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Abstract

In this paper, we introduce a new nonlocal modal hydrodynamic theory for fluid-structure interactions (FSI) of light,

flexible cantilever beams and plates undergoing small amplitude vibrations in Newtonian, incompressible, viscous,

heavy fluids otherwise at rest. For low aspect ratio flexible structures and high mode numbers, three dimensional

(3D) and nonlocal fluid effects become prominent drivers of the coupled dynamics, to the point that existing local

hydrodynamic theories based on two dimensional (2D) fluid approximations become inadequate to predict the system

response. On the other hand, our approach is based on a rigorous, yet efficient, 3D treatment of the hydrodynamic

loading on cantilevered thin structures. The off-line solution of the FSI problem results in the so-called nonlocal

modal hydrodynamic function matrix, that is, the representation of the nonlocal hydrodynamic load operator on a

basis formed by the structural modes. Our theory then integrates the nonlocal hydrodynamics within a fully coupled

structural modal model in the frequency domain. We compare and discuss our theory predictions in terms of frequency

response functions, mode shapes, hydrodynamic loads, quality factors, added mass ratios with the predictions of the

classical local approaches, for different actuation scenarios, identifying the limitations of the hypotheses underlying

existing treatments. Importantly, we also validate our new model with experiments conducted on flexible square

plates. While computationally efficient, our fully coupled theory is exact up to numerical truncation and can bridge

knowledge gaps in the design and analysis of FSI systems based on low aspect ratio flexible beams and plates.

Keywords: Hydrodynamic function, Unsteady Stokes flow, Boundary element methods, Underwater beam and plate

vibrations

Nomenclature

α Frequency parameter in unsteady Stokes flow

β Nondimensional frequency parameter

ζ Vorticity vector

D Integration domain

ei Unit reference frame vector

f Modal forcing

H Nonlocal modal hydrodynamic function matrix and entries

I Identity matrix

K,M Stiffness and mass matrix of the structure

n Normal unit vector

N0, N1, N2 Coefficients matrices in asymptotic expansions

q Modal coefficients

r Distance vector

u Velocity vector

x, x̄ Position vector

δi j Kronecker delta

η Structural damping coefficient

Γ Local hydrodynamic function

γi j Coherence factor

•̂ Phasor of variable

Λ Aspect ratio of the cantilever

λi Eigenvalue of the in-vacuo modes

A, A(R), B(R),C(R),D(R) Singularity tensors

A0,A1,A2 Singularity tensors (asymptotic analysis)
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Fext General external forcing

Hω Nonlocal hydrodynamic operator

K ,M Linear operators describing stiffness and inertia

R Mass ratio

WH Work done by the hydrodynamic forces on the cantilever

KC Keulegan-Carpenter number

ν Poisson’s ratio of the structure

ω Radian frequency

ωd , ωw Dry and wet resonance frequency

ωp Frequency of the peak response

ΦI , φi, ϕi Basis modes

Ψd ,Ψw Dry and wet mode shapes

ρ f , µ f Fluid density and dynamic viscosity

ρs Solid density

σi j, ǫi j Stress and strain components

τ jk , [[τ]] Fluid stress tensor and traction jump

•̃ Nondimensional or scaled variable

εk ji Levi-Civita symbol

A Cross-section area

A0 Amplitude of oscillation

b, L, h Width, length, and thickness of cantilever

Ci Scaling constant for dry(in-vacuo) modes of the fixed-free can-

tilever

ci j ,Ci jkl Coefficients of the elastic tensor

D,Di j Plate flexural rigidity

E, E′ Young’s modulus (plane stress/strain) of the cantilever

Ei ,Gi j, νi j Elastic coefficients

f +, f0 Nondimensional frequency and scaling

fn Natural frequency

G Shear Modulus

hi j i j-entry of the nonlocal modal hydrodynamic function matrix

I, Jt Moment of inertia and polar moment of inertia

MA,Q Added mass coefficient and quality factor

p Pressure

R Argument of singularity tensors

S i j,Ωi j Oscillatory Stokeslet and rotlet tensors

t Time

T,U Kinetic and potential energy

w, θ Transverse displacement and rotation field

WB,ΘB Measured rigid translation and rigid rotation angle

WC Measured elastic motion of the corner of the cantilever

1. Introduction

Over the past few decades, the fluid-structure interaction (FSI) community has witnessed increasing research

interest in the study of dynamics and vibrations of submerged slender cantilever beam systems. These problems

are relevant in a number of important engineering applications such as atomic force microscopy [1, 2, 3, 4], sens-

ing and actuation in microelectromechanical systems (MEMS) [5, 6, 7, 8], bio-inspired and/or robotic underwater

propulsion [9, 10, 11, 12, 13], piezoelectric-based cooling and flow control [14, 15, 16, 17], and energy harvesting

systems [18, 19, 20, 21]. In many of these works, rather than resorting to a fully coupled three dimensional (3D)

FSI simulation, researchers have adopted the influential solution strategy of Tuck [22] and Sader [1] which is based

on the so-called complex hydrodynamic function formalism. Here, the assumption is that, at any location along the

beam axis, the hydrodynamic load is only dependent on the local transverse displacement of the beam and the vibra-

tion frequency. Under this hypothesis, a local two dimensional (2D) unsteady Stokes flow is postulated in the plane

orthogonal to the beam axis and is used to calculate the local hydrodynamic load, typically via a boundary element

method approach [22]. The resulting load is described in terms of a complex hydrodynamic function that is then

included in structural dynamics models to predict the response of the system, see [1].

This, now classical, approach has enjoyed immense success and popularity for the prediction of the first few

flexural resonance frequencies and quality factors of slender submerged cantilever beams in the linear hydrodynamics

regime. Notably, this line of work also extended, to viscous fluids, the influential results of Chu [23] that can be used

to quickly and accurately estimate the added mass effect, or frequency shift of the wet resonance modes, for high-

frequency vibrations of beams in inviscid fluids. This local hydrodynamic approach has enabled many technical and

scientific advancements in various linear FSI problems, including the investigation of torsional vibrations [24], the

effect of near-wall [25] or free-surface [26] presence, and the effect of different cross section geometries of oscillating

cantilever structures [27]. The basic formalism was also extended, via suitable correction terms, to the treatment

of moderately large bending vibrations, where the effect of fluid nonlinearities and vortex shedding are taken into
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account [16, 28, 29, 30].

Although the local theory has been proved to be very successful in the context of the hydrodynamic character-

istics of vibrating slender beams, it is also known [1] that some of its hypotheses are inadequate when the anal-

ysis is concerned with low aspect ratio flexible structures (i.e. short cantilevers), vibrating at high mode num-

bers [31, 32, 33, 34, 35, 36, 37]. Lindholm et al. [31] were among the first researchers to propose experimental

corrections on lower aspect ratios by enhancing Chu’s fundamental study [23]. More recently, Atkinson and de

Lara [32] conducted a FSI study on the vibrations of a wide rectangular cantilever plate in a viscous fluid, revealing a

nonlocal dependence of hydrodynamic loading on the mode shape. Shen et al. [34] expanded on [32] by considering

different clamping conditions, demonstrating drastic changes on the dynamic response of the vibrating cantilevered

structures resulting from the nonlocal behavior of the flow. Other groups focused on corrections to the local hydrody-

namic function formalism to take into account finite aspect ratios and end effects. For example, Facci and Porfiri [33]

performed a parametric numerical study using the finite volume method on the underwater vibrations of a cantilever

beam extending the accuracy of the nonlinear formalism of [29] to lower aspect ratios. Of note, hydrodynamic damp-

ing and mean thrust trends were shown in [33] to substantially differ for low aspect ratio cases, from the local fluid

approximations.

Due to increasing interest in plate geometries for high sensitivity, tunable sensing applications [38, 39, 40, 41, 42],

several research groups are actively working to bridge the knowledge gaps in the theory and practice of vibrations

of low aspect ratio cantilevered structures in viscous fluids. Among those, we highlight the contributions of Gesing

et al. [36, 35] that, while employing a local hydrodynamic theory, studied the excitation and dynamic response of

non-conventional plate-like modes, extracting the displacement spectra through a strip-like integration of the 2D

hydrodynamics along the axis of the structure. While these works introduce complex plate-like mode shapes in the

analysis, the solution of the hydrodynamic problem is still based on a 2D fluid treatment and therefore is expected to

be somewhat incomplete for very low aspect ratio plate-like systems vibrating at high mode number. Note also that

the local hydrodynamic method, adapted from [1, 22], is based on prescribed mode shapes for the solid structures for

the calculation of the hydrodynamic field which may not be accurate representations of the way the solid is actually

vibrating. Similarly, complex plate-like mode shapes were also previously considered, with a local 2D, although

nonlinear, hydrodynamic treatment in our group’s work on underwater vibrations of shape-morphing structures [43,

44, 45]. Nonlocality and the effect of low aspect ratio were addressed in part in [46], via linear 3D flow simulations

based on boundary element methods. However, this work also assumed prescribed mode shapes for the structure,

rather than attacking the fully coupled FSI problem. In a very recent investigation, Shen et al. [37] explored viscous

fluid nonlocality in the context of flexural vibrations of a cantilever plate in cylindrical bending. In this important

contribution, the hydrodynamic problem is solved analytically and a hydrodynamic function is derived for use in

the structural problem. However, the remarkable method is based on the strong assumption of solid deformations

independent of the chord coordinate. The validity of this assumption for complex plate-like vibrations was not fully

investigated. In particular, one immediate limitation of the theory is the absent treatment of torsional (or more complex

plate-like) modes that are inherently dependent of the chord coordinate of the structure. As such, investigation of

complex but realistic flexural-torsion scenarios and proper plate-modes are not within the scope of this work. This

short review demonstrates that, despite the number of studies that shows the inadequacy of the local theory, and

innovative attempts at addressing these shortcomings, to the best of the authors’ knowledge, a comprehensive and

fully coupled FSI 3D nonlocal theory for realistic vibrations is not yet available.

The objective of this paper is thus to develop a nonlocal 3D hydrodynamics theory for the strongly coupled FSI

problem concerning the small amplitude vibrations of a submerged thin, light, flexible cantilevered structure in a heavy

fluid. More specifically, we consider linear elastic plate-like solids undergoing geometrically linear deformations, in

the limit of vanishingly small displacements and rotations. Thus we are concerned with hydrodynamics in the limit

of zero Keulegan-Carpenter number, defined as KC = 2πA0/b, where A0 is a characteristic amplitude of oscillation

and b is a characteristic transverse dimension of the solid [47, 48, 49]. As KC → 0, the nonlinear convective term

in the Navier-Stokes equations become negligible and the flow regime can be conveniently described by a frequency

parameter, often indicated by β = (ρ fωb2)/(2πµ f ), see also [50], where ω is the oscillation radian frequency and ρ f

and µ f are the fluid’s density and dynamic viscosity. In this hydrodynamic regime, often denoted as the unsteady

Stokes regime [51], the conventionally defined Reynolds number, based on a characteristic velocity ωA0, can be

expressed as the product βKC and tends to 0. Within these hypotheses and in these ranges of validity, unique aspects

of this contribution include: i) the seamless treatment of low aspect ratio structures for both beam and plate mechanics
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in viscous fluids; ii) a rigorous 3D treatment of the fluid problem; iii) integration of the FSI theory in an “exact”, fully

coupled, computationally efficient formalism. In particular, our new method develops the new concept of the so-

called complex-valued “nonlocal modal hydrodynamic function matrix” to formalize the two-way coupling between

the structural mechanics and the fluid dynamics.

The general overview of our method is as follows. First, the structural dynamics for classical plates and beams is

treated in a semi-analytical fashion, via Rayleigh-Ritz discretization of the energy functionals into lumped parameter

equations of motion, written in a basis of admissible in vacuo modes for the structure. The hydrodynamic load is

introduced in the equations of motion as a nonlocal function of the structure vibration, via the definition a hydrody-

namic operator to be identified. A semi-analytical FSI treatment based on the oscillatory Stokeslet theory is used to

construct a representation of the hydrodynamic operator on the same basis of admissible modes. Crucially, the FSI

solution determines the distributed hydrodynamic loading resulting from the entire vibration characteristics of the

cantilevered structure, and is therefore genuinely nonlocal and 3D. This representation takes the form of the nonlocal

modal hydrodynamic function matrix that is then incorporated in the structural mechanics model. The two way cou-

pling of the problem allows to calculate the vibration response of the system to an external excitation, as well as the

resulting fluid flow field. Notably, neither of these quantities are specified a priori, but they both are the result of the

fully coupled FSI solution.

Once our novel theory is developed, we explore the nature of the nonlocal hydrodynamic operator and its impli-

cations on the coupling of otherwise orthogonal structural modes through both inertial and damping fluid loading.

