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ABSTRACT Microbes are essential for the functioning of all ecosystems, and as global 
warming and anthropogenic pollution threaten ecosystems, it is critical to understand 
how microbes respond to these changes. We investigated the climate response of 
Sphingomonas, a widespread gram-negative bacterial genus, during an 18-month 
microbial community reciprocal transplant experiment across a Southern California 
climate gradient. We hypothesized that after 18 months, the transplanted Sphingomonas 
clade and functional composition would correspond with site conditions and reflect 
the Sphingomonas composition of native communities. We extracted Sphingomonas 
sequences from metagenomic data across the gradient and assessed their clade and 
functional composition. Representatives of at least 12 major Sphingomonas clades were 
found at varying relative abundances along the climate gradient, and transplanted 
Sphingomonas clade composition shifted after 18 months. Site had a significant effect 
(PERMANOVA; P < 0.001) on the distribution of both Sphingomonas functional (R2 

= 0.465) and clade composition (R2 = 0.400), suggesting that Sphingomonas composi­
tion depends on climate parameters. Additionally, for both Sphingomonas clade and 
functional composition, ordinations revealed that the transplanted communities shifted 
closer to the native Sphingomonas composition of the grassland site compared with the 
site they were transplanted into. Overall, our results indicate that climate and substrate 
collectively determine Sphingomonas clade and functional composition.

IMPORTANCE Sphingomonas is the most abundant gram-negative bacterial genus 
in litter-degrading microbial communities of desert, grassland, shrubland, and forest 
ecosystems in Southern California. We aimed to determine whether Sphingomonas 
responds to climate change in the same way as gram-positive bacteria and whole 
bacterial communities in these ecosystems. Within Sphingomonas, both clade composi­
tion and functional genes shifted in response to climate and litter chemistry, supporting 
the idea that bacteria respond similarly to climate at different scales of genetic variation. 
This understanding of how microbes respond to perturbation across scales may aid in 
future predictions of microbial responses to climate change.

KEYWORDS Sphingomonas, metagenomics, climate gradient, traits, phylogenetics

M icroorganisms are critical for ecosystem functioning and are threatened by the 
anthropogenic effects of climate change (1, 2). Furthermore, microbial communi­

ties drive planetary biogeochemical cycles—such as carbon and nitrogen fluxes—that all 
organisms require for survival (3). Therefore, it is important to understand the implica­
tions of climate change for microbial composition and functioning. However, due to high 
microbial abundance and diversity, it is difficult to predict how microbial communities 
will collectively respond to environmental shifts (4). Moreover, the ecological niche of a 
single microbial strain—or a genetic variant of a species—can vary depending on the 
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geographic origin of the strain or prior exposure to stress, which further complicates the 
predictions (5, 6).

When investigating microbial response to climate change, it is important to consider 
the scale of genetic variation. For example, the response to climate change varies 
across domains, as well as broad clades within bacteria and fungi (7–10). Additionally, 
differential responses to climate occur not only at community scales (11–13) but also at 
finer scales. Microdiversity refers to the genetic variation within operational taxonomic 
units that have high genomic similarity (14–16). Microdiversity may also respond to 
global change—for instance, within the gram-positive bacterial genus Curtobacterium, 
taxa differentially adapted to local climates and shifted in abundance after transplanta­
tion (17). Furthermore, microdiversity within bacterial taxa is beneficial for ensuring the 
stability of microbial communities when the environment changes (18). Although many 
studies have compared microbial responses to changes across genera, it is important to 
consider the microdiversity within a genus, since it influences microbial niches, traits, and 
biogeography (19).

Changes in microdiversity may be reflected in functional traits (13, 20, 21). Therefore, 
analysis of genomes and ecologically relevant functional traits could help predict the 
ecosystem implications of environmental change (13, 22–24). For example, gene-based 
functional groups in soil bacteria vary in their tolerance to perturbation, such as high 
salinity (25, 26). Analysis of functional traits can also be used to identify life history 
strategies that are based on an organism’s phenotypic characteristics. One such example 
is the Y-A-S trait-based framework for microbial growth Yield, resource Acquisition, and 
Stress tolerance (27).

