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Abstract—This paper presents a novel method to calculate the
cross-correlation of signals using dynamic predictive sampling.
The primary application is to save computing overhead for
wearable devices that monitor biomedical signals. Compared to
the conventional Nyquist-rate data acquisition systems, dynamic
predictive sampling saves data throughput by only recording
the digital value of the turning points in the analog waveform.
However, it generates a non-uniform sampled sequence with both
amplitude and timestamp data. To calculate the cross-correlation
of the recorded waveform, we propose an area-based method that
utilizes the Jaccard Index instead of using interpolations. Based
on our simulation result, compared to the conventional cross-
correlation that uses interpolation for nonuniformly sampled
signals, the proposed Jaccard Index method saves computing
resources for dynamic predicted sampling sequences and provides
better linearity.

Index Terms—nonuniform sampling, dynamic predictive sam-
pling, cross-correlation

I. INTRODUCTION

Wearable biosensors are expecting low-power sensing and

computing systems to save power and extend battery life,

especially for devices that perform long-term monitoring.

Examples could be found for long-term electrocardiogram

(ECG) sensors and wearable Electromyography (EMG) sen-

sors. However, the conventional Nyquist-rate sampling method

may generate much unnecessary data that overload the signal

processing devices [1], which increases the system power.

Level-crossing sampling may introduce insertion and deletion

errors, which introduce drifts in the reconstructed waveform

[2]. Recently, a dynamic predictive sampling method has been

proposed [3], [4], which is based on predicting the digital

value in slopes. Since it only records the digital value of the

unsuccessful predictions, which are the turning points in the

analog signal, the dynamic predictive sampling system can

greatly reduce the output data amount. However, its output

data contains both amplitude and timestamp information of the

turning points, which is difficult to process using conventional

digital signal processing (DSP) algorithms.

As an example, cross-correlation measures the similarity

between two signals or a signal with a template, which is an

important signal-processing task for biomedical applications.

Examples of applying cross-correlation in biomedical data
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processing can be found in ECG [5], EMG [6], [7], and

electroencephalogram (EEG) [8], [9] applications. Although

cross-correlation algorithms are well-studied for uniform sam-

pled signals, it is difficult to be applied to dynamic predictive

sampling signals. This is because those algorithms are mostly

based on the assumption that the data is uniformly sampled

by a fixed-rate clock. In order to apply conventional DSP

algorithms, interpolation methods were often applied [10],

which generate much unnecessary data that undermines the

advantage of using dynamic predictive sampling and increases

system power. Therefore, efficient algorithms are expected for

processing nonuniform sampling data from dynamic predictive

sampled signals.

In order to solve the aforementioned problem and avoid

using interpolation for nonuniform sampling signals, we pro-

pose a simple method to calculate cross-correlation using the

area method. The proposed method borrows the idea of the

Jaccad index [11] in calculating the overlap between two areas.

The method first calculates the average of the two signals,

and then aligns the two signals in the time domain. This can

be achieved since in some applications such as ECG, the R-

peak can be identified using mature algorithms [12]. After

that, the overlap and non-overlap areas of the two signals

are calculated using only the amplitude and timestamp of the

nonuniformly sampled signals. The cross-correlation is then

calculated by comparing the ratio between the overlapping area

and the non-overlapping area. The proposed method does not

use interpolation, which can save much data storage space and

computing overhead. The remainder of the paper is structured

as follows: Section II describes the proposed system. Section

III presents the simulation results of the proposed method

and compares it with the conventional method. Section V

concludes the paper.

II. SYSTEM DESIGN

The proposed system computes the cross-correlation be-

tween two input signals from dynamic predictive sampling

systems. In this section, we first briefly describe the dynamic

predictive sampling method and the structure of the nonuni-

form sampling signals, then we present the proposed algorithm

for computing cross-correlation for such nonuniform sampling

signals.
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A. Dynamic Predictive Sampling

Dynamic Predictive Sampling selects the turning point in

an analog waveform and performs quantization only on these

selected points. This is done by using the quantized digital

values of the first two sampling points to predict the next

sampling points in the digital domain. The predicted digital

value of the next sampling points is added and subtracted by

a predefined Delta value to form an upper threshold and a

lower threshold. The two thresholds are then converted into

analog values and compared with the actual analog value of

the next sampling. If the sampling value is between the two

thresholds, the prediction is successful and no quantization is

performed for the sampling value. The predicted digital value

is used for the next prediction until an analog sampling value is

out of the window between the two thresholds. In such a case,

a full quantization is performed, and the timing between the

failed predictions is recorded as a timestamp. Those selected

sampling points are turning points in the analog waveform.

