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ABSTRACT

A building must meet various requirements during the design and construction process to ensure
the benefits of stakeholders and well-being of construction workers and occupants. These
requirements may come from different functional areas such as structure, electricity, and fire
protection, and focus on different building materials, such as concrete, steel, and glass. They may
overlap or even conflict with each other. In order to identify the sources and focus of building code
requirements and further clarify the relationships between them, this paper presents some recent
results on using graphic convolutional networks (GCN) to classify building code requirements.
One hundred building code provisions were randomly selected from the International Building
Code 2015 and labeled into 6 categories manually, and a cutting-edge GCN model was trained to
classify them. Experimental results showed an average precision of 91.67% and an average recall
0f 94.44% when 10% of the data was used for testing, which is comparable to the 84.30% precision
and 97.30% recall of the state-of-the-art machine learning-based approaches applied on
construction document classification. The effect of the size of training data on testing accuracy
was also discussed in this paper.

INTRODUCTION

The construction of a building necessitates strict adherence to numerous requirements that
guarantee the safety and well-being of the construction workers and occupants, while
simultaneously satisfying the expectations of stakeholders. Building codes and standards establish
the minimum requirements for construction projects to achieve the aforementioned objectives.
Compliance of a building with building codes and regulations is critical for various parties
involved, including contractors, designers, workers, occupants, among other stakeholders. In
recent years, automated compliance checking (ACC) has gained popularity as a substitute for
traditional manual compliance checking, which is notorious for being a time-consuming and labor-
intensive process (Wu et al. 2023; Akanbi and Zhang 2021; Zhang and El-Gohary 2017; Eastman
et al. 2009). ACC involves the use of computer technology to automate the process of checking
building designs and activities for compliance with building codes and regulations (Yang et al.
2022; Wu and Zhang 2022; Xu and Cai 2020). Compared to manual compliance checking, ACC
is more efficient, accurate, reliable, and consistent (Macit ilal and Giinaydin 2017). For instance,
ACC can identify non-compliant areas in real-time, allowing for early intervention and
rectification of potential issues. Additionally, ACC can mitigate the risk of errors and oversights
of manual checking, thereby providing consistent and reliable results. The ACC framework can be
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customized to the unique requirements of a project, guaranteeing that all relevant codes and
standards are checked. Given its significant benefits, it is desirable to facilitate the adoption of
ACC in the construction industry to ensure compliance with all relevant codes and standards, as
well as to enhance the well-being, satisfaction, and productivity of all parties involved, thereby
increasing overall industry productivity.

The current ACC approach commonly involves four stages: building code representation,
design information representation, checking rule execution and result exportation (Eastman et al.
2009). Among them, building code representation is a crucial stage in ACC as it involves the
translation of the legal text of building codes into a form that can be processed by computers. This
representation serves as the basis for the design information representation and the checking rule
execution stages of ACC. Building code representation is particularly challenging because
building codes are typically written in natural language, which is ambiguous and prone to
interpretation. Consequently, translating building codes into machine-readable form requires a
deep understanding of the legal text, the domain knowledge, and the rules governing building
design and construction. Additionally, building codes are frequently updated, which means that
the ACC system must be able to adapt to new changes in the codes. To address these challenges,
researchers have developed various approaches for building code representations in ACC systems,
including semantic web technologies (Dimyadi et al. 2015; Pauwels et al. 2011), rule-based
approaches (Zhang and El-Gohary 2016a; Rasdorf and Lakmazaheri 1990; Rasdorf and Wang
1988), and natural language processing techniques (Zhang 2023; Xue and Zhang 2021; Zhang and
El-Gohary 2016b; Salama and El-Gohary 2012). These approaches aim to represent building codes
in a more structured and machine-readable form that can be easily interpreted by ACC systems.

