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Abstract—This paper presents an electrocardiogram (ECG)
delineation and arrhythmia heartbeat detection system using
a novel second-order level-crossing sampling analog to digital
converter (ADC) for real-time data compression and feature ex-
traction. The proposed system consists of the front-end integrated
circuit of the data converter, the delineation algorithm, and the
arrhythmia detection algorithm. Compared with conventional
level-sampling ADCs, the proposed circuit updates tracking
thresholds using linear extrapolation, which forms a second-
order level-crossing sampling ADC that has sloped sampling
levels. The computing is done digitally and is implemented by
modifying the digital control logic of a conventional Successive-
approximation-register (SAR) ADC. The system separates the
sampling and quantization processes and only selects the turning
points in the input waveform for quantization. The output of
the proposed data converter consists of both the digital value
of the selected sampling points and the timestamp between the
selected sampling points. The main advantages are data savings
for the data converter and the following digital signal processing
or communication circuits, which are ideal for low-power sensors.
The test chip was fabricated using a 180nm CMOS process.
When sensing sparse signals such as ECG signals the proposed
ADC achieves a compression factor of 8.33. The delineation
algorithm uses a triangle filter method to locate the fiducial
points and measures the intervals, slopes, and morphology of
the QRS complex and the P/T waves. Those extracted features
are then used in the arrhythmia heartbeat detection algorithm to
identify Premature Ventricular Contraction (PVC). The overall
performance of the system is evaluated using the MIT-BIH
database and the QT database, which is also compared with the
recently reported systems. The accuracy, sensitivity, specificity,
PPV, and F1 score are 97.3%, 89.6%, 97.8%, 73.3%, and 0.81
for detecting PVC.

Index Terms—Analog-to-digital converter (ADC), Second-
order Level-crossing Sampling, Nonuniform Sampling, Sparse
Signal, Sensors, ECG delineation, Fiducial Points, Machine
Learning

I. INTRODUCTION

ARDIOVASCULAR disease (CVD) is one of the pri-
mary challenges in human health, which is also the lead-
ing cause of death [1]. To better monitor the health status of the
heart, wearable electrocardiogram (ECG) monitoring devices
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have been expected to track the ECG waveform and classify
different types of arrhythmic heartbeats [2]-[6]. However, the
current market solutions are not able to perform such tasks
without sending raw data to the cloud for further processing.
Such operations limit the battery life and the duration of ECG
monitoring since wireless communication consumes too much
power [7]-[9]. Therefore, on-sensor processing capabilities
are anticipated in the next-generation wearable devices. Such
devices should be able to obtain the ECG waveform in the
digital format and perform preliminary arrhythmia classifica-
tion. Only the raw waveform of the suspicious arrhythmic
heartbeats should be sent to the cloud to save the limited sensor
power. Thus, the wearable ECG sensor should contain the
analog-to-digital converter (ADC), digital signal processing
units, and the radio communication module. Design challenges
should be addressed by synergetic efforts across different sub-
modules.

Arrhythmia classification systems have been intensively
studied based on different algorithms [10]-[13]. Besides
wavelet methods [14], recently deep learning methods [15]-
[18] have been reported for detecting arrhythmic heartbeats.
[19] proposed a low-power heartbeat detection system and
[20], [21] proposed analog processing methods for QRS de-
tection. However, deep-learning methods usually don’t have
interpretable intermediate results for human experts as refer-
ences, which makes them difficult to be adopted by medical
providers in decision-making. Moreover, both deep-learning
methods and wavelet methods are difficult to be implemented
on sensors since they both need a large size memory for storing
temporary data and both have a high computing overhead,
which results in high power consumption. To better meet the
expectation, an algorithm should use smaller digital memory,
have a low computing overhead, and provide interpretable
intermediate results that could be understood by human ex-
perts. For example, medical providers use fiducial points of
the ECG waveform to identify intervals such as QRS complex
and PR interval. Such information should be generated by the
algorithm for making decisions.

On the hardware side, one of the primary challenges in
low-power sensors is that the ADC generates a large num-
ber of unessential data that overloads the following digital
processing, storage, and communication circuits. For example,
Nyquist sampling ADC records digital data at every sampling
clock for quantization, which may not be necessary if the input
signal is sparse in the time domain. Most recent ECG signal
processing methods are based on data sampled by a fixed
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Fig. 1. (Top) Wearable heartbeat monitor system; (Middle) The scope of this work focusing on the second-order level-crossing sampling ADC for delineation
and arrhythmia detection, (Bottom) ECG Delineation highlighting the key fiducial points and intervals. Modified from [32].

clock. For example, [22] proposed a neural-network-based
cardiac arrhythmia classification system while [23] presents
a clinician-like cardiac arrhythmia watchdog system based on
detecting the P-QRS-T waves. To reduce the amount of data
output, level-crossing sampling ADCs [24]-[28] are proposed.
When the input signal is crossing predefined voltage levels,
the ADC records one-bit sign data and the timing information
of such an event. However, level-crossing Sampling ADCs
cannot identify the location of turning points in the input signal
[25] since usually the gaps between the sampling levels are
much larger than the resolution in a Nyquist sampling ADC.
Moreover, level-crossing ADCs may also generate unneces-
sary samplings when the input signal has a low-frequency
high-amplitude baseline wandering or high-frequency low-
amplitude noise around the sampling level. Dedicated data
compression circuits after ADC may bring additional power
and data storage costs [29]. Signal-depended nonuniform
sampling methods were proposed to select the turning points
based on tracking the slope in the waveform [30], [31].
However, such a method requires complicated analog circuitry
for calculating divisions to obtain the slope information, which
is susceptible to analog noise and errors.