The output of the dynamic predictive sampling contains both

the amplitude of the turning points and the timestamp between

the turning points.

Initial Points

Removed Points

Following Points

Original Signal

Predicted Value

Predicted Thresholds

Succesful Predictions

No Quantization Process

Unsuccesful Predictions

Selected for Quantization

Time

Amplitude

Slope Level-crossing 

         Sampling

Time

A
m

p
lit

u
d

e

Sampling References

Quantization Points

Amplitude Data
  Timestamp Data

Fig. 1. Predictive Sampling (Left) Sampling point selection and output data
format (Right) Selecting sampling points using prediction and thresholds [3].

Fig. 1 presents the operation of a Dynamic Predictive

Sampling System. The first two samplings of the input analog

signal are converted into digital values using a successive ap-

proximation register (SAR) analog-to-digital converter (ADC).

Then in the digital domain, the digital values are used to

compute the prediction of the new sampling data. After that,

the predicted digital values are added and subtracted by a

pre-defined Delta value to obtain the digital values of an

upper and a lower threshold. Thereafter, a digital-to-analog

converter (DAC) converts the threshold digital values into

analog values. The analog threshold values are then compared

with the new analog samplings to decide if the prediction is

successful. Unsuccessful prediction indicates a turning point

in the analog waveform, which resets a timer that records the

timing between the unsuccessful predicted sampling points.

In other words, the output of the dynamic predictive sampling

contains a 10-bit digital amplitude value of a turning point

and a 10-bit digital timing data that measures the timestamp

between the turning points. A circuit diagram with a fabricated

chip photo of the Dynamic Predictive sampling ADC was

reported in our prior work as shown in Fig. 2 [4].
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Fig. 2. (a) Block diagram of the Dynamic Predictive Sampling ADC. (b)
Chip microphoto. [4]

B. Cross-correlation of nonuniform sampling data

Cross-correlation analysis measures the similarity between

two waveforms. For example, in biomedical applications,

cross-correlation can be applied to check if a waveform is

similar to a template waveform, which could be a stored

normal or abnormal signal. The cross-correlation coefficient

is calculated by the convolution of the two waveforms with

one waveform fixed and the other waveform shifted by a time

variable τ called displacement or lag. The maximum value

of the cross-correlation is achieved when the two signals are

synchronized by the time variable. The maximum value of the

cross-correlation is the correlation coefficient which indicates

the similarity of the two signals.

The possible value of the correlation coefficient C is

between +1 and −1. Here +1 means the two signals are

the same; −1 means the two signals are reversed of each

other; and 0 means the two signals are not related to each

other. If the two waveforms are acquired by a fixed-rate

sampling process, the correlation is calculated by shifting the

waveform by one clock cycle each time, which results in a

high computing and data storage overhead especially when

the sampling rate is high. Fortunately, in certain applications,

the synchronization process could be skipped. For example, in

ECG monitoring, since the R peak can be reliably detected, the

correlation coefficient can be directly calculated after aligning

the location of the R peak. However, the large data amount

still requires a high computing overhead for calculating the

correlation coefficient, which limits its implementation on

battery-powered wearable devices.
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Fig. 3. Overlap and Non-overlap of the two signals using dynamic predictive
sampling S1 and S2 for calculating the Jaccard Index.

The output of the dynamic predictive sampling system

contains a two-dimensional vector Si(A, t), where A denotes
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Fig. 4. Signals for evaluating the proposed cross-correlation method. From top to down: Sine wave with different noise Sigma levels; From left to right:
dynamic predictive sampling with different Delta levels: a higher Delta level results in fewer sampling points and higher distortion.

the amplitude data of the turning point and t represents the

timing between the turning points. Such nonuniform sampling

data can be applied for calculating cross-correlation using

a conventional cross-correlation algorithm by interpolation.

Such interpolation converts the two-dimensional data Si(A, t)
back to one-dimensional data Si(A) which assumes that the

timing between each sampling is the same as the minimum

value t. To avoid the high computing and storage overhead

of interpolation, we propose a novel method that can com-

pute the cross-correlation coefficient between different two-

dimensional vectors S1i(A, t) and S2i(A, t). The algorithm

borrows the concept of the Jaccard Index which calculates the

overlap using the area method. The proposed method contains

four steps: averaging, calculating overlap, calculating non-

overlap, and calculating the Jaccard Index.

