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Abstract

The lattice parameters of (Al,Fe)-bearing bridgmanite, the most abundant lower-mantle
mineral, are fundamental to our understanding of its thermoelastic and transport properties at
high pressure and temperature (P-T). However, due to the complexity of Fe and Al substitution
as well as the spin and valence states of Fe in the structure of bridgmanite, experimental
refinements on its atomic positions are rather limited to relatively low pressure and/or to
compositions not as relevant to the lower mantle. Here, we have performed single-crystal X-
ray diffraction (SCXRD) experiments on two high-quality crystal platelets of (Al,Fe)-bearing
bridgmanite (Mgo.ssFe* 0.0ssFe*0.035A10.03)(Alo.11Si0.90)O3 (Fe10-Al14-Bgm), up to 64.6 GPa at
room temperature in a Boehler-Almax type diamond anvil cell (DAC). Refinements on the
collected SCXRD patterns reveal reliable structural information of single-crystal Fel0-Al14-
Bgm, including unit-cell parameters, atomic coordinates, and anisotropic displacement
parameters. The axial compressibility of Fe10-Al14-Bgm behaves a trend of a > ¢ > b. Single-

crystal refinements show that our sample contains ~6.5 mol% Fe*", 3.5 mol% Fe?*, and 3 mol%
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A" in the large pseudo-dodecahedral site (A site), and ~11 mol% Al** in the small octahedral
site (B site). This suggests that AlI*" preferentially occupies the B site and the excess Al**
together with Fe ions stay in the A site in (Al,Fe)-bearing bridgmanite. Our results show that
the primary pressure response of Fel0-All4-Bgm structure is the compression of AOs
polyhedra and BOs octahedra with monotonical decreases in A-O and B-O bonds. Further
calculations indicate that the interatomic angles of B-O1-B and B-O2-B decrease from 145.2-
145.8° at 4.2 GPa to 143.3-143.5° at 64.6 GPa. Quantitative analyses on two distortion-related
parameters, the observed tolerance factor (obs) and octahedral tilting angles (@), show that fobs
decreases and @ increases smoothly with pressure. These results indicate an increased
distortion of the Fel0-All4-Bgm structure with pressure, which might be related to the
distortion of A-site Fe**. The local environmental changes of A-site Fe** in bridgmanite could
help explain previous results on the hyperfine parameters, abnormal lattice thermal
conductivity, mean force constant of iron bonds and other physical properties, which in turn

provide insights into our understanding on the geophysics and geochemistry of the planet.

Keywords: (Al,Fe)-bearing bridgmanite, crystal structure, single-crystal X-ray diffraction,

lower mantle, high pressure
INTRODUCTION

Bridgmanite, (Mg,Fe)(Si,Al)O3, is believed to be the most abundant mineral in the lower
mantle, ranging from 75 to 90 vol% (Irifune et al., 2010; Murakami et al., 2012; Ringwood,
1975). Under the lower-mantle P-T conditions, bridgmanite has an orthorhombic structure with
a space group of Pbnm (Liu, 1974). Extensive experimental studies have shown that about 10
mol% Fe and Al could be incorporated into the structure of bridgmanite in the lower mantle
via two crystallographic occupancy sites: the large pseudo-dodecahedral Mg?* site (A site) and

the small octahedral Si** site (B site) (Horiuchi et al., 1987; Irifune et al., 2010; Lin et al., 2016;
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Ringwood, 1975). Current consensus is that Fe*" can occupy both A and B sites, while Fe**
will only exist in A site (Hirose et al., 2017; Lin et al., 2013; Shukla and Wentzcovitch, 2016).

However, the incorporation of AI**

into bridgmanite further complicates the site occupancy
and studies suggested a charge-coupled substitution of Mg4* + Sigt « Feit + Al3*, where
AI** replaces Si*' to occupy the B site and Fe®" enters the A site (e.g., Huang et al., 2021;
Hummer and Fei, 2012; Lin et al., 2016). Due to the compositional and structural complexities
as well as Fe valence states, direct experimental refinements on atomic structures of (Al,Fe)-

bearing bridgmanite with a composition relevant to the lower-mantle mineralogical model at

high pressure are still rare.

The technical development of miniature diamond anvil cells (DACs) with a large optical
opening (above 70°) coupled with synchrotron single-crystal X-ray diffraction(SCXRD)
method (Boehler, 2006; Kantor et al., 2012) allows some studies to resolve the high-pressure
structure of bridgmanite (Dubrovinsky et al., 2010; Fiquet and Reynard, 1999; Ismailova et al.,
2016; Ross et al., 1990; Sugahara et al., 2006; Vanpeteghem et al., 2006). Pure MgSiO3
bridgmanite end member has shown to experience an increased structure distortion with
pressure up to 15 GPa at 300 K (Ross et al., 1990; Sugahara et al., 2006). Furthermore,
Dubrovinsky et al. (2010) examined the crystal structure of single-crystal (AlFe)-rich
bridgmanite, (Mgo.c2Feo.38)(Alo36S10.64)O3 (Fe38-Al36-Bgm), up to 84.1 GPa at room
temperature, suggesting that the enrichment of Fe and Al in bridgmanite would greatly increase
its unit-cell lattices as well as the degree of distortion. Ismailova et al. (2016) reported the
synthesis of single-crystal Mgo.s3Fe0.17A10.06S10.9403 (Fel7-Al6-Bgm),
Mgo.gsFeo.14Al0.04S10.9603 (Fel4-Al4-Bgm), and Fe?0.64Fe**024Si03 bridgmanite as well as
crystal structure refinements up to 130 GPa. Considering the relevant pressure-temperature and
compositional (P-T-X) conditions in the lower mantle (23-130 GPa, 1800-2500 K, and ~10

mol% Fe and Al in bridgmanite) (Irifune et al., 2010; Katsura et al., 2010; Ringwood, 1975),
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it is thus critical to investigate the single-crystal structures of bridgmanite with a lower-mantle
relevant composition. However, the quantitative understanding of the Fe and Al effects of the
atomic structures of bridgmanite with a composition relevant to the lower mantle requires high-

quality single crystals for the high-pressure structural refinements which are still lacking.

