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Abstract— We introduce a cost-effective real-time 3-
dimensional localization and control system of a quad rotorcraft
Unmanned Aircraft System (UAS). The intended purpose of the
system is to be implemented in low-budget classrooms to teach
real-time closed-loop control of UASs and expand interest in
the field. The system’s localization technique only requires light-
emitting diode (LED) markers and a conventional webcam de-
vice. Relying on the sampled visual location data, a closed-loop
feedback control is developed for real-time stabilization. The
system can be implemented with less than 1% of the monetary
cost of a conventional motion capture system (MCS), which
allows more institutions to purchase and use the materials. To
validate our approach, the positional data from the proposed
localization system is compared to ground truth data from a
conventional MCS. Results from several real-time experiments
are provided to validate the reliability and applicability of the
localization system in UAS control.

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) are being offered as

a solution to civil, industrial, and military demands [1], [2].

Simple tasks such as the delivery of goods, remote visual

inspection, and dynamic communication networks can be

automated with UASs [2]. Making use of previously known

characteristics of a potential target of interest (geometry or

color), it would be possible to apply a tracking method like

the ones proposed in [3]–[5] to control the 3-dimensional

motion of the UAS while performing autonomous tasks.

Real-time target-of-interest localization is often achieved

by processing sensory data derived from the surrounding

environment. There are many factors to consider when

putting together a localization system, including the cost and

type of sensors used, type of environment (indoor/outdoor),

estimation accuracy/frequency, processing power available,

battery consumption, and line-of-sight requirements [6] [7]

Global localization is important because it provides the

capability for control of UASs in a global frame. This is

very useful for application in classroom demonstrations of
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Fig. 1. The proposed vision-based feedback control for UAS (a) the
localization system includes the RGB camera, the processing computer, the
target UAS, and the MCS system for comparison purposes. (b) the UAS
being identified and localized in a screen view, using an ellipse detection
algorithm for image processing.

closed-loop control systems that run in real time. It has been

shown that demonstration of theoretical concepts enhances

the amount of material that students retain [8]. One issue is

the fact that many secondary education institutions do not

have the resources or personnel to use global localization

systems.

This paper presents the design, development, and imple-

mentation of a low-cost monocular vision-based localization

and control system for UAS-related applications. Specifi-

cally for education and instruction purposes in low-budget

environments. The effectiveness of the system is evaluated

under several real-time closed-loop control experiments in a

laboratory environment, where a UAS is tasked to fly through

specific 3-dimensional trajectories, making use of the visual

data and a feedback control strategy.

Related Work

Vision-based localization is accomplished by process-

ing video data. These systems can include monocular

vision, stereo vision, and combinations of infrared/radio

light frequencies for superior accuracy and reliability [9].

Vision-based localization systems are used in many applica-

tions today, including self-driving cars, UASs, smartphones,

and other devices that can be equipped with such sen-

sors [10] [11]. The main challenge with implementing visual

localization in embedded systems, like a UAS, is obtaining20
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the highest possible accuracy and robustness with limited

computational resources and budget [10].

Visual-Inertial Relative Pose Estimation (VI-RPE) relies

on IMU data and a particle filter to localize a UAS equipped

with a constellation of markers in a video stream [12]. Ultra

Violet Radar (UVDAR) relies on markers separated from

the background by an optical filter to localize agents in a

leader-follower application [13]. A monocular localization

system can be adopted when using a constellation of markers

of known geometry. Equipping the UAS with this kind of

constellation facilitates its identification and isolation from

the background in any given video frame.

An additional challenge for localization tasks involving

small robotic agents like UASs is the constrained pro-

cessing power of embedded autopilots, which factors into

the frequency of localization data [14] [15]. This limita-

tion negatively impacts small robotic agents to accurately

determine their location and navigate effectively. Several

localization methods have reduced complexity or introduced

optimizations to prioritize these design goals [15]–[17].

Ultimately, developing an alternative, reliable, and accu-

rate localization system is crucial for any real-time exper-

imental scenario requiring autonomous tasks in the global

frame under a low budget.

Main Contributions

In this work, we present the development and implementa-

tion of an original localization and control system for UAS

applications. The system only relies on a single stationary

off-board imaging sensor as well as a known constellation of

markers onboard the UAS, which enables a fast and accurate

calculation of the 3-dimensional coordinates of the UAS in

a controlled laboratory environment. This is done by taking

the image data from the imaging sensor and computing

the relative location of the known constellation which can

be translated to a global localization frame. The proposed

system’s estimations are compared against ground truth data

provided by a conventional Motion Capture System (MCS).

