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ABSTRACT
We study the efficient learnability of low-degree polynomial thresh-

old functions (PTFs) in the presence of a constant fraction of adver-

sarial corruptions. Our main algorithmic result is a polynomial-time

PAC learning algorithm for this concept class in the strong contami-

nation model under the Gaussian distribution with error guarantee

𝑂𝑑,𝑐 (opt1−𝑐 ), for any desired constant 𝑐 > 0, where opt is the

fraction of corruptions. In the strong contamination model, an om-

niscient adversary can arbitrarily corrupt an opt-fraction of the

data points and their labels. This model generalizes the malicious

noise model and the adversarial label noise model. Prior to our

work, known polynomial-time algorithms in this corruption model

(or even in the weaker adversarial label noise model) achieved error

𝑂̃𝑑 (opt1/(𝑑+1) ), which deteriorates significantly as a function of

the degree 𝑑 .

Our algorithm employs an iterative approach inspired by lo-

calization techniques previously used in the context of learning

linear threshold functions. Specifically, we use a robust perceptron

algorithm to compute a good partial classifier and then iterate on

the unclassified points. In order to achieve this, we need to take a

set defined by a number of polynomial inequalities and partition

it into several well-behaved subsets. To this end, we develop new

polynomial decomposition techniques that may be of independent

interest.
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1 INTRODUCTION
A degree-𝑑 polynomial threshold function (PTF) is any Boolean

function 𝑓 : R𝑛 → {±1} of the form 𝑓 (𝑥) = sign(𝑝 (x))1, where
𝑝 : R𝑛 → R is a degree-𝑑 polynomial with real coefficients. For

𝑑 = 1, we obtain Linear Threshold Functionss (LTFs) or halfs-

paces. PTFs are a fundamental class of Boolean functions that have

been extensively studied in many contexts for at least the past five

decades [11, 41, 42]. Over the past two decades, low-degree PTFs

have been the focus of renewed research interest in various fields

of theoretical computer science, including complexity theory [10,

13, 19, 31, 33, 40, 43–45] and learning theory [9, 14, 16, 22, 23, 29].

In this paper we study the problem of PAC learning degree-𝑑

PTFs in the presence of a constant fraction of adversarially cor-

rupted data. More concretely, we define the following data contam-

ination model considered in the current work.

Definition 1.1 (Strong Contamination Model). Let C be a

class of Boolean functions on R𝑛 , 𝐷x a distribution over R𝑛 , and 𝑓
an unknown target function 𝑓 ∈ C. For 0 < opt < 1/2, we say that

a set 𝑇 of𝑚 labeled examples is an opt-corrupted set of examples

from C if it is obtained using the following procedure: First, we

draw a set 𝑆 = {(x(𝑖 ) , 𝑦𝑖 )} of𝑚 labeled examples, 1 ≤ 𝑖 ≤ 𝑚, where

for each 𝑖 we have that x(𝑖 ) ∼ 𝐷x, 𝑦𝑖 = 𝑓 (x(𝑖 ) ), and the x(𝑖 ) ’s are
independent. Then an omniscient adversary, upon inspecting the set

𝑆 , is allowed to remove an opt-fraction of the examples and replace

these examples by the same number of arbitrary examples of its

choice. The modified set of labeled examples is the opt-corrupted

set 𝑇 .

1
The function sign : R→ {±1} is defined as sign(𝑡 ) = 1 if 𝑡 ≥ 0 and sign(𝑡 ) = −1
otherwise.
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A learning algorithm in the strong contamination/nasty noise

model is given as input an opt-corrupted set of examples from

C and its goal is to output a hypothesis ℎ such that with high

probability the error Prx∼𝐷 [ℎ(x) ≠ 𝑓 (x)] is small, as compared to

the information-theoretically optimal error of opt.

That is, in the nasty noise model [4], an omniscient adversary can

arbitrarily corrupt a small constant fraction of both the data points

and their labels. The nasty noise model is equivalent to the strong

contamination model studied in the field of robust statistics [15,

17] and generalizes well-studied corruption models, including the

agnostic (adversarial label noise) model [28, 35] and the malicious

noise model [36, 48]. In the adversarial label noise (agnostic) model,

the adversary can corrupt an opt-fraction of the labels, but cannot

change the distribution of the unlabeled points. In the malicious

model, the adversary can add an opt-fraction of corrupted labeled

examples, but is not allowed to adversarially remove clean labeled

examples.

The goal of this work is to understand the efficient learnability

of degree-𝑑 PTFs under the Gaussian distribution in the presence

of nasty noise. Our main algorithmic result is the following:

Theorem 1.2 (Main Learning Result). There exists an algo-
rithm that, given any 𝑐, 𝜖 ∈ (0, 1), has sample and computational
complexity 𝑛𝑂 (𝑑 )

poly𝑑,𝑐 (1/𝜖), and learns the class of degree-𝑑 PTFs
onR𝑛 in the nasty noise model under the Gaussian distribution within
0-1 error 𝑂𝑐,𝑑 (1) opt1−𝑐 + 𝜖 .

Discussion. Some comments are in order. We start by noting

that our learning algorithm is not proper. Specifically, the output

hypothesis is a decision list whose leaves are degree-𝑑 PTFs.

It is instructive to quantitatively compare the complexity and

error guarantee of Theorem 1.2 with prior work. The 𝐿1-polynomial

regression algorithm of [29] achieves the optimal error of opt + 𝜖
in the (weaker) adversarial label noise model with sample and

computational complexity 𝑛poly(𝑑/𝜖 ) . Moreover, the exponential

complexity dependence in 1/𝜖 is inherent [21, 46]. The latter com-

putational lower bounds motivate the design of faster (ideally,

fully-polynomial time) algorithms with relaxed error guarantees.

When restricting to fully-polynomial time algorithms (i.e., with

runtime poly𝑑 (𝑛/𝜖)), [22] gave a robust learner with error guar-

antee 𝑂̃𝑑 (opt1/(𝑑+1) ) + 𝜖 . For 𝑑 > 1, this was the best previously

known error guarantee (for poly𝑑 (𝑛/𝜖) time algorithms) even in the

weaker adversarial label noise model. (See the following subsection

for a detailed summary of prior work.)