Experimental and theoretical studies have indicated that Fe ions, potentially occupying A
and B crystallographic sites of bridgmanite, can have different electronic spin and valence
states at high pressure, which can affect its chemical and physical properties (Catalli et al.,
2011; Catalli et al., 2010; Dorfman et al., 2015; Hsu et al., 2011; Hsu et al., 2010; Hsu et al.,
2012; Lin et al., 2008; Mao et al., 2017; Shukla et al., 2016; Tsuchiya and Wang, 2013). For
instance, the B-site Fe*" in bridgmanite is shown to undergo a high-spin to low-spin transition
at 40-60 GPa, which is associated with an abrupt volume collapse and a drastic softening in
compressional wave velocity (Catalli et al., 2011; Catalli et al., 2010; Fu et al., 2018; Hsu et
al., 2011; Lin et al., 2012; Mao et al., 2015; Shukla et al., 2016). In contrast, both Fe** and Fe**
in the A-site remain in the high-spin state throughout the lower-mantle pressure (Dorfman et
al., 2015; Hsu et al., 2010; Li et al., 2004; Lin et al., 2016; Shukla et al., 2015). In contrast to
the A-site Fe’", the A-site Fe?" in Fe-bearing bridgmanite displays extremely high quadrupole
splitting (QS) at pressures above ~20 GPa, which has been attributed to the local site distortion
(Hsu et al., 2011; Hsu et al., 2010; Jackson et al., 2005; Mao et al., 2017). Some earlier studies
using X-ray emission and Mossbauer results suggested the occurrence of the intermediate-spin
state in the A-site Fe?" (Lin et al., 2008; McCammon et al., 2010; Narygina et al., 2010), but
the high QS value of the A-site Fe’" was theoretically suggested to result from the lattice

distortion (Hsu et al., 2011).

The changes in the A site configuration can not only influence the aforementioned
hyperfine parameters, but also other physical properties of bridgmanite at high pressure. For

instance, Yang et al. (2019) found a drastic softening of 21% in mean force constants of iron
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bonds in Fe-bearing and (AlLFe)-bearing bridgmanite at 40-60 GPa from nuclear resonant
inelastic X-ray scattering measurements, which is attributed to the effect of the A-site distortion
from low to high QS states. In addition, a recent study measured lattice thermal conductivity
of bridgmanite up to 120 GPa at room temperature using laser pump-probe spectroscopy (Hsieh
etal., 2017). The observed 20% drop of thermal conductivity in Fe-bearing bridgmanite at ~45
GPa could possibly result from the pressure-induced distortion of the A-site Fe** (Hsieh et al.,
2017). However, atomistic scale evidence for these macroscopic-scale observations remains
limited. Further quantitative analyses on the atomistic structure of (Al,Fe)-bearing bridgmanite,
such as site occupancies of Fe ions and AI** and atomic coordinates, are required to provide
insights into the physical properties of bridgmanite and to model lower-mantle geophysics and

geodynamics (Garnero et al., 2007; Lin et al., 2013; Mao et al., 2017; Masters et al., 2000).

In this study, we have carried out SCXRD experiments on (ALFe)-bearing bridgmanite,
(MgossFe* 0.065Fe? 0.035A10.03)(Alo.11S10.90)03 (Fel0-Al14-Bgm), up to 64.6 GPa using a
Boehler-Almax type DAC with synchrotron radiations. The use of two crystal platelets allows
us to collect up to 230-300 reflection peaks with intensities (/) of />3c(/) at each experimental
pressure to derive its high-pressure lattice parameters and atomic coordinates. These data are
analyzed to help understand site occupancies of Fe**, Fe**, and AI** in Fe10-Al14-Bgm as well
as to determine its high-pressure structural variations, including bond lengths and angles,
octahedral titling, and degree of lattice distortion. These results could provide important clues
for understanding the effect of local iron environment on the physical and chemical properties

of bridgmanite.
EXPERIMENTAL DETAILS

High-quality (AL Fe)-bearing bridgmanite was synthesized at ~24 GPa and ~1800 °C for

20 h in the presence of hydrous melt using the 5000-ton Kawai-type multi-anvil apparatus with
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a run number of 5K2667 at the Institute for Planetary Materials at Okayama University. Details
of sample synthesis and characterizations have been well documented in early studies (Fu et
al., 2019; Fu et al., 2022). Further electron microprobe analysis and Mdssbauer spectroscopy
results show that the synthesized bridgmanite has a homogenous composition of
Mgo.gsFeo.1Al0.14S10.0003 (Fel10-Al14-Bgm) with Fe**/ZFe=~0.65 (Fu et al., 2019). Synchrotron
XRD results on the sample show sharp diffraction spots with lattice parameters of a =4.7875(3)
A, b=4.9423(2) A, c = 6.9205(6) at ambient conditions in a Phnm space group, confirming its

high quality for SCXRD experiments (Figure 1).

A short symmetric DAC equipped with a pair of 250-um Boehler-Almax type anvils was
used for high-pressure SCXRD experiments (Boehler, 2006). One anvil glued onto a cubic
boron nitride (cBN) seat was used to face the upstream incident beam while the other anvil

glued onto a tungsten-carbide seat with a large opening angle up to 70° (40) was used as the

downstream side for diffraction collections. The upstream cBN seat absorbs a noticeable degree
of X-rays and avoids producing powder diffraction signals from the backing plate (Dera et al.,
2013). A 250-um thick Re gasket was pre-indented to ~25 GPa or 25-30 um thickness, and a
hole with a diameter of 150 pum was drilled in the pre-indented area to be used as a sample
chamber. Knowing that each bridgmanite platelet in the DAC can only give rise to certain parts
of the reciprocal space of the crystal lattice, the use of several crystal platelets in different
crystallographic orientations in single-crystal DAC experiments is highly desirable for
collections of more reflection spots and thus better statistics in the structural refinements (Ross
et al., 1990). Here, we double-side polished two random orientations of bridgmanite platelets
that were ~20 pm x 20 pm big and ~5-7 um thick. These two clean platelets were loaded into
the sample chamber, together with a piece of Au as pressure calibrant (Figure 1c insert). The
Au and two bridgmanite platelets were intentionally placed as a triangular geometry to

minimize pressure differences in the sample chamber during high-pressure experiments. Neon
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was loaded into the sample chamber as a pressure medium using a gas loading system in the
Mineral Physics Laboratory of the Department of Geological Sciences at the University of

Texas at Austin.

In situ high-pressure synchrotron SCXRD experiments were performed on FelO-All14-
Bgm up to 64.6 GPa with a pressure interval of ~3 GPa at the beamline 13ID-D
GeoSoilEnviroCARS (GSECARS) of the Advanced Photon Source (APS), Argonne National
Laboratory. An incident X-ray beam with an energy of 42 keV and a wavelength of 0.2952 A
was focused to a beam size of approximately 3 pum x 3 pm on the sample. Single-crystal XRD
step-scan measurements were conducted on each platelet by rotating £30° of the DAC about
the vertical axis of the sample stage with a step size of 0.5° and an exposure time of 1 or 2
s/step. A total of 120 XRD frames were collected for each platelet by a Pilatus 1M CdTe
detector at each experimental pressure. Pressures and pressure uncertainties were determined
by measuring the unit-cell volume of Au right before and after each SCXRD measurement (Fei
et al., 2007). These single-crystal patterns were processed for data reduction using the
CrysAlisPro software (Diffraction, 2019). This procedure enables us to determine the lattice
parameters, extract the intensity of each hkl reflection, and perform absorption corrections.
Single-crystal refinements on the high-pressure atomic structure of Fel10-14-Bgm were further
carried out on the combined reflection datasets of two platelets by using the JANA software
(Petricek et al., 2014). These structure refinements eventually resolve atomic coordinates and
anisotropic displacement parameters of each atom in the sample (Table 1, supporting
information cif files). Residual R-factor (R and wR in %) were used to evaluate the quality of

the refinement, defined as:

F2_F2 1/2
2 — F C'] % 100 (1)

R(%) = [ Y WFE?
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wlF2 — F2|]"/?
Lwlfy — K Cll x 100 (2)

WR(%) = [ S WE?

where F, and F¢ are observed and calculated structure factor amplitudes, respectively, and w is
a weighting factor (Figure 2 and Table 1). We used the VESTA software to view and graph

the refined crystal structure of Fel0-Al14-Bgm at high pressure (Momma and Izumi, 2011).
RESULTS AND DATA ANALYSES

Figure 1 shows representative raw SCXRD patterns of both platelets (£30°) at ~52.7 GPa.
The circular and round diffraction spots with an average FWHM of 0.07°-0.10° confirm the
high-quality of our single-crystal Fel0-Al14-Bgm without apparent development of cleavage
or texture at high pressure with neon as a transmitting pressure medium. Our individual
analyses on the total 120 XRD frames of each platelet using the CrysAlisPro software
(Diffraction, 2019) show that both loaded platelets have high-quality reflections (Figure 2a)
and similar unit-cell parameters (<0.2%) at each experimental pressure. The obtained lattice
parameters (a, b, ¢) and unit-cell volume (V) of Fel0-Al14-Bgm decrease monotonically with
pressure up to 64.6(6) GPa (Table 1 and Figure 3). Third-order Birch-Murnaghan equation of
state (EoS) is used to evaluate the high-pressure axial and bulk incompressibility of Fe10-Al14-

Bgm. The best fits to pressure-volume (P-V) data yield Kto =256 + 2 GPa, K 'ro = 4 (fixed), or

Kto=259 + 4 GPa, K 10 = 3.8 + 0.2, with a fixed Vo of 163.75(3) A°.

Refinements were conducted to resolve the structure of single-crystal Fel0-Al14-Bgm by
initially setting the atomic coordinates of A-site, B-site, O1, and O2 atoms as those of MgSiO3
bridgmanite (space group: Pbnm) (Horiuchi et al., 1987). The total abundances of Mg**, Si*',
AD*", Fe ions were fixed from the EPMA results, and the relative ratio of Fe?" and Fe*" was

obtained from Mdssbauer measurements on the same sample (Fu et al., 2019). Regarding the

site occupancy of different ions, we fixed 88 mol% Mg*" and 90 mol% Si*" in the A and B
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sites, respectively, and we considered that Fe ions and AI** can stay in both A and B sites. The
refinement process assumes the same atomic coordinates for ions in the same site and the
software does not distinguish Fe ions between Fe** and Fe**. It should be noted that theoretical
calculations have suggested the atomic positions of different Fe** and Fe** components in the
same site are similar and indistinguishable in bridgmanite (Hsu et al., 2011; Hsu et al., 2010),
supporting the aforementioned assumptions in the structure refinements using the JANA

software (Petticek et al., 2014).

During the refinement, we relaxed the following parameters, including abundances of Fe

ions and AI’*

in both A and B sites, atomic coordinates of each site and anisotropic
displacement parameters of each atom. The best fits to combined reflection peaks of the two
platelets show that our (Al,Fe)-bearing bridgmanite sample has a chemical composition of
(Mgo.ssFe*0.06sF€?0.035A10.03)(Alo.11S10.90)O3 with all the Fe ions and ~3 mol% AI** in the A
site and ~11 mol% AI’*" in the B site. The residual R-factors, wR, is about 3.2% at the initial
pressure of 4.2(1) GPa (Figure 2b), indicating reliable constraints on the structure of single-
crystal Fel0-Al14-Bgm (Toby, 2006). Although the number of diffraction peaks decreases
with increasing pressure, the use of two platelets allows over 230 peaks with 7>3c(/) for the
structure refinements even at the highest experimental pressure of 64.6(6) GPa. The low R and
wR values indicate small uncertainties of our refinements (Figure 2 and Table 1). We conducted
several synthetic tests to fix a certain amount of Fe ions in the B site, however, the resultant

wR is unreasonably high, >20%, even at 4.2(1) GPa. These tests rule out the possibility of Fe

ions occupying the B site within uncertainties of the structure refinements.
DISCUSSION

Lattice parameters of (Al,Fe)-bearing bridgmanite at high pressure
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Compared with literature reports on bridgmanite with different Fe and Al contents, the unit-
cell parameters of  Fel0-Al14-Bgm are comparable to those of
Mgo.80Fe?"0.024Fe* 0.096Al0.11Si0.8003 (Fe12-Al11-Bgm) (Mao et al., 2017), slightly greater than
those of pure MgSiO3 bridgmanite end member (Boffa Ballaran et al., 2012), and much lower
than those of (AL,Fe)-rich bridgmanite, (Mgo.coFe*0.03Fe*0.38)(Alo.36Si0.62)O3 (Fe41-Al36-Bgm)
(Boffa Ballaran et al., 2012), Fe38-Al36-Bgm (Dubrovinsky et al., 2010), and
Fe?*0.64Fe**024Si103 bridgmanite (Ismailova et al., 2016) (Figure 3a-c). This indicates that
incorporation of Fe and Al into bridgmanite significantly increases its unit-cell lattice
parameters mainly due to the larger size of Fe ions compared to Mg?* and Si*". In addition, our
analyses show that the axial compressibility of Fel0-Al14-Bgm shows a trend of a > ¢ > b
(Figure 3d-f), consistent with those of MgSiO3 and Fe?0.64Fe**024Si03 bridgmanite end
members (Boffa Ballaran et al., 2012; Ismailova et al., 2016). In contrast, Boffa Ballaran et al.
(2012) reported that ¢ axis of Fe41-Al136-Bgm is the most compressible axis, suggesting that
intermediate Fe and Al in bridgmanite may change the direction of the maximum axial
compressibility. Additionally, early studies reported noticeable volume collapses of 0.5-0.8%
in pure Fe-bearing bridgmanite at 40-60 GPa (Fu et al., 2018; Mao et al., 2015) because of the
spin transition of B-site Fe*". Our Fe10-Al14-Bgm does not display apparent volume collapses,
supporting our refinements on the site occupancies that all Fe ions stay in the A site (without
any observable B-site Fe*) and remain in the high-spin state up to 64.6(6) GPa. These results
are also consistent with early theoretical modeling on the spin and valences of the A-site and
B-site Fe ions in bridgmanite and their effects on unit-cell volumes (Hsu et al., 2011; Hsu et

al., 2010; Shukla et al., 2016).
Bond lengths and angles in (Al,Fe)-bearing bridgmanite at high pressure

