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Abstract— We introduce a cost-effective real-time 3-
dimensional localization and control system of a quad rotorcraft
Unmanned Aircraft System (UAS). The intended purpose of the
system is to be implemented in low-budget classrooms to teach
real-time closed-loop control of UASs and expand interest in
the field. The system’s localization technique only requires light-
emitting diode (LED) markers and a conventional webcam de-
vice. Relying on the sampled visual location data, a closed-loop
feedback control is developed for real-time stabilization. The
system can be implemented with less than 1% of the monetary
cost of a conventional motion capture system (MCS), which
allows more institutions to purchase and use the materials. To
validate our approach, the positional data from the proposed
localization system is compared to ground truth data from a
conventional MCS. Results from several real-time experiments
are provided to validate the reliability and applicability of the
localization system in UAS control.

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) are being offered as
a solution to civil, industrial, and military demands [1], [2].
Simple tasks such as the delivery of goods, remote visual
inspection, and dynamic communication networks can be
automated with UASs [2]. Making use of previously known
characteristics of a potential target of interest (geometry or
color), it would be possible to apply a tracking method like
the ones proposed in [3]-[5] to control the 3-dimensional
motion of the UAS while performing autonomous tasks.

Real-time target-of-interest localization is often achieved
by processing sensory data derived from the surrounding
environment. There are many factors to consider when
putting together a localization system, including the cost and
type of sensors used, type of environment (indoor/outdoor),
estimation accuracy/frequency, processing power available,
battery consumption, and line-of-sight requirements [6] [7]

Global localization is important because it provides the
capability for control of UASs in a global frame. This is
very useful for application in classroom demonstrations of
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Fig. 1. The proposed vision-based feedback control for UAS (a) the
localization system includes the RGB camera, the processing computer, the
target UAS, and the MCS system for comparison purposes. (b) the UAS
being identified and localized in a screen view, using an ellipse detection
algorithm for image processing.

closed-loop control systems that run in real time. It has been
shown that demonstration of theoretical concepts enhances
the amount of material that students retain [8]. One issue is
the fact that many secondary education institutions do not
have the resources or personnel to use global localization
systems.

This paper presents the design, development, and imple-
mentation of a low-cost monocular vision-based localization
and control system for UAS-related applications. Specifi-
cally for education and instruction purposes in low-budget
environments. The effectiveness of the system is evaluated
under several real-time closed-loop control experiments in a
laboratory environment, where a UAS is tasked to fly through
specific 3-dimensional trajectories, making use of the visual
data and a feedback control strategy.

Related Work

Vision-based localization is accomplished by process-
ing video data. These systems can include monocular
vision, stereo vision, and combinations of infrared/radio
light frequencies for superior accuracy and reliability [9].
Vision-based localization systems are used in many applica-
tions today, including self-driving cars, UASs, smartphones,
and other devices that can be equipped with such sen-
sors [10] [11]. The main challenge with implementing visual
localization in embedded systems, like a UAS, is obtaining
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the highest possible accuracy and robustness with limited
computational resources and budget [10].

Visual-Inertial Relative Pose Estimation (VI-RPE) relies
on IMU data and a particle filter to localize a UAS equipped
with a constellation of markers in a video stream [12]. Ultra
Violet Radar (UVDAR) relies on markers separated from
the background by an optical filter to localize agents in a
leader-follower application [13]. A monocular localization
system can be adopted when using a constellation of markers
of known geometry. Equipping the UAS with this kind of
constellation facilitates its identification and isolation from
the background in any given video frame.

An additional challenge for localization tasks involving
small robotic agents like UASs is the constrained pro-
cessing power of embedded autopilots, which factors into
the frequency of localization data [14] [15]. This limita-
tion negatively impacts small robotic agents to accurately
determine their location and navigate effectively. Several
localization methods have reduced complexity or introduced
optimizations to prioritize these design goals [15]-[17].

Ultimately, developing an alternative, reliable, and accu-
rate localization system is crucial for any real-time exper-
imental scenario requiring autonomous tasks in the global
frame under a low budget.

Main Contributions

In this work, we present the development and implementa-
tion of an original localization and control system for UAS
applications. The system only relies on a single stationary
off-board imaging sensor as well as a known constellation of
markers onboard the UAS, which enables a fast and accurate
calculation of the 3-dimensional coordinates of the UAS in
a controlled laboratory environment. This is done by taking
the image data from the imaging sensor and computing
the relative location of the known constellation which can
be translated to a global localization frame. The proposed
system’s estimations are compared against ground truth data
provided by a conventional Motion Capture System (MCS).
We demonstrate the performance of the localization system
by testing three real-time pre-programmed flight paths using
a Proportional Integral Derivative (PID) controller for stabi-
lizing the motion of the UAS. We also show the application
of another type of control, Model Predictive Control (MPC),
under a point-regularization test. The proposed single-camera
localization’s latency and accuracy are also marginally ad-
justable to meet the end-user’s requirements.