Building on the Chase et al. (17) study of Curtobacterium, we aimed to test how 
microdiversity responds to climate change in Sphingomonas, another key bacterial 
clade. We leveraged the same field experiment used for the Curtobacterium study in 
which microbial communities were reciprocally transplanted across a Southern California 
climate gradient with temperature and precipitation varying inversely across five sites: 
desert, scrubland, grassland, pine-oak, and subalpine (7, 28). Sphingomonas is the most 
abundant gram-negative bacterial genus found in these climate gradient sites (20). 
Along with Curtobacterium, Sphingomonas contributes to the ecosystem process of litter 
decomposition. Sphingomonas can also depolymerize lignin, a chemical-resistant plant 
structural polymer (29, 30), and catalyze the bioremediation of chemically contaminated 
soils by degrading complex polycyclic aromatic hydrocarbons (31). In addition, some 
Sphingomonas can improve plant growth under stressful salinity, drought, and heavy 
metal conditions (32).

As in prior studies of Curtobacterium (17, 20) and whole microbial communities (7), 
we investigated the phylogenetic and functional diversity of Sphingomonas across the 
climate gradient. Using shotgun metagenomic data, we tested how the composition and 
functional potential of the Sphingomonas genus shifted in response to climate change 
as simulated in the reciprocal transplant experiment (Fig. 1A). Based on the results 
with Curtobacterium (17), we hypothesized that the clade and functional composition in 
transplanted communities would correspond to the site environment and climate (Fig. 
1B). However, all transplanted microbial communities were inoculated onto a common 
grassland litter; hence, we alternatively hypothesized that the Sphingomonas clade and 
functional composition might converge due to environmental selection by litter type 
(Fig. 1C). Substrate chemistry is a potentially important control on microbial commun­
ity assembly that can also shift with climate change (33, 34); therefore, we aimed to 
assess both climate and substrate drivers of Sphingomonas composition in the transplant 
experiment. Overall, our goal was to evaluate the consistency of microbial response to 
climate change at multiple phylogenetic levels.
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FIG 1 Microbial community reciprocal transplant design and hypotheses driving Sphingomonas clade composition after 18 months in the field. (A) Schematic 

of reciprocal transplant experiment across a climate gradient where temperature and precipitation vary inversely. The sites include the desert (D), scrubland (Sc), 

grassland (G), pine-oak (P), and subalpine (S) ecosystems. All colors and icons remain consistent across the figures. We hypothesized that (B) site environment 

(e.g., climate) determines Sphingomonas composition after 18 months. Thus, the composition within bag transplant and survey samples will be similar at each 

site. (C) Alternatively, since all microbial communities within transplants were inoculated onto grassland litter, the grassland substrate might drive Sphingomonas 

composition, causing transplants to converge on the grassland survey samples.
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MATERIALS AND METHODS

Reciprocal transplant design and metagenomic samples

We analyzed the metagenomic data from an 18-month reciprocal transplant across a 
Southern California climate gradient, as previously described in the study of Glassman 
et al. (7). Briefly, the climate gradient consists of five sites (desert, scrubland, grassland, 
pine-oak, and subalpine) across which temperature and precipitation vary inversely. 
Leaf litter was collected from each site on September 11, 2015. Subsequently, the leaf 
litter was homogenized with coffee grinders and used to inoculate irradiated grassland 
leaf litter in sterilized nylon bags. The nylon litter bags had 0.22 µm pores (cat. No. 
SPEC17970; Tisch Scientific, Cleves, OH, USA) such that nutrients and water could move 
freely in and out of the bags, but bacteria and fungi could not.

On October 19, 2015, the transplant bags were placed in the five sites and destruc­
tively sampled after 6, 12, and 18 months. In total, 300 bags (five sites × five inoculums × 
four replicates × three time points) were deployed, and 100 bags were collected at each 
time point. Additionally, at each time point, survey samples comprising native microbial 
communities on their native litter were collected adjacent to each plot. Time point 0 
(T0) refers to the time that all litter bags were deployed into the field. Time point 1 (T1) 
corresponds to the sampling at 6 months, time point 2 (T2) at 12 months, and time point 
3 (T3) at 18 months.