The obtained atomic coordinates of Fel0-Al14-Bgm can be used to precisely determine its

structural response to compression, such as interatomic distances and bond angles among atoms
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(Table 2). For an ideal perovskite structure, the A and B sites will have twelvefold and sixfold
coordination to form AOi2 dodecahedra and BOs octahedra, respectively. Kudoh et al. (1987)
observed that in MgSiOs bridgmanite, the application of pressure up to 9.6 GPa changes the
A-site polyhedral configuration towards eightfold coordination (AOs polyhedron) rather than
twelvefold coordination. Each AOs polyhedron shares two faces, four edges, and two corners
with the eight surrounding BOs octahedra. Here we calculated mean interatomic distances
between A-site (B-site) atoms and O within an eight (six) coordination, denoted as <A-O>g
(<B-0>), using the derived high-pressure atomic coordinates (Figures 4 and 5a). The average
interatomic distances between A-site cations and O within an AO12 pseudo-dodecahedron (<A-
0O>12) were also calculated for comparison. Results show that <A-O>s, <A-O>12, and <B-O>
of the single-crystal Fe10-Al14-Bgm decrease smoothly with pressure from 2.192(1), 2.471(1),
and 1.795(1) A, respectively at 4.2(1) GPa to 2.052(5), 2.347(5), and 1.715(3) A, respectively
at 64.6(6) GPa. Furthermore, variations of bond lengths in the BO¢ octahedra decrease with
pressure, suggesting the BOs octahedra is approaching to form an ideal octahedra at high
pressure (Figure 4). Comparisons with literature data on bridgmanite with different
compositions (Dubrovinsky et al., 2010; Ross et al., 1990; Sugahara et al., 2006) show that
incorporation of 36 mol% Al and 38 mol% Fe into its structure will increase <B-O> and <A-
O>12 by approximately 2.1% and 1.7%, respectively, but affects <A-O>s little, less than 0.5%.
That is, the incorporation of Fe and Al into bridgmanite has a stronger effect on the BOs

octahedron than the AOs polyhedron.

We have also calculated two angles between O and B-site atoms, B-O1-B and B-O2-B,
which have been served as helpful indicators on the tilting of the BOs octahedra (Andrault and
Poirier, 1991). Specifically, the B-O1-B and B-O2-B represent the tilting of the BOs octahedra
in the b-c plane and the a-b plane, respectively. Calculations show that B-O1-B and B-O2-B

of Fel0-All4-Bgm are about 145.2(2)° and 145.8(2)°, respectively, at 4.2(1) GPa, which
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gradually decrease to about 143.3(3)° and 143.5(3)°, respectively, at 64.6(6) GPa (Figure 5b-
c). This indicates an increasing tilt of the BOs octahedra with pressure. The pressure effect on
tilting angles of the BOs octahedra in both b-c and a-b planes in Fel0-Al14-Bgm is consistent
with those of Fe38-Al135-Bgm (Dubrovinsky et al., 2010) and pure MgSiO3 bridgmanite end
member (Sugahara et al., 2006). Furthermore, we have noticed that with increasing Fe and Al
contents from Fel0-Al14-Bgm to Fe38-Al36-Bgm in bridgmanite, both angles of B-O1-B and
B-02-B decrease 1.4-1.6%, showing a strong Fe and Al incorporation effect on the distortion

of the BOs octahedra.
Structural distortion of (ALLFe)-bearing bridgmanite at high pressure

To quantitatively evaluate the distortion of the bridgmanite structure in the lower-mantle
pressure, we followed literature procedures to calculate two relevant parameters, the observed
tolerance factor (fobs) and octahedral tilting angles (®), using the refined atomic structure of
Fel0-Al14-Bgm from a microscopic approach (Ross et al., 1990; Sugahara et al., 2006; Zhao
et al., 1993a). The tobs is initially used to systematically describe the tilting and distortion in

GdFeOs-type perovskite (Sasaki et al., 1983), calculated as:

_<A_0>12

tobs_<B_0> 3)

where < 4 — O >12 (< B — 0>) is the mean interatomic distance between A-site (B-site) atoms
and O within a twelvefold (sixfold) coordination. According to the definition, an ideal cubic
GdFeOs perovskite will have zobs as one. Our calculations show that the fobs of Fe10-Al14-Bgm
is about 0.974(1) at 4.2(1) GPa and decreases with pressure to ~0.968(4) at 64.6(6) GPa (Figure
6). Thus, there is an increasing degree of the lattice distortion in Fe10-Al14-Bgm from an ideal
cubic symmetry in the orthorhombic system with pressure. In addition, compared to literature
reports on bridgmanite with different compositions, the zobs of Fe10-Al14-Bgm is slightly lower

than those of MgSiO3 end member (Ross et al., 1990; Sugahara et al., 2006) and higher than
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those of Fe38-Al35-Bgm (Dubrovinsky et al., 2010), suggesting an increased structure

distortion in (AL Fe)-rich bridgmanite.

Taking advantage of the obtained atomic coordinates of the single-crystal Fe10-Al14-Bgm
in this study, we can reliably calculate the titling angles of the octahedron (®) to describe the
distortion degree of bridgmanite at high pressure. In this method, the octahedron in the structure
of bridgmanite is assumed as a pseudo-cubic unit cell with a length (ap) approximately
described as: a,, ~ V2a/2 ~ V2b/2 ~ c/2 (Figure 7a). @ is defined as titling of the octahedron
about the pseudo-cubic [111] direction. Alternatively, @ can be viewed as a combination of
titling about the pseudo-cubic [110] direction (angle 6) and the pseudo-cubic [001] direction

(angle ¢) in the pseudo-cubic unit cell (Figure 7b), calculated using:

cos® = cos b cos @ 4)

tan @ = 4 /u%l + v, /c (5)
tang = 4 /ugz +v§,/ a? + b? (6)

where uo1, uo2, voi, and voz are parameters derived from refined atomic coordinates using:

Upy = AXoq (7)
Vo1 = b(0.5=yo1) (8)
Upy = a(0.25 — X0,) 9)
Vo2 = b(Yo, — 0.25) (10)

where xon and yon are atomic coordinates of the nth oxygen atom (Zhao et al., 1993a).
Calculations show that @ of Fe10-Al14-Bgm gradually increases with pressure from ~21.0(1)°

at 4.2(1) GPa to ~22.5(3)° at 64.6(6) GPa (Figure 8), indicating an increasing distortion.
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Comparison with literature results suggests that @ of bridgmanite also increases with
increasing Fe and Al contents (Dubrovinsky et al., 2010; Ross et al., 1990; Sugahara et al.,
2006). We note that, due to the experimental difficulties in obtaining reliable high-pressure
atomic structure of bridgmanite, some early studies attempted to estimate the value of @ from

its unit-cell parameters in a macroscopic approach by assuming regular octahedra in the

structure, calculated as: cos ® = \/Eaz/bc (Mao et al., 2017; O'keeffe et al., 1977).
Comparisons of the calculated @ from both macroscopic and microscopic approaches (Boffa
Ballaran et al., 2012; Mao et al.,, 2017) show that the macroscopic approach typically
underestimates @ (Figure 8). This is due to the fact that the macroscopic approach simply

assumes that the octahedron in bridgmanite is rigid and the octahedral angles are small (Zhao

et al., 1993a; Zhao et al., 1993b).

