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Abstract

Aim: Evaluate the temporal changes in species diversity, composition, and structure of
ephemeral plant communities and the seed bank in response to long-term herbivore
exclusion over 11 years in plots with and without herbivores.

Location: North-central Chile.

Methods: We obtained information on ephemeral vegetation cover in August and
September using the intercept point method and recorded seed abundance in April.
The Bosque Fray Jorge National Park Long-Term Socio-Ecological Research (LTSER)
provided these records covering 11 years (2009-2019). From the original experiment
of 20 plots, we used eight plots divided into two treatments: four plots allowed free
access to all herbivores (with herbivores), while the other four plots excluded herbi-
vores (without herbivores).

Results: We found that Hill-Shannon diversity increased in plant communities with
herbivores and a temporal increase in the cover of the dominant species, Plantago
hispidula, under herbivore exclusion. In wet years, species richness and temporal
turnover of plant communities increased independently of treatment. Although seed
abundance differed among treatments and years, population structure remained con-
stant over time and among treatments, suggesting that the seed bank acts as a buffer
against shocks that modify plant community dynamics. Structural equation modeling
revealed that precipitation, via its positive effects on Plantago hispidula, increases na-
tive plant richness to a greater extent than herbivores. However, in the absence of
herbivores, precipitation directly affects native species richness. Moreover, we found
that precipitation also influences the native species richness of the seed bank, both
directly and indirectly, although its impacts exhibit a time lag.

Conclusions: Our study demonstrates that the temporal dynamics of ephemeral plant
communities and seed banks in semi-arid ecosystems are strongly coupled to climate
variability, highlighting the vulnerability of these communities to biodiversity loss and

climate change.
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1 | INTRODUCTION

Species loss is a consequence of global change, leading to changes
in community structure and abundance that can profoundly affect
ecosystem functioning (Cardinale et al., 2002; Hooper et al., 2012).
The loss of an entire group of species, that is, a guild, that per-
form similar functions in an ecosystem, such as herbivores, could
impact ecosystem functioning to a greater extent than the loss
of individual species because of functional redundancy (Bardgett
& Wardle, 2003; Wardle et al., 2004; Hooper et al., 2012; Pardo
et al., 2015). Regulation of plant communities by herbivores can
occur through various mechanisms —decreased survival, bio-
mass, abundance, and reproduction, increased plant diversity due
to consumption of dominant and common species, and reduced
competitive exclusion —which can result in the persistence of
rare species and increased species turnover (Grime, 1998; Maron
& Gardner, 2000; Larios et al., 2017; Jia et al., 2018; Mortensen
et al., 2018). As plant communities also are regulated by com-
petition (Chesson, 2000; Tilman, 2004; Ploughe et al., 2020) as
well as abiotic conditions such as precipitation and temperature
(Anderson et al., 2007; Maestre et al., 2012), the relative impor-
tance of herbivores in mediating plant community dynamics is
uncertain (Anderson et al., 2007; Hillebrand et al., 2007; Young
etal,, 2013).

The impacts of large herbivores on the richness and diversity
of plant communities are due mainly to soil trampling and direct
consumption of plants (Bakker et al., 2004; Hester et al., 2006). In
contrast, small herbivores can be more selective, consuming only
palatable species, and have a smaller range of displacement, which
results in a greater impact on the local vegetation and disturbing the
system by building burrows or digging for bulbs (Forbes et al., 2019).
Most studies on the effects of vertebrate herbivores on plant com-
munities have been conducted in seminatural ecosystems such
as grasslands (OIff & Ritchie, 1998; Bakker & OIff, 2003; Bakker
et al., 2004; Seabloom et al., 2015; Gao & Carmel, 2020). The use of
herbivore exclusions to study plant communities is essential for ac-
curately estimating the actual effect of herbivory, as they eliminate
variation caused by random events, such as environmental factors.
However, fewer studies have utilized the long-term exclusion of na-
tive herbivores in natural areas. Long-term monitoring is necessary
to fully comprehend the role of herbivory in natural ecosystems (Jia
etal., 2018).

Whereas we know that herbivores regulate the structure
and composition of plant communities (Allen et al., 2021; Orr
et al., 2022), it is difficult to predict the community response of
exotic species in the absence of herbivores (Allen et al., 2021).
The enemy release hypothesis (Keane & Crawley, 2002) postu-
lates that the consumption of more palatable or abundant native

species may give way to the establishment of exotic species that
may become abundant rapidly. On the other hand, the biotic resis-
tance hypothesis (Levine et al., 2004) suggests that exotic species
may be more palatable to herbivores, thus limiting the distribution
of these species. Additionally, indirect interactions may play a key
role in herbivore response and on the balance between exotics
and natives (Vavra et al., 2007). Previous research has demon-
strated that exotic plants are more tolerant than native species
to herbivore impacts on soil, which gives them an advantage over
native species (Funk, 2008, 2013).