The latter error guarantee deteriorates dramatically as a function

of the degree 𝑑 . A natural question that motivated this work is

whether it is possible to qualitatively nearly-match the 𝑑 = 1 case

— where polynomial-time algorithms with error 𝑂 (opt) + 𝜖 are

known [1, 22] — for any constant degree 𝑑 (or even for 𝑑 = 2!).

More concretely:

Is there a poly𝑑 (𝑛/𝜖) time algorithm that, for any con-
stant 𝑑 , robustly learns
degree-𝑑 PTFs with error 𝑂𝑐,𝑑 (1) opt𝑐 , where 𝑐 > 0 is
independent of 𝑑?

Our main result answers this question in the affirmative. Moreover,

we can take the parameter 𝑐 above to be any constant less than 1.

Achieving error 𝑂̃𝑑 (opt) or 𝑂𝑑 (opt) is left as an open question.

Finally, we reiterate that our algorithm is the first algorithm with

this error guarantee even in the weaker model of adversarial label
noise.

Interestingly, to obtain our algorithmic result, we generalize the

localization technique [1, 3], developed in the context of learning

linear threshold functions, for the problem of learning degree-𝑑

PTFs. To achieve this goal, we develop the algorithmic theory of

super non-singular polynomial decompositions, which we believe is

of broader interest beyond learning theory.

1.1 Prior Work
In the realizable PAC learning model (i.e., with clean/consistent

labels), low-degree PTFs are known to be efficiently learnable in the

distribution-free setting via a reduction to linear programming [39].

Specifically, the class of degree-𝑑 PTFs on R𝑛 can be learned to

0-1 error 𝜖 with sample size 𝑚 = 𝑂̃ (𝑛𝑑/𝜖) in poly(𝑚) time. By

standard VC-dimension arguments, this sample size is information-

theoretically necessary for any learning algorithm.

In the presence of adversarial noise in the data (the focus of the

current work), the learning problem becomes significantly more

challenging computationally. Specifically, in the distribution-free

setting, the agnostic learning problem (i.e., in the presence of adver-

sarial label noise) is known to be computationally intractable, even

for the special case of 𝑑 = 1 and constant accuracy [7, 18, 46]. As a

result, research in this area has focused on the distribution-specific
setting, i.e., with respect to specific natural distributions on the

domain, such as the Gaussian distribution.

In the distribution-specific agnostic model, the 𝐿1-polynomial

regression algorithm [29] learns degree-𝑑 PTFs within error opt + 𝜖
with sample and computational complexity 𝑛𝑂 (𝑑2/𝜖4 )

under the

Gaussian distribution (and the uniform distribution on the hyper-

cube) [14, 24, 25, 27, 30, 38]. Importantly, the exponential depen-

dence in 1/𝜖 is inherent in the complexity of the problem, both in

the Statistical Query model [20] and under standard cryptographic

assumptions [21, 46] (even under the Gaussian distribution).

The aforementioned hardness results motivated the design of

faster algorithms with relaxed error guarantees. Over the past fif-

teen years, substantial progress has been made in this direction, in

particular for the special case of Linear Threshold Functions (corre-

sponding to 𝑑 = 1). Specifically, a sequence of works [1, 6, 22, 37]

developed poly(𝑛/𝜖) time robust learners for LTFs in the mali-

cious/nasty model (thus, also in the adversarial label noise model)

under the Gaussian distribution and, in some cases, for isotropic (i.e.,

zero-mean, identity covariance) log-concave distributions. In more

detail, [1] gave a malicious learning algorithm for homogeneous
LTFs (i.e., halfspaces whose separating hyperplane goes through

the origin) with near-optimal error guarantee of 𝑂 (opt) + 𝜖 under
all isotropic log-concave distributions

2
. Subsequently, [22] gave an

efficient algorithm that achieves error of 𝑂 (opt) + 𝜖 for arbitrary
LTFs and succeeds under the Gaussian distribution. At the tech-

nical level, [1] developed a localization method (see also [2] for a

precursor) which is crucial to obtain the near-optimal error guaran-

tee of 𝑂 (opt). In fact, the algorithm of [22] for general halfspaces

proceeds by a refinement of this idea.

2
It turns out that the homogeneity assumption is important here. Specifically, the

underlying algorithm does not extend to arbitrary LTFs with the same error guarantees.
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For the case of degree-𝑑 PTFs, progress in this direction has

been slow. The only prior algorithmic work on the topic is due

to [22]. That work gave a poly(𝑛𝑑/𝜖) time algorithm that succeeds

in the presence of nasty noise under the Gaussian distribution
3
and

attains an error guarantee of 𝑂𝑑 (opt1/(𝑑+1) ) + 𝜖 .

2 TECHNICAL OVERVIEW
Prior Work: Learning via Degree-𝑑 Chow-Parameters. A polyno-

mial threshold function (PTF) can be thought of as a linear threshold

function (LTF) composed with the Veronese map x ↦→ x⊗𝑑 . Thus,
we can think of the question of (robustly) learning a PTF of Gaussian

inputs as the problem of learning an LTF with input x̃ B x⊗𝑑 .
A common approach to learning PTFs (and other related geo-

metric concept classes) in the literature is via (low-degree) Chow-

parameter fitting
4
; see, e.g. [8, 9, 12, 22, 47]. More precisely, in [22],

the approach is to find an LTF (as a function of the tensor feature

x̃) such that Ex̃ [sign(w · x̃)x̃] = E(x̃,𝑦) [𝑦x̃].
The Chow-parameter fitting approach requires two crucial as-

sumptions about the distribution of x̃ = x⊗𝑑 . First, it requires con-
centration bounds in order to show that the adversarial noise can-

not affect significantly the relevant Chow parameters E(x̃,𝑦) [𝑦x̃].
Gaussian hypercontractivity indeed implies that polynomials of

Gaussian random variables enjoy strong concentration. In addi-

tion to this, showing that a small error in the Chow parameters

translates to a small error in the total variation distance of the cor-

responding threshold function, requires some anti-concentration

properties of the underlying distribution. More precisely, it re-

quires showing that any linear function is not-too-small with high

probability. We can obtain this using results of [5]; but, unfor-

tunately, the anti-concentration provided is weak, showing that

Pr( |𝑝 (x) | < 𝜖 ∥ |𝑝 ∥𝐿2 ) < 𝑂𝑑 (𝜖1/𝑑 ) for any degree-𝑑 polynomial

𝑝 (·). This translates quantitatively to an algorithm that robustly

learns degree-𝑑 PTFs to error 𝑂 (opt1/𝑂 (𝑑 ) ) — a far cry from our

goal of error 𝑂 (opt1−𝑐 ), especially when 𝑑 is large.