To address these problems, we propose a second-order level-
crossing sampling ADC [33], which selects turning points
of the analog input signal for quantization while skipping

sampling points that are in a linear portion in either time or
amplitude domain. The proposed ADC computes the digital
prediction of a sampling point based on prior quantized or pre-
dicted sampling points to decide if quantization is needed for
the current sampling point. The decision is made using upper
and lower thresholds calculated digitally by the predicted value
and a prior defined Delta threshold value. Both the amplitude
data of the selected sampling points and the timestamp data
between selected sampling points are the output data of the
system. By doing so, the ADC greatly reduces the output
data amount for sensing sparse signals. Using data generated
by the proposed second-order level-crossing sampling ADC
including both the amplitude and the timestamp data, we pro-
posed a novel delineation and arrhythmia heartbeat detection
algorithms. The main difference between the proposed method
and other ECG processing methods is that the proposed system
output is nonuniformly sampled digital data sequences. If
conventional digital signal processing methods are applied,
the system needs to perform interpolation and convert the
nonuniformly sampled data to uniform sampled data. Such
a process cancels the advantage of the second-order level-
crossing sampling which identifies only turning points of the
input signal. Therefore, we proposed the triangle-recognizing
method for ECG signal processing, including delineation
and arrhythmia detection. The proposed algorithm includes



triangle-based filters and a P-wave detection algorithm, which
provides interpretable intermedium results for human experts.

This paper is expanded from our previous work [33] of the
second-order level-crossing sampling ADC. In this paper, we
extended the scope of [33] by adding the processing algorithms
including both the ECG delineation and arrhythmia heartbeat
detection. The primary contribution of the paper includes:
(1) Applying the second-order level-crossing sampling ADC
for ECG monitoring; (2) Implementing a real-time data ac-
quisition and reconstruction system on an FPGA to collect
data from the second-order level-crossing sampling ADC;
(3) Characterizing the delineation and arrhythmia detection
algorithms using the data format of the second-order level-
crossing sampling ADC. The remaining paper is organized
as follows. Section II presents the second-order level-crossing
sampling ADC architecture and circuit implementation, as well
as the ECG processing algorithm. Experimental results are
presented in Section III. Section IV discusses and compares
the performance with related works. Section V concludes the

paper.

II. CIRCUIT AND SYSTEM DESIGN

The overall system building blocks are shown in Fig. 1. The
system focuses on the front-end Analog-to-Digital Conversion
(ADC) and the back-end Digital Processing for arrhythmia
detection. We assumed that the front-end amplifier and filters
provide an amplified analog ECG waveform. The proposed
ADC uses prediction and pre-defined thresholds to select
turning points from the analog waveform for quantization.
The quantized amplitude data and the timestamp data are then
sent to digital signal processing units for arrhythmia detection.
The arrhythmia detection algorithm uses triangle-recognizing
methods to perform delineation and arrhythmia detection. The
results from the detection are recorded and compared using the
benchmark databases. Also, the comparator needs a sampling
clock and the control logic needs a faster clock for prediction
and SAR logic. The algorithm needs model parameters stored
in the system. The following paragraphs present the circuit
and system design of the second-order level-crossing sampling
ADC, and the algorithm design using the proposed ADC.

A. Second-order Level-crossing Sampling ADC Architecture

The difference between the conventional Nyquist rate ADC,
the level-crossing ADC, and the proposed Second-order Level-
crossing ADC is shown in Fig. 2. In the conventional Nyquist
rate ADC, each sampling is quantized into multi-bit binary
data using the standard quantization process. The output of the
Nyquist rate ADC is the digital data sequence of each sampling
point as shown in Fig. 2 (a). In the level-crossing sampling
ADC, the analog input is compared to a pre-defined group of
thresholds. When the input signal is crossing a threshold, the
direction of the crossing is recorded as one-bit data (rising
or falling). The timing between each crossing is recorded as
the timestamp. So its output is one-bit direction data and
multi-bit timing data for each sampling as shown in Fig. 2
(b). In the proposed Second-order Level-crossing sampling
ADC, sampling is performed using a fixed clock like in a
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level-crossing sampling ADCs.

Analog
Analog Inpu -Track/HoId Komparator
Input_[Track/Hold Comparator
V_DAC
V_DAC
U rerfy V_REF [N-bit
i -bi —>|DAC
—>|bAC o
. | N bit data -
N bit data Digital data out N-bit Digital data out
N-bit |(serial or parallel) Register serial of parallel)
Register Delta [Predictive|
SAR Sampl?ng Timestamp
Logic Logic | (serial or parallel)

(A) Conventional SARADC  (B) Second-Order Level-Crossing SAR ADC

Fig. 3. The digital logic in a conventional SAR ADC (A) can be modified
to implement the proposed second-order level-crossing sampling ADC (B).

; ]
! & Actual Value V Predicted Value |

Upper . P e e
© Threshold . g| Upper I
s 3| Threshold
=] I B = e
£ E
2‘» """ 9 17| Lower
% © Threshold
< < yy Quantization
Time 7 Comparisons Time EComparisons bitN bit 0

(a) Successful Prediction:
No quantization is performed

(b) Failed Prediction:
Quantization after comparisons
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Nyquist rate ADC. The circuit generates predictions to find the
turning points of the analog waveform. Only the turning points
in the analog waveform are selected for quantization. The
timing between the selected points is also recorded. Therefore,
the output of the proposed ADC contains both the multi-bit
amplitude data and the multi-bit timestamp data, but only for
the turning points, this could greatly save the output data
amount when the input signal is sparse in either the time
domain or the frequency domain as shown in Fig. 2 (c).