To ensure the accurate extraction and representation of building code information, building
code classification serves as a crucial preliminary step (Zhou and El-Gohary 2016b). As a type of
text classification, building code classification involves the automatic categorization of building
code requirements into predefined classes or categories based on their content, context, or features.
Building code requirements can be sourced from different functional areas, each with its own
specific focus and requirements. For instance, requirements for structure, electricity, and fire
protection differ significantly, with each area having its own specific regulations. Moreover,
building requirements may focus on different building materials such as concrete, steel, and glass.
As a result, building codes may overlap, conflict, or even have a cascading effect on one another,
making it challenging to extract and represent them accurately. Building code classification
techniques simplify the identification of sources of building code requirements and clarify
relationships between them. This simplifies the accurate and efficient extraction and categorization
of building code information. As a result, a structured and standardized representation of the
building code can be created, which is more easily interpreted by computers, enabling more
effective automated compliance checking.

Text classification is a classic natural language processing (NLP) task, and researchers
have applied machine learning techniques to classify building text or documents in previous
studies (Salama and El-Gohary 2016; Zhou and El-Gohary 2016a). However, previous research
mainly utilized classic classification models (e.g., support vector machines (SVMs), decision tree
(DT), k-nearest neighbors (kNN)). To the best of the authors’ knowledge, no research has explored
the application of state-of-the-art graphic convolutional networks (GCN) for building code
classification, which are expected to outperform those classic models. This paper presents a novel
approach of utilizing cutting-edge GCN models to classify building code requirements based on
their focus on different building materials. The proposed approach aims to improve the accuracy
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and efficiency of building code classification, and the results will contribute to the accurate
information representation of building code and the development of automated compliance
checking systems.

LITERATURE REVIEW

Text classification. Text classification is a fundamental problem in NLP that involves categorizing
textual data into pre-defined classes or categories (Vijayan et al. 2017). It plays a critical role in
many applications such as document classification (Pappagari et al. 2019; Yoon and Lee 2007),
spam filtering (Wu 2009), sentiment analysis (Moraes et al. 2013; Vinodhini and Chandrasekaran
2016), and topic modeling (Nigam et al. 2000; Razavi and Inkpen 2014).

The traditional approach to text classification involves manually selected features such as
word frequency, part-of-speech tags, and n-grams. These features are then used to train a machine
learning model to classify the text. However, this approach is time-consuming, requires domain
expertise, and may not capture the semantic meaning of the text. With the advent of deep learning
and the availability of large-scale text data, neural network-based models have shown significant
improvements in text classification tasks. Convolutional neural networks (CNN) and recurrent
neural networks (RNN), specifically long short-term memory (LSTM) networks, are among the
most widely used deep learning models for text classification (Bai 2018; Liu et al. 2016; Wang et
al. 2018). These models have the ability to learn representations of words and phrases that capture
their semantic meaning and can be used to classify text without the need for handpicked features.

Nowadays, graph convolutional networks (GCN) rose as a powerful approach to text
classification, especially for tasks that involve structured data such as social networks, knowledge
graphs, and citation networks (Liu et al. 2020; Tang et al. 2020; Tayal et al. 2019). Compared to
traditional deep learning models such as CNN and RNN, GCN models can capture the relational
structure of a graph and preserve global structure information in graph embeddings, which can be
used for node classification (Yao et al. 2019). Building codes, as a set of regulations that govern
the construction and maintenance of buildings (Zhang and El-Gohary 2015), can also be
represented as a graph (Xue et al. 2022), where nodes represent building elements or requirements,
and edges represent the relationships between them. Thus, GCN models are suitable for building
code classification as they can effectively capture the interdependencies and hierarchies between
building code requirements and enable the incorporation of structured information into the
classification process. Moreover, GCN models have been shown to outperform classic ML and
deep learning models in different graph-related tasks, such as node and graph classifications,
making them a promising approach for building code classification (Lei et al. 2019; Liu et al. 2020;
Yao et al. 2019).