Our Approach: Learning PTFs Using Perceptron and Localiza-
tion. Our high-level plan to improve upon the error guarantee of

𝑂 (opt1/𝑂 (𝑑 ) ) is via the method of localization, a powerful approach

for learning with corrupted labels; see [1–3]. For technical reasons,

our starting point is an early instantiation of this technique [3]

developed in the context of learning LTFs with random label noise.

At a high-level, localization consists of first learning some LTF that

achieves good error for all large-margin points, and then condition-

ing on low-margin examples to learn a new (or improve the current)

hypothesis. Importantly, all localization-based algorithms require

that, after conditioning on the low-margin region |w · x̃| < 𝜖 , the

resulting distribution satisfies strong anti-concentration properties.

While this property is true for learning LTFs under the Gaussian

distribution, it completely fails to hold under the conditional distri-

bution of low-margin points with respect to a PTF, i.e., |𝑝 (x) | ≤ 𝜖 .
Our approach consists of two new ingredients: (i) a robust version

3
We note that their algorithmworks under a slightly more general class of distributions,

whose moments up to order 2𝑑 are known a priori.

4
The Chow parameters of a Boolean function 𝑓 (x) are defined as the vec-

tor Ex [ 𝑓 (x)x]. Similarly, the degree-𝑑 Chow-parameter tensor is defined as

Ex [ 𝑓 (x)x⊗𝑑 ].

of the localized margin-perceptron algorithm for learning PTFs un-

der weaker (anti-)concentration assumptions, and (ii) a localization

process for PTFs so that the corresponding conditional distributions

satisfy (anti-)concentration. In the following presentation, we first

focus on the localization process for PTFs, and then present our

robust margin-perceptron learning algorithm.

2.1 PTF Localization via Partitioning
Naive localization fails. We first investigate why naively con-

ditioning in the low-margin region |𝑝 (x) | < 𝜖 fails to satisfy the

required anti-concentration property, when 𝑝 (x) has degree larger
than 1. In particular, consider the polynomial 𝑝 (x1, x2) = x2

1
x2
2
. To

simplify the calculations, we first observe that the set

��x2
1
x2
2

�� < 𝜖 is
similar to the union of two intervals 𝑅 = {|x2

1
| ≤ 𝜖}∪{|x2

2
| ≤ 𝜖}; see

Figure 1. The probability of 𝑅 under the standard Gaussian distribu-

tion is roughly

√
𝜖 , so we still need to learn a classifier inside it (note

that we could simply ignore a region of mass𝑂 (𝜖)). We examine the

anti-concentration property of a different polynomial𝑞(x1, x2) = x2
1

under the Gaussian distribution conditioned on the union of two

rectangles 𝑅. It is not hard to see that the 𝐿2-norm of 𝑞 isΘ(1) under
the conditional distribution (the points within the green rectangle

in Figure 1 have large x1 coordinate with constant probability). To

give some intuition of what would be “good” anti-concentration,

we remark that for a polynomial 𝑞 whose 𝐿2-norm is constant, we

would like the probability of |𝑞(x1, x2) | < 𝜖 to be roughly poly(𝜖)
(as is indeed the case for the Gaussian, by [5]). However, 𝑞 turns out

to havemuchworse anti-concentration conditional on𝑅, as we have

Pr[x2
1
≤ 𝜖 | x2

1
x2
2
≤ 𝜖] ≥ Pr[x2

2
≤ 1] Pr[x2

1
≤ 𝜖]/Pr[𝑅] = Ω(1) .

Thus, a naive localization procedure — which tries to reapply a

learner on the low-margin conditional distribution directly — is

unlikely to work as long as the learner requires any non-trivial
anti-concentration property.

Localization via Partitioning. A way to preserve the (anti)-

concentration properties in the previous example is to (approx-

imately) partition the region where |x2
1
x2
2
| < 𝜖 into small (axis-

aligned) rectangles (see the right figure in Figure 1). The Gaussian

distribution conditioned on each rectangle is a log-concave distri-

bution, and thus has good concentration and anti-concentration.

Hence, we could attempt to use the margin-perceptron learner on

each of the conditional distributions. As one of our main contribu-

tions, we give an efficient algorithm that finds such a partition for

any low-degree polynomial. In particular, for a degree-𝑑 polyno-

mial 𝑝 , we show that the low-margin area |𝑝 (x) | ≤ 𝜖 can be parti-

tioned into𝑂𝑑 (1) many subsets such that the Gaussian distribution

conditioned on each of them satisfies strong (anti-)concentration

properties.

Theorem 2.1 (Informal – Partitioning the Low-Margin Re-

gion of Polynomials). Fix 𝜖 ∈ (0, 1) and let 𝑝 : R𝑛 ↦→ R be a
polynomial of degree at most 𝑑 . There exists an efficient algorithm
that (approximately) decomposes the set {x ∈ R𝑛 : |𝑝 (x) | < 𝜖}
into 𝑚 = poly𝑑 (1/𝜖) sets 𝑆 (1) , · · · , 𝑆 (𝑚) ⊂ R𝑛 such that N(0, I)
conditioned on 𝑆 (𝑖 ) satisfies good anti-concentration.