We analyzed metagenomic data from climate gradient samples sequenced previously 
(35). Briefly, DNA was extracted from 0.05 g of ground leaf litter using the FastDNA 
SPIN Kit for Soil (Mo Bio). The DNA was subsequently cleaned with the Genomic DNA 
Clean and Concentrator kit (Zymo Research). Clean samples were diluted, processed 
with the Nextera XT library Prep kit, and sequenced with the Illumina HiSeq4000 
instrument with 150 bp paired-end reads. Raw metagenomic data were found on 
the metagenomic analysis server (Metagenomic Rapid Annotations using Subsystems 
Technology, MG-RAST) under project ID mgp17355 (36). The data consisted of initial 
T0 metagenomes (N = 20), 18-month T3 survey metagenomes (N = 20), and 18-month 
T3 transplant metagenomes (N = 99). There was one missing replicate from the desert 
inoculum in the grassland site from the 18-month transplant samples. Metagenomic data 
were not available for the transplant bags at T1 and T2; therefore, we compared the T0 
initial data with both the 18-month T3 survey and transplant data.

Sphingomonas identification from metagenomic samples

We trimmed and quality-filtered the metagenomic data using trimmomatic v0.36 (37). 
We used bwa v0.7.17 and samtools v1.10 (38, 39) to filter out plant and fungal sequences 
(17). For our analyses, we used the forward reads only to simplify read counting.

Using previously published results, we investigated 252 high-quality, publicly 
available Sphingomonas genomes that comprised a phylogenetic tree with 12 clades 
(40). Of the previously identified 444 shared core genes within the Sphingomonas 
genomes (40), we selected 23 marker core genes (Table S1) that also appeared in a 
reference genomic amino acid database developed by Chase et al. (35). We appended 
the 23 core genes from each Sphingomonas genome to the Chase et al. (35) reference 
genomic database, which together served as our reference database for DIAMOND 
v2.0.4.142 BLASTX (41). We included the genes from the reference genomic database 
because we wanted to extract only Sphingomonas core gene hits and avoid match­
ing metagenomic sequences that were not Sphingomonas. Forward FASTA reads from 
metagenomic samples were queried against the protein reference database with default 
Basic Local Alignment Search Tool X (BLASTX) parameters (41). Using a reciprocal BLAST 
against known sequences, we determined a conservative threshold of a percent identity 
value of at least 98% and an E-value of less than 1e−20 to be sure that the hits belong to 
Sphingomonas. All relevant data can be found on GitHub, https://github.com/bahareh­
sorouri/sphing_climategradient.
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When querying the metagenomic sequences, some matched to only one clade, 
whereas others matched to multiple clades. Those that hit only one clade were assigned 
to that clade. For the sequences that hit multiple clades, we first checked whether all 
hits to one of the clades showed consistently higher percent identity (e.g., 100%); if so, 
the sequence was assigned to that clade. If not, we assigned the sequence to a “pseudo 
clade” consisting of all clades that matched the query sequence with the same, highest 
identity. For example, if a query sequence matched five reference sequences from clade 1 
with 100% identity, four reference sequences from clade 2 with 100% identity, and three 
reference sequences from clade 3 with 98% identity, then the query was assigned to 
pseudo clade 1–2. Because there are hundreds of potential pseudo clades, we grouped 
the sequences assigned to rarer pseudo clades into a single broad pseudo clade for 
subsequent analyses. Pseudo clades that had less than 10 hits were combined into the 
broad pseudo clade.

For each of the climate gradient samples, we reported the total number of Sphingo­
monas sequences by clade. To account for differences in sequencing depth between 
samples, we rarefied the data to 50 with the EcolUtils v0.1 R package (42). We calculated 
the clade relative abundances by dividing by the total for each sample and visualized 
clade relative abundances using the ggpubr v0.4.0 R package (43). When visualizing 
clade relative abundances, we grouped all the pseudo clades into one larger category 
for simplicity (Fig. 2). One T3 desert survey sample and one grassland sample were 
removed during the rarefaction step due to low sequence coverage. Additional samples 
were also removed from the T3 transplant bags during rarefaction from the following 
sites: one desert, two grassland, two pine-oak, seven scrubland, and three subalpine. We 
performed a principal coordinate analysis (PCoA) on the clade relative abundance data 
using Bray-Curtis dissimilarity to visualize compositional differences between samples. 
A permutational multivariate analysis of variance (PERMANOVA) is a distance-based 
method that tests whether microbial composition is associated with the covariates (44); 
in our case, it was used to determine site and inoculum effect sizes from Bray-Curtis 
dissimilarity matrices. Due to differences in time point sample sizes, we ran separate 
PERMANOVAs for each time point. We also ran a permutational analysis of dispersion 
(PERMDISP) to determine the dispersion of individual samples within each group (45). 
All statistical analyses and data visualizations across the climate gradient were done in 
R v4.1.0; to ensure reproducible results from statistics using permutations, we set the 
seed value to 1 (46). The PCoA, PERMANOVA, and PERMDISP analyses were performed 
with the vegan v2.5–7 R package, and the PCoA was visualized with ggplot2 v3.4.2 (47, 
48). Ellipses were drawn using the “stat_ellipse” function of ggplot2, whereas ellipses for 
groups with three replicates were visualized with the geom_mark_ellipse function of the 
ggforce v0.4.1 package (47, 49).