The calculated tobs and @ show a consistent trend that the distortion degree of the FelO-
Al14-Bgm structure increases with pressure (Figures 6 and 8). Our SCXRD refinements reveal
that all the Fe ions in our Fel0-Al14-Bgm, about 6.5 mol% Fe*" and 3.5 mol% Fe?*, occupy
the A site within uncertainties of the refinements. Therefore, the observed high-pressure
distortion in Fel0-Al14-Bgm should be closely related to changes of local A-site Fe ions
environment. Both earlier theoretical and experimental studies indicate that the A-site Fe*" and
Fe’" remain in the high-spin state throughout the lower-mantle pressure, and the A-site Fe?"
can experience an enhanced distortion at 40-60 GPa with extremely high QS (Hsu et al., 2011;
Hsu et al., 2010; Mao et al., 2017). Theoretical calculations also show that the small changes
in the local structure and d-orbital occupations of Fe?" in bridgmanite can greatly affect its QS
(Bengtson et al., 2009; Hsu et al., 2010). Therefore, we attribute the increased SiO¢s octahedron
tilting angles and distortion degree in Fel10-Al14-Bgm to the increased distortion of the A-site
Fe?" at high pressures. These local changes of A-site Fe*" environment in bridgmanite can

result in high QS values as observed experimentally (Jackson et al., 2005; Mao et al., 2017).
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We note that the abundance of Fe*" in our Fel0-Al14-Bgm is much higher than that of Fe?*,
which might weaken the distortion degree of A-site Fe?* and result in smooth increase in fobs
and @ with pressure. Moreover, Mao et al. (2017) observed the existence of both high and low
QS A-site Fe** components in the Fe12-Al11-Bgm at 0-130 GPa and suggest that the presence

of Al may play a key role in decreasing the differences between high and low QS A-site Fe**.
IMPLICATIONS

Approximately 5-7 wt% Al203 can be dissolved into (Al,Fe)-bearing bridgmanite via the
decomposition of majoritic garnet at the topmost lower mantle (~660-770 km in depth)
(Hummer and Fei, 2012; Irifune et al., 2010; Lin et al., 2016). Our refined crystal structure of
the Fel0-Al14-Bgm suggests that AI** would preferentially occupy the B site and all the Fe
ions stay in the A site in (Al,Fe)-bearing bridgmanite. That is, the lower-mantle (Al,Fe)-bearing
bridgmanite is not expected to contain the B-site Fe**, and thus, will not experience the B-site
spin transition as well as the associated thermoelastic anomalies as discussed in the previous

reports (Fu et al., 2018; Hsu et al., 2011; Mao et al., 2015; Shukla et al., 2016).

Studies have shown that the enhanced distortion of A-site Fe*" in bridgmanite does not
cause detectable anomalies in unit-cell volumes (Boffa Ballaran et al., 2012; Mao et al., 2017)
but could be linked with enhanced hyperfine parameters and softening in some macroscopic
properties, such as lattice thermal conductivity and mean force constants of iron bonds (Hsieh
etal., 2017; Yang et al., 2019). For instance, Hsieh et al. (2017) found that MgSiO3, Fe-bearing
Mgo.96Fe0.07Si09803 (Fe7-Bgm), and (Al,Fe)-bearing Mgo.goFe?*0.024Fe* 0.096A10.1103 Si0.8003
(Fel2-Al11-Bgm) have comparable and increasing lattice thermal conductivities with pressure
below 40 GPa. This can be explained by the pressure-induced shortening of the interatomic
distances in the bridgmanite structure (Figure 5). While the thermal conductivity of Fe7-Bgm

drops by ~20% at 40-45 GPa and then changes little with further increasing pressure. Such a
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drop in the conductivity is likely related to the distortion of the A-site Fe*" occurring in the
same pressure range. The lattice distortion can increase the phonon-defect and reduce the
phonon-phonon scattering contribution in bridgmanite (Ladd et al., 1986; Schelling et al., 2002)
consequently leading to the reduced lattice thermal conductivity at high pressure. Because of
the trade-offs between the positive effect of shortened interatomic distances and the negative
effect of the A-site Fe?" distortion, the pressure dependence of the lattice thermal conductivity
in Fe7-Bgm is almost flat above 45 GPa (Hsieh et al., 2017). In comparison, Fel2-Al11-Bgm
displays a moderate thermal conductivity between MgSiO3 and Fe7-Bgm above 40 GPa (Hsieh
et al., 2017). Due to the relative abundance of Fe** and Fe*" as well as the presence of AI*" in
(ALFe)-bearing bridgmanite, the A-site Fe*" distortion is likely weakened, and thus, its
decreasing effect on thermal conductivity will be weakened. This trend is consistent with our
observations on the gradual distortion instead of abrupt anomalies with pressure in Fel0-Al14-
Bgm. Similarly, the drastic softening in force constants of (AL, Fe)-bearing bridgmanite at 40-
60 GPa observed by Yang et al. (2019) might be caused by the A-site Fe?" distortion: the weak
pressure dependence of force constants above 60 GPa is possibly a result of the combined effect
between the shorten interatomic bond lengths and A-site Fe** distortion at high pressure, which
has positive and negative effects on force constants, respectively. Thermal conductivity and
force constants of lower-mantle candidate minerals are key for understanding geophysics and
geochemistry of our planet, such as the heat flux across the core-mantle boundary and isotope
fractionation in an early magma ocean (Hofmeister, 1999; Poitrasson et al., 2004). Therefore,
the softening effect of the A-site Fe?* distortion could greatly affect our views on mantle
convection flow and evolution history of the planet. Considering that our study is limited to
room temperature on (Al,Fe)-bearing bridgmanite with low A-site Fe?", further examinations

of the thermal effect on atomic structures of Fe?*-rich (Al,Fe)-bearing bridgmanite at high
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pressure are still needed to better interpret the lower-mantle geochemistry, geophysics, and