The proposed second-order level-crossing sampling archi-
tecture includes the analog comparator, the N-bit DAC, the
digital control logic for calculating predictions and thresholds,



and the timer for recording timestamps between quantized
sampling points. Fig. 3 presents the difference between the
conventional SAR ADC and the proposed second-order level-
crossing sampling ADC. The primary difference is in the
digital control logic, where the second-order level-crossing
sampling system has an extra digital input of Delta and an
additional output as the timestamp. The control logic of the
proposed ADC predicts the digital value of the analog input
from two prior digital values using linear extrapolation, as
shown in Fig. 4. Then the control logic calculates the digital
values of an upper threshold by adding the Delta value to the
predicted digital value. The upper threshold digital value is
converted into analog value using the DAC, and then compared
with the analog input. Similarly, a lower threshold is generated
by subtracting Delta from the predicted digital value, which is
also converted into analog value and compared with the analog
input.

If the analog input is within the window between the upper
threshold and the lower threshold, the prediction is successful
and no further quantization is performed by the ADC. The
system uses the predicted value as the digital results of the
current sampling. The successfully predicted digital value is
stored for the next prediction. If the analog input is out of
the threshold window, the prediction fails. In such a case, full
quantizations must be made for the current sampling and the
next sampling to restart the prediction process. The quantiza-
tion result of the first sampling becomes the digital data output
while the duration between unsuccessful predictions becomes
the digital timestamp output.

In a conventional N-bit SAR ADC, for each sampling,
the control logic needs to use the DAC N times. The com-
parator also needs to perform N comparisons. In contrast,
the second-order level-crossing sampling ADC only uses the
DAC and comparator twice for the upper and lower thresholds
comparisons if the two comparisons are both successful. In
such a case, no further Digital-to-Analog conversions and
comparisons are necessary. Nevertheless, if the prediction
is not successful, the prediction and the 2 comparisons are
wasted. Therefore, the proposed ADC saves power and data
only when the input signal has a higher portion of the linear
region, which is generally true for most of the sparse signals.

B. Integrated Circuit of the second-order level-crossing ADC

The proposed second-order level-crossing sampling ADC
is designed by modifying a conventional fully-differential 10-
bit switched-capacitor SAR ADC similar to [34]. The circuit
consists of a comparator, a fully-differential digital-to-analog
converter, and a digital control logic. The schematic of the
digital-to-analog converter is shown in Fig. 5 (a) and the
dynamic comparator is shown in Fig. 5 (b). In our design, the
295 fF Metal-Insulator-Metal Capacitors (MIMCAPs) with an
area of 12 pum x 12 pum are used as unit capacitors, which is
also the value of Cy, C1, Cg, and Cs. As in a split capacitor
array, Cs and C7 are twice the unit capacitors. C3 and Cy are
four times the unit capacitors. Cy and Cg are eight times the
unit capacitors. Cs and C are 16 times the unit capacitors.
In the DAC, Ref+ and Ref— can be connected to either the
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Fig. 5. Schematic of the fully differential DAC (A) and the dynamic
comparator (B) in the fabricated second-order level-crossing ADC.

positive reference voltage (V,.r4) or the negative reference
voltage (Vier—). Vsiy can be connected to the input signal
or the common mode voltage. V; is the input signal. In the
data conversion process, the DAC first converts the upper
threshold digital values into an analog voltage. The sampled
input voltage is then compared with the high-threshold voltage
using the comparator. Then the second data conversion and
comparison are performed for the low-threshold voltage. If the
input voltage is out of the window formed by the thresholds,
the conventional SAR quantization process is enabled for the
current sampling and the next sampling. The SAR quantization
process needs ten comparisons to determine the 10-bit digital
values in a reserved quantization timing window. Otherwise,
if the input voltage is in the threshold window, the whole
circuit is set in sleep mode. One of the main differences
between the proposed second-order level-crossing system and
an asynchronous level-crossing ADC is that the proposed
system performs sampling at a fixed rate. So the comparator
only works at a specific timing window to compare analog
values like in a SAR ADC. This is done by the control logic
that turns off the comparator using the enable signal Vcomp.
If the prediction is successful, the comparator is turned off
during the reserved timing window for quantization, which
greatly saves the comparator power.

C. Real-time ECG Monitoring Algorithms

This section presents a real-time ECG monitoring system
based on the second-order level-crossing sampling ADC. The
algorithms contain QRS complex detection, ECG delineation,
and a premature ventricular contraction heartbeat recognizer.
Our idea of performing delineation is to find the triangles that
belong to the P wave and the QRS complex. The second-
order level-crossing sampling reports the turning points in
the analog waveform, which are potential fiducial points. But
these points could also be common turning points due to
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baseline wandering or noise, which are not fiducial points. To
determine if a potential fiducial point is a real fiducial point,
the system needs to find the triangles of each wave including
the onset, peak, and end-point. Only when a triangle meets
the requirement (location, height, and width), the three points
of the triangle could then be determined as fiducial points.

1) Heartbeat Rate detection: One of the most signifi-
cant jobs of wearable ECG monitoring systems is detecting
heartbeat. Most ECG processing algorithm depends on the
successful detection of the QRS complex. In the proposed
system, firstly the proposed ADC converts the input ECG
signal to the amplitude and timing data of turning points. A
proposed Fiducial Points Pruning (FPP) filter eliminates data
points that do not contribute much information (may be orig-
inated from baseline wandering or noise). Then, a hardware-
efficient algorithm, Vertex-side Triangulation Identifier (VsTI),
is implemented in the proposed system to form the data into
consecutive triangle data patterns. With a Neighbor Triangle
Merging (NTM) algorithm, the data volume is further reduced.
Thus, with specific triangle patterns recognizing rules, trian-
gles representing QRS complexes are selected, achieving QRS
detection and heartbeat rate calculation in real time.