Specifically, even in an orthogonal basis, the representation of the hydrodynamic operator is non diagonal, in a stark

departure from the local hydrodynamics approaches. By appeal to an energy argument, we highlight a novel “reci-

procity” result, reflected in the symmetry properties of the hydrodynamic operator, as well as a parity preserving

property. We demonstrate the characteristics of our novel theory by studying frequency response functions (FRFs),

mode shapes in vacuo (“dry”) and in the viscous fluid (“wet”), hydrodynamic forces and their components in phase

with acceleration or velocity of the structure (respectively, added mass and damping effects), quality factors and added

mass ratio coefficients and compare them with the predictions of the local theory for both beam and plate analysis.

We further investigate the effect of the fluid on the vibrational shapes at resonance and support our conclusions via

detailed studies of the flow fields corresponding to selected vibration cases. Importantly, we verify our nonlocal plate

theory with a new set of experiments for a square plate under base excitation demonstrating striking agreement and

predictive capabilities.

Within our working hypotheses, our approach establishes an “exact” solution, since the FSI problem is constructed

in full 3D generality with only the assumption of thin cantilever. Therefore, the effect of boundary conditions, finite

aspect ratio, and nonlocality are naturally captured by the method. Importantly, the FSI problem is solved “offline”

for a desired combination of geometry and dynamic parameters. As a result, our coupled method is computationally

inexpensive, while retaining its exact semi-analytical nature. In fact, the only approximations in our method consist

in the numerical discretization and can be controlled as desired, albeit at the cost of increase computational cost.

The rest of the paper is organized as follows. In Sec. 2, we establish the fundamental framework of our method,

including how the nonlocal modal hydrodynamic matrix is incorporated in vibrational models of both cantilever

beams and plates. In Sec. 3, we present the solution of the hydrodynamic problem, defining explicitly the nonlocal

modal hydrodynamic matrix, and highlighting important aspects of the fluid response. In Sec. 4, we discuss the

construction of the fully coupled FSI model, with particular interest to the integration of the nonlocal hydrodynamics

in the structural model. In Sec. 5, we present a through investigation of underwater vibrations of beams and plates,

including theoretical, numerical, and experimental contributions. Conclusions are summarized in Sec. 6. For ease

of presentation, we provide tutorial-like material on classical mechanics of beams and plates, as well as results on

singularities for the solution of hydrodynamic problems and their asymptotics in the Appendices.

2. Governing equations of motion

In this section, we will develop the general framework of equations of motion including the nonlocal modal

hydrodynamic function matrix formalism which is, in principle, applicable to any solid structure vibrating in viscous

fluids. As we focus on vibrations of both cantilever plate and beam geometries, we consider here a plate-like solid,

submerged in the fluid, undergoing small deflections in the transverse direction. The undeformed plate mid-plane lies

in the xy-plane, and its length, width, and thickness lie along the x, y, and z axes of the reference frame, respectively.
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Figure 1: Geometry and nomenclature of the problem. The instantaneous displacement of the structure, undergoing complex plate-like vibrations,

are exaggerated for clarity of presentation.

The origin of the reference frame is placed at the centroid of the fixed-end cross section at x = 0. Length, width,

and thickness of the plate are denoted as L, b, and h, respectively. The fixed edge is at x = 0, and the free edges are

at x = L and y = ±b/2. The assumption throughout this work is that h ≪ b, so that we will consider the solid as

a mathematical surface, with zero thickness, whose reference configuration is given by the domain D = {(x, y, z) ∈
R

3|x ∈ [0, L], y ∈ [−b/2, b/2], z = 0}. The geometry and nomenclature of the problem are presented in Fig. 1.

We will consider throughout small displacements and rotations for the structure, which thus behaves as a linear

elastic solid, and linear hydrodynamic response for the fluid, which operates linearly in the unsteady Stokes regime.

Because of this hypothesis, the current configuration of the solid also coincides with the reference configuration.

We will also postulate that the solid material is homogeneous and isotropic. We will further focus on steady state

harmonic vibrations, which exist under the above hypotheses, either in a free vibration problem or in a harmonically-

forced problem.

2.1. Definition of the structural problem

Let us denote with w(x, y, t) the transverse displacement in the z-direction of any point in the structure, labeled

via its Cartesian coordinates x = (x, y). Here and elsewhere, t indicates the time variable. For a linear harmonic

vibration at the radian frequency ω, it is convenient to replace the physical displacement with its phasor ŵ(x), such

that w(x, y, t) = Im
[

ŵ(x)eiωt
]

with i =
√
−1, see for example [29]. Here and in the following, a superimposed hat

indicates phasor quantities.

Typical equations of motion in vacuo are generally written, in the frequency domain, as −ω2M[ŵ(x)]+K[ŵ(x)] =

F̂ext(x), whereM and K indicate some linear operators describing the inertia and stiffness behavior of the structure,

respectively, and F̂ext(x) describes the phasor of a possibly non-zero distributed harmonic forcing term. This equation

is supplemented by a suitable set of boundary conditions that, in the case of a cantilevered structure, includes free

edges except one fixed edge. Initial conditions are not necessary in the phasor problem, as we focus on the steady

state vibrational behavior, after all transients have decayed, see [29].

To incorporate the effect of the encompassing fluid on the vibrations of the cantilever, we modify this equation of

motion by including a term describing the steady-state hydrodynamic force per unit area on the structure, arising from

the fluid-structure interactions. This force is generated by the structure vibrating with a shape ŵ(x) at a frequencyω, or

equivalently with a velocity iωŵ(x). To emphasize both these points, we indicate this force with the symbolHω[ŵ(x)].

In practice, this force is given by the net traction across the structure, projected in the direction normal to the solid

surface, see for example [46]. It is important to remark here that Hω[ŵ(x)] provides, at every point in the domain

D, the hydrodynamic forces generated by the motion of the entire structure, at a particular oscillation frequency. It is

known that this force, in the unsteady Stokes problem, is a linear operator on the shape ŵ(x), and is harmonic at the

frequency ω, but in general is a nonlocal complex function of the entire velocity of the structure [51, 46].
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Under these hypotheses, the equations of motion for the solid in the frequency domain become

−ω2M[ŵ(x] +K[ŵ(x)] = F̂ext(x) +Hω[ŵ(x)] (1)

Here, the right hand side (beside the external forcing term) is novel and represents the still-undetermined, frequency

domain description of the point-wise hydrodynamic forces on the structure due to oscillation of the entire structure

at a specific frequency ω. The unique aspect of this approach is that the motion of the entire structure is taken into

account for the calculation of the hydrodynamic forces, thus naturally capturing edge effects and FSI singularities

that are normally neglected by local approaches such as those based on [22, 1]. In addition, no prescription on the

deformed shape of the cantilever or on the particular mode of vibration is necessary at this point. This constitutes an

important generalization from [46], in which the vibration was instead prescribed along a specific deformed shape,

and from [37], in which the vibration was instead prescribed along structural beam modes (cylindrical bending). It

also represents an altogether different approach from [35], in which prescribed chord-wise deformations are necessary

to calculate the hydrodynamic response in a strip-like, still local, method. As detailed later, these effects are important

especially in the case of relatively low aspect ratio cantilevers and for higher modes of vibration, and they are essential

for evaluation of the plate behavior.

2.2. Discretization

For the solution of the structural problem in Eq. (1), we will use a form of the Rayleigh-Ritz energy method [39]

to recast the linear problem in a finite-dimensional matrix formulation. Relevant details are provided in the Appendix

on how the structural matrices are derived from expressions of the energy functionals. Here, however, to illustrate

the procedure and derive the modal hydrodynamic function matrix, we will use the somewhat more familiar Galerkin

method, see for example [52], which instead uses Eq. (1) directly. Specifically, we assume that the phasor ŵ(x) can

be generally represented as a superposition of “modes” (actual or assumed) modulated by frequency dependent modal

amplitudes, that is, ŵ(x) =
∑

j q̂ j(ω)φ j(x). 1

Once a suitable representation of ŵ(x) is developed as a linear combination of admissible functions, by linearity,

Eq. (1) becomes

−ω2
∑

j

M[φ j(x)]q̂ j(ω) +
∑

j

K[φ j(x)]q̂ j(ω) = F̂ext(x) +
∑

j

Hω[φ j(x)]q̂ j(ω) (2)

Provided that the chosen modes constitute a complete basis for the space of square-integrable functions over D,

“projection” of Eq. (2) on the modes φi(x) yields a set of linear algebraic equations for the modal amplitudes q̂ j(ω) in

the form

− ω2
∑

j

∫

D

φi(x)M[φ j(x)]dx q̂ j(ω) +
∑

j

∫

D

φi(x)K[φ j(x)]dx q̂ j(ω) =

∫

D

φi(x)F̂ext(x)dx +
∑

j

∫

D

φi(x)Hω[φ j(x)]dx q̂ j(ω) (3)

or, with obvious meaning of the symbols,

−ω2
∑

j

mi jq̂ j(ω) +
∑

j

ki jq̂ j(ω) = f̂i(ω) +
∑

j

hi j(ω)q̂ j(ω) (4)

where mi j =
∫

D
φi(x)M[φ j(x)]dx and ki j =

∫

D
φi(x)K[φ j(x)]dx are the usual modal mass and stiffness terms found

in structural matrices [M]i j = mi j and [K]i j = ki j, and f̂i(ω) =
∫

D
φi(x)F̂ext(x)dx is the i-th component of the modal

1In the Galerkin method, the modes are chosen to satisfy all the (homogeneous form of the) boundary conditions of the problem [52, 53]. By

contrast, the practical advantage of the Rayleigh-Ritz method lies in the use of assumed modes that only need to satisfy the essential boundary

conditions and that the discretization into the matrix problem is performed from expressions for the energy of the system [52].
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external excitation vector f̂ . These structural terms are fully detailed in the Appendix for the beam and plate theories,

separately, although derived from energy methods. Importantly, in Eq. (4), we have explicitly defined the term

[H(ω)]i j = hi j(ω) =

∫

D

φi(x)Hω[φ j(x)]dx (5)

which represents the hydrodynamic force generated by the structure vibrating in the fluid along the structural mode

φ j at a frequency ω, projected on the mode φi. We define this new quantity as the i j-entry of the nonlocal modal

hydrodynamic function matrix. An insightful interpretation of Eq. (5) is that the frequency-dependent linear operator

Hω[•] is being fully characterized by determining its components in the “coordinate system” established by a complete

set of basis vectors, in this case constructed from the structural modes. The determination of the matrix H(ω) and

an investigation of its physical properties is central to this paper and will be addressed in Sec. 3 via solution of the

hydrodynamic problem.

2.3. Treatment of base acceleration excitation

A subtle manifestation of nonlocal hydrodynamics also appears in the practical cases of structures excited by an

imposed base acceleration rather than an external force, see for example [29, 54]. In this case, let us denote with

WB(x, y, t) = Im
[

ŴBeiωt
]

the rigid translational displacement of the base, where ŴB is the complex amplitude of the

rigid base displacement, uniform over the domain D. Also, we denote with ΘB(x, y, t) = Im
[

Θ̂Beiωt
]

the rigid rotation

angle of the base, with Θ̂B the complex amplitude of the rigid base rotation, uniform over the domain D. The absolute

motion of the cantilever will thus be w(x, y, t) +WB(x, y, t) + yΘB(x, y, t) and this term appears in the inertial operator

M and in the hydrodynamic force operatorHω. Because of the linearity of the operators, we have

F̂ext(x) = ŴBω
2M[1(x)] + Θ̂Bω

2M[y1(x)] + {ŴBHω[1(x)] + Θ̂BHω[y1(x)]} (6)

where we have used the symbol 1(x) to indicate the function identically equal to 1 on the domain D and 0 otherwise.

The first two terms on the right hand side are the familiar base acceleration excitation (in vacuo), while the term in

braces includes the effect of the fluid. This expression can be used seamlessly in Eq. (3) for the calculation of the

modal forces. We conclude by observing that, in case of base acceleration excitation, the hydrodynamic load on the

cantilever will comprise both the component due to the elastic deformation of the solid, that is,
∑

jHω[φ j(x)]q̂ j(ω),

as well as that due to the rigid body motion ŴBHω[1(x)] and Θ̂BHω[y1(x)]. In particular, this nonlocal term in

the structural excitation has not been identified before in the context of hydrodynamic function approaches. This

has important consequences in the dynamic response of the system excited by a base acceleration, rather than by an

applied external force, as discussed in the study of experimental results in Sec. 5.

3. The hydrodynamic problem

3.1. Problem statement and solution

We consider here a prototype cantilevered thin structure and thus continue to focus on a 2D thin sheet. Geometry

and nomenclature are as in Fig. 1. We remark here that the x-direction is span-wise and the y-direction is chord-wise.

As above, the thickness h of the cantilever is assumed to be much smaller of either length and width and will be

neglected in the hydrodynamic calculations, thus considering the cantilever as a zero thickness sheet. The structure is

submerged in a quiescent viscous fluid of density ρ f and dynamic viscosity µ f .

The hydrodynamic regime of interest is described by the unsteady Stokes equations, for which convective non-

linearities are neglected [46]. The flow is assumed to be incompressible and in absence of gravity and body forces.