geodynamics.
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557  Figure 1. Representative single-crystal X-ray diffraction results of Fe10-Al14-Bgm at ~52.7 GPa and
558  room temperature. a and b Original XRD patterns of platelets 1 and 2, respectively. The black squares
559  and blue circles mark reflection spots from bridgmanite and diamonds, respectively. Diffraction rings
560  show signals from solid neon medium, labeled with “Neon”. ¢ and d Corresponding integrated XRD
561  patterns of platelets 1 and 2, respectively. Miller indices (hkl) of bridgmanite are labeled close to the
562  top of diffraction peaks. The average FWHM of these peaks is ~0.08°. The insert in ¢ shows an image
563  of the sample chamber with two Fel0-Al14-Bgm platelets and Au pressure calibrant. The insert in d is
564  around 110 reflection spot and its integrated peak. The wavelength of the incident X-ray beam is 0.2952
565 A
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Figure 2. Data analyses on single-crystal XRD patterns of Fel0-Al14-Bgm at high pressure. a The
number of high-quality reflection peaks of each bridgmanite platelet used for structure refinements.
These reflections were selected with intensities (/) of />3c(/). Solid black and red circles are for platelets
1 and 2, respectively. b Residual R-factors during the refinements to derive the atomic structure of
Fel0-Al14-Bgm using JANA software (Petiicek et al., 2014). Solid black and red circles show weighted
R-factor (wR(F?)) and R-factor (R(F*>20(F?))) in percentages, respectively.
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Figure 3. Unit-cell parameters of single-crystal Fel0-Al14-Bgm at high pressure. a-c Lattice
parameters (a, b, ¢) and unit-cell volume (V). d-f Normalized lattice parameters (a/ao, b/bo, and c/cq,
respectively). Solid red circles are results of Fel0-Al14-Bgm in this study, and representative previous
data on bridgmanite with different Fe and Al contents are plotted for comparisons (Boffa Ballaran et
al., 2012; Dubrovinsky et al., 2010; Ismailova et al., 2016; Mao et al., 2017). Particularly, solid symbols
are single-crystal XRD data on bridgmanite with well-resolved atomic coordinates (Dubrovinsky et al.,
2010; Ismailova et al., 2016), while open symbols are on samples derived from integrated XRD patterns
(Boffa Ballaran et al., 2012; Mao et al., 2017).
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Figure 4. Local atomic configurations and bond lengths around the A-site and B-site atoms in single-
crystal Fel0-Al14-Bgm at high pressure. a 4.2 GPa. b 36.5 GPa. ¢ 64.6 GPa. Red, black, and white
balls represent A-site, B-site, and oxygen atoms, respectively. These structures are viewed and graphed
from a axis. The upper and lower panels show configurations of A-site and B-site atoms, respectively.
Numbers next to the oxygen atoms are respective bond lengths with a unit of A.
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Figure 5. Interatomic distances and angles in the structure of single-crystal Fel0-Al14-Bgm as a
function of pressure. a Atomic distances of the A-site and B-site atoms with respect to oxygen atoms.
<A-O>; and <A-O>g are average distances between O and A-site atoms in eightfold and twelvefold
coordination, respectively, while <B-O> are average distances between O and B-site atoms in sixfold
coordination. b and ¢ Variations of BOs octahedral tilt angles in the b-c plane and the a-b plane, given
by B-O1-B and B-O2-B, respectively. Solid red circles are results of single-crystal Fe10-Al14-Bgm in
this study, and previous data on bridgmanite with different compositions are plotted for comparisons
(Dubrovinsky et al., 2010; Ross et al., 1990; Sugahara et al., 2006). The decrease of B-O1-B and B-O2-
B angles with pressure indicates an increased distortion of the orthorhombic structure.
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Figure 6. The tolerance factors (Z.s) of single-crystal Fel10-Al14-Bgm as function of pressure. Solid
red circles are results from this study, and literature data on bridgmanite with different compositions
are plotted for comparisons (Dubrovinsky et al., 2010; Ross et al., 1990; Sugahara et al., 2006).
Deviations of #.s from one indicate a distortion of the bridgmanite structure from an ideal GdFeOs-type
cubic symmetry (Sasaki et al., 1983).
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Figure 7. Schematic illustrations of the octahedral titling angles (®) in the structure of single-crystal
Fel0-Al14-Bgm at 64.6 GPa. a Top view from c axis; b Side view. The octahedron in bridgmanite
structure can be assumed as a pseudo-cubic unit cell, shown as dashed square in a. @ is defined as titling
of the octahedron about the pseudo-cubic [111] direction. @ can be also viewed as a combination of
titling about the pseudo-cubic [110] direction (angle 0) and the pseudo-cubic [001] direction (angle o),
shown in b. Refer to Figure 4 for detailed geometry of the octahedron in single-crystal Fe10-Al14-Bgm
viewing from a axis at different high pressures.
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Figure 8. Octahedral titling angles in the single-crystal Fe10-Al14-Bgm as a function of pressure. Red
circles are results of Fel0-Al14-Bgm in this study, and literature reports on bridgmanite with different
compositions are plotted for comparisons (Boffa Ballaran et al., 2012; Dubrovinsky et al., 2010; Mao
etal., 2017; Ross et al., 1990; Sugahara et al., 2006). Solid symbols are derived from the quantitatively
refined atomic coordinates in a microscopic approach, while open symbols are calculations from lattice
parameters in a macroscopic approach. Bgm denotes MgSiO3 bridgmanite end member.



Table 1. Refined unit-cell parameters and atomic coordinates of single-crystal Fe10-Al14-Bgm at high pressures

Pressure

(GPa) Evaluation parameters Unit-cell parameters A site B site O1 02
pe*;lrl?:ézi#) wR (%) a(A) b(A) c(A) X y z U X y z U X y z U X y z U