Building code classification. Building code classification is a subfield of text classification that
focuses specifically on categorizing and organizing the requirements and regulations of building
codes. Building code classification is particularly challenging due to the complex and technical
nature of building codes, which often involve multiple disciplines and have strict requirements that
must be met. Previous research has been conducted to try to address this challenge using different
approaches. For instance, Salama and El-Gohary (2016) proposed a hybrid algorithm that
combines semantic, syntactic, and machine learning techniques to classify construction contract
clauses and subclauses for supporting ACC. Zhou and El-Gohary (2016a) also proposed a machine
learning algorithm that classifies clauses of environmental regulatory documents based on the text
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topic hierarchy. They tested the algorithm’s performance using various machine learning
techniques and preprocessing methods, achieving an average recall and precision of approximately
97% and 84%, respectively, on the testing data. Furthermore, Zhou and El-Gohary (2016b)
proposed an ontology-based text classification algorithm that utilizes the semantic features of the
text to improve classification performance. The new algorithm outperforms the previous one
consistently due to the advantage of using semantic concepts and relations.

Previous research in building code classification has focused on developing machine
learning algorithms and techniques to accurately classify and organize building code requirements.
These efforts have shown promising results and have the potential to significantly improve the
efficiency and effectiveness of automated compliance checking. However, there is still a need for
further research in this field to explore more powerful and suitable machine learning models for
building code classification.

METHODOLOGY

To evaluate the suitability of Graph Convolutional Networks (GCN) for building code
classification, the authors selected a text GCN model developed by Yao et al. (2019). The text
GCN was chosen for its ability to capture global structured information in graph embeddings,
which traditional CNN and RNN models may overlook, and its superior performance on multiple
benchmark datasets, even without pre-trained word and external knowledge. The authors randomly
selected 100 building code requirements from six chapters of the International Building Code 2015
(IBC 2015), specifically from chapters covering building material types such as Glass, Plastic,
Soil, Wood, Gypsum, and Masonry. The data was labeled according to the corresponding material
and divided randomly into training and testing data, with either 10% or 20% of the data reserved
for testing. Prior to analysis, the authors performed necessary code modifications to connect the
created dataset and the model. The model automatically preprocessed the data by preparing and
cleaning the data, as well as building the graph. The optimized model was then used to classify the
testing data and output the results. The workflow of the experiment is illustrated in Figure 1.

International

———_ |100 Building Code _—
2015 ‘ Eela b I—‘/ Requirements I:: m

Building Code

. A ‘ Remove 510[]
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Figure 1. The workflow of the experiment.

The evaluation of the text GCN model included factors such as recall, precision, and
accuracy, which were computed using the following well-defined formulas [Egs. (1)-(3)].

Precision = (1)

TP+FP
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Recall = —— (2)
TP+FN
TP+TN
Accuracy = TP+FN+TN+FP 3)

Where True Positive (TP) refers to the number of correctly predicted positive instances or
samples in a dataset by the model, True Negative (TN) refers to the number of correctly predicted
negative instances or samples by the model, False Positive (FP) refers to the number of negative
instances that were incorrectly predicted as positive by the model, and False Negative (FN) refers
to the number of positive instances that were incorrectly predicted as negative by the model.

Additionally, the experiments examined the effect of the size of training dataset on the
accuracy of the model.

EXPERIMENT

Dataset creation. IBC 2015 is a comprehensive document consisting of 35 chapters, each
addressing a specific theme related to building design and construction. The authors of this study
chose to classify the building code requirements based on the building material used. Specifically,
they selected 100 building requirements from six chapters (Glass, Plastic, Soil, Wood, Gypsum,
and Masonry), and labeled each requirement according to its respective material. For instance, the
following requirement related to masonry was labeled as “Masonry”: “The allowable compressive
stress based on gross cross-sectional area of adobe shall not exceed 30 psi (207 kPa)” (International
Code Council 2014). The distribution of all selected requirements across the six categories is
shown in Table 1. The authors also marked each requirement as either training or testing data and
stored the data in an Excel file with four columns: index, label, train_or_test, and sentence. Table
2 presents some examples of the dataset. To assess the impact of training data size, the authors
randomly selected 10% or 20% of all data as testing data, while the remainder served as training
data. It is important to note that this dataset is unique in that it is stored as an Excel file, which
requires some modification to access the data when running the experimental code. This distinction
from benchmark datasets, which are often provided online or as text files, highlights the need for
flexibility and adaptability in data analysis.