We demonstrate the performance of the localization system

by testing three real-time pre-programmed flight paths using

a Proportional Integral Derivative (PID) controller for stabi-

lizing the motion of the UAS. We also show the application

of another type of control, Model Predictive Control (MPC),

under a point-regularization test. The proposed single-camera

localization’s latency and accuracy are also marginally ad-

justable to meet the end-user’s requirements.

Our research has the objective of disseminating the techni-

cal details for putting together a low-cost localization system

appropriate for education and classroom settings where funds

for a state-of-the-art MCS are not available. We expect that

this system can broaden teaching and research in localization

and control areas, not only for the UAS domain but also for

many scenarios relevant to robotic agents like human-robot

interaction and path planning.

II. PROBLEM STATEMENT

Advanced localization methods that can achieve high

accuracy and latency are also expensive and complex [18].

In most cases, they also require a long setup time and pose

potential restrictions concerning usage area [19]. For exam-

ple, the popular MCS localization area is limited to a fixed-

size volume based on image sensor placement. Additionally,

the hardware specifications and computer processing demand

required by MCSs increase their monetary cost.

MCSs, like the one that we use for validation at the

Unmanned Systems Laboratory from New Mexico State

University, often require several cameras, which must each

be secured to a ceiling/wall with additional hardware. Each

of these cameras is specialized and can cost more than 500

times the price of a conventional web camera [20], without

considering the additional mounting equipment, software,

and hardware needed to run the MCS.

A large number of secondary and technical schools world-

wide do not have the appropriate budget for acquiring MCSs,

and therefore they are unable to teach control system technol-

ogy topics with physical real-time systems in a global frame.

This makes it difficult for the students in such institutions to

get exposed to the subject unless they pursue external ex-

tracurricular activities like robotics competitions [21]. Even

in those scenarios, students usually don’t gain experience

working with complex robotics systems like UASs, until

university education or even later.

Taking into account these challenges, we propose a vision-

based localization and feedback control system that can be

implemented with just a single RGB camera, a light-emitting

diode (LED) strip, a laptop, and a robotic agent. We focus

on the stabilization of a small UAS platform, but the ideas

presented here can be applied to other similar and less

expensive robots as well. We expect that the ease of setup

and low cost of the system can be presented as a solution for

academic programs in the areas of localization and control.

III. VISION-BASED LOCALIZATION

The vision-based localization task relies on a single RGB

camera, a ring of LED markers installed onboard a target

UAS, and a control station computer. In this setup, a Full

HD Logitech web camera is used since the color consistency

is reliable and the UAS’s circle-shaped marker is easily

identified by color [4]. A moderately bright pink LED ring

powered by a 12v battery is equipped onto the edge of a

Parrot Bebop 2 for tracking. In addition to being able to

choose a color to contrast with the environment, the LED

ring is also able to provide localization in low-light settings.

However, the LED-enabled marker is not mandatory, and any

solid-colored circle identifier is sufficient for experimenting.

The processing system used for the computational workload

is a desktop equipped with an Intel Core i5-2400 3.10GHz

CPU.

The source code for the proposed localization and

experiment control can be found in a ROS package

through the following link: https://github.

com/NMSU-Unmanned-Systems-Laboratory/

EllipticalTrackingwithControls
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Fig. 2. Signal processing diagram showing the steps required for the localization of the UAS in real-time [4]

A. Elliptical Marker Image-Processing and Tracking

The image-processing flow diagram is shown in Fig. 2.

First, the RGB image is converted to a hue-saturation-value

(HSV) format and a threshold is applied to the image,

filtering out any pixels that do not fit in the desired color

range. Then, a canny edge detection filter is applied to extract

the edges of the segmented contours left in the image. Next,

a morphological closing operator is applied to fill any holes

within each contour that could break the elliptical shape.

After image pre-processing, the ellipse detection is done

by thresholding the pixel overlap of every remaining con-

nected contour with a predicted ellipse for the size of that

corresponding bounding box [22]. The contour pixel overlap

is calculated utilizing the OpenCV function fitEllipse.

The ellipse-fitting in the fitEllipse function is per-

formed by a least-squares approximation method [23]. Once

the elliptical markers are identified and detected, the pixel

coordinates of the ellipse are sent to the spatial localization

algorithm for computation of the 3-dimensional location.

B. Localization Calculations
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Fig. 3. Left: Previously verified geometry for the localization algorithm.
Right: measurement setup of the target ring [24].

The localization algorithm uses the edge pixel values

received from the ellipse detection process in the image.