The first step removes the DC component of the signal by

subtracting the average value from the signal, which can be

achieved by (1) and (2).

S1′
i
(A, t) = S1i(A, t)− S1i(A, t) (1)

S2′
i
(A, t) = S2i(A, t)− S2i(A, t) (2)

Where S1′
i
(A, t) and S2′

i
(A, t) denote two signals that

are being compared using the Jaccard Index. S1i(A, t) and

S2i(A, t) denote the average of S1i(A, t) and S2i(A, t)
respectively. S1′

i
(A, t) and S2′

i
(A, t) are the waveforms with

an average value of 0. The area of overlap between two

signals S1′
i
(A, t) and S2′

i
(A, t) is obtained, which is the area

that both signal S1′
i
(A, t) and S2′

i
(A, t) have in common in

both positive and negative regions, as shown in Fig. 3. Using

linear reconstruction on both signals, the overlap area can

be geometrically approximated using the area of trapezoids.

Taking a summation of all areas of overlap between signal

S1′
i
(A, t) and S2′

i
(A, t), the overlap area is obtained by (3):

Overlap Area = |S1|
⋂

|S2| (3)

The non-overlap area can also be obtained geometrically by

finding the area between S1′
i
(A, t) and S2′

i
(A, t). Then the

total area is given by the sum of the overlap and non-overlap

area. The total area can be calculated by (4):

Total Area = |S1|
⋃

|S2| (4)

Finally, the Jaccard Index can be obtained by (5):

Jaccard Index =
|S1|

⋂
|S2|

|S1|
⋃
|S2|

(5)

The Jaccard Index represents the similarity of the two wave-

forms from the dynamic predictive sampling results and can

be calculated without interpolation. Since dynamic predictive

sampling can reduce more than 90% of the data amount

when the signal is sparse, this method can save storage and

computing overhead.

III. EXPERIMENTAL RESULTS

To validate the proposed Jaccard Index method for eval-

uating the cross-correlation of signals obtained by dynamic

predictive sampling, we choose sinusoidal waves with different

noise levels (Sigma) and acquired by different Delta steps. As

shown in Fig. II-B, the first column represents sine waves
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with different noise levels sampled with Delta = 0, which

means they are sampled by a fixed-rate clock. In the next

three columns, the signals are sampled with a higher Delta

value, which means the number of sampling points is reduced.

A higher Delta value represents a higher compression factor

with the cost of a higher distortion of the signal. The cross-

correlation coefficient is calculated between the first row

(Sigma=0) and one of the other rows with different Sigma val-

ues. Both the conventional cross-correlation coefficient method

and the proposed Jaccard Index method are applied in these

calculations and the results are compared between the two

methods. When calculating the conventional cross-correlation

coefficient in dynamic predictive sampled signals, the result is

calculated using interpolation.
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Fig. 5. Conventional cross-correlation coefficient between an ideal sine wave
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Fig. 5 shows that when the noise level increases, the

correlation between the noisy sine wave and the ideal sinewave

decreases as expected. Even if both the ideal sine wave and

the noisy sine wave are obtained using dynamic predictive

sampling methods with different Delta values. This means that

while a high Delta value reduces the data amount, it does

not affect the calculation of the conventional cross-correlation

coefficient. However, since interpolation is applied in this

method, the storage and computing overhead is much higher

than using the proposed Jaccard Index method. As shown in

Fig. 6, the same simulation was performed using the proposed

Jaccard Index method. The results show that the Jaccard Index

can also be used to evaluate the cross-correlation between the

ideal sine wave and the noisy sine wave, while the different

Delta values in dynamic predictive sampling also do not affect

the result. Moreover, as shown in Fig. III, the proposed Jaccard

Index method achieves higher linearity than the conventional

cross-correlation coefficient in terms of the Sigma levels.

IV. CONCLUSION

This paper proposed a novel method to evaluate the cross-

correlation between two signals acquired using dynamic pre-

dictive sampling. The method is to apply the Jaccard Index

method to calculate the areas in the non-uniform sampled

signals. So that the cross-correlation calculation does not need

to perform interpolation as in calculating the conventional

cross-correlation coefficient method. The simulation results

show that the proposed Jaccard Index method achieves a

similar result as the conventional cross-correlation method

with better linearity. Since dynamic predictive sampling can

achieve a high compression factor, the proposed method has

the potential to greatly reduce the data storage and computing

overhead for wearable bio-signal acquisition and related signal

processing systems.
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