Steady-state vibrations of the cantilevered structure are assumed to be harmonic and to occur at vanishingly small

amplitude. Under these assumptions, the evolution of the fluid velocity field is also time-harmonic. By nondimen-

sionalizing all variables with the characteristic length b, the characteristic velocity ωb, and the dynamic viscosity µ f ,

the nondimensional velocity phasor û is given by the following equation in the frequency domain [51]

iα2û = −∇ p̂ + ∇2û (7)
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in addition to the incompressibility condition ∇ · û = 0, where α2 = ωρ f b
2/µ f = 2πβ. Here, p̂ indicates the

nondimensional pressure phasor, obtained from the dimensional pressure scaled by the characteristic pressure p0 =

µ fω, resulting from the nondimensionalization. Furthermore, the parameter α2, proportional to the nondimensional

frequency parameter β, can be understood as the ratio [55] of the Reynolds number versus the Strouhal number for

this problem. All phasors in Eq. (7) are functions of the spatial location and of the frequency ω, but we omit here this

dependency for brevity. No-slip boundary conditions are imposed at the fluid-solid interface D, that is, the cantilever

surface. Remote boundary conditions at infinity include zero pressure and zero velocity [46].

The solution of Eq. (7) can be written as in [51, 46], in terms of the following Fredholm integral equation of the

first kind in index notation (indices i, j, k = 1, 2, 3)

ûi(x̄) =
1

8π

∫

D

τ̂ jk(x)nkS i j(x, x̄;α) dx (8)

which for simplicity is already collocated on the fluid-solid interface. Here, x and x̄ are any two points on the cantilever

surface, nk is the normal unit vector to the surface of the cantilever, τ̂ jk is the phasor of the (nondimensional) stress

tensor, and S i j is the oscillatory Stokeslet defined in [51], see also Appendix C.1. The dimensional stress tensor is

recovered from τ̂ jk by multiplication with p0. The physical meaning of Eq. (8) is that a traction τ̂ · n at x induces a

velocity field û at x̄. In essence, we will solve Eq. (8) for the stress state on the cantilever (which will provide the

hydrodynamic forcing) as a function of its vibrational velocity.

Rather than developing Eq. (8) in its full generality, here we discuss a simplified treatment for the specific case of

interest. The first simplification, as in [46], is the assumption of zero thickness cantilever. This allows for neglecting

the contributions of the stress on the sides of the cantilever parallel to the zx- and zy-planes. The second assumption

is that of linearized out-of-plane displacements for the structure, described by the phasor ŵ. This implies that the

fluid velocities along the x- and y-axes vanish at the surface of the cantilever, and that the nondimensional velocity

phasor û(x) = iωŵ(x)e3/(ωb) for x ∈ D, where e3 is the unit vector in the z-direction. By linearity, the only non-zero

component of stress is τ̂33. Thus, by denoting with [[τ̂]] = n3(τ̂33|z=0+ − τ̂33|z=0−) the jump of the traction across D, we

obtain the following single scalar integral equation

iŵ(x̄)/b =
1

8π

∫

D

[[τ̂]](x)A(|x − x̄|, α) dx (9)

which shows that [[τ̂]] depends linearly on the phasor of the transverse nondimensional velocity iŵ/b through the

kernel A. By indicating with r = |x − x̄| the distance of two points x and x̄ on the cantilever, the kernel was shown

in [46] to reduce to

A(r, α) = 2
e−
√

iαr

r

(

1 +
1
√

iαr
− i

α2r2

)

+
2i

α2r3
(10)

It is useful to note that the kernelA is invariant with respect to any transformation that preserves the distance between

x and x̄. In particular, A is invariant if both x and x̄ are reflected about the y-axis. This observation has important

implications on the odd or even nature of the hydrodynamic load in correspondence to an odd or even velocity profile

about the y-axis and can be used in practical calculations. We call this a parity-preserving property.

Equation (9) can be solved numerically for [[τ̂]] for any specific form of out-of-plane displacement ŵ and fre-

quency ω (or parameter α) with the methods discussed in detail in [46] using boundary integrals and variations of

the panel method. Further details can be found in Appendix C.2. It is of particular interest to solve for [[τ̂]] in

correspondence of ŵ(x) replaced with one “mode” (either actual or assumed) for the structure, say φi(x). Recognizing

in fact that Hω[ŵ] = [[τ̂]], in this case, the net traction takes on the meaning of the generic term Hω[φi(x)] that was

introduced in Eq. (2). The solution will thus correspond to the phasor of the nondimensional hydrodynamic force per

unit area due to fluid-structure interactions occurring for vibrations along the i-th mode at a frequency ω. We will

indicate this quantity with η̂φi
(x, ω) = Hω[φi(x)]. This construction can be interpreted intuitively by thinking of the

operatorHω as the inverse of the integral operator in Eq. (9), besides some scaling coefficient. At this stage, since the

mechanical properties of the structure have not been specified, ω should be regarded as a free parameter.

In passing, we note that Eq. (8) can also be used to reconstruct the full 3D velocity field of the fluid in response

to a net traction [[τ]] on the plate. For this purpose, the full expressions for the kernels S 13, S 23, and S 33 are adapted

from [51] and presented in Appendix C.1, along with expressions for the evaluation of the components of the vorticity

vector.
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3.2. The nonlocal modal hydrodynamic function matrix

Once the tools from the hydrodynamic treatment are available, we are now in the position of explicitly deriving the

nonlocal modal hydrodynamic function matrix whose terms are defined in Eq. (5). To this aim, we will first produce

an energy argument leading to a novel reciprocity result which has both interesting physical significance as well as

usefulness in numerical calculations.

Recall that we have denoted with η̂φi
the nondimensional forces corresponding, through Eq. (9), to the nondimen-

sional velocities iφi/b. Switching now to dimensional quantities, let us consider an experiment in which fluid forces

µ fωη̂φi
are applied to the structure to generate a velocity field iωφi. Then, on top of the existing load distribution, a

second set of fluid forces µ fωη̂φ j
are applied to the structure to generate an additional velocity field iωφ j. Obviously,

because of linearity, the total distribution of forces on the structure is µ fω(η̂φi
+ η̂φ j

) and the total velocity distribution

is iω(φi + φ j). Here, without loss of generality, φi and φ j are assumed to be real, as the only requirement in a virtual

work argument is that the displacements are admissible. For the load sequence above, the (complex) work done by

the hydrodynamic forces on the structure is

WH,i→ j = µ fω
2

(

1

2

∫

D

[iφi(x)]∗η̂φi
(x, ω)dx +

∫

D

[iφi(x)]∗η̂φ j
(x, ω)dx +

1

2

∫

D

[iφ j(x)]∗η̂φ j
(x, ω)dx

)

(11)

where the superscript star indicates complex conjugation. Note that, while the work contributions including the prod-

uct of φi with η̂φi
and φ j with η̂φ j

are premultiplied by a factor 1/2 because force and velocity increase proportionally,

the mixed term including the product of φi with η̂φ j
is not, because the new force η̂φ j

does work on the full value of

the velocity iφi. Reversing the order of application of the forces, we obtain the complex work done in this opposite

sequence as

WH, j→i = µ fω
2

(

1

2

∫

D

[iφ j(x)]∗η̂φ j
(x, ω)dx +

∫

D

[iφ j(x)]∗η̂φi
(x, ω)dx +

1

2

∫

D

[iφi(x)]∗η̂φi
(x, ω)dx

)

(12)

Because it must be thatWH,i→ j =WH, j→i for conservation of energy, and noting that the modes φi are real, we obtain

the important result

∫

D

φi(x)η̂φ j
(x, ω)dx =

∫

D

φi(x)Hω[φ j(x)]dx =

∫

D

φ j(x)η̂φi
(x, ω)dx =

∫

D

φ j(x)Hω[φi(x)]dx (13)

or hi j(ω) = h ji(ω) as, through this argument, we have naturally recovered the terms in Eq. (5). Equation (13) could

be called a “reciprocity result”, similar to the Maxwell-Betti theorem, in this FSI problem. More specifically, this

establishes the real and imaginary parts of the matrix H(ω) as symmetric, that is Re [H(ω)] = Re [H(ω)]T and

Im [H(ω)] = Im [H(ω)]T . The matrix H(ω) however is not Hermitian, that is, H(ω) is not equal to its complex-

conjugate transpose. If that were the case, the imaginary part of H(ω) would be a skew matrix and describe gyroscopic

effects [56] rather than dissipation, see also [57]. Physically, this relation demonstrates also that the hydrodynamic

force generated in response to vibration along mode j does work on a velocity field along mode i equal to the work

of the hydrodynamic force generated in response to vibration along mode i on a velocity field along mode j. In a

different interpretation, referring back to Eq. (3), this relation demonstrates that the i-th modal hydrodynamic force

generated in response to vibration along mode j is equal to the j-th modal hydrodynamic force generated in response

to vibration along mode i. Computationally, this result can reduce approximately by half the cost of calculating

H(ω), as well as providing a built-in consistency check in the numerics. As expected, this reciprocity is invariably

observed in the numerical calculations. Furthermore, by considering the fluid kinetic energy and viscous dissipation,

we deduce that both Re [H(ω)] and −Im [H(ω)] must be positive definite, a circumstance that is consistently observed

in the numerical results. Note that the prescribed boundary conditions do not allow the fluid matrices to be positive

semidefinite, see also [57].

With the reciprocity result, the dimensional nonlocal modal hydrodynamic function matrix components for both

plate and beam cantilever structures to be used in a suitable structural dynamics model can be determined as follows.

Rewriting slightly for clarity, for plates we have

hi j(ω) = µ fω

∫ L

0

∫ b/2

−b/2

φi(x)η̂φ j
(x, ω)dydx = µ fω

∫ L

0

∫ b/2

−b/2

φ j(x)η̂φi
(x, ω)dydx = h ji(ω) (14)

9



where we have used the symmetry properties of Eq. (13). A natural interpretation of this expression derives from

recognizing the projection of η̂φ j
(x, ω) onto φi(x) or, equivalently, of η̂φi

(x, ω) onto φ j(x) because of reciprocity, via

an inner product (double integral over D = [0, L] × [−b/2, b/2]) over a suitable function space, see also Eq. (3).

Because of the parity-preserving property, it is interesting to note that if the mode φi is an even (odd) function of y,

the corresponding hydrodynamic load η̂φi
will be even (odd) as well, as shown in Fig. 2. Then, if a second φ j is odd

(even), the term hi j will evaluate to 0. This property, consistent with physical intuition, stems from the invariance of

the kernelA and explains the presence of sparsity patterns in the matrix H for plates.

Vice versa, for beams in bending, as the modes (but not the hydrodynamic loads) are only function of x, Eq. (14)

can be rewritten in the slightly modified form

hi j(ω) = µ fω

∫ L

0

φi(x)

(
∫ b/2

−b/2

η̂φ j
(x, ω)dy

)

dx = µ fω

∫ L

0

φ j(x)

(
∫ b/2

−b/2

η̂φi
(x, ω)dy

)

dx (15)

which is computationally equivalent to Eq. (14) but helps better identifying the force per unit length
∫ b/2

−b/2
η̂φ j

(x, ω)dy

that appears naturally in a one-dimensional (1D) beam problem. A similar form was proposed in a previous work by

our group [46] for a prescribed mode shape. Equation (15) can be recognized as the projection of the hydrodynamic

force per unit length
∫ b/2

−b/2
η̂φ j

(x, ω)dy onto the beam mode φi(x) via an inner product (integral over x ∈ [0, L]). This

development shows that the modal hydrodynamic function matrix for beams in bending can be thought of a subset

of that for plates as only modes independent of y are used for the beam case. In this respect, the limitations of the

bending beam formulation are somewhat reminiscent to those of the recent work of [37]. Note that, since all modes

and hydrodynamic loads per unit length are independent of y, no even or odd patterns occur, and the sparsity patterns

are not observed in the beam case.

Following the literature, it is convenient to express the hydrodynamic function in terms of the nondimensional

frequency parameter β. Therefore, the modal hydrodynamic function terms are scaled as

h̃i j(β) =
hi j(ω)

(π/4)ρ fω2b2L

∣

∣

∣

∣

∣

∣

ω=(2πµ f β)/(ρ f b2)

(16)

This position makes h̃i j(β) independent of the specific dimensional parameters of the problem and reduces it to a

function of aspect ratio Λ = L/b and nondimensional frequency parameter β, provided that the fluid characteristics

(ρ f , µ f ) and the cantilever width b (normally taken to unity in the hydrodynamic calculations) are prescribed. Notice,

in fact, that the scaling coefficient in Eq. (16) equates to (π/4)ρ fω
2b2L = [(π3µ2

f
)/(ρ f b)]Λβ2.