Super Non-Singular Decomposition. To get some intuition of how

the partition routine operates, we revisit the example 𝑝 (x1, x2) =
x2
1
x2
2
. What made this possible in this example is that the function
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Figure 1: The localization region |𝑝 (x1, x2) | = |x2
1
x2
2
| ≤ 𝜖 is

shown in blue. It is essentially a union of two rectangles
(shown in the left figure) of width roughly

√
𝜖. It is easy to

see that (i) the total mass of the union is roughly
√
𝜖); (ii) the

expected value of x2
1
conditioned on the union is roughlyΘ(1)

(due to the contribution of the green rectangle). If the con-
ditional distribution were a Gaussian, Carbery-Wright anti-
concentration would imply that the conditional probability
of

��x2
1

�� < 𝜖 should be at most poly(𝜖). In sharp contrast, the
mass of the set

��x2
1

�� < 𝜖 conditioned on the union is roughly
Θ(1) (due to the contribution of the orange rectangle).
To mitigate the issue, we will partition the low-margin
set |𝑝 (x1, x2) | ≤ 𝜖 into multiple rectangles as in the right
figure. Since the Gaussian conditioned on each rectangle
is a log-concave distribution, we have the desirable (anti-
)concentration properties by [5].

can be decomposed into the linear terms x1 and x2. Conditioning the
Gaussian density on a rectangle of the form x1 ∈ 𝐼1, x2 ∈ 𝐼2 yields
a log-concave distribution with good anti-concentration. More gen-

erally, if we could always decompose a polynomial 𝑝 into a small
number of linear polynomials 𝑞1, . . . , 𝑞ℓ , then we would still have

anti-concentration in the resulting conditional distributions after

partitioning the region |𝑝 (x) | < 𝜖 into rectangles defined by the lin-
ear terms, i.e., every 𝑞𝑖 (x) lies in an interval 𝐼𝑖 . Unfortunately, this is
not possible for a general polynomial 𝑝 . However, such a decomposi-

tion will exist if we allow the set of polynomials 𝑞1, . . . , 𝑞ℓ (or more

precisely the polynomial mapping x ↦→ q(x) := (𝑞1 (x), . . . , 𝑞ℓ (x)))
to only resemble a linear transformation locally. To achieve this,

we will need to leverage and generalize the results of [32] on non-
singular decompositions, which itself builds on the techniques of dif-

fuse decompositions from [33]. In particular, we say that a collection

of polynomials 𝑞1, 𝑞2, . . . , 𝑞ℓ is non-singular if there is only a negligi-
ble probability that the Jacobian of the (vector-valued) polynomial

transformation q(x) (i.e., the matrix [∇𝑞1 (x)∇𝑞2 (x) . . .∇𝑞ℓ (x)])
has small singular values. Intuitively, when this is the case, the

polynomial transformation q will locally resemble a non-singular

linear transformation. In [32], it is shown that for any polynomial

of degree at most 𝑑 , there exists a non-singular set of of 𝑂𝑑 (1)
polynomials 𝑞1, . . . , 𝑞ℓ so that 𝑝 can approximately be written as

a polynomial in the 𝑞𝑖 ’s. It turns out that having a non-singular

decomposition is not enough to establish the anti-concentration

properties that we require. We introduce the notion of super non-
singularity, which enforces “local linearity” by restricting the high-

order derivatives of the polynomials. In particular, we establish

two structural results on super non-singular sets of polynomials.

First, we establish that the Gaussian distribution conditioned on a

super non-singular set of polynomials, each lying in some interval,

satisfies good anti-concentration and concentration properties.

Theorem 2.2 (Conditional (Anti-)Concentration for Super

Non-Singular Transformation). Let 𝑑, ℓ, 𝐾,𝐶𝑑,ℓ,𝐾 be positive in-
tegers and 𝜖 ∈ (0, 1). Let 𝑆 = {𝑞1, · · · , 𝑞ℓ } be a set of harmonic
polynomials, where each 𝑞𝑖 : R𝑛 ↦→ R is of degree at most 𝑑 . De-
fine q : R𝑛 ↦→ Rℓ to be the vector-valued polynomial such that
q(x) = (𝑞1 (x), · · · , 𝑞ℓ (x)). Let 𝑅 ⊂ Rℓ be an axis-aligned rectangle
satisfying (i) each point in 𝑅 is at most poly𝑑,ℓ (log(1/𝜖))-far from
the origin, and (ii) Prx∼N(0,I) [x ∈ 𝑅] > poly𝑑,ℓ (𝜖). Denote by 𝐷 the
distribution of N(0, I) conditioned on {x : q(x) ∈ 𝑅}. Suppose 𝐶𝑑,ℓ,𝐾
is sufficiently large given 𝑑, ℓ, 𝐾 , and 𝜖 is sufficiently small given
𝑑, ℓ, 𝐾,𝐶𝑑,ℓ,𝐾 . Assume that {𝑞1, · · · , 𝑞ℓ } is (𝜖1/(3𝑑

2𝐾 ) ,𝐶𝑑,ℓ,𝐾 )-super
non-singular. Then for any polynomial 𝑝 : R𝑛 ↦→ R of degree-𝑑 and
𝜖 < 𝑡 < 𝜖2/𝐾 , it holds

Pr
x∼𝐷

[
|𝑝 (x) | < 𝑡 ∥𝑝 ∥𝐷,𝐿2

]
≤ 𝑡1/(2𝑑 ) , (1)

and, for all 𝑡 > 0, it holds

Pr
x∼𝐷

[
|𝑝 (x) | > 𝑡𝜖−1/𝐾 ∥𝑝 ∥𝐷,𝐿2

]
≤ 𝑂𝑑,𝐾

(
𝑡−𝐾

)
. (2)

Second, we give an efficient super non-singular decomposition

algorithm. In particular, given a general degree-𝑑 polynomial 𝑝 :

R𝑛 ↦→ R, there exists a computationally efficient algorithm that

finds a super non-singular set of𝑚 = 𝑂𝑑 (1) polynomials 𝑞1, . . . , 𝑞𝑚
such that there exists a polynomial ℎ(·) of degree at most 𝑑 which

satisfies 𝑝 (x) ≈ ℎ(𝑞1 (x), . . . , 𝑞𝑚 (x)).