2) Fiducial Points Pruning (FPP) Filter: As shown in the
operation flow chart of the FPP filter in Fig. 6, the goal of
the proposed FPP filter is to eliminate the neighbor sampling

points that may originate from baseline wandering or noises.
These data points usually have similar amplitude and appear
very close to each other. Moreover, the slopes between these
data points with their previous and post data usually have no
significant change. The FPP filter operation has two steps.
Firstly, the FPP keeps monitoring the second-order level cross-
ing ADC output; when new ADC output data is recorded, FPP
calculates the difference between the current ADC output and
previous FPP-filtered data. Then it calculates the difference
between the current and the next ADC output. The initial ADC
data is considered the first FPP data. Then three parameters are
calculated: (1) the amplitude difference between the prior FPP
data and the current ADC data, which is named as Dif f.A,;
(2) the amplitude difference between the next ADC data and
the current ADC data, which is named as Dif f.Apys:; and
(3) the time difference between the current ADC data and
the prior FPP data, which is named as Dif f.T,,.. After
that, Dif f.Apre and Dif f.A,,5+ are compared with a pre-
defined amplitude threshold value T'h.A, while Dif f.T,,. is
compared with a pre-defined timing threshold value Th.T. If
either the amplitude difference or timing difference is larger
than the pre-defined threshold values, the current ADC output
and timestamp data are temporarily reserved as amplitude and
time data FFPP_AT, operation proceeds to the next slope
variation check step.

In the slope variation check, by calculating the slope
variation SV_FPP_AT = abs(Dif f.Apost/Dif f.Tpost -
Diff.Apre/Dif f.Tpre), and comparing the SV_FPP_AT
with a defined slope threshold Th.S, we obtain the final
filtered output (F'PP_AT'S) so that redundancy data points
are further eliminated. If all these comparisons were failed, the
system starts searching with a new ADC output. The features
of Dif f.Apre, Dif f.Apost, and Dif f. T, are based on the
morphology of the ECG signal. To identify the P wave and
QRS complex, the algorithm searches possible triangles of
these waves. For example, a P wave should have reasonable
amplitude, duration, and location. Dif f.Ap,e and Dif f. Apost
are used to identify the amplitude while Dif f.T is applied for
calculating the timing information. The visual illustration of
the FPP algorithm is shown in Fig. 7.

3) Vertex-side Triangulation Identifier (VsTI): With the
proposed FPP filter, the filtered data points keep the critical
information of the input waveform. Next, we propose the
VSTI algorithm to identify the triangle shape in the input
waveform. The operation flow chart of VsTI’s core algorithm
is shown in Fig. 8 and the visual illustration of the algorithm
is shown in Fig. 9. The VsTI follows a procedure of triangle
identification by searching left-middle-right vertices. During
the FPP filter operation, the amplitude and time difference
Dif f, and slope variation of data SV_F PP are calculated
and saved. The left vertex Vertex_left searching starts from
obtaining the amplitude and timing difference data of Dif f.A
and Dif f.T in SV_F PP. The system compares Dif f.A and
Dif f. T with defined threshold values Thy.A and Thy.T
respectively to decide if the current point is Vertex_left.
Then, Vertex_middle is selected by finding the data point
that has the maximum amplitude in the following negative
SV _F PP vector V_svn. Finally, in the consecutive following
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V _svp, the first data point of the first grouped data is selected
as the Vertex_right. It is noticed that the last V_swvp is also
used to identify the Vertex_left of the next triangle data
pattern.

The proposed VsTI algorithm also includes a neighbor
triangle merging algorithm (NTM) to reduce the triangle
pattern volume further, as described in Fig. 10. Minimum edge
length is used to approximately evaluate the area of VsTI-
identified triangles. If the triangle has one side that is smaller
than the defined threshold in time or amplitude, the triangle is
abandoned. Moreover, if two neighbor triangles are very close
to each other, they are merged as shown in Fig. 10. The side

selection of the merged triangle is decided by identifying the
amplitude pattern of Vertex_left and Vertex_right, and the
Vertex_middle is calculated using the mean value of the two
neighbor vertices.

4) QRS Complex detection: Once triangle data patterns are
generated by the proposed VsTI, QRS complexes are selected
from the triangles based on two rules: 1) the base of the
triangle should be shorter than the defined QRS duration
threshold; 2) approximate triangle height (calculated by the
amplitude difference between Verter_middle and the mid-
point of Vertexr_left and Vertex_right) should be greater
than the defined QRS height threshold. These two rules can
effectively identify the QRS complex from the input ECG
waveform.

D. ECG delineation and PVC identification algorithm

Using the same method for QRS complex detection, we
perform ECG delineation with the help of VsTI, but with
different threshold values for the identification of triangle data
patterns and triangle merging. Then, the triangles found within
the specific timing window ahead/following the detected QRS
complex are regarded as P/T waves. Next, we can extract
fiducial point timing information by mapping each wave-
form’s onset/peak/end with Vertex_left, Vertex_middle,
and Vertex_right of each triangle. By doing these, the system
locates all fiducial points and completes the ECG delineation.

Premature Ventricular Contraction (PVC) is a type of ar-
rhythmia; usually, when the ventricles contract prematurely,
or before the normal heartbeat initiated by the sinus node,
the QRS complex that represents the depolarization process
of ventricles appears in different morphology. PVC may
cause palpitations, chest discomfort, shortness of breath, or
no symptoms [35]. Thus in some cases, PVCs can be used as
indicators of the level of stress, caffeine, alcohol, or underlying
heart disease. PVC can usually be identified as a bizarre QRS
complex between normal QRS complexes. The duration of the
QRS complex in PVC is usually longer than 120 ms. The R
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Fig. 11. Chip microphotograph with the highlighted core area.

peak in PVC is usually not aligned with the location of other R
peaks, which results in variations in RR intervals. Since PVCs
are usually sporadic events, the average heartbeat rate can be
normal. Therefore, we applied three rules for detecting PVCs
from normal heartbeats: 1) calculated heartbeat rate is 60-100
beats/min; 2) QRS duration larger than 120 ms; 3) Pre/Post RR
interval has obvious difference and Pre RR interval is shorter.
All these rules can easily be calculated using the Second-order
Level-crossing sampling ADC data by simply calculating the
duration of RR intervals and QRS complex after delineation.
We propose a light-weighted PVC identification algorithm
as our arrhythmia detection case study, by taking advantage
of the proposed FPP filter and VsTI algorithm. The light-
weighted algorithm checks the morphology of the detected
QRS complex and ECG delineation results and is implemented
hardware-efficiently.