In arid and semi-arid ecosystems, a significant percentage of total
plant biomass consists of ephemeral vegetation, covering bare soil,
thereby reducing evapotranspiration and run-off of rainfall. Ephem-
eral plants, which include herbaceous annuals and herbaceous
perennial geophytes, have a life cycle linked to the rainy season,
leading to a strong coupling between precipitation and productiv-
ity (Ogle & Reynolds, 2004; Miranda et al., 2009). Similarly, plant
community dynamics are intimately linked with variation in climatic
conditions. For example, high intra-annual climatic variability pro-
motes the coexistence of species with different survival strategies,
that is, bet-hedging; this strategy refers to an individual forgoing op-
portunities for immediate reproductive gain in the hopes of greater
reproductive success over the long term (Cohen, 1968; Gremer &
Venable, 2014). A classic example of bet-hedging is the delay of ger-
mination in desert annuals; this mechanism is critical in communities
with extreme environmental conditions, such that in years of low
precipitation, a significant percentage of seeds do not germinate
and remain stored in the soil until years with favorable conditions
permit germination (Ooi, 2012). Bet-hedging varies among species
and may be a common strategy in water-limited ecosystems, where
precipitation fluctuates markedly, within and between years (Clauss
& Venable, 2000). Yet, this adaptive mechanism is not the only one
that may affect the soil seed bank (Ooi, 2012); granivory may de-
crease soil seed bank density and diversity (Chang et al., 2001; Ster-
nberg et al., 2003). The relative importance of the effects of abiotic
(precipitation) and biotic (herbivory) influences on ephemeral plant
communities —and especially on their seed banks —in water-limited
ecosystems is uncertain.

The diversity of plant communities can be modified depending
on the selectivity of herbivores (Bakker et al., 2004; Jia et al., 2018).
For instance, the direct consumption of highly palatable plants can
result in temporary periods of increased dominance by one or a few
species (so-called “dominance pulses”; Hillebrand et al., 2008). Pro-
longed dominance pulses have the potential to result in losses of
subordinate species (Wilsey & Polley, 2004; Mortensen et al., 2018),
which can persist for multiple years, depending on colonization
rates (Cadotte et al., 2006) and the sequence and timing of species
joining communities (referred to as “priority effects”; Chase, 2003;
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Fukami, 2015). These processes can be further influenced by abiotic
factors, such as precipitation and nutrient availability, particularly in
arid ecosystems (Wainwright et al., 2012; Gao & Carmel, 2020).

In this study, we address the following questions: (1) how do
herbivores influence patterns of interannual variation in native and
exotic species and their seed banks; (2) are the temporal dynamics
of ephemeral plant communities and seed banks de-coupled, as pre-
dicted by bet-hedging; and (3) how does the abundance of herbivores
influence the impacts of dominant species on plant and seed bank
diversity of native and exotic species? To address these questions,
we established a long-term experimental exclusion of herbivores in a
semi-arid ecosystem to evaluate both the direct and indirect effects
of small mammalian herbivores and climate on the temporal dynam-
ics of ephemeral plant communities and the soil seed bank. We ex-
amine temporal changes in complementary measures of ephemeral
plant diversity and the soil seed bank over 11years in response to
the long-term exclusion of herbivores.

2 | MATERIALS AND METHODS
2.1 | Study site

We performed this study in Quebrada de Las Vacas, located in the
Bosque Fray Jorge National Park, Chile (Figure 1a). The climate at
the study site is semi-arid mediterranean with cold, wet winters and
hot, dry summers (Di Castri & Hajek, 1976; Luebert & Pliscoff, 2006;
Meserve et al., 2020). The mean maximum temperature in the warm-
est month (January) is 24°C, while the mean minimum temperature
in the coldest month (July) is 4°C (CEAZAMET, 2019). Precipitation
is concentrated in the austral winter months (May-September), dis-
tributed in pulses of 2-60mm (CEAZAMET, 2019). Mean annual
precipitation (1991-2021) is 125mm/year; El Nifo-Southern Os-
cillation (ENSO) events amplify interannual precipitation variation,
resulting in either extremely wet or dry years (red line in Figure 1b).
In the present study, we used data from 11years (2009-2019), dur-
ing which three years are considered wet (2011, 2015, and 2017)
and three years can be considered very dry (2012, 2014, and 2019)
(Figure 1d).