Theorem 2.3 (Extendible Super Non-singular Decomposi-

tion). Let 𝑛, ℓ, 𝑑,𝑀 be positive integers, 𝑓 : Z+ ↦→ Z+ be some
function, and 𝜖 > 0 be sufficiently small given ℓ, 𝑑, 𝑀, 𝑓 . Let 𝑆 :=

{𝑞1, · · · , 𝑞ℓ }, where 𝑞𝑖 : R𝑛 ↦→ R, be a set of degree at most 𝑑 har-
monic polynomials and 𝑝 : R𝑛 ↦→ R be some other degree-𝑑 polyno-
mial. Suppose 𝑆 is (𝜖1/3,𝐶𝑑,ℓ,𝑓 ,𝑀 ) super non-singular, where𝐶𝑑,ℓ,𝑓 ,𝑀
is sufficiently large given 𝑑, ℓ, 𝑓 , 𝑀 . Then there exists an algorithm
which can extend 𝑆 into 𝑆 := {𝑞1, · · · , 𝑞ℓ , 𝑞ℓ+1, · · · , 𝑞𝑚} such that

• 𝑆 is of size𝑚 = 𝑂𝑑,ℓ,𝑓 ,𝑀 (1).
• 𝑆 is (𝜖, 𝑓 (𝑚))-super non-singular.
• There exists a polynomial ℎ : R𝑚 ↦→ R with ∥ℎ∥𝐿2 ≤ 𝜖−3𝑑−1
such that

∥𝑝 (x) − ℎ(𝑞1 (x), · · · , 𝑞𝑚 (x))∥𝐿2 ≤ 𝜖𝑀 .

Moreover, the algorithm runs in time poly(𝑛) poly𝑑,ℓ,𝑀,𝑓 (1/𝜖).

Equipped with the above structural and algorithmic results, ob-

taining an efficient partition algorithm is relatively straightforward.

After computing a super non-singular decomposition 𝑞1, . . . , 𝑞𝑚 of

𝑝 using Theorem 2.3, we have that since 𝑝 can be approximately

expressed as a polynomial ℎ(𝑞1 (x), . . . , 𝑞𝑚 (x), the value of 𝑝 (x) is
(approximately) determined by the values of 𝑞𝑖 (x). Therefore, we
can show that the set {x ∈ R𝑛 : |𝑝 (x) | < 𝜖} can be approximately

covered by sets of the form {x : (𝑞1 (x), · · · , 𝑞ℓ (x) ∈ 𝑅}, where 𝑅 is
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an𝑚-dimensional axis-aligned rectangle. Hence, anti-concentration

properties of the conditional distributions on these sets follow.

This allows us to perform at least one round of localization

by partitioning the set 𝐿 = {x : |𝑝 (x) | ≤ 𝜖}. Assuming that

we have obtained a polynomial 𝑝′ that achieves good error in

the region 𝑅, we then need to “localize” on the region 𝐿′ = {x :

|𝑝 (x) | ≤ 𝜖, |𝑝′ (x) | ≤ 𝜖}. We show that this is possible by a sub-

tle “extendibility” property of our super non-singular decomposi-

tion algorithm. Specifically, assuming that we have a super non-

singular decomposition 𝑞1, · · · , 𝑞ℓ of 𝑝 (which was used to compute

𝑝′), we can then extend it into a larger super non-singular set

{𝑞1, · · · , 𝑞ℓ , 𝑞ℓ+1, · · · , 𝑞𝑚} such that we can still approximately ex-

press 𝑝′ (x) as a polynomial in 𝑞1, · · · , 𝑞𝑚 . For each rectangle 𝑅

of the original partition of 𝑝 (x), we can now further cover the

region {x ∈ R𝑛 : |𝑝′ (x) | < 𝜖, (𝑞1 (x), · · · , 𝑞ℓ (x)) ∈ 𝑅} with sets of

the form {x : (𝑞1 (x), · · · , 𝑞ℓ (x) ∈ 𝑅, (𝑞ℓ+1 (x), · · · , 𝑞𝑚 (x) ∈ 𝑅′)},
where 𝑅′ is some other (𝑚 − ℓ)-dimensional axis-aligned rectangle.

As a slight digression, we note that this extendibility property is

also what makes the proof of Theorem 2.2 possible.

2.2 Anti-concentration via Extendible Super
Non-Singular Decomposition

We have already seen (see Figure 1) that the Gaussian distribution

conditioned on sets of the form |𝑝1 (x) | < 𝜖, |𝑝2 (x) | < 𝜖, · · · for
generic polynomials 𝑝𝑖 does not satisfy good anti-concentration.

To mitigate this issue, we need the polynomials appearing in the

conditioning to collectively satisfy a strong non-singularity con-

dition concerning their high-order derivatives. In the following

definition, we denote by ∇𝑥 the standard gradient operator and by

𝐷y the derivative in the direction y.

Definition 2.4 (Super Non-Singular Polynomial Transfor-

mation (SNPT)). Let 𝜖 ∈ (0, 1) and 𝑁 ∈ Z+. Let 𝑆 := {𝑞1, · · · , 𝑞𝑚},
where 𝑞𝑖 : R𝑛 ↦→ R is a set of harmonic (see Section 2.5 of [34] for the
formal definition) real-valued polynomials of degree at most 𝑑 . For
1 ≤ 𝑘 ≤ 𝑑 , let 𝑆𝑘 ⊆ 𝑆 be the set of degree-𝑘 harmonic polynomials
(contained in 𝑆). The set of polynomials 𝑆 is (𝜖, 𝑁 )-super non-singular
if for any integer 1 ≤ 𝑘 ≤ 𝑑 it holds that





∇x𝐷y(𝑘−1) · · ·𝐷y(1)
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𝑖∈𝑆𝑘

a𝑖 𝑞𝑖 (x)ª®¬







2

< 𝜖

with probability at most 𝜖𝑁 , where the randomness is over x ∼
N(0, I), y(𝑖 ) ∼ N(0, I) for 1 ≤ 𝑖 ≤ 𝑘 − 1, for all a ∈ R𝑚 such
that

∑
𝑖∈𝑆𝑘 a

2

𝑖
= 1. We will also call (𝜖, 𝑁 )-super non-singular a

polynomial transformation q(x) = (𝑞1 (x), . . . , 𝑞𝑚 (x)) defined by an
(𝜖, 𝑁 )-super non-singular set 𝑆 .

We remark that Definition 2.4 resembles the definition of non-

singular polynomials in [32], but imposes additional requirements

on the high-order derivatives of the polynomials. This additional

structure turns out to be crucial in proving Theorem 2.3, which is

itself an important building block to establish Theorem 2.5. As one

of our main contributions, we show that the distribution N(0, I),
conditioned on a set of super non-singular polynomials each ly-

ing in some interval (satisfying some mild conditions), satisfies

good polynomial concentration and anti-concentration properties.

