scholl and von Huene, 2007), that accretion began in response
to an increase in sedimentary flux into the trench. They conclude that the
mechanisms driving increased sedimentation are unclear but may relate to an
increase in magmatic flux in the Sierra Nevada batholith, erosion of orogenic
highlands, and/or changes in relative plate motion.

It is difficult to envision the localized (i.e., Klamath Mountains Province-
adjacent) increase in sedimentation required for Franciscan and inner CMS
accretion as being driven by regional- (i.e., Sierra Nevada-scale) to global-scale
phenomena. Instead, we speculate that localized (no more than a few hundred
kilometers along orogenic strike), shallow-angle subduction led to increased
basal traction along the margin, which led to growth of the accretionary wedge
and an increase in underplating. Correlation of the inner CMS Dry Lake subunit
with the SFMS requires that the former accumulated in the Early Cretaceous
trench and underthrust the Klamath Mountains Province along the equivalent
of the Coast Range fault. The shallowly dipping tectonic contact separating the
Klamath Mountains Province basement and lower-plate inner CMS requires
tectonic erosion of formerly intervening mantle lithosphere.

Second, the Klamath Mountains Province relocated westward from the axis
of arc magmatism to the forearc domain and was affected by extension (Con-
stenius et al., 2000; Batt et al., 2010a, 2010b; Ernst, 2013). Ernst (2013) invokes a
decrease in upper-lower plate coupling to explain these relations, speculating
that a change in subducting material from old (i.e., cold and thick) to young
(i.e., warm and thin) oceanic lithosphere may be responsible. We concur that
extension and westward motion of the Klamath Mountains Province likely
involved a reduction of interplate coupling. However, there are no modern
analogs for subduction of a <200-km-wide patch of young oceanic lithosphere
flanked by significantly older lithosphere, except where spreading ridges are
colliding with continental margins; if a spreading center had collided with the
Klamath Mountains Province in Early Cretaceous time, evidence for an ele-
vated geothermal gradient at that time should be present. Instead, we suggest
that slab rollback from the originally shallower trajectory profoundly reduced
upper-lower plate coupling, facilitating trench retreat, westward displacement
of the Klamath Mountains Province, and extension within the province.

The proposed Early Cretaceous shallow-angle subduction episode and
ensuing rollback mark the final events of more than 50 m.y. of tectonic switch-
ing experienced by the Klamath Mountains Province. To summarize, two

pronounced cycles of tectonic switching include: (1) ca. 175-170 Ma exten-
sion, during which the China Peak Complex, Western Hayfork arc, and outer
CMS protoliths formed followed by the ca. 170 Ma Siskiyou event, and (2) ca.
164-162 Ma extension and formation of the Josephine basin followed by the
ca. 1567-151 Ma Nevadan event. A relatively feeble third event is marked by
ca. 151-144 Ma formation of western Klamath suite magmas, slab shallow-
ing, and inboard migration of magmatism, and ca. 140-128 Ma shallow-flat
slab emplacement of the Dry Lake subunit of the inner CMS. A final phase of
extension in the Klamath Mountains Province, and associated deep-marine
sedimentation, accompanied its westward translation in the ca. 136-125 Ma
window (Ernst, 2013).

5.5. What Is Franciscan, and What Portions of the Condrey Mountain
Schist Qualify?

Hallmarks of the Franciscan Complex, summarized by Berkland et al.
(1972) and Wakabayashi (2015), include: (1) the presence of diverse lithol-
ogies, consisting chiefly of metamorphosed clastic sedimentary rocks with
lesser amounts of serpentinite, basalt, chert, and limestone; (2) metamorphism
along a high-pressure/low-temperature array, generally spanning the zeolite,
prehnite-pumpellyite, blueschist, and eclogite facies; (3) depositional and
metamorphic ages spanning Early Cretaceous to Paleogene time; (4) its pres-
ence beneath Middle to Late Jurassic ultramafic rocks, gabbro, and basalt of
the Josephine ophiolite in Northern California/southern Oregon and the Coast
Range ophiolite in more southerly California; and (5) a variety of structural
styles from generally coherent to internally broken to mélange.