The herbivore assemblage at Fray Jorge comprises two inva-
sive lagomorphs and several species of native rodents. European
hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus)
reached Fray Jorge in 2000-2002 (D. A. Kelt, pers. obs.) and have
since become established. Common rodents (all native) include the
diurnal herbivorous degu (Octodon degus) and two nocturnal/crepus-
cular species, the omnivorous olive grass mouse (Abrothrix olivacea)
and the herbivorous Darwin's pericote (Phyllotis darwini). Addition-
ally, the herbivorous and generally nocturnal Bennett's chinchilla rat
(Abrocoma bennettii) and the moon-toothed degu (Octodon lunatus)
occur in lesser numbers, and the herbivorous fossorial cururo (Spal-
acopus cyanus) occurs sporadically throughout the park. Finally, the
omnivorous/insectivorous long-haired grass mouse (Abrothrix lon-

gipilis) and the granivorous long-tailed pygmy rice rat (Oligoryzomys
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longicaudatus) occur episodically in our study sites, usually during
rainy periods.

The experimental design consists of 20 plots pf 75x75m
(0.56 ha) separated by a minimum distance of 50m (for additional de-
tail, see Gutiérrez et al., 2010; Kelt et al., 2013; Meserve et al., 2016).
We use data from two treatments: control (hereafter: with herbi-
vores) and exclusion (hereafter: without herbivores). Plots with her-
bivores are encircled with low fencing equipped with large holes
to allow full access by all species (e.g., herbivores, predators, and
others) (Figure 1c). In contrast, plots without herbivores have taller
fences (1.5m high and buried 0.5m deep to hinder burrowing) con-
structed with a wire mesh with small openings and whose upper part
has metal flashing that prevents the entry of rodents that can climb

the mesh fencing (Figure 1d).

2.2 | Ephemeral plant community sampling

The flora of Bosque Fray Jorge National Park is diverse and includes
65 ephemeral plant species to date (Appendix S1). The cover of
ephemeral plant species (native and exotic) in the experimental plots
was recorded monthly using the point intercept method (Ellenberg
& Mueller-Dombois, 1974). All plots were assessed along four 50-m
transects; 10 sections (length 1.5 m) of each transect were randomly
selected for vegetative measurement using a point frame with 30
sampling pins at 5-cm intervals. The species and the number of in-
dividuals that occur at each point were recorded at each sampling
point. The total number of points per plot was 1200 (30 samples on
10 segments on each of four transects). Vegetation cover per species
was then estimated as the proportion of points where each species
was recorded. In subsequent analyses, we use data from the months
with the highest plant coverage (August and September), when
plant diversity typically is greatest (Gutiérrez et al., 1997, 2010;
Fernandez-Murillo, 2016), as our focus is on interannual dynamics.

2.3 | Soil seed bank

In April of each year, prior to the germination, soil samples (3cm
diameterx5cm depth, hence 35.34cm® vol) were collected at five
random points within each plot and taken to the laboratory where
samples were sieved manually, and seeds counted by hand. The
smallest seeds (<0.5mm) were extracted by flotation (in water) and
were identified with a microscope (Gutiérrez & Meserve, 2003).
Sixty percent of the species recorded in the plant community were
represented in the seed bank, of which we identified 30% to genus
and 70% to species.

2.4 | Statistical analyses

For all analyses, we use the average of August and September
for each plot and each year. For all plots, we calculated temporal
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FIGURE 1 Overview of the experimental design and study site. (a) The study site is in Bosque Fray Jorge National Park in north-central
Chile. This study examines the joint effects of climate and herbivores, whose abundance was manipulated experimentally. The climate is
characterized by high interannual variation in precipitation (b). Mean annual precipitation is 125 mm/year (red line). The study period covers
2009-2019, of which three were rainy years (2011, 2015, and 2017). The two experimental treatments, with small mammal herbivores (c)
and without small mammal herbivores (d), were established in 1989 and are part of Fray Jorge Long-Term Socio-Ecological Research (LTSER).

diversity indices with the codyn package (Hallett et al., 2016) in R v.
4.1.0 (R Core Team, 2020), focusing on species turnover, which is a
measure that allows us to quantify the rate of change in species com-
position from year to year. Species diversity of plant communities
and the seed bank for each plot in each year were quantified using
Hill numbers (D) with the hillR package (Chao et al., 2014; Li, 2018).
Hill numbers, or order diversity (e.g., g=0 or 1), reflect the sensitivity
of the index to relative species abundances. We used two values of
g: q=0, which is species richness and gives equal weight to all spe-
cies, and g=1, equivalent to Shannon's diversity index, which gives
more weight to more abundant species. We converted all diversity
orders to the effective number of species to facilitate interpreta-
tion (Jost, 2006). For plants, we report patterns of species richness
(a,) and Hill-Shannon diversity (q,; Roswell et al., 2021) for all spe-
cies as well as for native and exotic species separately. We analyzed
responses of species richness, Hill-Shannon diversity, and turnover
to the experimental treatment and year with generalized additive
mixed models (GAMMs), treating treatment as a fixed factor and plot
as a random factor. We assesed temporal autocorrelation including a
temporal correlation structure in the fitted models. We fitted these
models using the R package gamm4 (Wood et al., 2017). Results were
plotted using the ggplot2package in R (Wickham, 2016).