Table 1. The distribution of building code requirements in the six categories.

Label Number of requirements
Masonry 14
Glass 12
Wood 10
Gypsum 6
Plastic 18
Soil 40

Table 2. Some examples of the dataset.
Index Label Train or Test sentence
“The roof construction shall have rafter and truss ties to the
wall below. Resultant uplift loads shall be transferred to

1 Wood train
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the foundation using a continuous load path.”

(International Code Council 2014)

“The allowable compressive stress based on gross cross-
2 Masonry train sectional area of adobe shall not exceed 30 psi (207 kPa).”
(International Code Council 2014)
“Waterproofing shall be applied from the bottom of the
wall to not less than 12 inches (305 mm) above the
maximum elevation of the ground-water table.”
(International Code Council 2014)

3 Soil test

Code modification. In order to ensure that the model can effectively work with the newly created
dataset, some code modifications were necessary due to the differences between this dataset and
the benchmark datasets commonly used in computer science. As shown in Figure 2, the authors
performed the necessary code modifications to enable the model to access and comprehend the
dataset, laying a foundation for subsequent steps.

dataset_name = 'own'

= + dataset_name + '.xlsx’
lef dataprocess(filename):
data = pd.read_excel(filename)
sentences = data[ ence']
labels = data['label’]
train_or_test_list = data['train_or_test']
return sentences, labels, train_or_test list

sentences, labels, train_or_test_list = dataprocess(f)
print(sentences, labels, train_or_test_list)

Figure 2. A screenshot of code modification written by the authors.

Data preprocessing. The data preprocessing stage comprises three key sub-steps. Firstly, the
“Prepare Data” sub-step aims to provide the model with a basic understanding of the dataset by
capturing information such as the number of data points, the meaning of each column, and the
attributes (e.g., label, train or test) of each provision. Secondly, the “Remove Stop Words” sub-
step involves removing stop words from the corpus as they do not carry significant meaning in a
sentence and are not useful for the text classification task. This process helps reduce the
dimensionality of the data and improve the efficiency of the model. Furthermore, the length
information of the dataset is calculated after the “Remove Stop words” sub-step. Lastly, the clean
dataset is converted into a graph by the model, which is represented as matrices. In this graph, the
terms are depicted as nodes and their relationships are illustrated as edges.

Training and testing model. After completing the data preprocessing, the data is ready to be used
for training. The authors utilized the Adam optimizer to train the model for a maximum of 200
epochs, and training is stopped if the validation loss does not decrease for 10 consecutive epochs.
Upon completion of the optimization process, the model is evaluated on the testing dataset, and
the results are generated automatically.
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RESULTS AND DISCUSSION

The results presented in this study demonstrate the general length information of the created
dataset after preprocessing steps, as illustrated in Figure 3. The dataset comprises relatively short
sentences, with a minimal, maximal, and average length of provisions of 3, 31, and 10.53 words,
respectively.

Ipython3 remove_words.py own

[nltk data] Downloading package stopwords to /root/nltk data...
[nltk data] Package stopwords is already up-to-date!

{*but’', 'mustn', 'ma‘, ‘own', ‘'wouldn’, ‘'haven’, ‘having', ‘couldn’
min_len : 3

max_len : 31

average len : 10.53

Figure 3. The statistics of the sentence length of the created dataset.