III. EXPERIMENTAL RESULT

The prototype chip was fabricated using a 180 nm CMOS
process. The chip microphotograph is shown in Fig. 11. The
whole chip is 1.5 mm x 1.5 mm including the test structure
and the pad frame. The Core area of the ADC is 390 um x 440
pm. The power supply is 1.8 V. The functionality of the chip
can be evaluated using two methods, one without the times-
tamp and one with the timestamp. In the first method, without
using the timestamp output, if the prediction is successful, the
chip sends the predicted value as the data output, which usually
forms linear slopes. If the prediction fails, the chip performs
full quantization as a regular SAR ADC and sends the actual
digital value as the data output. Quantization events are also
recorded in a digital pulsethe sequence. Most of ECG signal
bandwidth is within 100 Hz [36]. The sampling frequency is
1 kHz and the internal clock for the SAR and prediction logic
is 16 kHz. The FPGA has a data buffer that imports the data
from the chip. We used the Opal Kelly FPGA Board which
uses the USB2.0 protocol to send data from the FPGA to the
computer. The digital output was sent to an external DAC for
the reconstruction of the analog input. Fig. 12 (top) presents
the measured result of a 1-Hz 900 mVpp ECG signal from
a signal generator with different Delta values. The predicted
output signal shows that with a 900 mV amplitude ECG signal,
a 50 mV Delta is able to keep the morphology of the waveform
for arrhythmia heartbeat detection. A 200 mV Delta is not
acceptable since it introduces distortion in the reconstructed
waveform.

A. Real-time Data Acquisition and Reconstruction

The above data acquisition method using the predicted
digital output does not take advantage of timestamps in
data saving. A real-time data acquisition system using the
timestamp is developed and its block diagram is shown in
Fig. 13. In the system, an FPGA integration module is used
to realize output data acquisition. Two first-in-first-out (FIFO)
memory arrays are implemented on the FPGA. Memories are
used to temporarily store the amplitude data and the timestamp
information for later data packet communication. The length
of each array is 10 bits and there are 2N array elements on
each memory. Both amplitude data and timing information
are saved continuously when there is a quantization event.
In a worst-case scenario, for example, at a sampling rate of
1000 samples per second and 2'> = 4096 array elements, the
memory should save at least 4 seconds of data.

Real-time data acquisition is achieved by pipe-lining data
from the FPGA integration module to a computer using an
Application Programmer’s Interface (API), designed in C++.
When the program starts in the computer, the FPGA is
programmed and the fabricated chip starts working. Data is
first stored in the respective memories. When the memory
arrays are full, data transfers from the FPGA to the computer
and saves in a CSV file. To comply with the communication
protocol of the integration module, synchronous communica-
tion is done by transferring 2-byte words at a time until the
whole memories are transferred. Output signal reconstruction
starts by processing the data in the CSV file. First, the 10 bits
of amplitude data and the 10 bits of timing information are
extracted from the file. The amplitude data binary numbers are
transformed into voltage values. The timing binary numbers
are transformed into milliseconds by first converting the binary
values to decimal values, then multiplying each number by the
sampling time (1 ms), and performing a cumulative sum of all
values. Data is then plotted using the calculated amplitude and
timing values. The reconstruction of the output signal of the
proposed system is done by linear data interpolation.

The real-time data acquisition experiment using the times-
tamp is composed of a RIGOL 4102 waveform generator that
creates a 1Hz ECG signal with an amplitude of 900mV and a
DC offset of 900mV. This signal is fed into the fabricated chip,
where a 10-bit SAR ADC is implemented with the proposed
second-order level-crossing sampling logic. The data is read by
an Opal Kelly XEM6001 integration module. The XEM6001
uses a Xilinx Spartan-6 FPGA and the system clock used for
communication is set at 48MHz. The custom API used for
data acquisition is designed in C++, using the FrontPanel API
modules compatible with the XEM6001. Communication is
done via USB 2.0. Data transfers from the FPGA memories
to a CSV file, every time the memories are full. The transfer
clock is equal to the system clock of the integration module.
Meaning, the whole memory is transferred orders of magnitude
faster than the data being saved on the FPGA, minimizing the
loss of data. Once the data is saved in a CSV file, MATLAB is
used to process and plot the data. Fig. 14 shows the experiment
setup.

Real-time data acquisition of a Nyquist sampling conven-
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Fig. 12. (Top) Measured input and predicted waveform of the second-order level-crossing sampling ADC with different Delta values. A smaller Delta results
in more quantization events. (Bottom) Reconstructed waveform comparison using the second-order level-crossing sampling system against a Nyquist sampling
SAR ADC at different Delta Step values. QE represents the number of quantization events, CF represents the data Compression Factor.

tional SAR ADC is necessary for data-saving calculations and
waveform morphology comparisons. To compare results, Data
is obtained by using a 10-bit ADC test structure inside the
fabricated chip, whose logic is implemented at the FPGA.
Fig. 12 (bottom) presents the reconstructed waveforms of an
ECG input using both the proposed ADC and a conventional
SAR ADC at different delta steps. For a target application
of real-time ECG signal acquisition, fiducial or turning point
quantization is the key task. Delta values of 100 mV or 200
mV are not acceptable since they introduce distortion in the
reconstructed waveform and lose important features like the
onset of the P wave or the Q point. A 50 mV or 25 mV
delta value is acceptable since they keep the morphology
of the waveform with all fiducial points. As shown in the
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Fig. 13. Block diagram of the proposed system.

reconstructed waveforms, the selected sampling points are
based on the slope variation of the input signal instead of
a fixed clock or voltage level. As shown in the figure, a data
compression factor of 8.33 is achieved at a delta step of 50
mV while still achieving an acceptable output.