We analyzed temporal changes in species rank abundances for
each treatment for ephemeral plant communities and the seed bank.
First, the three most abundant species were classified as dominant
species (Appendix S2). The three dominant species in our study
were Plantago hispidula, Bromus berteroanus, and Oxalis micran-
tha. Temporal changes in the abundance rank of a species can be
visualized using “rank clock plots” (per Collins et al., 2008), where
sequential radii represent years, and the location on each radius cor-
responds to abundance rank. If a species retains the same rank order
in each year of analysis, it would be presented as a perfect circle;
deviations from this reflect temporal changes in rank abundance. We
calculated two sets of rank clocks, one for plant cover and the other
for seed abundance, for both experimental treatments for each year
of the study period. We analyzed the abundance of the three dom-
inant species and the native/exotic groups with an additive mixed
model with treatment variable as a fixed effect (with and without
herbivores) and plot as a random factor, also considering temporal
correlation.

We examined how the abundance of herbivores influences the
impacts of dominant species on ephemeral plant and seed bank di-
versity of native and exotic species over time and between exper-

imental treatments, using piecewise structural equation modeling
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with the piecewiseSEMR package, using linear mixed models (LMM)
including the plot as a random effect and temporal autocorrela-
tion (Lefcheck, 2016). We formulated a hypothetical causal model
based on ecological theory and our knowledge of the study eco-
system. Our hypothetical model evaluates (1) the indirect effects
of herbivory and precipitation on the species diversity of native
and exotic ephemeral species via the abundance of Plantago hispi-
dula and (2) the direct effects of herbivory on plant species, as well
as its indirect effects on seed species richness (of the following
year) via the abundance of Plantago hispidula (Appendix S3). Our
models incorporated the plot as a random factor and accounted
for temporal autocorrelation by including a temporal correlation
structure in the fitted models. We used four parameters to eval-
uate model fit: AIC,;{2 value (with p>0.05), Fisher's C value (with
p>0.05), and the adjusted marginal and conditional R% To improve
the fit, we included paths with lower probabilities than the rec-
ommended p<0.05 in directed separation tests, as long as the
Fisher's and )(2 test probability for model fit remained significant
(p>0.05). We fitted separate models for each treatment. To meet
assumptions of normality, we applied a log-10 transformation.
Additionally, we included the annual abundance of the dominant
herbivore, O.degus, in both models to account for their presence,
albeit minimal (less than 200 individuals per year), in the herbi-
vore exclusion plots. For detailed information on rodent captures,
refer to Meserve et al. (2016). We fitted SEMs using the “psem”
function of piecewiseSEMpackage in R (Lefcheck, 2016). We pro-
vide the script of the final SEMs in the Data Availability Statement
section. Data manipulation, visualization, and analysis were per-
formed using R v. 4.1.0 (R Core Team, 2020).

3 | RESULTS

3.1 | Temporal change in the ephemeral plant
community

We observed no significant difference in ephemeral plant spe-
cies richness (q,) across treatments (Figure 2a), and this held for
analyses solely on native species as well (Figure 2c). In contrast,
exotic ephemerals demonstrated a non-significant trend, with
plant species richness being slightly greater in the presence of
herbivores (Figure 3e). Furthermore, species richness varied sig-
nificantly over the years (Figure 2a). Approximately 20% more
species were recorded in years with higher precipitation (2011,
2015, and 2017) than in dry years (2014 and 2019; Figure 2).
We observed 41 ephemeral plant species in the herbivore treat-
ment, including ten exotic species (Erodium malacoides, Erodium
cicutarium, Linaria texana, Urtica urens, Galium aparine, Schismus
arabicus, Vulpia bromoides, Microseris pygmaea, Pectocarya linearis,
and Rotraria cristata). In contrast, we observed 31 species in the
treatment without herbivores, seven of which were exotic (Ero-
dium malacoides, Erodium cicutarium, Schismus arabicus, Linaria

texana, Microseris pygmaea, Galium aparine, and Rostraria cristata).