4.2(1) 316 3.2 4.7564(7) 4.9263(4) 6.9005(9) 0.5149(1) 0.5583(1)  0.25  0.0066(2) 05 0 0.5 0.0041(2) | 0.1068(2) 0.4631(2) 025  0.0056(4) 0.1943(2) 0.1994(1) 0.5548(2) 0.0060(3)
7.1(2) 306 4.0 4.7378(10)  4.9098(4) 6.8742(9) 0.5151(1) 0.5588(2)  0.25  0.0056(3) 05 0 0.5 0.0031(2) | 0.1070(3) 0.4633(2)  0.25  0.0048(5) 0.1939(2) 0.1992(2) 0.5548(2) 0.0051(4)
10.0(2) 308 4.5 4.7191(7) 4.8949(4) 6.8493(9) 0.5154(1) 0.5594(2)  0.25  0.0053(3) 05 0 0.5 0.00292) | 0.1076(3) 0.4629(2)  0.25  0.0042(5) 0.1935(2) 0.1985(2) 0.5550(2) 0.0049(4)
13.1(2) 309 3.6 4.7006(6) 4.8792(4)  6.8205(15) | 0.5157(1) 0.5601(2)  0.25  0.0052(2) 05 0 0.5 0.00302) | 0.1079(2) 0.4631(2) 025  0.0043(4) 0.1931(2) 0.1983(1) 0.5554(2) 0.0047(3)
16.3(2) 307 3.8 4.6816(7) 4.8648(4)  6.7918(12) | 0.5159(1) 0.5609(2)  0.25  0.0063(2) 05 0 0.5 0.0043(2) | 0.1082(2) 0.4632(2) 025  0.0055(4) 0.1926(2) 0.1978(1) 0.5556(2) 0.0060(3)
19.3(2) 300 4.8 4.6657(9) 4.8511(5) 6.7648(11) | 0.5162(1) 0.5614(2)  0.25  0.0049(3) 05 0 0.5 0.0031(2) | 0.1088(3) 0.4633(2)  0.25  0.0045(5) 0.1922(2) 0.1978(2) 0.5557(2) 0.0042(4)
22.1(3) 297 5.0 4.6492(14)  4.8362(6)  6.7435(11) | 0.5164(1) 0.5620(2)  0.25  0.0047(3) 05 0 0.5 0.0031(2) | 0.1093(3) 0.4635(2)  0.25  0.0042(5) 0.1917(2) 0.1975(2) 0.5558(2) 0.0044(4)
24.9(3) 291 5.0 4.6342(8) 4.8257(4)  6.7225(11) | 0.5166(1) 0.5627(2)  0.25  0.0044(3) 05 0 05 0.0027(2) | 0.1091(3) 0.4635(2)  0.25  0.0036(6) 0.1916(2) 0.1972(2) 0.5560(2) 0.0036(4)
27.8(3) 294 5.4 4.6208(11)  4.8127(12)  6.7035(11) | 0.5169(1) 0.5635(2)  0.25  0.0046(3) 05 0 0.5 0.00292) | 0.1100(3) 0.4633(2)  0.25  0.0038(6) 0.1909(2) 0.1968(2) 0.5563(2) 0.0040(4)
30.6(3) 286 5.5 4.6107(20)  4.8054(7)  6.6765(15) | 0.5172(2) 0.5639(2)  0.25  0.0036(3) 05 0 05 0.00242) | 0.1101(3) 0.4633(3)  0.25  0.0041(6) 0.1908(2) 0.1965(2) 0.5562(2) 0.0031(4)
33.4(7) 268 5.5 4.5955(14)  4.7896(6)  6.6595(14) | 0.5174(2) 0.5645(2)  0.25  0.0032(4) 05 0 05 0.0016(2) | 0.1103(3) 0.4635(3)  0.25  0.0038(6) 0.1905(2) 0.1966(2) 0.5563(2) 0.0033(5)
36.5(4) 276 59 4.5835(17)  4.7832(10)  6.6450(18) | 0.5177(2) 0.5647(2)  0.25  0.0040(4) 05 0 05 0.00292) | 0.1110(4) 0.4637(3) 025  0.0044(7) 0.1900(3) 0.1963(2) 0.5566(3) 0.0038(5)
39.3(4) 276 59 4.5725(15)  4.7743(8) 6.627(12) 0.5178(2) 0.5655(3)  0.25  0.0053(4) 05 0 05 0.0033(2) | 0.1111(4) 0.4639(3)  0.25  0.0050(8) 0.1902(3) 0.1963(2) 0.5565(3) 0.0048(6)
41.8(4) 270 59 4.5618(23)  4.7698(9)  6.6100(20) | 0.5182(2) 0.5660(3)  0.25  0.0058(5) 05 0 05 0.0042(2) | 0.1113(4) 0.4637(3)  0.25  0.0057(8) 0.1897(3) 0.1959(3) 0.5570(3) 0.0055(6)
45.6(5) 272 6.2 4.5470(14)  4.7546(8)  6.5990(22) | 0.5184(2) 0.5661(3)  0.25  0.0061(5) 05 0 05 0.0046(2) | 0.1122(5) 0.4641(3) 025  0.0063(7) 0.1893(3) 0.1957(3) 0.5569(3) 0.0062(6)
47.5(5) 242 6.7 4.5353(12)  4.7480(7)  6.5820(15) | 0.5186(2) 0.5668(3)  0.25  0.0070(5) 05 0 05 0.0058(2) | 0.1125(5) 0.4635(4) 025  0.0067(8) 0.1883(4) 0.1953(2) 0.5577(4) 0.0066(7)
50.1(4) 271 6.7 4.5254(14)  4.7436(9)  6.5620(23) | 0.5188(2) 0.5677(3)  0.25  0.0068(4) 05 0 05 0.00592) | 0.1133(4) 0.4638(3)  0.25  0.0064(7) 0.1883(3) 0.1953(2) 0.5572(3) 0.0065(5)
52.7(4) 268 8.6 4.5142(12)  4.7342(7)  6.5530(14) | 0.5190(2) 0.5677(3)  0.25  0.0067(5) 05 0 05 0.0063(2) | 0.1130(6) 0.4641(4)  0.25  0.0055(9) 0.1874(4) 0.1951(3) 0.5574(4) 0.0054(7)
55.4(5) 235 8.0 4.5044(17)  4.7268(8)  6.5395(13) | 0.5193(3) 0.5684(4)  0.25  0.0103(6) 05 0 05 0.0096(2) | 0.1128(6) 0.4632(5)  0.25  0.0100(9) 0.1891(4) 0.1951(3) 0.5577(5) 0.0097(8)
58.0(5) 240 7.5 4.4962(12)  4.7206(7)  6.5215(18) | 0.5194(3) 0.5687(3)  0.25  0.0063(5) 05 0 05 0.0055(2) | 0.1136(5) 0.4642(4) 025  0.0058(8) 0.1878(4) 0.1949(3) 0.5579(5) 0.0059(7)
60.6(6) 193 8.2 4.4858(12)  4.7127(8)  6.5190(19) | 0.5195(3) 0.5691(4)  0.25  0.0046(8) 05 0 05 0.0045(2) | 0.1156(8) 0.4642(6)  0.25 0.0053(12) | 0.1876(5) 0.1948(4) 0.5576(6) 0.0052(5)
64.6(6) 234 7.6 4.4669(15)  4.6972(9)  6.4955(24) | 0.5199(3) 0.5701() 0.25  0.0059(6) 05 0 05 0.00392) | 0.1148(6) 0.4643(5) 025 0.0066(10) | 0.1878(4) 0.1944(4) 0.5580(5) 0.0066(8)

*: The total number of used peaks on two crystal platelets together. The reflections have intensities (/) of >3c(/) for structure refinements. Refer to Figure 2a for the number of used peaks on individual platelet.