B. ECG Delineation and PVC heartbeat detection

An example of data volume reduction because of the
proposed FPP filter is shown in Fig. 15. In Fig. 15 (a), a
normal heartbeat within record 101 of the MIT-BIH arrhythmia
database, from 117.5s to 118.5s, compared with the original
sampled signal that includes 360 data points, the proposed
second-order level-crossing sampling ADC has only 77 data
points. With the help of FPP filter, only 27 data points are
preserved for following data processing. In Fig. 15 (b), the
main information of the PVC example beat from record 233
is mainly concentrated within 2.85s to 3.5s, compared with the

Fig. 14. Experiment Setup showing real-time data acquisition using the
timestamp. The input analog signal is reconstructed and plotted on the
computer.
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Fig. 15. Example processing result of the Fiducial Points Pruning algorithm.

originally 234 samples, the proposed ADC generates 58 data
points, and FPP reduces this number to only 16. Moreover,
the remained data points after applying FPP filter are all
turning points that include significant information. Even with
the simplest piecewise linear interpolation, FPP-filtered data
depicts the signal without obvious distortion.

An example of VsTI’s core and NTM algorithm is shown
in Fig. 16 with input signals the same as the FPP description
in Fig. 15. As shown in Fig. 16, all important waveforms
(P/QRS/T) of the ECG signal are identified. If there are
baseline noises as shown in Fig. 16 (a), seven triangles are
detected. With the help of NTM, triangles with at least one
short side are canceled (V2, V4, and V6), and some triangles
are merged (V1 and V3) to form a more condensed triangle
data pattern. As shown in Fig. 16 (b), triangles are merged to
form a new inverted triangle that has Vertex_maiddle’s ampli-
tude smaller than both Vertex_left and Vertex_right. The
QRS complexes detection algorithm containing just two simple
rules is validated using the MIT-BIH database. As shown
in Table II, the algorithm demonstrates high performance in
QRS detection, small false positive (FP) and false negative
(FN) numbers, achieving 98.85% sensitivity (Se) and 98.75%
positive predictive value (PPV), respectively. The QT database
(QTDB) is used to validate the delineation algorithm, and the
results are shown in Table III. Except for localizing 7" — end,
all other fiducial points detection achieve over 90% sensitivity
performance with less than 20 ms timing error (which is hardly
recognized with eyes by doctors, with standard ECG printing
associated with 40 ms resolution). Compared with other high
hardware complexity algorithms, the proposed method achieve
comparable delineation result with simple and lightly weighted
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Fig. 16. Example processing result of the Vertex-side Triangulation Identifier
and Neighbor Triangle Merging algorithm.

TABLE I
MODEL PARAMETERS OF ALGORITHMS WITH TYPICAL VALUES.

Algorithm | Parameter | Explaination Typical Value
Amplitude Threshold
2nd LC Delta of Prediction Error S0mV
Amplitude Threshold
Th.A of FPP Algorithm 30mVv
FPP —
Th.T Timing Threshold 40
) of FPP Algorithm Error ms
Slope Threshold 5
Th.S of FPP Algorithm 24Vls
Timing Threshold
VsTI Th_V.T of VsTI Algorithm 20ms
Amplitude Threshold
Th_V.A of VsTI Algorithm 60mv

algorithm implementation. In the algorithms, the model pa-
rameters are selected by simulation results. Typical values of
model parameters for the MIT-BIH database can be found in
Table I.

With the help of processed results from QRS complex
detection and ECG delineation, we obtain the PVC recognition
performance as shown in Table V. Compared with other
methods that are achieved in complicated machine learning
algorithms, the proposed lightweight method achieves middle-
level PVC recognition performance. Since the total data from
the proposed second-order level crossing ADC can achieve
similar results can be only a few percent of the data from
a conventional Nyquist sampling ADC, the computing over-
head is lower than the conventional feature-based processing
or neural-network-based processing. Moreover, the proposed
method uses the foundational principle for PVC recognition
and the results are interpretable. Thus, the method is more



TABLE II
HEARTBEATS DETECTION ALGORITHM PERFORMANCE USING MIT-BIH
ARRHYTHMIA DATABASE

1D Total FN FP Se PPV ER
100 2273 0 0 100.00 | 100.00 0.00
101 1865 2 0 99.89 100.00 0.11
103 2084 0 0 100.00 | 100.00 0.00
105 2572 36 125 98.60 95.30 6.26
106 2027 71 90 96.20 95.59 8.24
108 1763 54 146 96.94 92.13 11.34
109 2532 9 0 99.64 100.00 0.36
111 2124 1 164 99.95 92.83 7.77
112 2539 0 0 100.00 | 100.00 0.00
113 1795 0 2 100.00 99.89 0.11
114 1879 42 66 97.76 96.53 5.75
115 1953 0 0 100.00 | 100.00 0.00
116 2412 18 13 99.25 99.46 1.29
117 1535 0 0 100.00 | 100.00 0.00
118 2278 2 0 99.91 100.00 0.09
119 1987 14 8 99.30 99.60 1.11
121 1863 1 0 99.95 100.00 0.05
122 2476 0 0 100.00 | 100.00 0.00
123 1518 0 0 100.00 | 100.00 0.00
124 1619 12 2 99.26 99.88 0.86
200 2601 75 17 97.12 99.33 3.54
201 1963 4 0 99.80 100.00 0.20
202 2136 10 18 99.53 99.16 1.31
203 2980 125 277 95.81 91.16 13.49
205 2656 12 3 99.55 99.89 0.56
207 2332 284 88 87.82 95.88 15.95
208 2955 72 64 97.56 97.83 4.60
209 3005 0 10 100.00 99.67 0.33
210 2650 110 9 95.85 99.65 4.49
212 2748 0 1 100.00 99.96 0.04
213 3251 18 43 99.45 98.69 1.88
214 2262 56 24 97.52 98.92 3.54
215 3363 6 10 99.82 99.70 0.48
219 2154 2 2 99.91 99.91 0.19
220 2048 0 0 100.00 | 100.00 0.00
221 2427 10 3 99.59 99.88 0.54
222 2483 6 3 99.76 99.88 0.36
223 2605 31 26 98.81 99.00 2.19
228 2053 39 45 98.10 97.81 4.09
230 2256 0 0 100.00 | 100.00 0.00
231 1571 0 0 100.00 | 100.00 0.00
232 1780 3 1 99.83 99.94 0.22
233 3079 32 8 98.96 99.74 1.30
234 2753 0 0 100.00 | 100.00 0.00
total | 101205 | 1163 | 1268 | 98.85* | 98.75*% | 2.40*
*Average Value
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Fig. 17. Compression Factor (a) and ENOB (b) as a function of Delta in the
second-order level-crossing ADC.