For the ordination, we calculated the median point for each axis within each site to 
calculate the T3 transplant and survey centroids. Additionally, we used the mean 
distances between centroids to determine which hypothesis was supported. To test the 
hypothesis that climate is responsible for convergence, we calculated the average 
distance (and standard deviation) between the T3 transplant centroids and their 
corresponding T3 survey centroid within the same site. To test the alternative hypothesis 
that grassland litter is responsible for convergence, we calculated the average distance 
between the T3 transplant centroids and the T3 grassland survey centroid.

Sphingomonas functional genes

Again, using the previously described results, we investigated a subset of genome-based 
functional traits from the publicly available Sphingomonas genomes that were assigned 
to a Y-A-S life history category depending on their role in growth yield (Y), resource 
acquisition (A), or stress tolerance (S) (27, 40). Briefly, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Carbohydrate-Active enZymes (CAZy) databases were used to 
identify the genome-based functional traits using GhostKOALA v2.2. and dbCAN2 tools, 
respectively (50–53). In summary, the three genome-based traits associated with the Y 
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strategy included amino acid-related enzymes, lipid biosynthesis proteins, and lipopoly­
saccharide biosynthesis proteins. CAZymes and polycyclic aromatic hydrocarbon 
degradation indicated the A strategy. Chaperones and folding catalysts, peptidoglycan 
biosynthesis and degradation proteins, and prokaryotic defense system proteins were 
the three genome-based traits attributed to the S strategy. We calculated the relative 

FIG 2 Sphingomonas clade distribution across the climate gradient in (A) T0 transplant samples, (B) T3 survey samples, and (C) T3 transplant samples. For (A) and 

(B), the clade relative abundances are represented for each site. For the T3 transplant, the facet boxes are labeled and colored by the site, and the x-axis indicates 

inoculum within each site. Facet and icon colors reflect the site, whereas relative abundances are colored by clade. The pseudo clade category encompasses all 

pseudo clades.
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abundances of each of these eight trait categories for each of the 12 Sphingomonas 
clades designated by the publicly available genomes (40).

To infer the distribution of the eight genome-based traits across the climate gradient, 
we multiplied the trait relative abundances from the publicly available genomes by the 
clade relative abundances for the transplant and survey samples at 18 months. For this 
analysis, we recalculated the clade relative abundances across the climate gradient for 
just the 12 clades and removed the pseudo clade categories. We averaged the values 
by sample and used them to construct a matrix with rows corresponding to samples 
and columns corresponding to traits. PERMANOVA analyses were done on this matrix 
using the same methods described earlier for Sphingomonas clade relative abundances. 
Furthermore, we performed principal component analyses (PCA) using the “prcomp” 
function of the base R stats package (46). PCA summary statistics were used to calculate 
the factor loadings of the genome-based traits, meaning the correlation between the 
principal components and the underlying genome-based traits. The PCAs and factor 
loadings were visualized with ggplot 2 (47). The centroid calculations were done using 
the same methods described previously for clades.

RESULTS

Sphingomonas clade composition

We aimed to evaluate the representation of Sphingomonas clades (40) in metagenomic 
sequences across the climate gradient. Of 49,044 sequences identified as Sphingomonas, 
34,003 matched to one of the 12 phylogenetic clades, and the remaining 15,041 were 
assigned to pseudo clades. Each of the 12 main clades was found across the climate 
gradient in both transplant and survey samples at varying abundance. Sphingomonas 
composition was similar in the initial inoculum at T0 and the survey samples at T3, 
indicating temporal consistency in clade composition of the native litter Sphingomonas 
(Fig. 2A and B). However, the grassland site had a higher relative abundance of clade 1 
in the T3 survey samples compared with T0. When comparing the survey and transplant 
samples at 18 months, there was a distinct difference in the distribution of Sphingomo­
nas clades (Fig. 2B and C).