Table 2. Selected interatomic distances (A) and angles (°) in the structure of single-crystal Fe10-Al14-Bgm at high pressures

Pressure | B-O1x2  B-02x2  B-O2x2 Mean<B-O> | A-O1x1 A-Olx1 A-Olx1 A-Olx1l A02x2 A-02x2 A-02x2 A-02x2 Mean<A-O>vii  Mean <A-O>xii B-01-B B-02-B
(GPa) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) A) A) ) )
4.2(1) 1.806(1)  1.794(1)  1.786(1) 1.795(1) 1.997(1)  2.854(2)  2.988(1)  2.075(1)  3.141(2)  2.269(1)  2.428(2)  2.035(1) 2.192(1) 2.471(1) 145.2(2) 145.9(2)
7.1(2) 1.801(1)  1.789(1)  1.781(1) 1.790(1) 1.990(2)  2.843(2)  2.981(1)  2.068(1)  3.135(2)  2.262(1)  2.419(2)  2.028(1) 2.184(1) 2.464(1) 145.2(2) 145.7(2)
10.0(2) 1.795(1)  1.783(1)  1.776(1) 1.785(1) 1.981(2)  2.834(2)  2.977(1)  2.059(1)  3.129(2)  2.253(1)  2.408(2)  2.021(2) 2.176(1) 2.456(1) 145.0(2) 145.6(2)
13.1(2) 1.788(1)  1.778(1)  1.770(1) 1.779(1) 1.975(1)  2.824(1)  2.970(1)  2.050(1)  3.123(1)  2.242(1)  2.399(1)  2.012(1) 2.166(1) 2.447(1) 145.0(2) 145.4(2)
16.3(2) 1.781(1)  1.773(1)  1.765(1) 1.773(1) 1.967(1)  2.813(1)  2.965(1)  2.042(1)  3.117(1)  2.232(1)  2.389(2)  2.003(1) 2.157(1) 2.439(1) 144.9(2) 145.2(2)
19.3(2) 1.775(2)  1.768(1)  1.760(1) 1.767(2) 1.960(2)  2.806(2)  2.959(1)  2.035(1)  3.110(2)  2.223(2)  2.379(2)  1.996(2) 2.149(2) 2.431(2) 144.7(2) 145.1(2)

22.1(3) 1.770(1)  1.763(1)  1.754(1) 1.762(1) 1.951(2)  2.798(2)  2.953(2)  2.028(1)  3.105(2)  2.215(1)  2.371(2)  1.988(1) 2.141(2) 2.424(2) 144.6(2) 145.0(2)
24.9(3) 1.764(2)  1.758(1)  1.751(1) 1.757(2) 1.948(2)  2.787(2)  2.950(2)  2.020(2)  3.100(2)  2.207(2)  2.363(2)  1.983(2) 2.134(3) 2.418(3) 144.6(2) 144.9(2)
27.8(3) 1.760(1)  1.755(1)  1.746(1) 1.754(1) 1.941(2)  2.783(2)  2.947(2)  2.012(2) 3.098(2)  2.200(2)  2.356(2)  1.976(2) 2.127(3) 2.410(3) 144.4(2) 144.7(2)
30.6(3) 1.753(2)  1.751(1)  1.744(1) 1.750(2) 1.938(2)  2.776(2)  2.944(2)  2.008(2)  3.092(2)  2.193(2)  2.348(3)  1.969(2) 2.120(3) 2.406(2) 144.3(2) 144.6(2)
33.4(7) 1.749(1)  1.747(1)  1.737(1) 1.745(1) 1.932(2)  2.767(2)  2.938(2)  1.999(2)  3.086(2)  2.185(2)  2.340(2)  1.965(2) 2.113(3) 2.399(3) 144.3(2) 144.6(2)
36.5(4) 1.746(2)  1.744(2)  1.735(1) 1.742(2) 1.926(2)  2.761(2)  2.935(2)  1.997(2)  3.085(2)  2.177(2)  2.337(3)  1.958(2) 2.109(4) 2.394(4) 144.2(2) 144.4(2)
39.3(4) 1.741(2)  1.739(2)  1.732(1) 1.737(2) 1.923(2)  2.755(3)  2.932(2)  1.991(2)  3.078(3)  2.172(2)  2.328(3)  1.958(2) 2.104(3) 2.389(3) 144.2(2) 144.5(2)

41.8(4) 1.737(2)  1.738(2)  1.730(2) 1.735(2) 1.919(3)  2.750(3)  2.933(3)  1.987(2)  3.079(3)  2.166(2)  2.323(3)  1.950(2) 2.098(4) 2.385(4) 144.0(2) 144.2(2)

45.6(5) 1.735(2)  1.733(2)  1.725(2) 1.732(2) 1.910(2)  2.743(2)  2.923(2) 1.983(2)  3.073(3)  2.161(2)  2.318(3)  1.944(2) 2.092(4) 2.379(4) 143.9(2) 144.1(2)

47.5(5) 1.731(2)  1.733(2)  1.722(2) 1.728(2) 1.907(3)  2.737(3)  2.925(2)  1.976(2)  3.075(3)  2.154(2)  2.314(4)  1.936(2) 2.088(4) 2.375(4) 143.8(2) 143.7(2)

50.1(4) 1.727(3)  1.728(2)  1.719(2) 1.725(2) 1.900(2)  2.735(3)  2.925(2)  1.972(2)  3.068(3)  2.149(2)  2.304(4)  1.936(2) 2.081(4) 2.370(4) 143.6(2) 143.9(3)
52.7(4) 1.724(3)  1.727(2)  1.715(2) 1.722() 1.899(3)  2.725(3)  2.920(3)  1.968(3)  3.066(3)  2.148(3)  2.299(4)  1.930(3) 2.077(3) 2.366(3) 143.7(3) 143.7(3)
55.4(5) 1.721(3)  1.719(3)  1.716(2) 1.717(3) 1.898(3)  2.719(3)  2.922(3)  1.959(3)  3.062(4)  2.136(3)  2.298(5)  1.929(3) 2.075(4) 2.362(3) 143.6(3) 143.8(3)
58.0(5) 1.716(3)  1.719(3)  1.712(2) 1.717(3) 1.891(3)  2.715(3)  2.915(2)  1.960(2)  3.059(4)  2.133(3)  2.292(4)  1.922(3) 2.068(4) 2.358(4) 143.6(3) 143.6(3)
60.6(6) 1.719(3)  1.716(2)  1.705(2) 1.723(3) 1.875(4)  2.722(4)  2.915(3)  1.958(3)  3.052(4)  2.135(3)  2.279(5)  1.928(4) 2.059(5) 2.355(5) 142.9(3) 144.0(3)
64.6(6) 1.711(3)  1.7102)  1.703(2) 1.715(3) 1.878(3)  2.702(3)  2.908(3)  1.947(3)  3.052(4)  2.118(3)  2.279(5)  1.915(3) 2.052(5) 2.347(5) 143.3(3) 143.4(3)