Our research has the objective of disseminating the techni-
cal details for putting together a low-cost localization system
appropriate for education and classroom settings where funds
for a state-of-the-art MCS are not available. We expect that
this system can broaden teaching and research in localization
and control areas, not only for the UAS domain but also for
many scenarios relevant to robotic agents like human-robot
interaction and path planning.

II. PROBLEM STATEMENT

Advanced localization methods that can achieve high
accuracy and latency are also expensive and complex [18].
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In most cases, they also require a long setup time and pose
potential restrictions concerning usage area [19]. For exam-
ple, the popular MCS localization area is limited to a fixed-
size volume based on image sensor placement. Additionally,
the hardware specifications and computer processing demand
required by MCSs increase their monetary cost.

MCSs, like the one that we use for validation at the
Unmanned Systems Laboratory from New Mexico State
University, often require several cameras, which must each
be secured to a ceiling/wall with additional hardware. Each
of these cameras is specialized and can cost more than 500
times the price of a conventional web camera [20], without
considering the additional mounting equipment, software,
and hardware needed to run the MCS.

A large number of secondary and technical schools world-
wide do not have the appropriate budget for acquiring MCSs,
and therefore they are unable to teach control system technol-
ogy topics with physical real-time systems in a global frame.
This makes it difficult for the students in such institutions to
get exposed to the subject unless they pursue external ex-
tracurricular activities like robotics competitions [21]. Even
in those scenarios, students usually don’t gain experience
working with complex robotics systems like UASs, until
university education or even later.

Taking into account these challenges, we propose a vision-
based localization and feedback control system that can be
implemented with just a single RGB camera, a light-emitting
diode (LED) strip, a laptop, and a robotic agent. We focus
on the stabilization of a small UAS platform, but the ideas
presented here can be applied to other similar and less
expensive robots as well. We expect that the ease of setup
and low cost of the system can be presented as a solution for
academic programs in the areas of localization and control.

III. VISION-BASED LOCALIZATION

The vision-based localization task relies on a single RGB
camera, a ring of LED markers installed onboard a target
UAS, and a control station computer. In this setup, a Full
HD Logitech web camera is used since the color consistency
is reliable and the UAS’s circle-shaped marker is easily
identified by color [4]. A moderately bright pink LED ring
powered by a 12v battery is equipped onto the edge of a
Parrot Bebop 2 for tracking. In addition to being able to
choose a color to contrast with the environment, the LED
ring is also able to provide localization in low-light settings.
However, the LED-enabled marker is not mandatory, and any
solid-colored circle identifier is sufficient for experimenting.
The processing system used for the computational workload
is a desktop equipped with an Intel Core i5-2400 3.10GHz
CPU.

The source code for the proposed localization and
experiment control can be found in a ROS package
through the following link: https://github.
com/NMSU-Unmanned-Systems-Laboratory/
EllipticalTrackingwithControls
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Fig. 2. Signal processing diagram showing the steps required for the localization of the UAS in real-time [4]

A. Elliptical Marker Image-Processing and Tracking

The image-processing flow diagram is shown in Fig. 2.
First, the RGB image is converted to a hue-saturation-value
(HSV) format and a threshold is applied to the image,
filtering out any pixels that do not fit in the desired color
range. Then, a canny edge detection filter is applied to extract
the edges of the segmented contours left in the image. Next,
a morphological closing operator is applied to fill any holes
within each contour that could break the elliptical shape.

After image pre-processing, the ellipse detection is done
by thresholding the pixel overlap of every remaining con-
nected contour with a predicted ellipse for the size of that
corresponding bounding box [22]. The contour pixel overlap
is calculated utilizing the OpenCV function fitEllipse.
The ellipse-fitting in the fitEllipse function is per-
formed by a least-squares approximation method [23]. Once
the elliptical markers are identified and detected, the pixel
coordinates of the ellipse are sent to the spatial localization
algorithm for computation of the 3-dimensional location.

B. Localization Calculations
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Fig. 3. Left: Previously verified geometry for the localization algorithm.
Right: measurement setup of the target ring [24].