Environmental conditions at the sites influenced the composition of Sphingomonas 
clades. Although both site and inoculum had significant (P < 0.001) effects on the 
distribution of transplanted Sphingomonas, site was the strongest predictor of composi­
tion with an R2 value of 0.400, whereas inoculum had an R2 value of 0.093 (Table 1). 
The strong site effect suggests that climate or other site conditions influence Sphingo­
monas composition following transplantation. There was also a significant (P < 0.001) 
site by inoculum interaction (R2 = 0.179), which had a stronger effect on Sphingomonas 
composition than inoculum. This result indicates that the inoculum effect varies by site 
(Fig. 2C).

Furthermore, the Sphingomonas clade composition within the grassland was similar 
across inocula, since the T3 transplanted samples at the grassland site had the tightest 
clustering in the PCoA (Fig. 3; Fig. S2). For the other sites, there was more variation in 
Sphingomonas clade composition across inocula in the transplanted bags compared with 
the survey bags (Fig. 3; Fig. S2). In the desert site, the relative abundances of clades 1, 
2, 5, and 9 varied most across transplanted inocula. Within the scrubland site, relative 
abundances of clades 1, 2, 5, 9, and 12 varied most, whereas that of clades 1, 5, and 
12 varied most in the subalpine site (Fig. 2C). Clade 7 was absent in most T3 transplant 
samples, and in the higher elevation pine-oak and subalpine sites, clades 1, 5, and 12 

TABLE 1 PERMANOVA statistics for factors explaining the clade composition of Sphingomonas within T3 
transplanted samples

Df SS R2 F P value

Site 4 4.77 0.400 18.0 < 0.001
Inoculum 4 1.11 0.093 4.16 < 0.001
Site:Inoculum 16 2.13 0.179 2.01 <0.001
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were the most abundant. The grassland site had the highest abundance of clade 6 
within the transplanted bags (Fig. 2C). Overall, clades 1 and 5 played an important role 
in driving the site by inoculum interaction. Clades 1 and 5 varied widely across the 
transplanted inocula within the desert, scrubland, and subalpine sites. However, clade 1 
was rare within the grassland site and consistent across inocula within the pine-oak site.

If Sphingomonas composition is determined primarily by litter substrate, we would 
expect transplanted communities to converge on the grassland survey community 
(Fig. 1C). The T3 survey samples not only clustered together by site but also partially 
converged on the grassland survey community (Fig. 3). The centroids of the Sphingo­
monas communities transplanted into the desert and scrubland were the closest to 
the grassland survey. The pine-oak, subalpine, and grassland transplants were further 
away from the grassland survey. Overall, the average distance between the centroids 
of the transplant samples and the grassland survey (0.201; SD = 0.134) was smaller 
than the average distance between the transplant centroids and survey samples within 
the same site (0.324; SD = 0.125). Therefore, there was also support for the hypothesis 
that Sphingomonas clades converged on the grassland litter. Although the transplant 
centroids converged, significant PERMDISP results (P < 0.001; R2 = 0.567; SS = 0.343; Df 
= 29) indicated that samples within groups differed in their dispersion or the spread 
within a site. Thus, because there was dispersion in the data, individual samples did not 
all converge on the grassland survey.