Making use of the known properties of the circular marker,

the center of the target UAS in the image, (XO, YO), is

calculated as

XO = (XL +XR)/2 (1)

YO = (YL + YR)/2 (2)

Afterwards, the tangent value of azimuth angle φ and eleva-

tion angle θ, see Fig. 3, are acquired as:

tanφ = 2 ·XO ·
tan(Φ/2)

L
(3)

tan θ = 2 · YO ·
tan(Θ/2)

H
(4)

Where Φ and Θ are the Horizontal and Vertical fields of view

of the camera respectively, and L and H are the resolutions

of the width and height of the camera frame respectively as

seen in Fig. 3. Lastly, the radial distance ρ, which is the

distance between the center of the target markers and the

lens of the camera is obtained as

ρ2 =
(D

2
·

XO

|XO −XR|

)2

·
(

1 +
1

tan2 φ

)

(5)

The resulting polar coordinates are then translated to Carte-

sian coordinates and adjusted with a fixed value offset, in

such a way that the center coordinates of the single-camera

localization align with the chosen global frame.

IV. CLOSED-LOOP CONTROL

To organize the control of the UAS platform into a

serialized pipeline, we utilized the Robot Operating Sys-

tem (ROS). Through a series of ROS nodes, we were

able to orchestrate communication between multiple running

processes. These include the elliptical detection program,

the trajectory control program, the UAS onboard computer,

and the MCS for verification purposes. Our experiment

involves multiple control strategies. One of them consists

of a stabilization to a specific point in a 3-dimensional space

(regularization) using an MPC strategy. We also conducted

experiments where the UAS was tasked with traveling to
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distinct waypoints utilizing a PID controller [25]. All of

these tests make use of the positional data from our elliptical

vision-based system to show its accuracy and applicability.

The z-axis position of the UAS was simply held at a constant

value and thus is not presented explicitly in the results like

the x and y axes.

A. ROS Node Structure

Fig. 4. ROS experimental architecture explained concerning computational
hardware. The /Coordinates topic is a custom topic where our posi-
tional data is published. The other topics are used to receive verification
data from the MCS and control for the bebop UAS.

For the closed-loop system, there are three main computa-

tional devices to communicate between: The Control Station

running the UAS controller and experimental procedures,

the processor embedded in the UAS, and the computer

reporting the MCS ground truth data. Each of these systems

communicates via Ethernet or Wi-Fi through ROS nodes

and ROS topics that are hosted on the Control Station

computer. Drivers for the Bebop UAS [26], and MCS [27],

were used to generate their respective ROS nodes. Fig. 4

depicts the architecture of our ROS system and the topics

involved. The topics /bebop/takeoff, /bebop/land,

and /bebop/cmd vel are used for the Bebop commands

to enable takeoff, land, and control movements. The con-

trollers take in positional data from the elliptical-based

vision-based localization process and output command sig-

nals to be sent and enacted by the UAS. The heading of the

UAS is stabilized using an onboard IMU signal.

B. Experimental Setup

There are several physical and logical components that

we utilized to enable a basic closed-loop control scheme for

easy classroom implementation. The network communication

between devices is hosted on a general-purpose Linksys

EA9400 Wi-Fi Router (used for Optitrack communication),

in which both the main controlling computer and the MCS

computer are connected via Ethernet. Communication be-

tween the computers and the UAS was achieved by config-

uring the network interface on the Bebop UAS to directly

connect to the shared router. We used the off-board Full HD

Logitech webcam, placed on the ground, to capture video

for the elliptical detection and positional calculations of our

localization program. Finally, the Optitrack MCS consisting

of eight Primex22 infrared cameras installed around the

perimeter of the room is used for generating ground truth

and positional calculation data for comparison. A snapshot

depicting a portion of the experimental setup can be seen in

Fig.??. All components of the experimental setup, aside from

the MCS (ground truth) and Bebop UAS, can be purchased

and set within a budget less than %1 of a conventional MCS,

making it appropriate for implementation by educators in

academic programs with a low budget.

C. PID Component

To show the control applicability of our proposed local-

ization system, we utilized a PID controller to stabilize the

4 degrees of freedom on the UAS: x, y, z, and yaw. The

purpose of this test is to see if the UAS can be safely

and succinctly flown utilizing only the proposed localization

system and a simple controller so that the experiment can

be re-created in simple classroom settings. This test can be

used to instruct the properties of the controller, the physical

system, and how they interact and affect each other.

The simple-PID module in Python was adopted for

control purposes [25], with one PID module per degree of

freedom, i.e., x, y, z, and yaw. The inputs for this module

are the 3-dimensional positional data from our localization

system, three constant parameters KP , KI , KD, which we

heuristically determined, and a desired set-point coordinate.