The localization algorithm uses the edge pixel values
received from the ellipse detection process in the image.
Making use of the known properties of the circular marker,

the center of the target UAS in the image, (Xo, Yo), is
calculated as

Xo = (Xp+XR)/2 (D
Yo = (YL +Ygr)/2 2

Afterwards, the tangent value of azimuth angle ¢ and eleva-
tion angle 6, see Fig. 3, are acquired as:

tang =2- Xo - Ln(};ID/Z) 3)
tan(©/2
tan9:2-Yo-7an(H/ ) 4)

Where ® and © are the Horizontal and Vertical fields of view
of the camera respectively, and L and H are the resolutions
of the width and height of the camera frame respectively as
seen in Fig. 3. Lastly, the radial distance p, which is the
distance between the center of the target markers and the
lens of the camera is obtained as
2
p2:(2- Xo f) .(1+712 ) (5)
2 |X o — X R| tan (;5

The resulting polar coordinates are then translated to Carte-
sian coordinates and adjusted with a fixed value offset, in
such a way that the center coordinates of the single-camera
localization align with the chosen global frame.

IV. CLOSED-LOOP CONTROL

To organize the control of the UAS platform into a
serialized pipeline, we utilized the Robot Operating Sys-
tem (ROS). Through a series of ROS nodes, we were
able to orchestrate communication between multiple running
processes. These include the elliptical detection program,
the trajectory control program, the UAS onboard computer,
and the MCS for verification purposes. Our experiment
involves multiple control strategies. One of them consists
of a stabilization to a specific point in a 3-dimensional space
(regularization) using an MPC strategy. We also conducted
experiments where the UAS was tasked with traveling to

Authorized licensed use limited to: New Mexico State University. Downloaded on June 27,2024 at 21:04:46 UTC from IEEE Xplore. Restrictions apply.



distinct waypoints utilizing a PID controller [25]. All of
these tests make use of the positional data from our elliptical
vision-based system to show its accuracy and applicability.
The z-axis position of the UAS was simply held at a constant
value and thus is not presented explicitly in the results like
the x and y axes.

A. ROS Node Structure

Parrot Bebop UAV / ROS Topics \
‘ Bebop Module Node /bebopitakeoft
/ /bebop/land
Control Station (CS)
‘ Control Module Node /bebopfemd_vel
\ Elliptical Localization
\ /mocap_node/bebop
/Odom
Motion Capture System
__, Send ROS D Computing
‘ Mocap Optitrack Node Messages Togggiﬁim .
\ D Ros Node E] onCS

Fig. 4. ROS experimental architecture explained concerning computational
hardware. The /Coordinates topic is a custom topic where our posi-
tional data is published. The other topics are used to receive verification
data from the MCS and control for the bebop UAS.

For the closed-loop system, there are three main computa-
tional devices to communicate between: The Control Station
running the UAS controller and experimental procedures,
the processor embedded in the UAS, and the computer
reporting the MCS ground truth data. Each of these systems
communicates via Ethernet or Wi-Fi through ROS nodes
and ROS topics that are hosted on the Control Station
computer. Drivers for the Bebop UAS [26], and MCS [27],
were used to generate their respective ROS nodes. Fig. 4
depicts the architecture of our ROS system and the topics
involved. The topics /bebop/takeoff, /bebop/land,
and /bebop/cmd_vel are used for the Bebop commands
to enable takeoff, land, and control movements. The con-
trollers take in positional data from the elliptical-based
vision-based localization process and output command sig-
nals to be sent and enacted by the UAS. The heading of the
UAS is stabilized using an onboard IMU signal.

B. Experimental Setup

There are several physical and logical components that
we utilized to enable a basic closed-loop control scheme for
easy classroom implementation. The network communication
between devices is hosted on a general-purpose Linksys
EA9400 Wi-Fi Router (used for Optitrack communication),
in which both the main controlling computer and the MCS
computer are connected via Ethernet. Communication be-
tween the computers and the UAS was achieved by config-
uring the network interface on the Bebop UAS to directly
connect to the shared router. We used the off-board Full HD
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Logitech webcam, placed on the ground, to capture video
for the elliptical detection and positional calculations of our
localization program. Finally, the Optitrack MCS consisting
of eight Prime*22 infrared cameras installed around the
perimeter of the room is used for generating ground truth
and positional calculation data for comparison. A snapshot
depicting a portion of the experimental setup can be seen in
Fig.??. All components of the experimental setup, aside from
the MCS (ground truth) and Bebop UAS, can be purchased
and set within a budget less than %1 of a conventional MCS,
making it appropriate for implementation by educators in
academic programs with a low budget.

C. PID Component

To show the control applicability of our proposed local-
ization system, we utilized a PID controller to stabilize the
4 degrees of freedom on the UAS: z, y, 2z, and yaw. The
purpose of this test is to see if the UAS can be safely
and succinctly flown utilizing only the proposed localization
system and a simple controller so that the experiment can
be re-created in simple classroom settings. This test can be
used to instruct the properties of the controller, the physical
system, and how they interact and affect each other.