The Dry Lake subunit meets all criteria listed above, contains an array of rock
types similar to that of the South Fork Mountain schist, and MDAs and detrital
zircon age spectra from the South Fork Mountain schist and Dry Lake subunit
overlap significantly. The White Mountain subunit is likewise lithologically
identical to the South Fork Mountain Schist and Dry Lake subunit. However,
despite hosting detrital zircon grains yielding a similar array of ages as those
of the South Fork Mountain schist and Dry Lake subunit, the White Mountain
subunit yields older MDAs. Age constraints on the emplacement of this subunit
are virtually absent, with small quantities of Early Cretaceous detrital zircon
grains (Tewksbury-Christle et al., 2024) and a single white mica K-Ar age of
ca. 144 Ma reported (Lanphere et al., 1968), which raises the possibility that
this subunit indeed accreted in Early Cretaceous time. Is the White Mountain
subunit of the inner CMS Franciscan? The only apparent reason to exclude the
subunit appears to be on the basis of its age. For this reason, we recommend
that the White Mountain subunit of the inner CMS be considered Franciscan.

Reimagining the entire inner CMS as Franciscan has implications for what
controlled the accretion of clastic units in the Franciscan, as the inner CMS
may represent the oldest known slice of predominantly sedimentary mate-
rial contained in the Franciscan Complex. If, as we suggest, emplacement
of the inner CMS was controlled by one or more episodes of shallow-angle
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subduction, then the switch from non-accretion to accretion (e.g., Dumitru et
al., 2010) may have been flipped as the slab shallowed.

Is the outer CMS Franciscan? This unit contains chiefly basaltic flows and
pyroclastic deposits metamorphosed under greenschist- to amphibolite-facies
conditions in Middle to Late Jurassic time, which is at odds with the Francis-
can characteristics listed at the beginning of this section. Furthermore, the
structural relationship between the outer CMS and the Josephine ophiolite is
unclear, as the outer CMS probably represents the buried equivalents of early
rift products. If the outer CMS does indeed represent a buried early rift facies of
the Josephine ophiolite, then protoliths of the outer CMS were likely emplaced
in and erupted onto marginal North American crust, notably distinct from the
trench setting in which the Franciscan Complex formed. These relations lead
us to suggest that the outer CMS does not belong to the Franciscan Complex.
However, burial of the ophiolitic upper plate to the Franciscan Complex appears
to be restricted to the outer CMS and broadly correlative Josephine ophiolite
of the Klamath Mountains Province, as the Coast Range ophiolite of more
southerly California did not experience burial-related metamorphism exceed-
ing zeolite grade (Evarts and Schiffman, 1983). Such burial and accretion of the
outer CMS, while distinct in character from the Franciscan Complex, marked
the end of a protracted phase of non-accretion and heralded the arrival of the
first packages of Franciscan assemblages.

5.6. A Comparison with the Pelona—Orocopia—Rand and Related
Schists of Southern California and Arizona

The Late Cretaceous—early Cenozoic Pelona-Orocopia-Rand and related
schists of Southern California and Arizona represent the world’s best-known
example of the exhumed products of shallow-angle subduction (e.g., Saleeby,
2003; Jacobson et al., 2007; Chapman, 2017). Five key observations, sum-
marized by Ducea et al. (2009) and Chapman (2017), reveal the tectonic
significance of the Pelona—Orocopia—Rand schist. First, the schist consists
chiefly of continent-derived immature clastic material with subordinate oceanic
rocks—typical subduction-accretion assemblages—residing beneath continen-
tal arc plutons of the continental interior. Second, the contact between these
rock packages is a shallow-angle ductile structure that separates lower-plate
schist and upper-plate arc assemblages. Third, the lower plate exhibits an
inverted metamorphic field gradient and achieves peak temperatures of ~100 °C
lower than the overriding plate. Fourth, the depositional and metamorphic
ages of lower-plate clastic materials broadly overlap with the intrusive ages
of upper-plate plutons, which requires underthrusting at plate tectonic rates.
Finally, outside of the schist outcrop belt, the arc is separated from subduction-
accretion assemblages (i.e., the Franciscan Complex to the north and Western
Baja terrane to the south) by a forearc basin underlain by ophiolitic basement
and subcontinental mantle lithosphere. In other words, the lateral extent of
shallow-angle, subduction-related damage is apparently restricted to the schist
domain, where forearc lithosphere is absent.