4. Construction of the fully coupled FSI model

4.1. Nonlocal hydrodynamic coupling as added mass and damping matrices

Once the matrix H(ω) is known, the dynamic behavior of the system can be determined by solving the fully

coupled FSI problem in Eq. (4). For example, the free vibration problem with f̂ = 0 leads to a special form of the

generalized eigenvalue problem written as

[K − ω2 M − H(ω)]q̂(ω) = 0 (17)

where q̂(ω) is the vector of modal coefficients. Because H(ω) is a complex-valued function of ω, it is illustrative

to write H(ω) = ω2HR(ω) − iωHI(ω) to isolate its real and imaginary parts and recast Eq. (17) as [K − ω2(M +

HR(ω)) + iωHI(ω)]q̂(ω) = 0. Note that, for reciprocity as in Eq. (13), HR(ω) = HR(ω)T , and HI(ω) = HI(ω)T .

With this construction, it becomes apparent that the real part of the modal hydrodynamic function matrix behaves as

an added mass matrix, while its imaginary part behaves as a damping matrix, or energy dissipation, term [28]. They

are correctly described via symmetric and positive definite matrices, for any ω. Both effects are, however, frequency

dependent, so that Eq. (17) represents a so-called nonlinear eigenvalue problem [58], whose solution is nontrivial and

requires special approaches.2

2Analysis of Eq. (17) could be pursued numerically by scanning for eigenfrequencies and modes as a function of ω by monitoring the magnitude

of the vector q̂ or the behavior of the determinant (or, more accurately, the condition number or singular values) of the matrix in square brackets in

Eq. (17).

10



In this work, we will not be concerned with the solution of the nonlinear eigenvalue problem, but we choose

to study the fully coupled FSI problem by investigating forced vibration scenarios. We will focus on solutions of

[K − ω2 M − H(ω)]q̂(ω) = f̂ (ω) and look for resonance peaks in the system FRF, for different relevant cases of

external excitation.

4.2. Flexural vibrations of submerged cantilever beams

In this section, we specialize our previous results to cantilever beams undergoing bending vibrations. A review

of the relevant foundational aspects of mechanics of beam vibrations is covered in Appendix A, along with a primer

on our mechanical model. For an arbitrary external modal excitation, Eq. (4), in which the hydrodynamic force

expressions in Eq. (15) are employed along with the structural matrices of Eq. (A.5) developed in the Appendix, is

rewritten as
[

EILK̃ − ω2ρsALM̃ − π
4
ρ fω

2b2LH̃(ω)

]

q̂(ω) = f̂ (ω) (18)

For illustration purposes, it is instructive to rewrite this expression as

[

K̃ − ω2 ρsA

EI
M̃[I + RM̃−1 H̃(ω)]

]

q̂(ω) =
1

EIL
f̂ (ω) (19)

where I is the identity matrix, and we defined R = (πρ f b)/(4ρsh) the mass ratio [29] of the FSI problem, which

represents a measure of the amount of fluid loading that the structure is experiencing. This parameter can also be

interpreted as the ratio of the mass per unit length of a cylinder of fluid of diameter b to the mass per unit length of

the cantilever, see also [59]. In particular, if R → 0 the problem reduces to in vacuo vibrations, and for small values

of R the fluid only contributes to a small perturbation of the dynamics of the structure. Vice versa, the parameter

R becomes relatively large when light, flexible structures interact with dense fluids, that is, in the cases where the

fluid significantly affects the dynamic behavior of the structure. Equation (19) bears formal similarities, as well as

substantial differences, to the local theory, which reads, with the nomenclature of this paper,

[

K̃ − ω2 ρsA

EI
M̃[1 + RΓ(ω)]

]

q̂(ω) =
1

EIL
f̂ (ω) (20)

Note here, that the classical hydrodynamic function Γ(ω) produced in [1] with the methods of [22] is a scalar function,

rather than a matrix function as in Eq. (19). It is important to remark here that the off-diagonal terms of H(ω) are

in general non-zero, even for a selection of orthogonal modes, due to the nonlocality of the operator. Importantly,

modal coupling is not only inertial in nature, as typically observed [57], but also due to fluid damping. Even for

a beam-like structure, this is a stark difference between our approach and the simplifying assumptions in the body

of works inspired by [22, 1] which, by postulating that the hydrodynamic load per unit length is proportional to the

local transverse acceleration of the beam axis, necessarily lead to a matrix H proportional, via a frequency-dependent

complex scalar term, to the mass matrix M, and thus, diagonal for a choice of orthogonal modes.

4.3. Vibrations of submerged cantilever plates

In this section, we specialize our previous results to cantilever plates undergoing forced vibrations. A review of

the relevant foundational aspects of mechanics of classical plate vibrations is covered in Appendix B, along with a

primer on our mechanical model and its validation. Since our plate model can seamlessly capture flexural, torsional,

and proper plate-like behavior of the structure, comparison of its predictions will also be discussed against bending

and torsion results from beam models, as developed in Appendix A.3

For an arbitrary external modal excitation, the general expression in Eq. (4), in which the hydrodynamic force

terms in Eq. (14) are employed along with the structural matrices of Eq. (B.5) developed in the Appendix, is rewritten

as
[

DLbK̃ − ω2ρshLbM̃ − π
4
ρ fω

2b2LH̃(ω)

]

q̂(ω) = f̂ (ω) (21)

3For beams in torsion, similar to the problem discussed in [24, 54], several technical details make portions of the treatment somewhat different

to what covered so far. For clarity of presentation, we will not introduce a nonlocal modal hydrodynamic theory for beams undergoing torsional

vibrations in this work. The nonlocal torsional theory will be presented elsewhere. We will however compare predictions of torsional vibrations

from our plate theory with the ad-hoc local torsional vibration theory of [24].
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Figure 2: Hydrodynamic loads corresponding to selected plate modes. Top: assumed mode shapes according to the definitions in Appendix B.

Middle: real parts of hydrodynamic load phasors. Bottom: Negative imaginary parts of the hydrodynamic load phasors. The frequency parameter

is α =
√

2π · 100 and the aspect ratio is Λ = 1, see also Appendix C.2.

As before, this expression is scaled to yield

[

K̃ − ω2 ρsh

D
M̃[I + RM̃−1 H̃(ω)

]

q̂(ω) =
1

DLb
f̂ (ω) (22)

which is the plate counterpart to Eq. (19) derived for a beam in bending. Note that the coefficient ρsh/D in Eq. (22)

reduces to ρsA/(EI) in Eq. (19) if E in the latter is replaced with the Young’s modulus in plane strain E′ = E/(1− ν2),

see also Appendix A. Once the matrices are formed, the equations can be solved for any desired modal forcing and

the wet frequency response functions can be formed and compared.

5. Results and discussions

5.1. Nonlocal modal hydrodynamic function matrix as solution of the fluids problem

Representative results of the solution of the fluid problem in Eq. (9) are displayed in Fig. 2 which presents the

calculated hydrodynamic net traction profiles on a square cantilever plate generated by vibration along three different

mode shapes. Results refer to a representative frequency parameter α =
√

2π · 100. The selected mode shapes

include one cylindrical bending mode (mode (1, 0)), one torsional mode (mode (1, 1)), and a generic plate mode

reminiscent of a shape morphing configuration (mode (1, 2)), see [46]. The nomenclature of the plate modes is

defined in Appendix B. Within this notation, the second index is also equal to the number of nodes in the y-direction

and therefore immediately describes whether the velocity profile is even (as in the cylindrical bending case or in the

shape morphing-like mode) or odd (as in the torsion case).

As clearly displayed in the figure, the hydrodynamic loads η̂φi
are calculated by taking into account the full

velocity profile, due to vibrations along mode φi, of the entire cantilever, with explicit and automatic consideration of
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Figure 3: Normalized forces per unit length according to the present nonlocal beam theory and to the local theory, for the first three structural

modes of the beam with Λ = 1. Note how the present theory captures the load singularities due to end effects.

end effects and finite cantilever aspect ratio. It is easy to see that the hydrodynamic load profiles are not proportional

to the structural modes, thus rigorously justifying the need of the present nonlocal treatment. Of particular importance

are the boundary effects at x = L and especially at the free corners, at y = ±b/2, where the singular behavior of the

traction profile becomes prominent. These singularities cannot be captured by the local theory in [22, 1] nor by the

recent numerical schemes in [35, 36] which are based on a strip integration method in the chord direction, rather than

a fully 3D fluid problem. In addition, our method can seamlessly handle complex plate-like deformations, as it is

not restricted to particular functional forms along the x- or y-axis as in [37]. It is also important to notice that the

numerical solutions of Eq. (9) shown in Fig. 2 confirm the theoretical predictions of the parity-preserving property,

on the even/odd nature of the hydrodynamic load (both for its real and imaginary parts) in response to an even/odd

velocity profile for the cantilever as a function of the chord-wise coordinate.

To better illustrate the nonlocal nature of the hydrodynamic load, in Fig. 3 for beam vibrations, we display a

comparison of the predictions of the local theory versus the actual forces per unit length obtained by the present

approach, as in Eq. (15). In this example, the forces are calculated by applying the hydrodynamic operator on the first

three dry beam modes, see Eq. (A.4) in Appendix A. These forces per unit length are obtained by integrating the

traction profiles along the chord direction. For ease of presentation, we report results at the representative intermediate

nondimensional frequency β = 100 and aspect ratio Λ = 1, as in Fig. 2. As shown in Fig. 3, the hydrodynamic forces

predicted by the local theory follow closely the mode shapes, while the present theory takes into account the entire

deformed shape of the structure. This causes major differences in the way the added mass and damping are included

in the calculation, via a severe overestimation. Even though not shown, the deviations of the present formalism from

the local theory are more severe as the mode number increases (especially when considering the end effects at the

cantilever tip) and typically more pronounced at low β, consistently with the fact that for a more viscous regime,

sensitivity to boundary conditions (e.g., motion of the cantilever) extends for larger spatial regions and, consequently,

the estimation of hydrodynamic forces progressively becomes a less local problem.

Projecting the nonlocal forces in Fig. 3 on the dry beam modes, we can finally obtain the components of the ma-

trix H(ω) for beam vibrations, as in Eq. (15). To investigate the non-diagonal nature of the nondimensional operator

H̃(β), in Fig. 4 we plot the values of its entries over four decades of nondimensional frequencies β ∈ [100, 104] for

the representative aspect ratios Λ = 5 in panel (a) and Λ = 1 in panel (b). Only the components pertinent to the

first three modes are reported for brevity, and use is made of the symmetry h̃i j = h̃ ji for clarity of presentation. In

the figure, markers are calculated values while lines represent interpolations at intermediate β values, see Appendix

C.2. Black squares and red circles represent the real and the negative imaginary parts, respectively, of the modal

hydrodynamic function matrix components. While only the diagonal terms are used in traditional methods calcula-

tions, see Eq. (20), it can be seen that off-diagonal terms are non-negligible, constituting up to approximately 10–20%
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Figure 4: Representative components of the hydrodynamic function matrix H̃ for aspect ratio (a) Λ = 5 and (b) Λ = 1. Note the non-zero off-

diagonal components h̃i j, with i , j.

of the main diagonal values especially at low frequencies for the imaginary parts for Λ = 5. Interestingly, several

off-diagonal terms in the real part take on negative values, which have not been observed in the literature on hydro-

dynamic functions. However, energy conservation is not violated, as both the real and imaginary parts of H(ω) are

positive definite, for any ω. The contribution of off-diagonal terms is even more substantial for the low aspect ratio

case Λ = 1. Here, the off-diagonal terms can reach up to 30–40% of the main diagonal values, thus further indicating

the importance of correctly accounting for non-proportionality between displacements and hydrodynamic loads in the

structural solution.

5.2. FSI of cantilevered beams

To illustrate the peculiarity of our new nonlocal theory in the context of beam vibrations, in this section, the

dynamics in Eq. (19) is solved for the modal coefficients q̂ j by scanning the values of ω (or, equivalently, β) in a

frequency band of interest, and the FRF of the system is obtained. In the representative study below, we consider a

harmonic unit force load concentrated at the free tip of the cantilever and, where applicable, we consider the response

of the system in terms of tip transverse displacements (driving point FRF).

In the following, all results are presented with respect to both the dimensional frequency f = ω/(2π), as well

as with respect to two nondimensional frequency axes: the β axis, which emphasizes the hydrodynamic regime for

a given frequency band of vibration, and the f + axis, which instead emphasizes the structural dynamics aspects of

the vibration. Specifically, f + is a nondimensional frequency defined as f + = f / f0, with f0 =
√

Eh2/(12ρs)/(2πL
2).

Thus, the two nondimensional axes β and f + allow direct and immediate comparison of FSI results over broad time

and length scales.