For brevity, we henceforth refer to both concentration and anti-

concentration as (anti-)concentration.

Theorem 2.5 (Informal –Conditional (anti-)concentration

for SNPT, see Theorem 2.2). Let q be a degree 𝑑 , “sufficiently” super
non-singular polynomial transformation (i.e., for large enough 𝜖, 𝑁
in Definition 2.4). Let 𝑅 ⊆ R𝑚 be an axis-aligned rectangle that is
not too far from the origin and let 𝐷 be N(0, I) conditioned on the
set {x : q(x) ∈ 𝑅}. For any unit variance, mean-zero polynomial 𝑝 of
degree at most 𝑑 we have:

• (Anti-Concentration) Prx∼𝐷 [|𝑝 (x) | ≤ 𝑡] ≤ 𝑡1/(2𝑑 ) .
• (Concentration) For all 𝐾 ∈ Z+ up to some constant 5, it holds
Prx∼𝐷 [|𝑝 (x) | > 𝑡] ≤ 𝑡−1/𝐾 .

We now provide a sketch of the high-level ideas behind the

proof of the above theorem. In what follows, we denote by 𝑝 (𝐷)
the distribution of the random variable 𝑝 (x) when x ∼ 𝐷 . Let 𝐷

be the distribution of x ∼ N(0, I) conditioned on q(x) ∈ 𝑅 for a

rectangle 𝑅. Our goal is to show that for any low-degree polynomial

𝑝 , the distribution 𝑝 (𝐷) has good anti-concentration.

Constructing a Low-Dimensional Surrogate Distribution. As our
first step, instead of directly analyzing the (anti-)concentration

properties of 𝑝 under the 𝑛-dimensional distribution 𝐷 , which is

challenging, we construct low-dimensional “surrogates” for𝐷 and 𝑝 .

Specifically, we consider a low-dimensional distribution𝑄 together

with a polynomial 𝑓 , such that the outcome of 𝑝 (𝐷) enjoys roughly
the same concentration and anti-concentration properties as 𝑓 (𝑄).
Given the construction, we can in turn focus on analyzing this

low-dimensional surrogate pair.

The fact that super non-singular decompositions are “extendible”

will play a critical role in this construction. In particular, the super

non-singular polynomials {𝑞1, · · · , 𝑞ℓ } appearing in the condition-

ing of 𝐷 will first be extended into a super non-singular decom-

position for the target polynomial 𝑝 such that there exists a set of

super non-singular polynomials {𝑞1, · · · , 𝑞ℓ , 𝑞ℓ+1, · · · , 𝑞𝑚}, where
𝑚 = 𝑂𝑑,ℓ (1), and a composition polynomial 𝑓 : R𝑚 ↦→ R such

that 𝑝 (x) ≈ 𝑓 (𝑞1 (x), · · · , 𝑞𝑚 (x)) . Define q : R𝑛 ↦→ R𝑚 to be the

vector-valued polynomial whose 𝑖-th coordiniate is 𝑞𝑖 , and 𝑄 to be

the𝑚-dimensional distribution of q(N (0, I)) conditioned on the

set {y ∈ R𝑚 : y𝑖 ∈ 𝐼𝑖 ∀𝑖 = 1, . . . , ℓ}. Then, subject to the intervals

appearing in the conditioning satisfying some mild conditions and

the polynomials appearing in the conditioning being sufficiently

super non-singular, one can verify that 𝑝 (𝐷) enjoys roughly the

same (anti-)concentration properties as 𝑓 (𝑄). For the details of this
argument, we refer the readers to the full version of the paper.

Given such a construction, we can now shift our focus from

the 𝑛-dimensional distribution 𝐷 to the𝑚 = 𝑂𝑑,ℓ (1)-dimensional

conditional distribution 𝑄 defined by a set of super non-singular

polynomials. In particular, if we use q : R𝑛 ↦→ R𝑚 to denote

the vector-valued polynomial whose 𝑖-th coordinate is 𝑞𝑖 , we are

interested in the distribution of q (N (0, I)) conditioned on the event
{q𝑖 (x) ∈ 𝐼𝑖 }ℓ𝑖=1, where 𝐼𝑖 is some interval. To build some intuition as

to why such conditional distributionsmay have desirable properties,

we can start with the simple case where all 𝑞𝑖 are linear functions.

In that case, the distribution of q(N (0, I)) is simply some other

Gaussian distributionN ′
. Then, even if we condition on that the 𝑖-th

5
The constant depends on “how” super non-singular the set is; see Theorem 2.2.
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coordinate of q(N (0, I)) is equal to a𝑖 , the resulting distribution will
simply be some lower-dimensional Gaussian distribution. Under

mild conditions on a𝑖 and 𝑞𝑖 , the resulting low-dimension Gaussian

will be not too different from a standard Gaussian, in the sense

that its mean is not very far from the origin and its covariance is

bounded above and below by multiples of the identity.

Definition 2.6 ((𝛿, 𝜅)-Reasonable Gaussian). Let N(𝜇,Σ) be
a Gaussian distribution. Given 𝛿 ∈ (0, 1) and 𝜅 > 1, we say N(𝜇,Σ)
is a (𝛿, 𝜅)-reasonable Gaussian if ∥𝜇∥

2
≤ 𝜅 and 𝛿I ⪯ Σ ⪯ 𝜅I.

When the polynomials are of degree more than 1, it becomes

hard to characterize the exact form of q(N (0, I)). Nonetheless, the
hope is that we can still compare its probability density function to

that of some other more structured distribution family.

Definition 2.7 (Distribution Comparability). Let 𝑄,𝑄 ′ be
probability distributions with the same support. We say that 𝑄 and
𝑄 ′ are comparable if for all x in their common support, it holds
1/2 𝑄 ′ (x) ≤ 𝑄 (x) ≤ 2 𝑄 ′ (x) . 6

We show that if two distributions are comparable to each other,

then they will have similar (anti-)concentration properties — even

under an arbitrary conditioning. The formal statement of this fact

and its proof can be found in in the full version of the paper.