Saleeby (2003) argue, based on observed margin-parallel tectonostrati-
graphic variations, that Late Cretaceous subduction along the western margin
of North America consisted of normally dipping domains interrupted by a
shallowly dipping segment in Southern California. This argument was later
bolstered by forward and inverse geodynamic modeling that strongly sug-
gested a conjugate to the Shatsky Rise of the NW Pacific Ocean basin collided
with Southern California in Late Cretaceous time (Liu et al., 2010).

The CMS satisfies all shallow-angle subduction criteria, with one caveat.
Like the Pelona—Orocopia-Rand schist, the CMS contains chert plus mafic and
ultramafic rocks of oceanic origin. However, the Pelona—Orocopia-Rand schist
and CMS are dominated by psammitic and hemipelagic protoliths, respectively.
This key difference reflects deposition of Pelona—Orocopia—Rand schist pro-
toliths proximal to the continent, probably along the trench slope, whereas
CMS protoliths probably represent more distal trench-floor deposits. Some
combination of the following factors probably led to this key lithologic differ-
ence: (1) a higher sedimentation and/or plate convergence rate for the case
of the Pelona—Orocopia-Rand schists or (2) the presence of basement highs
or lows that blocked coarse clastic material from becoming part of the CMS
section (e.g., Underwood et al., 1980; Engebretson et al., 1984).

One additional hallmark of shallow-angle subduction, noted by Coney and
Reynolds (1977) in the SW North American Cordillera, is a migrating locus of
magmatism that sweeps inboard during slab shallowing. For the case of the
Klamath Mountains Province, the relative positions of Latest Jurassic and Early
Cretaceous plutons imply relatively modest arc migration within this time frame
(a few tens of kilometers; Snoke and Barnes, 2006). However, the entire Klamath
Mountains Province moved off the axis of magmatism in Early Cretaceous time,
separating from the Sierran arc, to reside ~200 km to the west in the forearc realm
(e.g., Ernst, 2013). Therefore, if magmatism at the latitude of the Klamath Moun-
tains Province indeed continued from Early into Middle Cretaceous time, then the
products of said magmatism would be expected east of the Klamath Mountains
Province. Unfortunately, basement rocks east of the Klamath Mountains Province
are covered by several kilometers of sedimentary and volcanic rocks, including
the Upper Cretaceous Hornbrook Formation, Paleogene volcaniclastic rocks of
the Payne Cliffs and Colestin formations, and Plio-Quaternary volcanic rocks of
the Cascade Range and Modoc Plateau provinces (Berge and Stauber, 1987; Fuis
et al., 1987; Guffanti et al., 1996). To our knowledge, no basement-derived xeno-
liths or xenocrysts are reported from the area separating the Klamath Mountains
Province and the Basin and Range. Though direct constraints are lacking, seismic
data suggest that southern Cascade Range and Modoc Plateau crust are likely
underlain by igneous and metamorphic rocks related to the Klamath Mountains
Province and northern Sierra Nevada (e.g., Fuis et al., 1987).

l 6. CONCLUSIONS

The purpose of this effort is to constrain the origin of the CMS. To that end,
new zircon U-Pb geochronology from the outer CMS unit points to ca. 171 Ma
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eruption of volcanic protoliths and deposition of infolded, nonconformably
overlying metasedimentary rocks shortly thereafter. Outer CMS sedimentary
protoliths comprise chiefly Klamath Mountains Province-derived detritus. The
greenschist-ampbhibolite grade inverted metamorphic field gradient preserved
in the outer CMS is inferred to have formed during ca. 156-152 Ma underthrust-
ing of the unit directly beneath the ca. 167-156 Ma (i.e., recently extinguished
at that time and hence, hot) Wooley Creek plutonic belt. In aggregate, the outer
CMS appears to represent products of early-stage Josephine basin rifting, akin
to similar “rift edge facies” assemblages such as the China Peak and Preston
Peak complexes, which underthrusted the Middle-Late Jurassic arc and its
Rattlesnake Creek terrane framework during the Nevadan orogeny.

The inner CMS is petrogenetically distinct from the outer CMS to the degree
that referring to each as portions of the same unit may no longer be practical.
Detrital zircon U-Pb ages derived from the inner CMS reveal a down-section
decrease in calculated MDAs from ca. 160 Ma adjacent to the Condrey internal
fault to ca. 130 Ma at the deepest level of exposure. This observation, integrated
with sparse K-Ar white mica age constraints, leads us to subdivide the inner
CMS into structurally high- and low-White Mountain and Dry Lake subunits,
respectively. Based on similar rock types and comparable detrital zircon age
spectra, we correlate both subunits of the inner CMS with the eastern belt of
the Franciscan Complex.