First, we assess the effect of neglecting the off-diagonal terms in FSI calculations. Specifically, we study the

underwater vibrations of a silicon microcantilever beam (E = 169 GPa, ν = 0.25, ρs = 2320 kg/m3, see [41]) with

dimensions L = 200 µm, b = 40 µm, and h = 2 µm, so that the aspect ratio is Λ = 5 as in Fig. 4. Fluid properties

are taken as ρ f = 997 kg/m3 and µ f = 8.59 × 10−4 Pa · s for the calculation of β. The first ten modes are used

in all calculations. The first two undamped dry modes of the cantilever appear in the frequency range [0, 500] kHz

( f + ≈ 25), at approximately 69 kHz ( f + ≈ 3.52) and 432 kHz ( f + ≈ 22), along with the first three estimated wet

modes as shown in Fig. 5(a). The third dry mode occurs at approximately 1210 Hz ( f + ≈ 61.7). Note that 500 kHz

corresponds to approximately β = 930 for this particular problem. To provide quantitative measurements of the

effect of the fluid, we will use the vibration quality factor Q and the fluid added mass MA. These quantities are

often used as global measures of the effect of the fluid on the overall structural vibrations [2, 28, 7, 35]. It should

be noted that attempts to fit peaks of a linear FRF to the responses generated by the present method are sometimes
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Figure 5: Driving point frequency response function (FRF) for a submerged cantilever beam, elucidating the non-diagonal nature of the hydrody-

namic operator and departures from the local theory. In (a), Λ = 5. In (b), Λ = 1. FRFs are presented with respect to dimensional frequency, as

well as nondimensional parameters β and f + to emphasize hydrodynamic and structural regimes, respectively.

unsuccessful as the complicated dependence of the hydrodynamic operator H on ω causes deviations from the typical

linear response. Thus, damping is preferentially estimated with the half power points method [60], identifying quality

factors as Q = ωp/(ω2 − ω1), where ω1 and ω2 are the frequency of the lower and upper half power points, and ωp is

the frequency of the peak response. Similarly, by comparing Eq. (19) with its in vacuo counterpart in Appendix A,

we can define the added mass as MA = (ωd/ωw)2 − 1, where the subscript d or w indicate dry or wet, respectively, for

the resonance frequencies.

In Fig. 5(a), we display the in vacuo driving point FRF (to a concentrated tip load) and the predictions of the

classical local theory by Sader [1], along with results from the present approach considering both the full H operator

and its “diagonal”, but still nonlocal, version, obtained by neglecting off-diagonal entries. Here, R = 6.75. The three

approaches predict reasonably close result for the first wet mode frequency and damping (local theory: 20.75 kHz

with MA = 10.057, Q = 3.80; present theory: 22.50 kHz with MA = 8.404, Q = 3.62, a difference of approximately

8% in the natural frequencies, approximately around β = 40 and f + = 1.15). A slightly larger quality factor and added

mass factor are predicted by the local theory.

As expected, more significant discrepancies are progressively observed as the mode number increases. For wet

mode 2, at approximately β = 300 and f + = 8.22, the local theory predicts a damped resonance at 144.75 kHz with

MA = 7.907, Q = 8.75, while the present theory with full and diagonal hydrodynamic operator suggests 161.25 kHz

with MA = 6.177, Q = 8.57 and 160.25 kHz with MA = 6.267, Q = 8.75, respectively. The local theory underestimates

the natural frequency predicted by the full theory by more than 10%. The diagonal assumption shows discrepancies

of less than 1% on the resonance frequency. The local theory and the diagonal assumption also seem to underestimate

damping by 2%. For wet mode 3, at approximately β = 900 and f + = 24.75, the local theory predicts a damped

resonance at 416.40 kHz with MA = 7.444, Q = 13.47, while the present theory with full and diagonal hydrodynamic

operator indicate 485.25 kHz with MA = 5.218, Q = 14.97 and 480.60 kHz with MA = 5.339, Q = 15.57, respectively.

The local theory and the diagonal assumption underestimate the natural frequency predicted by the full theory by 14%

and 1%, respectively.

While Λ = 5 corresponds to a geometry for which the aspect ratio could be still characteristic of a somewhat

slender beam, when considering Λ = 1 geometry effects should further enhance discrepancies among the local and

nonlocal theories. Indeed, this is the case as shown in Fig. 5(b) generated by changing the beam width to b = L.

Here, R = 33.75, so the effect of the fluid is expected to be more pronounced as compared to the previous case.

While the in vacuo frequencies are not changed (under the assumption that the structural dynamics is governed by

the same beam equation), the presence of the fluid has a major effect on the shift of wet natural frequencies and their
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Table 1: Frequency response data for a cantilever beam with Λ = 1. For each mode, natural frequencies are indicated with fn , added masses with

MA, and quality factors with Q. The columns ‘% D’ indicate percent differences against the present theory.
Present Local Diagonal

MA fn (kHz) Q MA fn (kHz) % D fn Q % D Q MA fn (kHz) % D fn Q % D Q

Mode 1 18.56 15.6 7.05 38.35 11.00 -29% 10.12 44% 18.56 15.6 0% 7.01 -1%

Mode 2 12.80 116.3 15.22 35.61 71.40 -39% 22.56 48% 14.79 108.7 -7% 20.40 34%

Mode 3 9.04 383.8 23.88 34.95 201.8 -47% 35.46 48% 10.02 364.5 -5% 30.91 29%
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Figure 6: Displacements of the square cantilever, using beam theory, at wet resonance. The real (solid line) and imaginary (dashed line) parts of

the deflected shape phasor at resonance. In (a): mode 1, in (b): mode 2, and in (c): mode 3. For the local theory, resonances occur at 11.00, 71.40,

and 201.8 kHz. For the present nonlocal theory, resonances occur at 15.6, 116.3, and 383.8 kHz, as in Table 1. Note the shift of the nodal locations

and the different vertical axis scale.

associated quality factors. Note that for this problem, 500 kHz corresponds to approximately β = 23000. Since for

the Λ = 1 case the values of β are substantially larger than the Λ = 5 case of a factor of 25, the effect of viscosity on

hydrodynamic damping is reduced, and the wet peaks appear sharper in Fig. 5(b) as compared to those in Fig. 5(a).

Vibrational behavior results are collected in Table 1 which displays significant departures of the present approach from

the local theory. Generally speaking, the local theory seems to overestimate the added mass effect, as evidenced by the

pronounced low-frequency shift of the resonance frequencies. Interestingly, a fourth mode is predicted in the explored

frequency window by the local theory; such mode appears instead outside of the frequency window according to the

present approach. The local theory predicts higher quality factors as well, likely by underestimating the effect of

hydrodynamic damping due to end effects. As compared to Fig. 5(a), for the Λ = 1 case, the importance of the off-

diagonal terms of the operator H becomes more evident and significant underestimation of the hydrodynamic damping

could occur by neglecting the off-diagonal components of the modal hydrodynamic function matrix. This finding is

entirely consistent with the results shown in Fig. 4. Similarly, the added mass effect appears to be overestimated,

possibly due to the presence of negative added mass terms in the full operator, as shown in Fig. 4.

The last observation of this analysis concerns the mode shapes resulting from FSI for the square cantilever under

study. In Fig. 6, we display, for the first three wet resonances of the cantilever, the displacement shapes in correspon-

dence of the resonance peaks. These are obtained by constructing a linear combination of the beam modes, weighted

by the modal coefficients evaluated at the resonance frequencies determined by the previous analysis. For complete-

ness, we display the real and imaginary part of the displacements, while observing that, because one of the landmarks

of resonance is the fact that displacement and excitation are in quadrature of phase (i.e., π/2 apart), the largest con-

tribution to the absolute value of displacement is provided by the imaginary part. It can be seen that the mode shapes

are modified by the nonlocal treatment of the hydrodynamic loading and such modifications are more evident for the

higher structural modes. This observation is made clear by the shift of the nodal positions along the beam axis that

can be easily identified in panels (b) and (c) of Fig. 6. This result highlights an important methodological difference

between our work and [46], in that the wet mode shapes cannot be imposed a priori, but they will be a result of the
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Figure 7: Magnitudes (in log scale) of the modal coefficients q̂i at wet resonance for the square cantilever Λ = 1. In (a): mode 1, in (b); mode 2,

and in (c): mode (3).

overall forcing on the structure.

The fact that many dry modes can contribute to the wet shape can be quantitatively ascertained by evaluating the

modal coefficients at wet resonance, as shown in Fig. 7. For this particular case of reasonably well-spaced modes, it

can be seen that the i-th dry mode is the main contributor to the corresponding i-th wet shape. However, the relative

contribution of the other modes is not negligible in the prediction of the present theory. We remark in particular, for

the second and third mode, the contribution of the lower modes (whose amplitude is of the same order of the main

harmonic) and the comparatively slow decay of the higher modes, as opposed to the local theory. This strong coupling

effect likely stems from the non-diagonal nature of the hydrodynamic function matrix and its capability of exciting

otherwise orthogonal modes.

5.3. FSI of cantilevered plates

Many of the general conclusions of the previous subsection can be repeated for the plate case. However, here we

will primarily focus on the unique predictions of the plate theory against those of the beam theory. First, we consider

in Fig. 8(a) a relatively slender cantilever plate case with Λ = 5, with the same geometric and material properties as

in the previous section, for ease of comparison. The plate is loaded with a unit force at the corner (x = L, y = b/2)

and the driving point FRF is displayed. The problem is treated with both the plate theory of this section and the beam

theory of the previous section to highlight similarities and differences. In Fig. 8(a) we also display the predicted in

vacuo responses for the plate, the beam, and the torsional theory of beams in Appendix A. For completeness, we

superimpose to the dry and the wet responses calculated with the present nonlocal theory also the predictions of the

local theory of [1] for beams in bending and of [24] for beams in torsion. Note that the beam model is loaded with a

unit harmonic force at the tip (x = L) as it is not possible to specify in that theory the dependence on y; vice versa,

the beam in torsion is loaded with a harmonic tip moment of numerical magnitude (b/2), to replicate the moment of

the unit corner load in the plate problem. The chosen loading profiles make the response immediately comparable

among each other and, importantly, allow the excitation of all modes in the plate problem. The frequency response

are shown in the band 0–2000 kHz ( f + ≈ 100), encompassing the first few wet modes of the plate. For this relatively

slender cantilever, the predictions of the nonlocal beam theory are essentially coincident with those of the nonlocal

plate theory for the first two bending modes (at approximately 23 kHz or f + = 1.17 and 163 kHz or f + = 8.3). For the

next three bending modes (at 495 kHz or f + = 25.2, 1023 kHz or f + = 52.2, and 1788 kHz or f + = 91.2), the local

beam theory increasingly underestimates the natural frequencies of the nonlocal plate theory. The local beam theory

predictions are consistently severely underestimating the nonlocal results of this work starting from the third bending

mode. Interestingly, the nonlocal plate theory seamlessly captures the torsional behavior (and in fact, more general

plate-like behavior) as shown by the superimposed predictions of the ad-hoc “mechanics of materials” torsion theory

in [24]. The discrepancies in the first wet torsional mode (at 354 kHz or f + = 18.1) between the local and nonlocal

theory can in part be ascribed to the differences in the predictions of the in vacuo torsional frequencies, that seem to

be underestimated by the local torsional beam theory. Higher order torsional modes (at 1131 kHz or f + = 57.7 and

1989 kHz or f + = 101.4) are progressively misidentified by the local theory. Another feature of the plate theory is

that it seems to consistently suggest higher quality factors for the resonant peaks when compared to the beam theories,

17



0 500 1000 1500 2000
Frequency [kHz]

10-4

10-2

100

FR
F

In-vacuo BEAM Present BEAM Local BEAM
In-vacuo PLATE Present PLATE Local TORSION
In-vacuo TORSION

1000 2000 3000

20 40 60 80 100

0 200 400 600 800 1000
Frequency [kHz]

10-4

10-2

100

FR
F

Local BEAM
Local TORSION
Present PLATE

10000 20000 30000 40000

10 20 30 40 50

(a) (b)

Figure 8: FRF for a microplate with aspect ratio (a): Λ = 5, and (b): Λ = 1. In (a), the figure shows the in vacuo responses (dashed lines) for

beam in bending, beam in torsion, and plate behavior; predictions of the present nonlocal theory (thick lines) for beam and plate behavior; and

predictions of the local theory (dotted lines) for beams in bending and torsion. In (b), only a subset of the responses is shown for clarity. FRFs

are presented with respect to dimensional frequency, as well as nondimensional parameters β and f + to emphasize hydrodynamic and structural

regimes, respectively.

except for the first bending mode. This result should not however be ascribed to the use of a Young’s modulus in plane

strain for the plate (embedded in the rigidity D) versus a Young’s modulus in plane stress for the beam, as the first in

vacuo bending frequencies are virtually coincident.

A similar analysis is conducted on a square plate (same as above but with b = 200 µm) with aspect ratioΛ = 1. For

this more “extreme” aspect ratio, results are qualitatively displayed in Fig. 8(b). For this aspect ratio, the hypotheses

of the local theory are expected to break down even for low mode numbers. Due to the high density of resonances in

the window 0–2000 kHz, we choose to only report the predictions of our present nonlocal plate theory against those

of the local theories for bending and torsion in the band 0–1000 kHz. Qualitatively, we conclude that, with possibly

the exception of the first bending mode, the dynamic behavior cannot be reliably identified by local beam theories,

thus demonstrating the need of a full nonlocal plate theory for low aspect ratios and higher mode numbers.