€S 50f13
§ Journal of Vegetation Science | sors3

Hill-Shannon diversity (i.e., diversity order 1) for the ephemeral
plant community was also significantly higher in the presence than
in the absence of herbivores (Figure 2b). Similar patterns were
observed for the Hill-Shannon diversity of native species but not
exotic species, exhibiting minimal differences across treatments
(Figure 2d,f respectively). The Hill-Shannon diversity of both, the
entire community and its constituent groups (native and exotic
species), exhibited significant intra-annual variation, regardless of
the treatment. These findings align with the observed patterns in
species richness.

In the seed bank, we observed an apparent shift between treat-
ments, with higher species richness in the presence of herbivores.
Additionally, seed species richness varied markedly over time, with
2016, 2017, and 2018 exhibiting the highest levels of species rich-
ness (Figure 3a). Similar patterns were observed for native species
(Figure 3c; p Treat=0.01 and Year=6.65 €7%). However, we found
a different pattern for the seed bank of exotic species, whose spe-
cies richness did not change significantly between treatments or
years (Figure 3e; p Treat=0.07; Year=0.72) Seed Hill-Shannon di-
versity showed no significant differences between treatments, but
differed significantly between years, with 2017 being the year with
the highest diversity (Figure 3b). Differences in Hill-Shannon diver-
sity between years were also observed for native and exotic taxa
(Figure 3d,e).

Total plant turnover showed significant differences between
years (p=0.006) but not between treatments (p=0.07). Further-
more, there were no observed differences in turnover between the
native and exotic plant species (Appendices S4 and S5). In terms
of turnover of the soil seed bank, no consistent directional changes
were observed over time. Similarly, there were no significant turn-
over differences between treatments for native or exotic species
(Appendices S4 and S5).

3.2 | Changes in ephemeral plant cover and
seed abundance

The total cover of ephemeral plants differed significantly between
years but not between treatments, and similar patterns were found
for native and exotic plant species. Yet, the cover of native plants
was higher without herbivory, in contrast to exotic plants (Table 1;
Figure 3). In addition, the years with the highest vegetation cover
were 2010, 2011, and 2013, with an average of 53.9%, while the
year with the lowest cover was 2019, with a cover of 1.38%.
Ephemeral plant communities without herbivores were domi-
nated by Plantago hispidula, Zephyranthes physeloides, and Bromus
berteroanus, while communities with herbivores were dominated
by Plantago hispidula, Oxalis micrantha, and Bromus berteroanus
(Appendix S2). Ephemeral plant communities without herbivores
exhibited a higher plant cover of Plantago hispidula and almost
no plant cover of exotic plant species compared to communities
with herbivores (Figure 4a, Table 1). The structure of communities
without herbivores was more consistent between years than that
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FIGURE 2 Temporal variation of ephemeral plant species diversity in a semi-arid ecosystem in central Chile, where herbivores are
experimentally excluded; the treatment without herbivores is represented by WH and with herbivores by H. The diversity of ephemeral
plant species was quantified using Hill numbers; g, represents the effective number of species, which indicates species richness, and

q, represents the Hill-Shannon diversity. (a, c, e) Total, native, and exotic richness (qo) of the ephemeral plant community, respectively.
(b, d, f) Total, native, and exotic Hill-Shannon diversity of the ephemeral plant community, respectively. Each figure shows p-values for
the generalized additive mixed model (GAMM), year (Y), treatment (T), and random factor (plot). The gray lines show the mean plot per
treatment, the colored lines show the smoothed mean of the GAMM model for each treatment, and the shaded area shows the variance.

of communities with herbivores, with 2010 and 2015 being the
only years with a higher cover of native species and a lower cover
of Plantago hispidula than other years. The structure of commu-
nities with herbivores was dominated by Plantago hispidula, and
native plant species generally had a lower plant cover, except in
2012 when the native species Bromus berteroanus had an unusu-
ally high plant cover (Figure 4a). The composition of the ephemeral
plant communities indicates that in both treatments, the number
of species decreased in recent years, and we recorded no new spe-
cies from those in the first year. However, the number of shared
species in the communities without herbivores is greater than
those with herbivores, although the latter had a higher plant spe-
cies richness (Figure 4b).

In the seed bank, total abundance varied significantly among
treatments and years (Table 1). The years with the highest seed
abundance were 2016 and 2018 (200 seeds/cm®), and 2015 was the
year with the lowest seed abundance (20 seeds/cm3). Communities
with herbivores, on average, had higher seed abundance (110+11;
mean+SE) than those without herbivores (60+8; mean=+SE)
(Table 1). The seed bank was dominated by Oxalis micrantha, Bromus

berteroanus, and Apium in plant communities without herbivores. In

contrast, the seed bank in plant communities with herbivores was
dominated by Oxalis micrantha, Plantago hispidula, and Bromus ber-
teroanus (Appendix S2).