Super Non-Singular Polynomial Transformations of Gaussians are
Reasonable. Given a polynomial transformation x ↦→ q(x), we
will say that q is super non-singular if the set of its polynomial

coordinates q𝑖 (x) is super non-singular. We show that a super non-

singular transformation q behaves similarly to a linear transforma-

tion, in the sense that the distribution 𝑞(N (0, I)) is comparable to

a mixture of reasonable Gaussians.

Proposition 2.8 (Informal – Super Non-Singular Polyno-

mial Transformations are Reasonable). Let q be a (𝛿1/(3𝑑 ) ,𝐶)-
super non-singular polynomial transformation for some sufficiently
small 𝛿 and large𝐶 . Then, q(N (0, I)) is𝑂 (𝛿𝑁 )-close in total variation
distance to some distribution that is comparable to the mixture dis-
tribution

∫
N𝜃𝑑𝜃 , where each N𝜃 is a (𝛿, log𝑂 (𝑑 ) (1/𝛿))-reasonable

Gaussian.

We now provide a proof sketch for Proposition 2.8. We first

note that q(N (0, I)) has a distribution identical to q(
√
1 − 𝛿2x +

𝛿z) for 𝛿 ∈ (0, 1) an appropriately chosen real number and x, z
distributed as two i.i.d. Gaussians. Fixing the value of x and Taylor

expanding around z, we find that q(
√
1 − 𝛿2x+𝛿z) is approximately

gx + 𝛿 Jacq (x) z +𝑂 (𝛿2)ex (z), where Jacq represents the Jacobian
of the transformation q, gx is some vector that depends only on x,
and ex is some degree-𝑑 polynomial. It turns out if q consists of

super non-singular polynomials, Jacq (x) will have no small singular

values with high probability. Conditioned on some fixed value of x
that makes Jacq (x) non-singular, the distribution of gx + 𝛿 Jacq (x)z
where z ∼ N(0, I) will be a reasonable Gaussian. We remark that

the transformation still has the high-order error term 𝑂 (𝛿2)ex (z)
that we have to bound. We notice that the coefficient in front of the

high-order term is significantly smaller than the minimum singular

6
For readers who are familiar with the notion of Rényi divergence, this is equivalent

to stating that the symmetrized Rényi divergence of infinite order between the two

distributions is bounded by some constant.

value of the linear component. As a result, the distribution produced

by the transformation will still be close in total variation distance to

some distribution comparable to a reasonable Gaussian distribution.

We refer to the full version of the paper for more details.

We remark that all of the above analysis is done for a fixed value

of x that ensures non-singularity of Jacq (x). Hence, to conclude the
proof, we simply need to take a mixture over the values of x follow-

ing the standard Gaussian distribution. By super non-singularity,

Jacq (x) has no small singular values with high probability. Con-

sequently, most of the distributions within the mixture will be

comparable to a reasonable Gaussian distribution. Proposition 2.8

thereby follows.

Given Proposition 2.8, and the definition of comparability, we

conclude that the transformation q conditioned on an axis-aligned

rectangle enjoys good (anti)-concentration properties. By our con-

struction, the target polynomial 𝑝 under the target distribution 𝐷

enjoys roughly the same (anti)-concentration properties as some

polynomial ℎ under q(N (0, I)) conditioned on an axis-aligned rec-

tangle. The proof of Theorem 2.2 follows.

2.3 Efficiently Extending a Super Non-Singular
Decomposition

In this section, we discuss our efficient algorithm for obtaining and

extending a super non-singular decomposition. [32] shows that

any polynomial of degree at most 𝑑 can be approximately decom-

posed into a non-singular polynomial set of size at most 𝑂𝑑 (1). In
Theorem 2.9, we show that this is also true for the notion of super

non-singularity. Theorem 2.9 extends and strengthens the result of

[32] in two ways: (i) we are able to decomposemultiple (as opposed
to just one, as in [32]) generic polynomials into a common set of su-

per non-singular polynomials, and (ii) we are able to do so when the

generic polynomials arrive in an online fashion. In particular, given a
super non-singular set of polynomials Q obtained while decompos-

ing some polynomials 𝑝1, · · · , 𝑝𝑡 in the past rounds, after receiving

the new polynomial 𝑝𝑡+1, we are able to extend Q into a larger

set of super non-singular polynomials Q′
and decompose 𝑝𝑡+1 in

terms of Q′
. We remark that the fact that we can keep extending a

super non-singular set of polynomials to ensure it can be used to

represent increasingly more polynomials is a unique characteristic

of super non-singular decomposition (compared to its “non-super”

counterpart). Crucially, this additional “extendibility” property of

the decomposition is what makes the (anti-)concentration result

(Theorem 2.5) and the polynomial set partitioning routine (Theo-

rem 2.1) possible. In the following result, we present our efficient

algorithm for extending a super non-singular decomposition.

Theorem 2.9 (Informal – Extendible Super Non-singular

Decomposition). Let ℓ, 𝑑, 𝑁 ′ ∈ Z+ and 𝜖 > 0 be sufficiently small
given ℓ, 𝑑 . Let 𝑆 := {𝑞1, · · · , 𝑞ℓ }, where 𝑞𝑖 : R𝑛 ↦→ R, be a set
of polynomials of degree at most 𝑑 and 𝑝 : R𝑛 ↦→ R be another
polynomial of degree at most 𝑑 . Suppose that 𝑆 is (𝜖1/3, 𝑁 ) super
non-singular, where 𝑁 is sufficiently large given 𝑑, ℓ, 𝑁 ′. Then there
exists an algorithm which can extend 𝑆 into a set of 𝑚 = 𝑂𝑑,ℓ (1)
polynomials 𝑆 := {𝑞1, · · · , 𝑞ℓ , 𝑞ℓ+1, · · · , 𝑞𝑚} such that

• 𝑆 is (𝜖, 𝑁 ′)-super non-singular.
• There exists a polynomialℎ : R𝑚 ↦→ R of degree at most𝑑 such
that ∥𝑝 (x) − ℎ(q(x))∥𝐿2 ≤ 𝜖2, where q = (𝑞1 (x), . . . , 𝑞𝑚 (x)).
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Moreover, the algorithm runs in time poly(𝑛) polyℓ,𝑑,𝑁 ′ (1/𝜖).