friendly to doctors for secondary validation and obtaining a
solid diagnosis.

IV. DISCUSSION

Conventionally, the Figure-of-Merit for an ADC focuses
on power consumption, sampling rate, area, and resolution.
However, the power cost and area from an ADC are usually a

small portion of the whole system. Also, a high sampling rate
and resolution may lead to a large amount of data that over-
loads the following processing, storage, and communication
systems. In the proposed system, only critical turning points
are recorded to reduce the output data amount. Moreover, the
turning points identified during analog-to-digital conversion
contain important features of the input signal, which further
reduces the signal processing workload. A comparison table
of the reported second-order level-crossing ADC and other
comparable nonuniform sampling ADCs is shown in Table I'V.
Since most ECG signal processing methods use either classical
Nyquist sampled data or analog signal processing methods, we
could not compare them directly with the proposed method.
The proposed method is a digital system but only uses 12%
of data compared with a system using data from Nyquist
rate sampling ADC. The proposed ECG processing algorithm
was synthesized using a 180nm CMOS process. Table VI
summarized recent ECG processing hardware cost. Although
it is difficult to compare directly since each reference are
targeting different functionalities, the proposed ADC provides
a high data compression factor compared to a conventional
SAR ADC in sensing sparse signals, while its fully digital
implementation doesn’t need a complicated analog division
circuitry for calculating input analog slopes like in [30].

The primary goal of the proposed ADC is to reduce the
total output data amount by selecting only the critical sampling
points for quantization. Compared with a conventional SAR
ADC, the output of the proposed second-order level-crossing
ADC contains both the digital amplitude of the selected sam-
pling point and the timing between selected sampling points.
Therefore, each sampling data point has more data than in
the conventional SAR ADC. For example, a 10-bit timestamp
output means the maximum measurable timing between two
selected sampling points is 1024 clock cycles. If the ADC has
a 10-bit resolution and the timestamp output is also 10 bits,
for each sampling point, the data amount is doubled (20 bits)
of a conventional SAR ADC. Asynchronous level-crossing
sampling ADCs don’t have quantization errors but may suffer
from the inaccurate recording of timing information [48]. It
does not apply to our proposed second-order level-crossing
sampling system, since it uses a fixed-rate sampling clock like
SAR ADCs. The data-saving performance of the proposed
ADC is signal-dependent, which is in favor of signals with
wider linear portions. The data-saving performance is usually
measured by the compression factor [30], which is defined as
the ratio of the total data amount generated by a conventional
SAR ADC to the data amount from the proposed second-order
level-crossing ADC. The compression Factor also depends on
the Delta value and the amplitude of the signal as shown
in Fig. 17 (a). With a higher Delta value, the compression
factor increases while the Effective Number of Bits (ENOB)
decreases, as shown in Fig. 17 (b). The ENOB drop is caused
by the fewer sampling points in the proposed ADC. Since the
proposed ADC skips the sampling points that are correctly
predicted and uses the predicted value to replace the actual
value in those points. Since there is a finite error between the
predicted value and the actual value, an additional error may be
introduced, and the effective number of bits drops. Therefore



