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Abstract—This paper presents a novel method to calculate the
cross-correlation of signals using dynamic predictive sampling.
The primary application is to save computing overhead for
wearable devices that monitor biomedical signals. Compared to
the conventional Nyquist-rate data acquisition systems, dynamic
predictive sampling saves data throughput by only recording
the digital value of the turning points in the analog waveform.
However, it generates a non-uniform sampled sequence with both
amplitude and timestamp data. To calculate the cross-correlation
of the recorded waveform, we propose an area-based method that
utilizes the Jaccard Index instead of using interpolations. Based
on our simulation result, compared to the conventional cross-
correlation that uses interpolation for nonuniformly sampled
signals, the proposed Jaccard Index method saves computing
resources for dynamic predicted sampling sequences and provides
better linearity.

Index Terms—nonuniform sampling, dynamic predictive sam-
pling, cross-correlation

I. INTRODUCTION

Wearable biosensors are expecting low-power sensing and
computing systems to save power and extend battery life,
especially for devices that perform long-term monitoring.
Examples could be found for long-term electrocardiogram
(ECG) sensors and wearable Electromyography (EMG) sen-
sors. However, the conventional Nyquist-rate sampling method
may generate much unnecessary data that overload the signal
processing devices [1], which increases the system power.
Level-crossing sampling may introduce insertion and deletion
errors, which introduce drifts in the reconstructed waveform
[2]. Recently, a dynamic predictive sampling method has been
proposed [3], [4], which is based on predicting the digital
value in slopes. Since it only records the digital value of the
unsuccessful predictions, which are the turning points in the
analog signal, the dynamic predictive sampling system can
greatly reduce the output data amount. However, its output
data contains both amplitude and timestamp information of the
turning points, which is difficult to process using conventional
digital signal processing (DSP) algorithms.

As an example, cross-correlation measures the similarity
between two signals or a signal with a template, which is an
important signal-processing task for biomedical applications.
Examples of applying cross-correlation in biomedical data
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processing can be found in ECG [5], EMG [6], [7], and
electroencephalogram (EEG) [8], [9] applications. Although
cross-correlation algorithms are well-studied for uniform sam-
pled signals, it is difficult to be applied to dynamic predictive
sampling signals. This is because those algorithms are mostly
based on the assumption that the data is uniformly sampled
by a fixed-rate clock. In order to apply conventional DSP
algorithms, interpolation methods were often applied [10],
which generate much unnecessary data that undermines the
advantage of using dynamic predictive sampling and increases
system power. Therefore, efficient algorithms are expected for
processing nonuniform sampling data from dynamic predictive
sampled signals.

In order to solve the aforementioned problem and avoid
using interpolation for nonuniform sampling signals, we pro-
pose a simple method to calculate cross-correlation using the
area method. The proposed method borrows the idea of the
Jaccad index [11] in calculating the overlap between two areas.
The method first calculates the average of the two signals,
and then aligns the two signals in the time domain. This can
be achieved since in some applications such as ECG, the R-
peak can be identified using mature algorithms [12]. After
that, the overlap and non-overlap areas of the two signals
are calculated using only the amplitude and timestamp of the
nonuniformly sampled signals. The cross-correlation is then
calculated by comparing the ratio between the overlapping area
and the non-overlapping area. The proposed method does not
use interpolation, which can save much data storage space and
computing overhead. The remainder of the paper is structured
as follows: Section II describes the proposed system. Section
IIT presents the simulation results of the proposed method
and compares it with the conventional method. Section V
concludes the paper.

II. SYSTEM DESIGN

The proposed system computes the cross-correlation be-
tween two input signals from dynamic predictive sampling
systems. In this section, we first briefly describe the dynamic
predictive sampling method and the structure of the nonuni-
form sampling signals, then we present the proposed algorithm
for computing cross-correlation for such nonuniform sampling
signals.
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A. Dynamic Predictive Sampling

Dynamic Predictive Sampling selects the turning point in
an analog waveform and performs quantization only on these
selected points. This is done by using the quantized digital
values of the first two sampling points to predict the next
sampling points in the digital domain. The predicted digital
value of the next sampling points is added and subtracted by
a predefined Delta value to form an upper threshold and a
lower threshold. The two thresholds are then converted into
analog values and compared with the actual analog value of
the next sampling. If the sampling value is between the two
thresholds, the prediction is successful and no quantization is
performed for the sampling value. The predicted digital value
is used for the next prediction until an analog sampling value is
out of the window between the two thresholds. In such a case,
a full quantization is performed, and the timing between the
failed predictions is recorded as a timestamp. Those selected
sampling points are turning points in the analog waveform.
The output of the dynamic predictive sampling contains both
the amplitude of the turning points and the timestamp between
the turning points.
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Fig. 1. Predictive Sampling (Left) Sampling point selection and output data
format (Right) Selecting sampling points using prediction and thresholds [3].