The module’s output, u, is a control signal calculated as

u = KP e(t) +KI

∫

e(t) dt+KD

d

dt
e(t) (6)

where

e = setpoint coordinate − measured coordinate (7)

The PID constants for each degree of freedom for the

Bebop 2 were obtained through a heuristic method, and are

listed in Table I.

TABLE I

PID CONSTANTS FOR PARROT BEBOP 2.

Control Axis KP KI KD

X-Axis 0.35 0.006 0.40

Y-Axis 0.35 0.006 0.40

Z-Axis 0.60 0.003 0.20

Yaw-Axis 1.00 0.000 0.00

D. MPC Component

We addressed the MPC application using the proposed

localization system as well. The purpose of this test was

to show the implementation of a more complex controller,

while also highlighting some of the associated implemen-

tation attributes, such as data frequency management. The

computational cost of multi-variable systems, as well as

inequality and equality requirements on the states, inputs, and

outputs, are only a few of the issues that the MPC technique
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can address [28]. The advantage of MPC is then enabling

optimization of the current time/data slot while taking into

account upcoming future events. Therefore, MPC has the

capacity to predict motion and implement appropriate control

action.

To enable the replication of our MPC, the optimization

problem we adopted is formulated as

min
u

J(s(t),∆u(t), p)

s.t. umin ≤ u(t+ j) ≤ umax

smin ≤ s(t+ j) ≤ smax j = 1, ..., p

(8)

where s is the system state vector, u is the control input

vector, ∆u(t) = u(t)−u(t− 1), p is the prediction horizon,

and t is the sampling time. s(t + j|t) is the j step ahead

prediction of the system state at the current sampling time t.
The system’s behavior is chosen over the prediction horizon

with the help of a previously known or experimentally

identified dynamic model.

For experimental system identification purposes, experi-

mental flights under predefined trajectories are conducted,

during which control input signals (i.e. inputs) and UAS

states (i.e. outputs) data pairs are collected. Then, an ex-

tended least-squares (ELS) algorithm is applied to such data.

ELS was selected because it is applicable for identifying

linear time-invariant (LTI) discrete-time systems, even those

exhibiting time delay [29].

The structure of the Parrot Bebop UAS model adopted for

the proposed MPC is in the form of

sk+1 = Ask +Buk (9)

where the state vector sk = [x, vx, y, vy]
¦ represents the

UAS position (x, y) and velocity (vx, vy) in both x-axis and

y-axis. uk is the input vector uk = [ux, uy]
¦, and the output

is equal to the state vector. For this system, the time delay

is one sampling time (t = 1). The parameters identified by

ELS and collective data are the elements of matrices A and

B, thus the matrices of equation (9) are

A =









1 1 0 0
0 −0.69837 0 0
0 0 1 1
0 0 0 −0.69837









B =









0 0
0.23428 0

0 0
0 0.23428









(10)

The Bebop model was tuned in the high-frequency envi-

ronment of the verification MCS (236Hz). Once the dynamic

model is known, the objective function J can defined as

J =

p
∑

j=1

(||s(t+ j|t)− rd(t+ j)||2Q + ||∆u(t+ j)||2R)

+ ||s(t+ p|t)− rd(t+ p)||2Q
(11)

where rd(t + j) is the future reference trajectory over the

prediction horizon, Q and R are positive-definite weighting

matrices, and the last term is the terminal cost [30]. In MPC,

the cost function is usually formulated with the sum of the

squared control errors over the prediction horizon.

The cost function is based on equation (11), which needs

well-tuned parameters to achieve trajectory convergence.

Several experimental flights were conducted to tune these

parameters properly. The prediction horizon is selected as

p = 20 and the weighting matrices of Q and R are

Q =









0.09 0 0 0
0 0.01 0 0
0 0 0.09 0
0 0 0 0.01









R =

[

100 0
0 100

]

(12)

The cost function includes the error between all four states of

the UAS as well as their desired values rd = [rdx
, 0, rdy

, 0],
where rdx

and rdy
are the value of the desired set-point in

x-axis and y-axis, respectively. The desired value for both

velocity dynamics is set to zero.

V. VALIDATION AND CONTROL RESULTS

To test the real-time flight capability of the proposed

vision-based localization, measured localization estimates

were compared to and validated against those of the Op-

titrack MCS during a series of four experiments.