Tectonic underplating of the White Mountain subunit beneath previously
emplaced outer CMS must predate the arrival of the Dry Lake subunit, to
explain their older-on-younger structural arrangement (the former yields MDAs
>10 m.y. older than the latter). The precise timing of underthrusting of each
unit is unclear. However, we suspect that the White Mountain subunit was
emplaced during the waning stages of the Nevadan event. Arrival of the Dry
Lake subunit must postdate calculated MDAs spanning 143-130 Ma and pos-
sibly occurred at ca. 128 Ma, based on the K-Ar age of metamorphic white
mica derived from this subunit.

These results suggest that the CMS represents forearc-trench assemblages
emplaced beneath the Late Jurassic arc in at least three distinct pulses. The
first two occurred in rapid succession, with underplating of the outer CMS and
White Mountain subunit of the inner CMS taking place sequentially during and
following the Nevadan event. Emplacement of the outer CMS, and possibly
the White Mountain inner CMS subunit, involved significant tectonic erosion
as evidenced by the rootless aspect of upper-plate plutons. Emplacement of
the Dry Lake inner CMS subunit probably occurred some 10-20 m.y. later. The
absence of Josephine ophiolite and its Galice Formation cover from the inner
CMS point to removal of these lithologies during underthrusting.

The far inboard position of these assemblages requires shallow-angle
thrust emplacement, which we attribute to shallow-angle subduction. We
further argue that the spatial restriction of the Nevadan event to the Klam-
ath Mountains Province plus northern Sierra Nevada, including deformation
of the Josephine ophiolite but not the Coast Range ophiolite, is related to a
relatively narrow (a few hundred kilometers) corridor of shallow-angle sub-
duction that must have been periodic to allow for sequential underplating of

the outer CMS and both subunits of the inner CMS. In particular, the >10 m.y.
gap separating underplating of the White Mountain and Dry Lake subunits
of the inner CMS, during which regional magmatism reignited before shut-
ting down permanently when the Dry Lake subunit was emplaced, requires
a phase of steeper subduction separating more shallowly dipping intervals.
The tectonic scenario in which episodic shallow-angle subduction took place
is unclear, though it may have been related to collision of separate thickened
tracts of oceanic lithosphere (“tectonic switching” of Collins, 2002), buckling
of the downgoing slab along mantle-density interfaces (e.g., Schellart and
Strak, 2021), or perhaps a combination of the two.

Shallow-angle emplacement of the CMS had profound effects on the Klam-
ath Mountains Province and adjacent geologic provinces in Late Jurassic and
Early Cretaceous time. First, arc productivity waned during emplacement of
the outer CMS and the White Mountain inner CMS subunit before shutting
off entirely with the arrival of the Dry Lake subunit. Immediately following
emplacement of the Dry Lake subunit, the entire Klamath Mountains Prov-
ince separated from the Sierran arc and was translated ~200 km to the west
into the forearc. Westward displacement of the Klamath Mountains Province
coincided with regional cooling, low-angle normal faulting, and increasing
sedimentation in the Great Valley forearc basin. We attribute these profound
changes to rollback of the downgoing slab to a steeper trajectory, reducing
interplate coupling and facilitating trenchward displacement of the entire
Klamath Mountains Province.

The parallels between Late Jurassic to Early Cretaceous tectonism recorded
by the Klamath Mountains Province and Late Cretaceous—early Cenozoic
events of Southern California are striking. In each location, the upper-plate
domain transitions from a phase of stable arc magmatism; then yields to
diminishing magmatism, upper-mid-crustal shortening, and basal crustal
tectonic erosion plus underplating; and culminates with extensional collapse.
These relations are inferred, in each location, to have resulted from a transition
from relatively steeply dipping to shallow-angle subduction and a return to
a steeper dip. For the case of the Klamath Mountains Province, at least three
such tectonic switching events are inferred. Recognition of similar sequences
of events in the geologic record may aid in the identification of additional
ancient examples of shallow-angle subduction damage zones and improve
our understanding of how modern “snapshots” of shallow-angle subduction
zones may evolve.
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