Fig. 1 presents the operation of a Dynamic Predictive
Sampling System. The first two samplings of the input analog
signal are converted into digital values using a successive ap-
proximation register (SAR) analog-to-digital converter (ADC).
Then in the digital domain, the digital values are used to
compute the prediction of the new sampling data. After that,
the predicted digital values are added and subtracted by a
pre-defined Delta value to obtain the digital values of an
upper and a lower threshold. Thereafter, a digital-to-analog
converter (DAC) converts the threshold digital values into
analog values. The analog threshold values are then compared
with the new analog samplings to decide if the prediction is
successful. Unsuccessful prediction indicates a turning point
in the analog waveform, which resets a timer that records the
timing between the unsuccessful predicted sampling points.
In other words, the output of the dynamic predictive sampling
contains a 10-bit digital amplitude value of a turning point
and a 10-bit digital timing data that measures the timestamp
between the turning points. A circuit diagram with a fabricated
chip photo of the Dynamic Predictive sampling ADC was
reported in our prior work as shown in Fig. 2 [4].
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Fig. 2. (a) Block diagram of the Dynamic Predictive Sampling ADC. (b)
Chip microphoto. [4]

B. Cross-correlation of nonuniform sampling data

Cross-correlation analysis measures the similarity between
two waveforms. For example, in biomedical applications,
cross-correlation can be applied to check if a waveform is
similar to a template waveform, which could be a stored
normal or abnormal signal. The cross-correlation coefficient
is calculated by the convolution of the two waveforms with
one waveform fixed and the other waveform shifted by a time
variable 7 called displacement or lag. The maximum value
of the cross-correlation is achieved when the two signals are
synchronized by the time variable. The maximum value of the
cross-correlation is the correlation coefficient which indicates
the similarity of the two signals.

The possible value of the correlation coefficient C' is
between +1 and —1. Here +1 means the two signals are
the same; —1 means the two signals are reversed of each
other; and 0 means the two signals are not related to each
other. If the two waveforms are acquired by a fixed-rate
sampling process, the correlation is calculated by shifting the
waveform by one clock cycle each time, which results in a
high computing and data storage overhead especially when
the sampling rate is high. Fortunately, in certain applications,
the synchronization process could be skipped. For example, in
ECG monitoring, since the R peak can be reliably detected, the
correlation coefficient can be directly calculated after aligning
the location of the R peak. However, the large data amount
still requires a high computing overhead for calculating the
correlation coefficient, which limits its implementation on
battery-powered wearable devices.

A Amplitude

= Signal S1
Signal S2

I Overlap
I Non-overlap

Fig. 3. Overlap and Non-overlap of the two signals using dynamic predictive
sampling S1 and S2 for calculating the Jaccard Index.

The output of the dynamic predictive sampling system
contains a two-dimensional vector S;(A,t), where A denotes
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Fig. 4. Signals for evaluating the proposed cross-correlation method. From top to down: Sine wave with different noise Sigma levels; From left to right:
dynamic predictive sampling with different Delta levels: a higher Delta level results in fewer sampling points and higher distortion.

the amplitude data of the turning point and ¢ represents the
timing between the turning points. Such nonuniform sampling
data can be applied for calculating cross-correlation using
a conventional cross-correlation algorithm by interpolation.
Such interpolation converts the two-dimensional data S;(A, t)
back to one-dimensional data S;(A) which assumes that the
timing between each sampling is the same as the minimum
value t. To avoid the high computing and storage overhead
of interpolation, we propose a novel method that can com-
pute the cross-correlation coefficient between different two-
dimensional vectors S1;(A,t) and S2;(A,¢). The algorithm
borrows the concept of the Jaccard Index which calculates the
overlap using the area method. The proposed method contains
four steps: averaging, calculating overlap, calculating non-
overlap, and calculating the Jaccard Index.

The first step removes the DC component of the signal by
subtracting the average value from the signal, which can be
achieved by (1) and (2).