TABLE III
COMPARISON FOR DIFFERENT DELINEATION ALGORITHMS ON THE QT DATABASE

P-onset P-peak P-end ORS-onset ORS-peak QORS-end T-peak T-end
Bock et al. [37] Se (%) 98.5 98.5 98.5 100 - 100 100 100
: m=+o 10.6 = 12 7+9 1.2 £ 11.7 6.7 £9.2 - 52 +10.2 33+ 119 -5.6 £ 15.6
Spicher et al. [38] Se (%) 99.91 9991 99.91 99.992 99.92 99.92 99.89 99.89
p et ak m=+o 054151 514109 0.5 + 15 0.9 £+ 8.5 41 +46 -04+£96 -45+14.7 0.6 + 20.3
Se (%) N N - - 100 N 99.01 -
Chen et al. [39] m4+o ) ) ) ) . ) 14 + 82 ]
Se (%) - - - - . N . -
Hesareral [A01 4 0 16437 5434 -10+ 34 - ; - 3424 -16 435
Bote et al. [41] Se (%) 98.22 99.34 99.87 100.00 - 99.97 99.89 97.49
erat m+o 223+14 135+73 07+£95 T+43 - 5+99  84+143 117+ 15
This work Se (%) 90.4 93.9 95.7 98.3 98.8 94.2 90.2 88.1
m+o 85+163 54+106 2.0+174 56+ 165 3.1 £77 47 +£169 -43 £ 12.8 5.1 £ 18.4
TABLE IV
NONUNIFORM SAMPLING ADC PERFORMANCE COMPARISON
Sampling Power Area . o Turning Sampling
Method Technology Rate (W) (mm) Resolution | Division Point Value
This 2nd Order 180 1 kH 368 nW | 0.39x0.44 10-bi N Y Multi-bi
Work LC-ADC nm z n LI9XU. -bit o es ulti-bit
TCASI Signal- . ] ] L
2020 [30] Dependent 180 nm 1 kHz 1700 nW | 0.5 x0.27 12-bit Yes Yes Multi-bit
JSSC . @ Fixed
2013 [24] LC-ADC 130 nm Async 6.5 uW 0.65x0.55 8-bit No No Ref. Level
JSSC LC-Delta 0.0126 @ Fixed
2020 [42] Modulator 28 nm Async | 146 uW | e N/A No No 1 Ref. Level
JSSC 2.4 kHz 0.32 9.5 @ Fixed
2022 [43] LC-ADC 40 nm equivalent 14 uw mm"2 equivalent No No Ref. Level
ESSCIRC 0.012 @ Fixed
2022 [44] LC-ADC 40 nm Async 5.38uW 2 10.4 No No Ref. Level
TBCAS Delta
2018 [5] Modulator 130 nm 1 kHz 360 nW 0.52x0.56 N/A No No Slope Only
CICC 2nd-Order Delta
2020 [32] Modulator 180 nm 1 kHz 151 nW 0.62x0.4 N/A No Yes Slope Only
TABLE V pared to the conventional ADC. Although for the selected

PERFORMANCE ASSESSMENT COMPARISON OF PVC

Methods PVC detection Performance
Fl1 ACC (%) | Sen (%) | SP (%) | PPV (%)
Hou et al. [45] LSTM - 99.7 97.4 99.9 -
Xu et al. [46] DNN - 99.7 97.7 99.9 -
Raj et al. [3] SVM + Particle - 98.6 98.6 99.9
swarm Op[lleﬂllOn
Wang et al. [47] CNN 0.57 925 48.6 97.5 69.0
This work 0.81 97.3 89.6 97.8 733
TABLE VI
COMPARING ECG PROCESSING SYSTEMS.
This work TBCAS’23 | TCASIT’'22 | TBCAS’22
[21] [22] (23]
Technology 1 80nm. 65nm 1 80nm‘ 180nm
Synthesis Tapeout Synthesis Tapeout
Processing | Fiducial QRS Arrhythmia P-QRS-T
Function Points Detection Detection Detection
Algorithm Triangle Analpg Digital Neual Featu.re
Searching | Filtering Network Mapping
Power 160nW 2.2nW 8.75uW 2.657uW
Area (mm?2) 0.06 0.08 1.32 0.55

the Delta value provides an additional parameter to the user
for the trade-off between accuracy and data throughput. In our
experiment, the compression factor achieves 8.33 for the ECG
signal with negligible distortion of the input signal.

Since the proposed system selects fewer sampling points
from the input waveform, it may introduce more errors com-

sampling points, the digital values of the proposed ADC are
the same as in a conventional ADC, the proposed method does
not record the actual amplitude of the sampling points where
the predictions are successful. The additional error introduced
by removing the sampling points depends on the input signal,
the Delta value, and the reconstruction methods, which affects
the ENOB of the ADC as shown in Fig. 17 (b). This affects the
performance of the classification but could be mitigated using
advanced signal reconstruction methods. The primary recon-
struction methods for nonuniform sampling include but are not
limited to linear interpolation, polynomial interpolation, cubic
spline interpolation, and Lagrange-Chebyshev interpolation
[49]. Using a complicated reconstruction method can reduce
errors introduced by nonuniform sampling with a cost of high
computing overhead. The proposed ADC samples at a fixed
rate and every sampling results in a multi-bit quantization
process that records the real amplitude value instead of a single
polarity bit in the asynchronous level-crossing ADC. In the
worst scenario, if one level-crossing event is missed and not
recorded, the next level-crossing event still records the multi-
bit real amplitude value. So the error does not pass to the
following recordings during reconstruction. Therefore, each
conversion error does not result in a significant bit-error-rate
increase in the proposed ADC, so the back-end error correction
logic for an asynchronous level-crossing ADC is not required.

In real on-sensor system implementation, the input signal



could contain low-frequency high-amplitude baseline wonder-
ing and high-frequency low-amplitude noise. This work only
focuses on the data conversion and digital processing algo-
rithm, so we assume that the analog-front-end (AFE) circuit
contains noise filters and variable gain amplifiers, which is
typically true in most AFE solutions. For on-sensor processing,
as long as the noise amplitude is less than the Delta value,
the system is not affected by the noise. Considering that the
Delta value (50-100mV) is usually much higher than the noise
amplitude (<10mV), we believe this assumption is valid. The
proposed second-order level-crossing ADC achieves compara-
ble ECG delineation and PVC classification performance with
other systems that use Nyquist sampling data, which means the
data size can be reduced by around ten times without reducing
the system performance. The system has potential in future
low-power wearable ECG monitoring systems.

V. CONCLUSION

This paper presented a novel second-order level-crossing
sampling ADC that performs key sampling point selection
by predicting the sampling value using prior quantization
or prediction results. The prediction and sampling selection
are performed digitally without complicated analog division
circuitry. The circuit is implemented by modifying the con-
trol logic of a conventional SAR ADC. The proposed ADC
automatically selects the turning point of the input analog
signal and records the amplitude and timing information of
the selected points. The signal-dependent data compression
factor is 8.33 for sensing the ECG signal. ECG processing
algorithms based on the output of the proposed ADC are
validated for ECG delineation and ectopic heartbeat detection.
The proposed ADC and ECG processing algorithm has the
potential to greatly reduce computing overhead for the digital
processing, storage, and communication circuits in low-power
data acquisition systems.
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