The simple-PID module in Python was adopted for
control purposes [25], with one PID module per degree of
freedom, i.e., x, y, z, and yaw. The inputs for this module
are the 3-dimensional positional data from our localization
system, three constant parameters Kp, K;, Kp, which we
heuristically determined, and a desired set-point coordinate.
The module’s output, u, is a control signal calculated as

u:er(t)—f—K]/e(t) dt—i—KD%e(t) (6)

where
e = setpoint coordinate — measured coordinate

(7

The PID constants for each degree of freedom for the
Bebop 2 were obtained through a heuristic method, and are
listed in Table I.

TABLE I
PID CONSTANTS FOR PARROT BEBOP 2.
Control Axis Kp K; Kp
X-Axis 0.35 0.006 0.40
Y-Axis 0.35 0.006 0.40
Z-Axis 0.60 0.003 0.20
Yaw-Axis 1.00 0.000 0.00

D. MPC Component

We addressed the MPC application using the proposed
localization system as well. The purpose of this test was
to show the implementation of a more complex controller,
while also highlighting some of the associated implemen-
tation attributes, such as data frequency management. The
computational cost of multi-variable systems, as well as
inequality and equality requirements on the states, inputs, and
outputs, are only a few of the issues that the MPC technique
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can address [28]. The advantage of MPC is then enabling
optimization of the current time/data slot while taking into
account upcoming future events. Therefore, MPC has the
capacity to predict motion and implement appropriate control
action.

To enable the replication of our MPC, the optimization
problem we adopted is formulated as

Inuin J(s(t), Au(t),p)

Umin < U(t + .]) S Umax

Smin S S(t +.7) S Smax

(®)

s.t.

j = 1) "'7p

where s is the system state vector, u is the control input
vector, Au(t) = u(t) —u(t — 1), p is the prediction horizon,
and ¢ is the sampling time. s(¢ + j|t) is the j step ahead
prediction of the system state at the current sampling time ¢.
The system’s behavior is chosen over the prediction horizon
with the help of a previously known or experimentally
identified dynamic model.

For experimental system identification purposes, experi-
mental flights under predefined trajectories are conducted,
during which control input signals (i.e. inputs) and UAS
states (i.e. outputs) data pairs are collected. Then, an ex-
tended least-squares (ELS) algorithm is applied to such data.
ELS was selected because it is applicable for identifying
linear time-invariant (LTT) discrete-time systems, even those
exhibiting time delay [29].

The structure of the Parrot Bebop UAS model adopted for
the proposed MPC is in the form of

9

Skp+1 = Asy, + Buy,

where the state vector sy = [,v,,y,v,]  represents the
UAS position (x,y) and velocity (v,,v,) in both z-axis and
y-axis. uy, is the input vector uy = [ug, uy]T, and the output
is equal to the state vector. For this system, the time delay
is one sampling time (¢ = 1). The parameters identified by
ELS and collective data are the elements of matrices A and
B, thus the matrices of equation (9) are

1 1 0 0
Ao 0 —0.69837 0 0
10 0 1 1
0 0 0 —0.69837
- (10)
0 0
0.23428 0
B= 0 0
0 0.23428

The Bebop model was tuned in the high-frequency envi-
ronment of the verification MCS (236Hz). Once the dynamic
model is known, the objective function J can defined as

P

T = (st +jt) = ra(t + D)IIE + | Aut + H)II)
J=1

[Is(t +plt) = ra(t + )l

+

(1)
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where r4(t + j) is the future reference trajectory over the
prediction horizon, (Q and R are positive-definite weighting
matrices, and the last term is the terminal cost [30]. In MPC,
the cost function is usually formulated with the sum of the
squared control errors over the prediction horizon.

The cost function is based on equation (11), which needs
well-tuned parameters to achieve trajectory convergence.
Several experimental flights were conducted to tune these
parameters properly. The prediction horizon is selected as
p = 20 and the weighting matrices of ) and R are

009 0 0 0
o_| 0 oo 0 o
“lo 0 009 0
0 0 0 o001 12
100 0
B=10 100

The cost function includes the error between all four states of
the UAS as well as their desired values 74 = [rq,,0,74,,0],
where 74, and rg, are the value of the desired set-point in
z-axis and y-axis, respectively. The desired value for both
velocity dynamics is set to zero.

V. VALIDATION AND CONTROL RESULTS

To test the real-time flight capability of the proposed
vision-based localization, measured localization estimates
were compared to and validated against those of the Op-
titrack MCS during a series of four experiments.