For seeds of native and exotic species, we observed significant
statistical differences between years and some between treatments
(Table 1). Specifically, whereas the abundance of Oxalis micrantha
decreased in the absence of herbivores, we found that Plantago his-
pidula exhibited considerably lower abundance in plant communities
with herbivores (Figure 4a). Conversely, both B.berteroanus, native
species, and exotic species showed no significant differences be-
tween treatments.

Community structure did not significantly differ between
treatments. Across all years, native plant species remained domi-
nant, followed by O.micrantha (Figure 4a). The composition of the
seed bank was different from that of ephemeral plants; although
the number of species in the seed bank decreased in the last year
for both treatments, the number of shared species was lower in
the treatment without herbivores (Figure 4c). Moreover, the num-
ber of species recorded only in the first year of monitoring was
higher in communities without herbivores than in those with her-
bivores (Figure 4c).
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TABLE 1 Summary of analysis
R R Y Y Seed bank Ephemeral plant community
of variance comparing coverage of
ephemeral plants and seed abundance for Groups Treat Year Plot Treat Year Plot
the total community, dominant species
(Oxalis micrantha, Plantago hispidula Oxalis micrantha 0.0006 0.0020 0.314 1.08e™%  <2e71¢ 0.115
and Bromus berteroanus), and functional Plantago hispidula 2.01e™®  0.0003 0.733 597¢7%7  <2e 0.992
groups (native and exotic) between Bromus berteroanus  0.764 0.0006 0912 0.503 <2¢ 0445
treat ts, , and plot. . _
reatments, years, and pio Natives 0.073 0.0001  0.652 0.013 <2¢ 0913
Exotics 0.102 0.0020 0.917 0.024 3.61e7% 0.495
Total 0.013 <2e¢  0.686 0.015 <2e716 0.804

Note: Bold values indicate statistically significant differences.

3.3 | Joint impacts of herbivore and variation in
precipitation on ephemeral plant community and seed
bank dynamics

Our structural equation modeling (SEM) reveals distinct effects
of interannual variation in precipitation and herbivory on the dy-
namics of the ephemeral plant community and the soil seed bank
(Figure 5a,b). In both treatments, interannual variation in precipita-
tion positively impacted Plantago hispidula cover and exotic plant
species richness. Only in the absence of herbivores did precipitation
positively affect native plant richness, while precipitation positively
impacted native seed species richness where herbivores were pre-
sent. As expected, no significant relationship was observed between
small mammals and other variables without herbivory.

The SEM model for the ephemeral plant community and soil seed
bank with herbivores fit the data well (;(2=0.535 with p=0.997 and
six degrees of freedom, and Fisher's C=18.021 with p=0.115 and
12 degrees of freedom). This model indicates that native plant rich-
ness is positively and strongly influenced by Plantago hispidula cover,
but is negatively affected by small mammals (Figure 5a). Finally, we
found that native plant richness increases exotic plant species rich-
ness, while exotic plant richness increases native seed species rich-
ness (Appendices S6-S8).

The SEM model for the ephemeral plant community and soil
seed bank without herbivores also fit the data well (y?=0.863
with p=0.649 and two degrees of freedom and Fisher's C=3.727
with p=0.444 and four degrees of freedom). In contrast, this SEM
model shows a loss of the regulatory effect of Plantago hispidula on
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FIGURE 4 (a) Range clocks showing temporal shifts in the abundance of three dominant native ephemeral plant species, Bromus
berteroanus (red), Oxalis micrantha (light blue), and Plantago hispidula (magenta), and two functional groups, native (green) and exotic (yellow),
with and without herbivores in terms of plant cover and seed abundance. Vertical black lines represent study years (2009-2019). Years with
high precipitation are represented in red. (b, c) Venn diagram analysis of ephemeral plant species (green) and seed bank (blue), respectively,
for each treatment (with and without herbivores). Each circle represents the number of species in the first (2009) and last (2019) sampling
year; where circles overlap, species that occur in both years are shown, and non-overlapping parts of the circles show unique species.
Numbers in each section of the Venn diagram represent the number of species.

native plant species richness, while Plantago hispidula reduced exotic
plant species richness and increased native seed species richness
(Figure 5b). Finally, Plantago hispidula and exotic species richness of
seeds jointly and directly increased native species richness of seeds
(Appendices S6, S9, 510).