Sphingomonas functional composition

Since Sphingomonas functional gene content reflects habitat preferences (40), we 
predicted and investigated the distribution of eight Sphingomonas genome-based 
functional traits to determine whether they supported our hypotheses (Fig. 1B and C). 
Similar to the clade composition patterns, site and inoculum had significant (P < 0.001; 
P < 0.05) effects on Sphingomonas functional composition in transplants by T3; however, 
the site by inoculum interaction was not significant (Table 2; Fig. 4; Fig. S3). As with 

FIG 3 Principal coordinate analysis of Sphingomonas clade relative abundances within survey and transplant samples after 18 months. The colors reflect the 

sites, and the ordination was calculated with Bray-Curtis dissimilarity distances. Triangles represent survey centroids, and asterisks represent the centroids of 

transplant samples. Dashed-lined ellipses with a 95% CI encompass survey points, whereas solid-lined ellipses encompass the transplanted points.
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the clade composition, site had the strongest effects on the Sphingomonas functional 
gene distribution (R2 = 0.465, P < 0.001), whereas inoculum had a weaker effect (R2 = 
0.058, P < 0.05). The patterns of convergence on the grassland survey for functional traits 
were nearly identical to the patterns for clade composition in that the average distance 
between T3 bag centroids and the T3 grassland survey centroid (2.10; SD = 0.855) was 
smaller than the average distance between the T3 bag centroids and their respective T3 
survey samples (2.67; SD = 1.47) from the same site (Fig. S3).

To infer the preferred life history strategies of the microbial communities across the 
climate gradient, we also investigated the factor loadings of the genome-based traits 
on the PCA distribution. The subalpine site is associated with high CAZyme abundance, 
suggesting environmental selection for the resource acquisition life history strategy (Fig. 
4; Fig. S4). In contrast, although the grassland and pine-oak sites appear to select for 
polycyclic aromatic hydrocarbon degradation, they also select for the growth yield life 
history strategy and are more closely associated with lipopolysaccharide biosynthesis 
proteins and lipid biosynthesis proteins, respectively. The desert and scrubland sites are 
occasionally associated with CAZymes but selected mainly for the stress response life 
history strategy based on associations with peptidoglycan biosynthesis proteins, and 
chaperones and folding catalysts (Fig. 4; Fig. S4).

FIG 4 Principal component analysis of the predicted Sphingomonas genome-based YAS functional genes within the survey and transplanted samples 

after 18 months. The ordination does not include trait information from pseudo clades. Colors reflect sites across the climate gradient, open symbols 

indicate survey samples, and closed symbols represent transplanted samples. Amino acid-related enzymes, lipid biosynthesis proteins, and lipopolysaccharide 

biosynthesis proteins represent the growth yield (Y) life history strategy. CAZymes and polycyclic aromatic hydrocarbon degradation reflect resource acquisition 

(A). Chaperones and folding catalysts, prokaryotic defense system, and peptidoglycan biosynthesis and degradation proteins indicate the stress tolerance (S) life 

history strategy.

TABLE 2 PERMANOVA statistics for factors explaining the predicted functional composition of 
Sphingomonas within T3 transplants

Df SS R2 F P value

Site 4 5.58E-03 0.465 19.1 < 0.001
Inoculum 4 7.18E-04 0.0575 2.36 0.027
Site:Inoculum 16 1.48E-03 0.118 1.21 0.247
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DISCUSSION

Our results suggest that microbial responses to environmental change are consistent 
across bacterial clades at the genus level. The Sphingomonas clade composition varies 
across the climate gradient, indicating that clades may be differentially adapted to site 
conditions, including climate. Furthermore, Sphingomonas clade composition shifted 
within the genus over an 18-month reciprocal transplant (Fig. 2). These findings thus 
support the hypothesis that site climate drives Sphingomonas clade and trait composi­
tion (Fig. 1B and 3; Fig. S3; Table 1). Although factors such as nutrient availability and 
vegetation cover also vary across the sites, climate was likely the site factor with the 
greatest impact on bacteria in the transplanted litter bags (7). At the same time, there 
was support for our alternative hypothesis that the grassland substrate was responsible 
for clade and trait convergence (Fig. 1C and 3; Fig. S3), suggesting that indirect effects of 
climate change via plant community shifts may also influence Sphingomonas response to 
climate.

The outcome that site and abiotic climate conditions drive clade and functional 
compositional shifts is in line with previous findings globally (54) and across this 
Southern California climate gradient. Glassman et al. (7) and Chase et al. (17) found that 
climate drives distinct bacterial composition at strain to community levels. Our study 
shows that these results extend to the Sphingomonas genus, an abundant gram-nega­
tive bacterial clade (Fig. 3; Table 1). Although some climate response traits are deeply 
conserved (24, 55, 56), climate response also occurs at fine scales, as our results suggest 
for Sphingomonas and prior research shows for Prochlorococcus in the ocean (13). 
Therefore, responses to climate change can occur across different scales of genetic 
variation.