This conclusion can be also reached by considering the mode shapes at wet resonance, as displayed in Fig. 9.

It is important to note that the mode shapes here are damped (by the actions of the fluid) and therefore described

by complex-valued vectors. The shapes depicted in Fig. 9 are then the particular shape of the plate at resonance, at

a specific instant of time. Because of the complex nature of these modes, the nodal lines shift in the plate domain

during a vibration cycle. At any rate, even for the first ten resonances, coincident with those displayed in the FRF

of Fig. 8(b), the complexity of the actual shapes demonstrates that assuming that a plate is undergoing a prescribed

cylindrical bending, torsion, or any other prototypical deformation along the x- or y-directions, imposes an unrealistic

constraint on the dynamic behavior of the system which is therefore reflected in significant errors in the estimation of

its spectral characteristics.

One may argue that the inadequacy of the beam theories stems from the fact that in the case presented the structure

is excited with a corner force, a situation that cannot be rigorously captured with the 1D descriptions of beam theories,

and thus that the discussion above may be an unfair comparison. However, the results for Λ = 5 do not support this

conclusion. As additional supporting argument, we present in Fig. 10 the first few modes in underwater resonance

due to the so-called “even” (or symmetric) and “odd” (or antisymmetric) excitations discussed in [35] and due to a

uniform harmonic pressure on the plate. The even and odd excitations are constructed by applying to the plate free

corners at y = ±b/2 a pair of forces either in phase (even excitation) or out of phase (odd excitation) with each other.
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Figure 9: First ten wet forced resonances for the square plate excited by a corner force, as in Fig. 8(b). Mode number and frequencies are indicated.

Thick red lines denote the nodal lines at the shown instant of time.
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Figure 10: First five wet forced resonances for the square plate under (top) even, (middle) odd, and (bottom) uniform excitation. Mode number and

frequencies are indicated. Thick red lines denote the nodal lines at the shown instant of time. Note the plate-like nature of the excited modes and

the marked y-dependence that beam theories cannot capture.
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Figure 11: Quality factors Q for (a) Λ = 5 and and (b) Λ = 1. Added mass coefficients MA for (c) Λ = 5 and and (d) Λ = 1. Red and black markers

indicate even and odd excitations, respectively. Empty circles refer to the local beam theory. Filled diamonds refer to the nonlocal beam theory.

Filled squares refer to the nonlocal plate theory. The dashed lines (local beam theory) and the solid lines (nonlocal beam theory) are only meant as

a visual guide.

It can be seen in Fig. 10 that, beside the very first resonance, these simple excitation profiles fail to excite exclusively

beam-like modes (e.g. cylindrical bending or torsion). Instead, a marked nontrivial y-dependence of the shapes can be

observed for all but the simplest cases. Thus, the hypothesis of fluid-structure interactions stemming from prescribed

beam-like mode shapes independent of the y-coordinate must be understood as a strong one. We also remark here that

an even (odd) excitation only produces an even (odd) structural response, consistently with the discussion of the even

or odd nature of the hydrodynamic loading.

5.4. Quantitative exploration of the frequency response functions

Due to the complexity and density of the spectral data, rather than displaying results in the form of frequency

response functions, in the following we investigate the predictions of the present theories by considering added mass

coefficients and quality factors for two separate aspect ratios and fluid loading scenarios. For this purpose, we present

quality factors and added masses of submerged cantilevers for Λ = 5 in Fig. 11(a) and (c), respectively, and Λ = 1 in

Fig. 11(b) and (d), respectively. The cantilevers are forced with odd and even excitations as described in the previous

section. Results are reported for the classical local beam theory, as well as for the nonlocal beam and nonlocal plate

theories of this work. In the figures, red and black symbols and lines refer to even and odd excitations, respectively.

Empty markers and dashed lines denote the values for the local beam theory. Filled diamonds and solid lines denote

the value for the nonlocal beam theory. Finally, filled squares represent the values predicted by the nonlocal plate

theory. While the quality factors have been calculated with the half power points technique described above, we

should note that this identification fails for a few closely spaced modes. For the cases in Fig. 11(b) indicated by empty

square symbols where the identification fails, the quality factors are identified from the FRF by fitting the response of

a single degree of freedom damped oscillator, as for example described in [41].

In Fig. 11(a) and (c), the quality factors and added masses are presented for Λ = 5. Trendlines are included in

the figure to aid visual interpretation. In Fig. 11(a), the local beam theory and nonlocal beam theory show agreement

on first two modes for both even and odd excitations. For the case of even excitation, the local beam theory and the

nonlocal beam theory predict quality factors of 3.80 vs. 3.62 and 8.75 vs. 8.57 for the first two modes. For the odd

excitation, the local beam theory and the nonlocal beam theory estimate quality factors as 7.58 vs. 7.46 and 12.82 vs.

12.68, respectively. On the other hand, the plate theory estimates these values as 3.63 and 8.57 for the first two modes

for even excitation, and 7.63 and 13 for the first two modes for odd excitation. For even excitation, after the third

mode, the nonlocal beam theory departs from the linear behavior in log-log scale of the local one, showing a faster
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growth as a function of β. The nonlocal plate theory follows the nonlocal beam predictions closely, except for the

ninth and tenth modes. For this relatively slender structure, plate modes and beam modes are qualitatively similar, thus

explaining the similarity in the response. For relatively simple beam-like shapes, the Q factors seem largely dependent

on the vibration frequency only, an observation that can be explained by considering the generally lower values of

the hydrodynamic traction as the number of nodal lines increase (which enforce regions of zero velocity boundary

conditions), see also Fig. 2. Odd modes are more damped than the even ones, consistently with the predictions of the

local theory, as well. A possible explanation for this can be sought in the effect of the singularities in the imaginary

part of the hydrodynamic load. These high intensity load profiles are concentrated in a small region in the vicinity of

the free edges of the structure, where they can contribute to large damping moment, see also Fig 2. A correspondingly

large damping force is not generated for the case of even modes due to the small support of these singularities.

In Fig. 11(c), for even excitation, added masses of nonlocal beam and plate theories exhibit excellent agreement

with a general decreasing trend as β increases. Along this trend, the nonlocal beam theory predicts the first and the

eighth added masses coefficients as 8.4 and 2.88, whereas the plate theory suggests the close values of 8.4 and 2.82.

However, the behavior of the local theory is markedly different, displaying much less sensitivity with respect to β,

with values that vary only between 10.06 to 6.93 over almost three decades of nondimensional frequency. For the odd

excitation case, the three theories are somewhat closer to each other, again probably due to the presence of the nodal

line at y = 0. Specifically, the local beam, nonlocal beam, and nonlocal plate theories estimate the first added masses

of the first two modes as 3.16 and 2.89, 3.06 and 2.75, and 3.03 and 2.73. The local beam theory shows a mildly

decreasing trend where its tenth added mass value is MA = 2.66. The nonlocal beam and plate theories predict a more

marked effect of the fluid, possibly through the non-diagonal nature of the hydrodynamic operator, estimating their

tenth added mass value as MA = 1.77 and MA = 1.73, respectively.

Figures 11(b) and (d) show the quality factors and added masses for the low aspect ratio Λ = 1. Note that the

nondimensional frequency β range explored in this case is approximately one decade larger than that of the Λ = 5

case. At a glance, we expect therefore higher quality factors due to the less viscous nature of the fluid at high β, as well

as lower added mass coefficients. However, the effect of the frequency increase is in part balanced by the larger value

of R for the low aspect ratio structure, which is thus more heavily affected by the presence of the fluid. In this case,

one can immediately see that the nonlocal beam and plate theories demonstrate very different characteristics from the

local theory for both even and odd excitations. In Fig. 11(b), for even excitation, the nonlocal beam and plate theories

have comparable quality factors for the first two modes as 6.97 vs. 7.15 and 15.21 vs. 14.52. However, the first two

mode predictions of the local beam theory are 10.06 and 22.4, significantly far off from our novel theories. Contrary

to the apparent linear behavior of local beam theory in log-log scale (again, an effect of the dependence on β only

as postulated in [1]), the prediction of the nonlocal beam theory on the quality factors shows a faster increase from

the third mode to the fourth mode. For the plate theory, on the other hand, the key effect of correctly accounting for

the y-dependence on low aspect ratios, causes the mode shapes to become very complex and the quality factors to be

scattered without any strongly identifiable trend, except the general increase of the quality factor as the fluid regime

becomes less viscous. Some values show similarity to the estimations of the nonlocal beam theory, especially where

the bending-like modes are dominant. This is the case for example in the third mode of the nonlocal beam theory

and the fourth mode of the plate theory. For odd excitation, the nonlocal beam and plate theories have similar quality

factors for the first two modes as 8 vs. 8.56 and 12.3 vs. 14.48. After the second mode, the nonlocal beam theory

shows an increasing slope up to tenth mode with Q = 45.3. The quality factors for the plate theory are increasingly

scattered after approximately the fourth mode.

For the added masses coefficients in Fig. 11(d), the characteristics of the three theories follow qualitatively what

described above, as the local beam theory predictions are very different than the other theories. In particular, only

mild dependence on β is observed as the values of MA decrease from 38 to 34 and from 15 to 13 for even and odd

excitations, respectively. Added masses of the nonlocal beam and plate theories exhibit excellent agreement for the

first two modes with 18.81 vs. 18.55 and 12.81 vs. 12.56 for the even excitation and 11.96 vs. 11.25 and 9.31 vs.

8.71 for the odd excitation. After approximately the second mode, predictions of the nonlocal beam theory follow a

well-defined decreasing trend, while the plate theory shows large scatter, for both even and odd excitations. Again,

both theories exhibit similar added masses for those modes in which bending is dominant.
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Figure 12: Coherence maps between dry and wet modes for aspect ratio Λ = 1. In (a): even excitation; in (b): odd excitation.

5.5. Relationship between dry and wet plate modes

Figure 11 fundamentally summarizes how our novel theories behave differently than the local approaches and

further indicates the limitation of beam theories for low aspect ratios. Specifically, the quality factors generally

increase as β increases, consistently with the less viscous behavior of the fluid. They also largely depend only on the

frequency of the resonance and, for sufficiently spaced modes, they generally fall along an approximate trendline for

the high aspect ratio case, where beam-like modes are dominant. In this case, also for the plate-like modes qualitative

separation between the trends for odd or even excitation is well-defined. This separation and the trendlines worsen

for low aspect ratio to the point that no definite trend characteristic can be defined for the Λ = 1 case. This peculiar

situation can be understood by referring to the complicated mode shapes of the response at wet resonance in Fig. 10.

Clearly, the changes in mode shape can be fairly dramatic when the mode number increases and a clean scaling law of

the Q factors is not be expected as the details of the mode shape significantly influence the hydrodynamic response,

and vice versa. Similar conclusions can be drawn for the cases of the added mass, with particular reference to the

scattered distribution of the MA values in Fig. 11(d) for Λ = 1.

Additionally, one important yet subtle complication stems from the fact that the MA terms are calculated by

comparing the dry response versus the wet dynamics. In an effort to understand the complicated scatter of these coef-

ficients, we discover that the dry modes (or, more properly, shapes at resonance) Ψd
i

of the structure are qualitatively

different from the wet modes Ψw
i

, generally in a non-trivial way. First, we remark again that, while the dry modes

are real-valued vectors, the wet modes are actually complex-valued vectors and as such their shape changes over the

vibration cycle. Particularly, and as expected, the nodal locations shift over the plate in a wave-like fashion during the

vibration. For few lowest structural modes it is still possible to qualitatively track how the, say, i-th mode gets mapped

to the i′-th wet mode and, often, i = i′. However, beyond the first few pairs (especially for low aspect ratio plates), the

modes are too different to be qualitatively matched, see also the examples in Figs. 9 and 10.

We resort then to a quantitative mode tracking algorithm, that is in part inspired by [42]. We calculate a “coher-

ence” factor as the absolute value of the normalized dot product between a wet and a dry mode according to

γi j = |(Ψd
i )∗Ψw

j |/(||Ψd
i || ||Ψw

j ||) (23)

With this definition, the correlation γi j is equal to 1 if the shape of the dry mode i is identical over the vibration

period to that of the wet mode j, and 0 if they are completely uncorrelated (orthogonal). Numerical experimentation

shows that this definition is particularly suited to compare complex-valued modes as it is insensitive to the phase

angle between the wet and dry modes. The same conclusion does not hold true if a traditional “cosine” of the angle

between the vectors is considered, which could yield values between -1 and 1 depending on the phase shift between

the vectors, which however is inconsequential in this discussion. The coherence maps are displayed in Fig. 12 for the

case of even and odd excitation for Λ = 1. Lighter cells in the matrix plot indicate high level of coherence between

dry and wet modes. Clustering along the main diagonal suggests general mapping of dry mode i to wet mode j with

i = j. Unfortunately, the mapping is not one-to-one so that, especially for closely spaced modes, several dry modes i,

i′, etc. may be mapped to the same j wet mode. This contributes to adding to the complexity of the problem.
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Figure 13: Contour plots of dry versus wet low coherence modes for the square plate. In (a) and (b): dry and wet mode 2 under even excitation,

respectively; in (c) and (d): dry and wet mode 3 under odd excitation, respectively. Solid lines: contours of real parts. Dashed lines: contours of

imaginary parts (for wet modes). Thick lines show nodal lines.