4 | DISCUSSION

Native herbivores are essential for regulating plant communities
and soil seed banks (Koerner et al., 2014; Roy et al., 2020). How-
ever, climatic variability in arid and semi-arid ecosystems can mask
the real effect of herbivores (Jia et al., 2018). In this study, we at-
tempted to elucidate the impacts of small mammals on plant and
seed dynamics of annual plants. Here, we found that the absence
of herbivores alters ephemeral plant community dynamics more
strongly than that of the soil seed bank, suggesting that either
buffering effects or bet-hedging are dominant strategies in this
ecosystem (Plue et al., 2021). Our SEM indicated that herbivory
directly and negatively regulates native plant richness, which were
largely canceled out by the indirect effects of precipitation, which
acted upon native plant species richness via the abundance of
Plantago hispidula, the dominant species in the experiment. Our
results suggest, therefore, that abiotic conditions regulate ephem-
eral plant community and seed bank dynamics both directly and
indirectly to a greater extent than herbivores.

4.1 | Dominant species as regulators of ephemeral
plant and soil seed bank dynamics

In our SEM models, we initially hypothesized that Plantago hispidula
would mediate the effects of small mammals on plant richness and,
consequently, affect native and exotic seed richness. However, we
found that micromammals do not directly regulate the abundance of
dominant species. Rather, we find that precipitation impacts posi-
tively on native plant species richness through its effects on Plan-
tago hispidula and directly on exotic plant richness in communities
with herbivores, whereas in communities without herbivores the
effect of precipitation is direct and positive for both native and ex-
otic plant richness. Interestingly, in the absence of herbivores, there
was a higher abundance of Plantago hispidula, which —depending
on the context—may limit the species richness of exotic plant spe-
cies. These results are consistent with previous studies showing that
dominant species can be good competitors and prevent the spread
of exotic species (e.g., Fargione et al., 2003). This result is also par-
tially consistent with what other authors have postulated, that is,
that dominant species often monopolize resources and influence
community structure, including species diversity (Sasaki & Lauen-
roth, 2011; Koerner et al., 2018). Therefore, reduced dominance (or
higher evenness) may be directly related to an increased availability
of limiting resources such as light, nutrients and water and may lead
to an increased abundance of less common species, colonization of

new species, and reduced local extinctions (Kigel et al., 2021). We
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FIGURE 5 Directand indirect effects of interannual variation

in precipitation and herbivore abundance on the dynamics of
native and exotic ephemeral plants and the seed bank. (a) Here, we
evaluate these effects in communities with herbivores and, in (b), in
communities without herbivores using structural equation models
(SEM). Arrows indicate the relationship between variables and

are proportional to the strength of the standardized coefficients.
Solid black lines indicate positive relationships and solid red lines
indicate negative relationships. The numbers adjacent to the
arrows are standardized path coefficients and indicate the effect
size of the relationship. The model fit with herbivores has the
following parameters;(2=0.535 with p=0.997 and six degrees of
freedom, and Fisher's C=18.021 with p=0.115 and 12 degrees

of freedom. The model fit without herbivores has the following
values:;(2=0.863 with p=0.649 and two degrees of freedom and
Fisher's C=3.727 with p=0.444 and four degrees of freedom (more
information on the model in Appendices S6-510).
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did not find a direct link between herbivory and the abundance of
Plantago hispidula, although its abundance is higher in plots without
herbivory. This finding suggests that the effects of small herbivores
may reflect that they tend to be more selective in their diet and con-
sume less plant biomass due to their lower body mass, which has
a similar effect on the abundance of most ephemeral plant species
and the maintenance of community structure (Jia et al., 2018), un-
like the effects expected from large herbivores that mainly consume
dominant plants (Gutiérrez et al., 1997; Maron et al., 2012; Larios
etal., 2017).

4.2 | Temporal patterns of ephemeral plant
communities and the soil seed bank

While our structural equation modeling (SEM) analyses indicate that
precipitation plays a central role in regulating the richness of ephem-
eral plant communities, as expected in the context of an arid study,
these patterns do not hold consistently when examining herbivore
impact. In particular, this discrepancy occurs despite the fact that
precipitation levels are uniform in both herbivore presence and ab-
sence scenarios. In the presence of herbivores, our results show a
clear trend. Here we observe a decrease in the cover and diversity
of the total plant community, including native species. In contrast,
the cover of exotic species shows an increase (Table 1 and Figure 2).
Our SEM suggests that, compared to the positive effect of Plantago
hispidula abundance, herbivore abundance has a negative effect on
native plant richness, albeit of a smaller magnitude. This effect indi-
rectly extends to exotic plant species. Conversely, in the absence of
herbivores, we observed a direct negative effect of Plantago hispidula
abundance on exotic plant richness. Together, these results suggest
that herbivory increases the diversity of ephemeral plant communi-
ties. This may occur by reducing competition between plants or by
increasing resource availability (Tilman & Pacala, 1993). In addition,
short periods of restricted species dominance caused by herbivores
may increase the abundance of exotic plant species, which are often
more opportunistic and more readily established than native species
(Hillebrand et al., 2008; Hooper et al., 2012; Mortensen et al., 2018).
Furthermore, the presence of small herbivores can contribute to
an increase in ephemeral plant species richness through mecha-
nisms such as burrow construction (Hillebrand et al., 2008; Hooper
et al., 2012). This activity can create favorable conditions for germi-
nation, facilitate the redistribution of nutrients and even aid in the
dispersal of seeds (Maron & Vila, 2001; Escobedo et al., 2017).