S1i(A,t) = S1;(A,t) — S1;(A, 1) (1)

S20(A,t) = S2;(A,t) — S2,(A, 1) ()

Where S1;(A,t) and S2;(A,t) denote two signals that
are being compared using the Jaccard Index. S1;(A,t) and
S52;(A,t) denote the average of S1;(A,t) and S2;(A,t)
respectively. S15(A,t) and S2(A,t) are the waveforms with
an average value of 0. The area of overlap between two
signals S1/(A,t) and S2}(A,t) is obtained, which is the area
that both signal S1;(A,¢) and S2}(A,t) have in common in
both positive and negative regions, as shown in Fig. 3. Using

linear reconstruction on both signals, the overlap area can
be geometrically approximated using the area of trapezoids.
Taking a summation of all areas of overlap between signal
S1;(A,t) and S2[(A,t), the overlap area is obtained by (3):

Overlap Area = |S1| ﬂ |52 (3)

The non-overlap area can also be obtained geometrically by
finding the area between S1;(A,¢) and S2;(A,t). Then the
total area is given by the sum of the overlap and non-overlap
area. The total area can be calculated by (4):

Total Area = |S1|| J|S2| (4)
Finally, the Jaccard Index can be obtained by (5):
1511152
Jaccard Indexr = ——F——— 5
1511 U152

The Jaccard Index represents the similarity of the two wave-
forms from the dynamic predictive sampling results and can
be calculated without interpolation. Since dynamic predictive
sampling can reduce more than 90% of the data amount
when the signal is sparse, this method can save storage and
computing overhead.

III. EXPERIMENTAL RESULTS

To validate the proposed Jaccard Index method for eval-
vating the cross-correlation of signals obtained by dynamic
predictive sampling, we choose sinusoidal waves with different
noise levels (Sigma) and acquired by different Delta steps. As
shown in Fig. II-B, the first column represents sine waves
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with different noise levels sampled with Delta = 0, which
means they are sampled by a fixed-rate clock. In the next
three columns, the signals are sampled with a higher Delta
value, which means the number of sampling points is reduced.
A higher Delta value represents a higher compression factor
with the cost of a higher distortion of the signal. The cross-
correlation coefficient is calculated between the first row
(Sigma=0) and one of the other rows with different Sigma val-
ues. Both the conventional cross-correlation coefficient method
and the proposed Jaccard Index method are applied in these
calculations and the results are compared between the two
methods. When calculating the conventional cross-correlation
coefficient in dynamic predictive sampled signals, the result is
calculated using interpolation.
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Fig. 5. Conventional cross-correlation coefficient between an ideal sine wave
and noisy sine waves acquired by dynamic predictive sampling.
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Fig. 6. Jaccard Index between an ideal sine wave and noisy sine waves
acquired by dynamic predictive sampling.
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Index, Jaccard Index has better linearity.

Fig. 5 shows that when the noise level increases, the
correlation between the noisy sine wave and the ideal sinewave
decreases as expected. Even if both the ideal sine wave and
the noisy sine wave are obtained using dynamic predictive
sampling methods with different Delta values. This means that
while a high Delta value reduces the data amount, it does
not affect the calculation of the conventional cross-correlation
coefficient. However, since interpolation is applied in this
method, the storage and computing overhead is much higher
than using the proposed Jaccard Index method. As shown in
Fig. 6, the same simulation was performed using the proposed
Jaccard Index method. The results show that the Jaccard Index
can also be used to evaluate the cross-correlation between the
ideal sine wave and the noisy sine wave, while the different
Delta values in dynamic predictive sampling also do not affect
the result. Moreover, as shown in Fig. III, the proposed Jaccard
Index method achieves higher linearity than the conventional
cross-correlation coefficient in terms of the Sigma levels.

IV. CONCLUSION

This paper proposed a novel method to evaluate the cross-
correlation between two signals acquired using dynamic pre-
dictive sampling. The method is to apply the Jaccard Index
method to calculate the areas in the non-uniform sampled
signals. So that the cross-correlation calculation does not need
to perform interpolation as in calculating the conventional
cross-correlation coefficient method. The simulation results
show that the proposed Jaccard Index method achieves a
similar result as the conventional cross-correlation method
with better linearity. Since dynamic predictive sampling can
achieve a high compression factor, the proposed method has
the potential to greatly reduce the data storage and computing
overhead for wearable bio-signal acquisition and related signal
processing systems.
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