Suppose we only want to compute a non-singular decompo-

sition for a polynomial 𝑝 . The process given in [32] maintains a

data-structure to which we refer as a partial decomposition. In-

formally, the data-structure keeps track of a list of polynomials

𝑞1, · · · , 𝑞ℓ (which is not necessarily non-singular), a coefficient vec-

tor b ∈ Rℓ , and a composition polynomial ℎ such that 𝑝 (x) =

ℎ(b1𝑞1 (x), · · · , bℓ𝑞ℓ (x)). If the list of polynomials is already non-

singular, we are done. Otherwise, following the definition of non-

singularity, there exists a linear combination of the polynomials

𝑞∗ (x) = ∑
𝑖 b𝑖𝑞𝑖 (x) such that the gradient of the combined poly-

nomial 𝑞∗ is small with non-trivial probability under the Gaussian

distribution. In the second case, we show that we can approximately

decompose the combined polynomial 𝑞∗ into a set of lower-degree

polynomials 𝛼1, · · · , 𝛼𝑚 . Hence, we can rewrite one of the polyno-

mials 𝑞𝑖 which has non-trivial weight in the linear combination

with the set of newly obtained lower-degree polynomials 𝛼𝑖 and

the remaining polynomials in the linear combination. We then end

up with a new partial decomposition consisting of the polynomials

𝑞1, · · · , 𝑞𝑖−1, 𝑞𝑖+1, · · · , 𝑞ℓ , 𝛼1, · · · , 𝛼𝑚 , a new coefficient vector b′

and a new composition polynomial ℎ′. It turns out such a rewriting

strategy will always decrease the total weights of the polynomials

that have the same degree as 𝑞𝑖 in b′, but may end up increasing

the weights of the other polynomials in the linear combination.

However, if we always choose to rewrite the highest (or one of

the highest) degree among the polynomials in the linear combi-

nation, it is then guaranteed that we will have fewer and fewer

high-degree polynomials in the decomposition. This process must

then eventually terminate and give us a super non-singular set of

polynomials.

In order to adapt the above strategy for extendible super non-

singular decomposition, a caveat here is that for the additional

extendibility property to hold, we are now allowed to rewrite any

of the initial polynomials 𝑞1, · · · , 𝑞ℓ . Fortunately, if a set of polyno-
mials does not satisfy super non-singularity, we are always capable

of finding a linear combination of the polynomials of the same de-
gree such that the combined polynomial has small gradients with

non-trivial probability. Therefore, no matter which polynomial 𝑞𝑖
we choose to rewrite, it will always have the highest degree among

the polynomials in the linear combination (since all of them have

the same degree!). The induction argument for showing the ter-

mination of the process will then go through, giving us a super

non-singular decomposition algorithm.

2.4 Learning via Localization and
Margin-Perceptron

At a high-level, our learning algorithm can be viewed as a robust

version of the margin-perceptron algorithm of [26]. In particular,

we establish the following: given sample access to a distribution cor-

rupted by opt-nasty noise, the margin-perceptron is a semi-agnostic

LTF learner when the underlying (uncorrupted) x-marginal is “suf-

ficiently” (anti)-concentrated.

Proposition 2.10. Let 𝜖 ∈ (0, 1), 𝐾 ∈ Z+, 𝐶,𝐶1 > 0, and 𝐷 be a
distribution on R𝑛 × {±1}. Assume the following statements are true.

(1) The samples x are labeled with respect to an unknown function
𝑓 (x) = sign(w∗ · x) for some w∗ ∈ R𝑛 .

(2) The covariance matrix of the marginal distribution𝐷x satisfies
Ex∼𝐷x [x⊤x] ≼ 2I.

(3) The x-marginal distribution 𝐷x satisfies anti-concentration,
i.e.,

Pr
x∼𝐷x

[|v · x| ≤ 𝑡 ∥v∥𝐷x,𝐿2 ] ≤ 𝑡
𝐶 ,

for some number 𝐶 > 0, and for all 𝑡 ∈ (𝜖, 𝜖2/
√
𝐾 ).

(4) 𝐷x has concentration, i.e.,

Pr
x∼𝐷x

[|v · x| > 𝑡 ∥v∥𝐷x,𝐿2 ] ≤ 𝐶1𝑡
−𝐾 ,

for some 𝐶1 > 0 and all 𝑡 > 0

Then, given access to an 𝜖-corrupted version of poly(𝑛/𝜖) i.i.d. samples
from 𝐷 , there exists an algorithm that runs in sample-polynomial
time, and with probability at least 2/3 computes a weight vector ŵ
such that

Pr
(x,𝑦)∼𝐷

[sign(ŵ · x) ≠ 𝑦 | 𝐵] ≤ 𝐶1/𝐾
1

𝑂𝐶,𝐾,𝑑 (𝜖1−𝑂 (1/
√
𝐾 ) ) ,

where 𝐵 = {x : |w · x| ≥ 𝛾 ∥w∥𝐷x,𝐿2 } for 𝛾 = 𝜖4/
√
𝐾 .

Our modified perceptron algorithm of Proposition 2.10 uses a

robust sub-routine of [22] for estimating the Chow-parameters of

the LTF under nasty noise. For example, in the first round, we learn

a PTF that achieves error opt
1−𝑐

for all high-margin points in the

set {x : |𝑝 (x) | ≥ 𝜖𝑐 ∥𝑝 ∥2}. We then localize (condition) on the set of

low-margin points {x : |𝑝 (x) | ≤ 𝜖𝑐 ∥𝑝 ∥2}, and use the partitioning

algorithm of Theorem 2.1 to partition the above region into sets

𝑆 (1) , . . . , 𝑆 (𝑚)
such that the standard normal conditional on those

sets has good (anti)-concentration. We then again condition on

each set of this partition and use the robust-perceptron algorithm

of Proposition 2.10 to learn a PTF inside each set; and continue

recursively until the probability mass of the “unclassified” low-

region is at most 𝑂 (𝜖). Our final hypothesis is therefore a decision
list of degree-𝑑 PTFs: one PTF for each set of the partition. For more

details, we refer the reader to the full version of the paper.
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