We conducted three experiments under the PID controller

to show the robustness of the localization system. These

include moving consecutively to three pre-determined way-

points (Multi-Waypoint) (a), following a circle trajectory (b),

and moving to a single waypoint (c). As our localization

system is not yet able to report the heading of the UAS, we

used onboard IMU data to stabilize the bebop UAS’s heading

to a constant value.

As shown in Fig. 5, the traces of the PID control flight

tests are plotted to benchmark the single-camera localization

measurements. The experiments show steady and secure

flight which is comparable to the performance obtained when

using the more expensive MCS for localization purposes.

There are minimal deviations from the desired trajectories,

showing that more advanced maneuvers and higher-velocity

tests could be carried out in the future. The real-time per-

formance of the vision-based localization and control can be

seen in recorded videos here:

• Multi-Waypoint Flight: https://www.youtube.

com/watch?v=6aSKvhgFl18

• Circle Trajectory Flight: https://www.youtube.

com/watch?v=tVHeEKWR5II

• Single Waypoint Flight: https://www.youtube.

com/watch?v=t9FuLl6j9z0

Positioning error between the two systems was calculated

by measuring the absolute difference between the proposed

single-camera localization and the MCS for each time step

and then taking an average of the resulting values. These
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Fig. 5. Experimental results of the localization system during PID control of position. 3D traces for three different flight tests with pre-determined flight
trajectories (X, Y, Z coordinate) recorded by the Ellipse tracking system and the benchmark MCS (units in meters).

values are reported in Table II along with the sampling rate

of each experiment.

TABLE II

AVERAGE MEASUREMENTS FOR PID FLIGHT TESTS.

Flight Measurements
Multi-

Waypoints (a)

Circle

Trajectory (b)

Single

Waypoint (c)

Avg. X error (m) 0.0243 0.0207 0.0093

Avg. Y error (m) 0.0192 0.0356 0.0192

Avg. Z error (m) 0.0090 0.0088 0.0051

Avg. Sampling Rate 51.3018Hz 46.2268Hz 48.9766Hz

The measurement error for the duration of the real-time

PID control tests is relatively low (0.0168m approx.), with

some higher peaks in error in high-velocity scenarios. The

peaks of error occur at points such as the transitions between

the waypoints and with certain directional movements in the

circular test, particularly the harsher corner motions. The

distance between the monocular camera and the UAS in the

trials ranges from 1m to around 3.6m, as the tracking space

of 3x3x5m for the MCS limits the testing area.

In addition to the three experiments using a PID controller,

we conducted a fourth single-point stabilization experiment

using an MPC. A Positional comparison between the pro-

posed localization and the MCS can be seen in Fig. 6. This

experiment shows additional real-time control applications

of the presented localization system.

The MPC in combination with the localization system

exhibits oscillations while performing stabilization on a

single point. The addition of the MPC optimization function

caused a slight delay from the localization estimation to

control output. This was due to the UAS model of the MPC

being tuned in the high-frequency environment of the MCS

(236Hz). Despite the oscillation period, the UAS was still

able to be controlled, and with a better model identification,

it could perform even better than the PID strategy [31].

Fig. 6. Real-time MPC control positional results of the UAS converging
on the point (x=0.0, y=0.5)
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VI. CONCLUSIONS

We presented the implementation of a low-cost vision-

based localization and feedback control system for Un-

manned Aerial Systems, which only requires a single RGB

camera, an elliptical marker, and a personal computer.

The proposed single-camera-based system provides a cost-

effective solution that can localize a dynamic target equipped

with the elliptical marker in three dimensions. The vision

algorithm is implemented through color-segmentation and

visual ellipse detection methods to obtain a relative-to-global

localization. The proposed system is simple to set up and

costs a fraction of many MCS-enabled solutions. It provides

a suitable solution for low-budget classroom instruction on

basic control system technology in real-time closed-loop

scenarios and can provide a physical demonstration of such

subjects. This introduction to physical control examples

would provide exposure to the students on the subject earlier

and increase interest in the field of UASs.

To demonstrate the performance of the system, four real-

time flight tests were conducted. The vision-based localiza-

tion and control system showed real-time maneuverability

when following pre-programmed flight trajectories.

Future work will consider improvements to the localization

system to provide an additional degree of localization for the

heading of the UAS instead of relying on an onboard IMU.

This can be achieved by adding a distinctive ’head’ to the

elliptical marker. There are also plans to add an interface

to improve the parameterization of the localization system

so that it can more easily be adjusted and implemented in

different environments.

In addition, more efficient interfaces are also being devel-

oped for changing the parameters of the localization system

so that it can easily be adapted to work with different

environments, targets, and UASs.
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