Even more interesting is the apparent observation that some dry modes do not seem to have a definite wet coun-

terpart, even for low mode order. We study in particular the low coherence cases of second dry mode under even

excitation, for which γ22 = 0.58, and the third dry mode under odd excitation, for which γ33 = 0.33, as displayed in

Fig. 13. Because of the fluid-structure interactions, the correspondence between structural modes is completely unrec-

ognizable. This observation suggests that assuming a prescribed structural shape for the hydrodynamics calculations,

informed by the dry modes of the structure, should be understood as a strong working hypothesis, whose accuracy

should be carefully addressed in the general case.

5.6. Flow fields generated by the vibration

To further clarify the hydrodynamics effects in the fully coupled problem and to demonstrate additional capabilities

of our model, we briefly discuss below representative flow fields generated by the fully coupled vibrations of the square

cantilever plate in correspondence of the two low-coherence modes identified above. The flow fields are efficiently

calculated via the boundary element method analysis described above. In particular, from the solution of the fully

coupled FSI problem in Eq. (22), we first determine the modal coefficients q̂(ω) at the frequency of interest. These are

used to reconstruct the displacement profile ŵ via the modal decomposition and to calculate, via Eq. (9), the traction

[[τ̂]] across the plate domain. Once the traction is calculated, flow variables of interest, including velocity components,

vorticity components, as well as components of the velocity gradient tensor, can be calculated, at points of interest in

a 3D fluid grid, via the unsteady singularities reported in Appendix C.1. The resulting flow fields can then be plotted

to better understand the flow physics generated by the plate vibrations. Remarkably, because the treatment is based

on phasor quantities, any flow variable can be calculated at any time during the vibration cycle as, say for example,

u(t) = Im
[

û exp(iωt)
]

to construct a detailed time evolution description of the physical quantities of interest.

In Figs. 14(a) and (b), we present the 3D flow fields generated by the plate vibrations at the second resonance

peak for the even excitation (as in Fig. 13(b)) and at the third resonance peak for the odd excitation (as in Fig. 13(d)),

respectively. For illustration purpose, we display isosurfaces of vorticity magnitude contours, colored by values of the

Q-criterion, i.e. the second invariant of the velocity gradient tensor [61], superimposed to velocity streamlines and a

slice plot of the axial velocity profile along the plate, for each case. Note that positive values of the Q-criterion identify

the presence of vortices in the flow. The undeformed configuration of the plate is indicated via the gray rectangle in

the xy-plane.

Fig. 14(a) displays details of the 3D flow field pertaining to a vibration mode reminiscent of a so-called “shape-

morphing” deformation [43, 46], in this case produced by the even excitation profile. The deformed shape is properly

plate-like, with nonzero spanwise and chordwise curvatures. Interestingly, while the corresponding dry mode is

characterized by generally negative Gaussian curvature (product of the principal curvatures) so that the plate “looks”

like a saddle, the wet mode under study has predominantly positive Gaussian curvature throughout the vibration

cycle. This substantial change is due to the presence of the fluid and is reflected in the low coherence highlighted

above. Focusing on the flow field at the time instant shown, characterized by a nondimensional frequency parameter

approximately equal to β ∼ 5 × 103, the vorticity magnitude contours of the flow field display symmetry with respect

to the plane y = 0, due to the even excitation. We note the existence of two vortex tubes around the free edges of
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Figure 14: 3D flow fields generated by the square plate vibration for: a) the second mode for even excitation; and b) the third mode for odd exci-

tation. Isosurfaces of vorticity magnitude contours are colored by the values of Q-criterion (light areas indicate positive Q-values), superimposed

to selected streamlines and velocity profiles. Note the complicated nature of the flow that cannot be captured via the 2D fluid approximation in the

yz-plane.

the plate as indicated by the lightly colored surfaces indicating a positive value of Q-criterion. Notice that the flow is

highly 3D and the magnitude of the vorticity is the highest on the corners, as it can be also inferred from the pressure

profile in Fig. 2. A third high-vorticity region envelops the free edge at x = L, and is purely a 3D effect that is

completely neglected by 2D fluid approximations. The streamlines of the field reveal substantial complexity of the

seemingly simple symmetric flow. First, all streamlines are narrowly spaced close to the plate surface, as it is expected

since the vibrations of the plate are the main source of motion. Further away from the surface, the streamlines around

the clamped edge of the plate, where the motion of the plate is zero, display dissimilar and non-planar trajectories,

hinting to important 3D flow effects even in the region away from the gross fluid motion. In the middle of the plate,

the severity of 3D flow increases and on the corner of the plate, the flow becomes highly complex. Finally, the slice

plot of the axial velocity profile further demonstrates the 3D nature of the flow, in particular showcasing non-zero

velocity values along the x-axis. These results confirm our fundamental hypothesis that 2D fluid approximations

in the yz-plane, set forth in most local approaches, are inadequate to accurately study the dynamics of these highly

complex flows.

Similarly, in Fig. 14(b), the mode shape shown corresponds to a complicated torsion-like motion with a nodal

line along the x-axis of the plate, at a nondimensional frequency parameter approximately equal to β ∼ 2 × 104.

As expected from a torsional mode of the plate, the flow is antisymmetric with respect to the y-axis. The contours

of vorticity magnitude shows symmetry with respect to the y = 0 plane and larger magnitude at the free corners

of the plate, where larger displacements and velocities (and their gradients) are expected, see also Fig. 13(d). The

streamlines again highlight the highly 3D and complex flow on the surface, at the edges and corners of the plate. The

existence of a complicated axial flow profile is further demonstrated by the slice plot.

While the two examples in this section are chosen to further investigate the effect of the fluid on the low-coherence

modes, 3D flow is observed, to varying degree, in all dynamic conditions.

5.7. Comparison with Experiments

Finally, we propose a comparison of the predictions of the present nonlocal theory against experimental results on

in-air and underwater vibrations of a square plate. Although the previous discussion focused on microscale systems to

better highlight viscosity effects, the experiments are conducted here at the macroscale, see Fig. 15(a). Specifically, our

test article comprises a thin PVC square of dimensions 40×40 mm2 obtained from a sheet of thickness approximately

measured to h = 0.35 mm. The article is weighed to determine its mass via direct measurement. The density, obtained

by dividing the mass by the total volume of the article is found to be approximately ρs = 1372 kg/m3. The test article

is rigidly connected via its fixed edge to an electrodynamic shaker actuated by a function generator. A sinusoidal
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displacement is applied to the plate base and the motion of the plate is acquired via a high speed camera. A continuous

wave 532 nm green laser is used to illuminate the cantilever cross section in the field of view of the camera. A point

on the fixed edge and one of the free corners of the plate are tracked via image-based video analysis via the software

package Tracker [62], to determine the time history of their absolute displacement, respectively WB(t) and WC(t). The

elastic motion of the corner (removing the rigid body motion of the base) is estimated via wC(t) = WC(t) −WB(t). We

then determine phasors for the corner elastic deformation ŵC and the base motion ŴB and calculate the relevant FRF

magnitude as |ŵC/ŴB|. In the data analysis, phasors are identified over a moving time window spanning approximately

3 vibration cycles; several values of the phasors are therefore identified over the entire duration of the experiments.

These values are used to determine average and standard deviation of the responses. In the identification, some of the

data presented display relatively large standard deviations, a result of the technical difficulties of correctly capturing

via imaging the very small amplitudes of the base excitation. However, the data scatter does not affect the conclusions

of the experimental campaign.

The explored range of frequencies, between 0–400 Hz, includes the first two in-air bending modes, as well as the

first in-air torsion mode of the plate. The amplitude of the excitation is kept sufficiently low to avoid nonlinearities

in the response. Experiments are first conducted in-air, to identify the first and second (not shown) bending modes of

the plate. The associated natural frequency for the first bending mode is observed in the vicinity of 58 Hz and around

350 Hz for the second bending mode. With the information on the first two bending mode, we identify the material’s

Young’s modulus and Poisson ratio by matching the predictions of the in vacuo structural mechanics model for the

plate with the experimental determinations. Through this procedure, we estimate E = 3.25× 109 GPa, which is in line

with typical polymeric materials [63], and ν = 0.38, consistently with what found in similar materials [29, 54]. For

ease of presentation, we assume a small constant structural damping with factor η = 0.015, so that the real Young’s

modulus for the structure is replaced by the complex version E(1 + iη) in the calculations, see also [29, 54].

After the material identification is performed, a new set of experiments is performed in water, without removing

the cantilever from its support, thereby avoiding to modify its boundary conditions and geometry. Room temperature

water is used for the experiments, where we take ρ f = 9.9778 × 102 kg/m3 and µ f = 9.772 × 10−4, Pa s. Underwater

vibration experiments are performed in the frequency range between 0–85 Hz, similarly to what described above.

Upon data postprocessing, we are able to identify the first two bending modes of the cantilever, at approximately

10.5 Hz ( f + = 0.68) and 74 Hz ( f + = 4.8). An underwater torsion mode is faintly detected in the neighborhood of

30.5 Hz ( f + ≈ 2), although experimental limitations cause some scatter in the data. It should also be noted that an

ideal base excitation provides a symmetric load about the y-axis and theoretically should not excite antisymmetric

modes such as the torsional ones. However, slight misalignments and other experimental uncertainties contribute to

lightly excite that mode.

Without any further parameter tuning, we now calculate the FRF of the system by using our present nonlocal theory

for cantilever plates. With the geometric and material properties presented above, the maximum value explored for

the nondimensional frequency parameter is approximately β = 1.4 × 105 and the mass ratio is R = 65.3. Consistently

with Eq. (6), the forcing vector is rewritten as

f̂I(ω) = ŴBω
2

[∫

D

ρshΦ
I(x)dx +

Θ̂B

ŴB

∫

D

ρshyΦI(x)dxω2

]

+

ŴB

[∫

D

Hω[1(x)]ΦI(x)dx +
Θ̂B

ŴB

∫

D

Hω[y1(x)]ΦI(x)dx

]

(24)

Although we cannot measure the term (Θ̂B/ŴB) directly, we set it to a small real and positive value as to excite the

asymmetric modes, to better illustrate the predictive capabilities of the nonlocal plate theory. Note that the first term on

the right hand side of Eq. (24) describes the inertial load on the cantilever due to in vacuo vibrations, while the second

term is the effect of the fluid. This last term is essential to construct the underwater FRF as its shape is determined by

the complicated frequency dependence of the excitation.

Results of the present nonlocal plate theory are displayed in Fig. 15, which show the excellent agreement be-

tween our new model and the experimental results. Not only do the locations of the peaks coincide, but the model

correctly captures the amplitude and shape of the response in the neighborhood of the peaks, further confirming the

validity of our approach. For completeness, predictions of a beam-like local theory are displayed as well, demon-

strating inadequacy of the local approach for low aspect ratio cantilevers. Remarkably, without any ad-hoc treatment,
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Figure 15: In (a): View of the experimental setup for underwater experiments. In (b): Comparison of the theory against base excitation experimental

results. FRFs are presented with respect to dimensional frequency, as well as nondimensional parameters β and f + to emphasize hydrodynamic

and structural regimes, respectively. Lines refer to the different theories: thin, in vacuo plate theory; dashed, beam-like underwater vibrations

with local hydrodynamics treatment; thick, present nonlocal theory. Markers indicate experimental results: squares, in-air experiments; diamonds,

underwater experiments. Error bars correspond to one standard deviation, as discussed in the text.

our plate theory correctly identifies the presence of the faint torsional mode. This is obviously not possible with a

traditional local bending beam-like theory. Inspection of the nondimensional frequency scales in Fig. 15 demonstrate

that the simple macroscale experiment we propose is completely consistent (from a “structural” perspective) with the

microscale numerical studies, while the hydrodynamic regime is characterized by a relatively higher β range than

those explicitly considered in the numerical studies. For this reason, genuinely microscale AFM-type experiments are

currently under development to further explore the experimental implications of our theory in more viscous ranges.

Results of these studies will be presented elsewhere.

We remark, in closing, that the discrepancies between the model and the experimental results are likely due to

experimental limitations and uncertainties. Our primary challenges stem from optical constraints inherent in the large

area of interest relative to the camera’s field of view. This results in lower resolution, particularly impacting the

precision in tracking the corners of the plate. Additional uncertainties in the experimental setup stem from possible

misalignments between the laser sheet, the camera axis, and the plate, as well as from the uniform quality of illumi-

nation of the field of view. An additional experimental uncertainty is related to the temperature of the fluid, on which

the parameter β depends weakly through the effect on density and viscosity. Furthermore, specific discrepancies in

amplitude, localized in the neighborhood of the resonance peaks, can be possibly attributed to structural damping

effects not pursued in this study (that could be accounted for with more accurate models for structural damping),

and possible nonlinear effects in hydrodynamic damping at large vibration frequency and amplitudes (which could

be corrected with ad hoc large amplitude numerical formulations, similar to [28, 29]). Specifically, note that in this

experiment the maximum KC numbers are observed in proximity of the plate modes of vibration but never exceed

0.05. The corresponding maximum observed Reynolds number is of the order of βKC ≈ 1200 at the second bending

mode.