For testing purposes, the authors utilized 20% and 10% of the total data and compared their
results, as depicted in Figure 4. In text classification, two common techniques used to calculate the
overall performance of a classifier across multiple classes are macro-average and weighted
average. Macro-average computes the average performance of the classifier across all classes, with
equal weight given to each class, making the performance of the classifier on small and large
classes equally important. In contrast, weighted-average accounts for the class imbalance in the
dataset by giving more weight to the performance of the classifier on larger classes, which
contributes more to the overall performance than the smaller classes.

Experimental results reveal that increasing the size of the training data leads to a higher
achievable accuracy for the test data. This finding is intuitive as a larger training dataset allows for
a better understanding of the data, resulting in higher test accuracy. The best performance achieved
for building code classification using 10% of the data for testing was a macro-average precision
of 91.67% and a macro-average recall of 94.44%, which is comparable to the state-of-the-art
machine learning-based approaches applied in construction document classification. Zhou and El-
Gohary (2016a) achieved an average precision of 84.3% and an average recall of 97.30% using
other machine learning models.

However, the accuracy of the testing results for the created dataset (90%) was lower than
that of the benchmark dataset (average approximately 97%) (Yao et al. 2019). This discrepancy
can be attributed to the shorter length of provisions in the created dataset compared to the
benchmark datasets. The shorter text in the created dataset lacks linguistic structure, and legal
provisions lack contextual links, making it more challenging for the model to build a graph
between words and documents (Tayal et al. 2019.). For instance, the R8 dataset, which is a widely
used benchmark dataset in text classification, comprises news documents from the Reuters news
agency and has a manually categorized eight topics. The dataset contains 7674 news articles, with
roughly equal numbers of articles for each category, and has a minimal, maximal, and average
length of provisions of 4, 520, and 65.72, respectively. This shows the need and potential of further
adapting GCN models to domain-specific texts such as building codes.
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Optimization Finished! Optimization Finished!
Test set results: cost= 0.68591 accuracy- 0.86000 time-= 8.00209 Test set results: cost= 8.38290 accuracy= 0.90000 time= 0.00226
191 191
Test Precision, Recall and Fl-Score... Test Precision, Recall and F1l-Score...
precision recall fl-score support precision recall fl-score  support
a 0.8000 1.0000 0.8889 4 5} 0.5000 1.0000 0.6667 1
1 1.0000 1.0000 1.0000 4 1 1.0000 1.0000 1.0000 2
2 0.5000 1.0000 0.6667 3 2 1.0000 1.0000 1.0000 2
3 1.0000 ©.4000 0.5714 5 3 1.0000 1.0000 1.0000 1
4 1.0000 1.0000 1.0000 1 4 1.9000 0.6667 0.8000 3
5 1.6000 9.6667 0.8000 31 5 1.0000 1.0000 1.0000 i
accuracy 8.8000 20 accuracy 0.9000 10
macre avg 0.8833 0.8444  0.8212 20 macro avg 0.9167 0.9444 0.9111 10
weighted avg 0.8850  ©.8000  @.7906 20 weighted avg 0.9500 0.9000 0.9067 10

Figure 4. The performance of the model when 20% (left) or 10% (right) of all data was
used for testing.

CONCLUSION

In this paper, the authors propose a novel approach to classify building code requirements using
state-of-the-art graphic convolutional networks (GCN). The experimental results on building
material categories classification showed that the proposed method achieved high precision
(91.67%) and recall (94.44%) rates, which are comparable to the state-of-the-art construction
document classification performance. The findings of this study are expected to contribute to the
accurate representation of building code information and the development of automated
compliance checking systems. The study also highlights the importance of utilizing advanced
techniques such as GCN in text classification tasks and provides insights into the effect of training
data size on testing accuracy.

To further enhance the accuracy of this model for building code classification, strategies
such as increasing the dataset size and tailoring models for short text classification could be
beneficial.
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