We conducted three experiments under the PID controller
to show the robustness of the localization system. These
include moving consecutively to three pre-determined way-
points (Multi-Waypoint) (a), following a circle trajectory (b),
and moving to a single waypoint (c). As our localization
system is not yet able to report the heading of the UAS, we
used onboard IMU data to stabilize the bebop UAS’s heading
to a constant value.

As shown in Fig. 5, the traces of the PID control flight
tests are plotted to benchmark the single-camera localization
measurements. The experiments show steady and secure
flight which is comparable to the performance obtained when
using the more expensive MCS for localization purposes.
There are minimal deviations from the desired trajectories,
showing that more advanced maneuvers and higher-velocity
tests could be carried out in the future. The real-time per-
formance of the vision-based localization and control can be
seen in recorded videos here:

e Multi-Waypoint Flight: https://www.youtube.
com/watch?v=6aSKvhgF118

o Circle Trajectory Flight: https://www.youtube.
com/watch?v=tVHeEKWR5II

o Single Waypoint Flight: https://www.youtube.
com/watch?v=t9FulLl6j9z0

Positioning error between the two systems was calculated
by measuring the absolute difference between the proposed
single-camera localization and the MCS for each time step
and then taking an average of the resulting values. These
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Experimental results of the localization system during PID control of position. 3D traces for three different flight tests with pre-determined flight

trajectories (X, Y, Z coordinate) recorded by the Ellipse tracking system and the benchmark MCS (units in meters).

values are reported in Table II along with the sampling rate
of each experiment.

TABLE II
AVERAGE MEASUREMENTS FOR PID FLIGHT TESTS.

Flight Measurements Multi- . Clr(.:le Single .

Waypoints (a) | Trajectory (b) | Waypoint (c)
Avg. X error (m) 0.0243 0.0207 0.0093
Avg. Y error (m) 0.0192 0.0356 0.0192
Avg. Z error (m) 0.0090 0.0088 0.0051
Avg. Sampling Rate 51.3018Hz 46.2268Hz 48.9766Hz

The measurement error for the duration of the real-time
PID control tests is relatively low (0.0168m approx.), with
some higher peaks in error in high-velocity scenarios. The
peaks of error occur at points such as the transitions between
the waypoints and with certain directional movements in the
circular test, particularly the harsher corner motions. The
distance between the monocular camera and the UAS in the
trials ranges from Im to around 3.6m, as the tracking space
of 3x3x5m for the MCS limits the testing area.

In addition to the three experiments using a PID controller,
we conducted a fourth single-point stabilization experiment
using an MPC. A Positional comparison between the pro-
posed localization and the MCS can be seen in Fig. 6. This
experiment shows additional real-time control applications
of the presented localization system.

The MPC in combination with the localization system
exhibits oscillations while performing stabilization on a
single point. The addition of the MPC optimization function
caused a slight delay from the localization estimation to
control output. This was due to the UAS model of the MPC
being tuned in the high-frequency environment of the MCS
(236Hz). Despite the oscillation period, the UAS was still
able to be controlled, and with a better model identification,
it could perform even better than the PID strategy [31].
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VI. CONCLUSIONS

We presented the implementation of a low-cost vision-
based localization and feedback control system for Un-
manned Aerial Systems, which only requires a single RGB
camera, an elliptical marker, and a personal computer.
The proposed single-camera-based system provides a cost-
effective solution that can localize a dynamic target equipped
with the elliptical marker in three dimensions. The vision
algorithm is implemented through color-segmentation and
visual ellipse detection methods to obtain a relative-to-global
localization. The proposed system is simple to set up and
costs a fraction of many MCS-enabled solutions. It provides
a suitable solution for low-budget classroom instruction on
basic control system technology in real-time closed-loop
scenarios and can provide a physical demonstration of such
subjects. This introduction to physical control examples
would provide exposure to the students on the subject earlier
and increase interest in the field of UASs.

To demonstrate the performance of the system, four real-
time flight tests were conducted. The vision-based localiza-
tion and control system showed real-time maneuverability
when following pre-programmed flight trajectories.

Future work will consider improvements to the localization
system to provide an additional degree of localization for the
heading of the UAS instead of relying on an onboard IMU.
This can be achieved by adding a distinctive "head’ to the
elliptical marker. There are also plans to add an interface
to improve the parameterization of the localization system
so that it can more easily be adjusted and implemented in
different environments.

In addition, more efficient interfaces are also being devel-
oped for changing the parameters of the localization system
so that it can easily be adapted to work with different
environments, targets, and UASs.
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