The patterns in the distribution of Sphingomonas clades and functional genes across 
the climate gradient to some extent reflect the climate conditions of the sites (Fig. 4). 
Within both survey and transplant samples at T3, oftentimes, the desert and scrubland 
sites grouped together, as did the pine-oak and subalpine sites. These groupings may 
reflect similarities with respect to temperature, precipitation, and litter chemistry (28).

Although site conditions are a strong predictor of shifts in Sphingomonas clade 
composition (Fig. 3; Table 1), there was variation among the transplanted communities 
within each site after 18 months despite inoculation onto the same grassland litter (Fig. 
2). It is likely that the different initial communities had varying levels of resilience to 
environmental changes, and microbial legacy effects from previous historical events may 
have prevented complete convergence (7, 17, 57–59). Additionally, Sphingomonas clades 
1, 5, and 6 contain taxa that are found at high relative abundances in both plant and 
environmental habitats (40). These clades shifted the most in the T3 transplant after 18 
months (Fig. 2). Perhaps, these clades are more abundant in the T3 transplant because 
they are better suited to survive on grassland litter across the climate gradient. Some 
species of Sphingomonas have symbiotic relationships with plants that improve plant 
growth and drought tolerance (60).

We were surprised to find that for both clade and functional composition, the survey 
and transplant samples within the grassland site did not closely converge and in fact 
were dissimilar (Fig. 3 and 4; Fig. S2 and S3). After 18 months, the grassland survey 
was more similar to the scrubland and desert transplant samples than to the grass­
land transplant samples. Given that the initial Sphingomonas clade composition of the 
grassland inoculum was similar to the grassland survey and they were both on grassland 
litter, we anticipated that the grassland survey and transplant samples would converge 
after 18 months (Fig. 1). It is possible that there were microclimate differences across 
bags that prevented convergence, although it is not clear why these differences would 
be more pronounced in the grassland. Alternatively, grassland substrates may vary from 
year to year, and microbial succession or ecological drift may have further contributed 
to the variation between the two groups (61). The combination of both litter substrate 
and bag microclimate may explain distinct Sphingomonas composition in grassland 
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survey and transplant samples, given that the response of bacterial microdiversity to 
environmental perturbations is substrate- and ecosystem-dependent (21).

Trait-based approaches are useful for predicting and interpreting microbial responses 
to climate change. Trait responses to climate change simulated by transplantation closely 
followed clade responses, which is consistent with the trait variation across clades (40). 
For example, clade 1 had the highest abundance of CAZymes and was responsible for 
driving the differences in Sphingomonas clade and functional composition (40). We also 
observed that clade 7 was rare in our litter metagenomes, consistent with this clade’s 
dominance by clinical strains that may not possess the traits to live in a surface soil 
environment. Still, across the climate gradient, differences in the relative abundance 
of other environmentally prevalent clades such as 5 and 6 were not clearly related to 
the genome-based traits we measured. We recognize that there are likely finer-scale 
differences between traits, such as individual glycoside hydrolases (62), that we did not 
assess here. We also found a preference for specific life history strategies across the 
climate gradient from the genome-based functional traits (Fig. 4). The hottest, driest 
ecosystems along the climate gradient (desert and scrubland) selected for clades with 
the stress tolerance life history strategy, as supported by previous studies (27, 63, 64). 
Grassland and pine-oak ecosystems favored clades with the growth yield life history 
strategy. The cooler, wetter subalpine ecosystem selected more for resource acquisition 
strategies. Additionally, there may be functional differences in other ecologically relevant 
traits that we did not analyze.

We investigated the distribution of Sphingomonas clades and functional potential 
across a Southern California climate gradient. We found that the clade and functional 
composition shifted during an 18-month reciprocal transplant. Our findings indicate that 
the gram-negative Sphingomonas genus had compositional and functional responses 
similar to gram-positive Curtobacterium (17) and whole microbial communities (7). 
Collectively, these studies suggest that compositional and functional responses to 
climate change occur at various genetic scales, ranging from within Curtobacterium 
strains to within Sphingomonas clades and across clades within microbial communities. 
Understanding how microbes respond to perturbation at all these genetic scales may aid 
in future predictions of microbial responses to climate change.
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