We found that ephemeral plant community dynamics are mark-
edly different from soil seed bank dynamics (Figures 2 and 3). Our
results support the idea that the structure of seed banks is more
resilient to long-term changes than that of ephemeral plant commu-
nities (DeMalach et al., 2021; Plue et al., 2021). First, our analysis
showed that, although seed abundance in the presence of herbiv-
ory is low, seed bank structure was similar over time, in contrast to

the greater interannual fluctuations in plant community structure
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(Figure 4). Secondly, we found that seed turnover rates did not vary
between years or treatments, in contrast to that of plants, which
only differed between years (Appendix S4). This interannual varia-
tion is indirectly associated with interannual variation in rainfall, the
main limiting factor in our study system (Figure 5). This finding is
consistent with the idea of the ability of some species to hold out
until better conditions allow germination and thus remain in the seed
bank until the next season, a mechanism known as the storage effect
(Facelli et al., 2005; Chesson et al., 2012).

Our results indicate that ephemeral plant community and soil
seed bank dynamics are influenced by interannual rainfall variabil-
ity, in addition to the presence of small herbivores. We found that
the diversity of the ephemeral plant community, the cover of na-
tive species, and the cover of Plantago hispidula increased in wet
years (Figure 2). This agrees with previous research at the study site
(Gutiérrez et al.,, 1993a, 1993b; Gutiérrez et al., 1997). In addition,
there was an increase in the abundance of seeds in the soil bank in
wet years (Figure 4). These results confirm that the seed bank has a
delayed but positive response to increased rainfall, as reported in a
previous study (Gutiérrez & Meserve 2000, 2003). Our results show
changing patterns of plant and seed abundance (Figure 4). High-
rainfall years had higher plant cover and lower seed abundance, with
opposite patterns in dry years. For example, in 2017, native plant
cover in communities with herbivory averaged 54.86%, while seed
abundance was 91 seeds per cm®, equivalent to 10% of the abun-
dance in a high-rainfall year. In contrast, in 2018, one year after the
rainfall event and coincidentally a dry year, native plant cover was
15%, and seed abundance was 274 seeds per cm®. Annual plants de-
pend on the storage effect to persist, especially in semi-arid and arid
ecosystems (Chesson et al., 2012; Sotomayor & Gutiérrez, 2015). In
years with favorable conditions, e.g., high rainfall, germination rates
often increase, leading to a decrease in seeds in the soil, but in the
following season, they also produce more seeds (Funes et al., 1999;
Clauss & Venable, 2000; Fenner et al., 2005; Ooi, 2012). Records
indicate that extreme ENSO-related precipitation events may act
as periods of seed bank replenishment, resulting in years with less
precipitation in which decreases in seed density are not substantial
(Holmgren et al., 2006). There is increasing empirical evidence that
soil seed banks are a vital component in maintaining plant biodi-
versity under climate change through mechanisms such as rescue
and storage effects (Chesson, 2000; Royo & Ristau, 2013; Vand-
vik et al., 2016; Plue et al., 2021), gene pool enhancement (Hon-
nay et al.,, 2008), and demographic buffering capacity (Piessens
et al., 2004).

Our results show that the abundance of Plantago hispidula and
interannual variation in precipitation, plays a key role in regulating
plant richness. In the presence of herbivores, there is a clear positive
impact on the richness of native plant species. This positive effect
is direct and operates indirectly through the enhancement of native
plant richness, subsequently influencing the richness of exotic plant
species. On the contrary, when herbivores are absent, their influ-
ence takes a negative turn, directly affecting the richness of exotic
species. On the other hand, our results highlight the role of the seed

bank as a possible buffer for changes associated with interannual
variation in rainfall, which indirectly mediates ephemeral plant com-
munity dynamics. Although the ephemeral plant community shows
a response to climatic variation in semi-arid ecosystems, long-term
experiments are a crucial tool to determine the potential effects of
other drivers of global change that may only become apparent over

longer time periods.
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