6. Conclusions

In this paper, we presented a nonlocal hydrodynamic theory for the study of cantilever beam and plate vibrations

in an otherwise quiescent viscous fluid. The theory combines an efficient, low dimensional structural model derived
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via a Rayleigh-Ritz method fully coupled with a nonlocal description of the hydrodynamic load as a function of

the structural vibration. The hydrodynamic load is in turn derived by solving the fully 3D FSI problem via the

unsteady Stokeslet method. Importantly, the solution of the otherwise computationally intensive fluid problem is

conducted offline for prototypical plate vibrations with the purpose of constructing the novel nonlocal hydrodynamic

function matrix. This matrix is the representation, in the basis formed by the structural modes, of the nonlocal

hydrodynamic operator. Several new properties are highlighted for this construction, including the non-diagonal

nature of the nonlocal hydrodynamic operator, its symmetry, and an interesting parity-preserving property. These

are important departures from classical local hydrodynamic function formulations, and shed new light on the FSI

problem, while also contributing useful numerical tools for its efficient treatment.

Once developed, we investigated our new theory implications on the treatment of cantilever vibrations in viscous

fluids, demonstrating significant effects especially for flexible structures with low aspect ratios and high mode num-

ber, thus quantifying the inherent limitations of local theories which, by hypothesis, cannot properly address these

instances. Among the major findings are the changes produced to the wet mode shapes by the presence of the fluid.

Even for 1D solids (i.e., slender beams) all the dry modes are coupled and contribute to the vibration, as they are

excited by the non-diagonal nature of the hydrodynamic operator. In addition, we demonstrated that the presence of

the fluid causes significant dependence of the structural displacement field on the chord-wise direction. These findings

demonstrate that a beam-like treatment, even if nonlocal, is largely incomplete and fails in capturing even relatively

simple, or seemingly so, vibration scenarios.

We supported these conclusions by carefully addressing the peculiar behavior of frequency response functions

for beams and plates, studying the effect of the diagonal and non-diagonal assumptions, quantitative properties of the

dynamics, including quality factors and added mass coefficients, and highlighting significant differences stemming for

low aspect ratios and high mode number. We reported on the differences between wet and dry modes, the difficulties

arising in their tracking that led to the development of the concept of mode coherence, and the effect of the fluid on the

structural response. Finally, we validated our novel theory against a new set of underwater experiments on the low-

frequency vibrations of cantilever square plates under base excitation. These demonstrate that our novel theory can

accurately predict, without any parameter tuning, the resonance frequencies of the wet modes, along with a seamless

interpretation of the torsional response of the plate. Local beam theories, on the other hand, suffer from significant

limitations in these determinations.

While this work presents a complete discussion of beams in bending and complex vibrations for plates, for clarity

we decided not to include an ad hoc torsional theory of thin beams, due to a number of technical differences in the

development. This theory will be presented elsewhere. Similarly, while our method is presented for an unbounded

fluid, in principle it could be extended to bounded domains (including free surfaces or solid surfaces) and to the

presence of multiple stationary or moving finite structures. In these contexts, of particular relevance in many sensing

and actuation applications, the crucial contribution would be the proper modification of the hydrodynamic operator. A

point of departure could be the extension of the boundary integral methods for solid surfaces in [25], for free surfaces

in [26], and for arrays of solids in [64, 65]. Alternatively, the development of ad-hoc singularities as in [51, 3] could

be pursued for reduced computational cost. We anticipate that for low aspect ratio structures, the departures from the

results of local theories could be even more dramatic in the presence of bounding surfaces, due to the complexity of

three dimensional flows. These lines of research will be explored in future works.

We remark here that the solution developed in this work is exact, up to: i) truncation errors in the modal expansion

of the structural deformations; ii) discretization errors in the hydrodynamic problem; and iii) approximation errors

inherent to the interpolations of functional values. In theory, all these errors can be rigorously removed from the

formalism, although at the price of increased computational cost.

Appendix A. Mechanics of thin beams, in bending and torsion

In this section, we recall foundational aspects of the theory of vibrations of thin beams and provide the derivation

of the structural matrices for use in the FSI problem. We describe separately the bending and the torsion problem.

Appendix A.1. Rayleigh-Ritz matrices for bending

We consider a thin Euler-Bernoulli beam, with uniform stiffness and mass properties, undergoing small bending

deflections in the transverse direction. The beam axis, width, and thickness lie along x, y, and z axes of the reference
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frame, respectively. The origin of the reference frame is placed at the centroid of the fixed-end cross section at x = 0.

Length, width, and thickness of the beam are denoted as L, b, and h, respectively. The basic hypothesis is that the

displacement field does not depend on the chord-wise coordinate y, so we will indicate it via w(x, t). The beam density

(mass per unit volume) is indicated with ρs and its cross sectional area, uniform along the beam axis, is A = bh. The

beam Young’s modulus and Poisson’s ratio are indicated with E and ν, respectively, and the second area moment of

inertia of the cross section with respect to the bending neutral axis is I = bh3/12. The classical Euler-Bernoulli beam

equations in the time domain can be found for example in [29] and are expressed as

EI
∂4w(x, t)

∂x4
+ ρsA

∂2w(x, t)

∂t2
= f (x, t) (A.1)

where f (x, t) represents a distributed load per unit length. We note here that often, especially in the case of wide beams

(sometimes indicated as “plates in cylindrical bending”), the Young’s modulus in plane strain may be used instead of

E, indicated with E′ = E/(1 − ν2), see [66]. Typical cantilever (fixed-free) boundary conditions are given by

w(0, t) = 0;
∂w(x, t)

∂x

∣

∣

∣

∣

∣

x=0

= 0;
∂2w(x, t)

∂x2

∣

∣

∣

∣

∣

∣

x=L

= 0;
∂3w(x, t)

∂x3

∣

∣

∣

∣

∣

∣

x=L

= 0 (A.2)

The potential elastic energy U and the kinetic energy T are given, respectively, by [52]

U =
1

2

∫ L

0

EI

(

∂2w(x, t)

∂x2

)2

dx; T =
1

2

∫ L

0

ρsA

(

∂w(x, t)

∂t

)2

dx (A.3)

We use, as assumed modes in a Rayleigh-Ritz method approach [39, 41], the dry modes of the fixed-free cantilever

that can be written as, see [60],

φi(x) = Ci

[

sin(λix/L) − sinh(λix/L) − sin(λi) + sinh(λi)

cos(λi) + cosh(λi)
[cos(λix/L) − cosh(λix/L)]

]

(A.4)

where λi is an eigenvalue obtained from the solution of the characteristic equation cos(λi) cosh(λi) + 1 = 0 and

Ci is a scaling constant, which is defined so that φi(L) = 1. Note that, for the first few dry mode shapes of the

cantilever, λi are 1.8751041, 4.6940911, 7.8547574, 10.9955407, 14.1371684 and, correspondingly, Ci are 0.367048,

−0.509234, 0.499612,−0.500017, 0.499999. We remark here that for relatively large mode order, the calculation

of the eigenfunctions in Eq. (A.4) is numerically ill-conditioned because of the presence of hyperbolic functions.

If i larger than approximately 10 is desired in double-precision calculations, the expression in Eq. (A.4) should be

replaced with its asymptotic version provided in [67].

The dry modes of the cantilever satisfy all the homogeneous boundary conditions in Eq. (A.2). Using Hamilton’s

principle, and following standard procedures [52, 39], the Rayleigh-Ritz stiffness and mass matrix terms in Eq. (4) are

expressed by

ki j =

∫ L

0

EIφi,xx(x)φ j,xx(x)dx; mi j =

∫ L

0

ρsAφi(x)φ j(x)dx (A.5)

where a subscript comma indicates derivative with respect to the indicated spatial variable. Note the symmetry of

the mass and stiffness matrices, that is, mi j = m ji and ki j = k ji. Similarly, the forcing term gives rise to a “modal”

forcing vector, whose i-th component is given by
∫ L

0
f (x, t)φi(x)dx. Because of the orthogonality of the assumed

modes chosen, the stiffness and mass matrices are actually diagonal, and their entries can be calculated analytically.

The integration of the distributed load term can be performed numerically via Gauss-Legendre quadrature points [39].

Once the stiffness and mass matrices are determined, the solution of the eigenvalue problem [K−ω2 M]q = 0 provides

the in vacuo natural flexural frequencies and mode shapes of the cantilever [60, 52]. For ease of presentation, we

will also consider scaled versions, denoted with a superimposed tilde, of the stiffness and mass matrices, defined as

K = EILK̃ and M = ρsALM̃. These forms help better highlight the role of fluid loading.
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Appendix A.2. Rayleigh-Ritz matrices for torsion

The same beam is now subject to torsional vibrations along its axis x. We will not use here a plate formalism,

but the classical treatment of torsion for rectangular thin cross section beams. The same treatment was also proposed

in [24, 54]. The basic hypothesis is that the displacement field can be described uniquely by the twist angle θ(x, t),

via the relation w(x, y, t) = yθ(x, t). Relevant static and stiffness property for the cross section are the moment of

inertia It = b3h/12 and the torsional stiffness GJt where G = E/(2(1 + ν)) is the shear modulus and Jt = bh3/3 a

geometric section property. Under the usual simplified description for thin rectangular cross sections, the twist angle

θ(x, t) obeys the following wave equation in the time domain, see for example [54]

GJt

∂2θ(x, t)

∂x2
− ρsIt

∂2θ(x, t)

∂t2
= mt(x, t) (A.6)

where mt(x, t) represents a distributed moment (torque) per unit length. Typical cantilever (fixed-free) boundary

conditions are given by

θ(0, t) = 0;
∂θ(x, t)

∂x

∣

∣

∣

∣

∣

x=L

= 0 (A.7)

The potential elastic energy U and the kinetic energy T and are given, respectively, by

U =
1

2

∫ L

0

GJt

(

∂θ(x, t)

∂x

)2

dx; T =
1

2

∫ L

0

ρsIt

(

∂θ(x, t)

∂t

)2

dx (A.8)

We use as assumed modes for the twist angle the dry modes of a fixed-free rod under torsion, that is, see [60],

φt
i(x) = sin(λix/L) (A.9)

where the superscript t stands for torsion, and λi is an eigenvalue obtained from the solution of the characteristic

equation cos(λi) = 0, that is, λ = (2i− 1)π/2. Using Hamilton’s principle, the Rayleigh-Ritz stiffness and mass matrix

terms in Eq. (4) are expressed by

ki j =

∫ L

0

GJtφ
t
i,x(x)φt

j,x(x)dx; mi j =

∫ L

0

ρsItφ
t
i(x)φt

j(x)dx (A.10)

Note the symmetry of the mass and stiffness matrices, that is, mi j = m ji and ki j = k ji. Similarly, the forcing term gives

rise to a “modal” forcing vector, whose i-th component is given by
∫ L

0
mt(x, t)φt

i
(x)dx. Because of the orthogonality of

the assumed modes chosen, the stiffness and mass matrices are actually diagonal, and their entries can be calculated

analytically. As above, the integration of the distributed load term can be performed numerically via Gauss-Legendre

quadrature points [39]. Once the stiffness and mass matrices are determined, the solution of the eigenvalue problem

[K −ω2 M]q = 0 provides the in vacuo natural torsional frequencies and mode shapes of the cantilever beam [60, 52].

As before, we will also consider scaled versions, denoted with a superimposed tilde, of the stiffness and mass matrices,

defined as K = GJtLK̃ and M = ρsItLM̃. It is important to remark here that the modal coefficients in q describe the

twist angle so that, if we want to recover the displacements of the plate, we set w(x, y, t) = y
∑

i qi(t)φ
t
i
(x). Results

from the torsional theory for beams are compared with predictions from the nonlocal plate theory developed in this

work. A nonlocal theory for torsional vibrations of beams will be reported elsewhere for clarity of presentation.

Appendix B. Mechanics of classical thin plates

In this section, we recall foundational aspects of the theory of vibrations of thin plate and provide the derivation

of the structural matrices for use in the FSI problem.

We consider a thin Kirchhoff-Love plate, with uniform stiffness and mass properties, undergoing small deflections

in the transverse direction. The undeformed plate mid-plane lies in the xy-plane, and its length, width, and thickness

lie along the x, y, and z axes of the reference frame, respectively. The origin of the reference frame is placed at the

centroid of the fixed-end cross section at x = 0. Length, width, and thickness of the plate are denoted as L, b, and h,

respectively. The fixed edge is at x = 0, and the free edges are at x = L and y = ±b/2. The plate density (mass per
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unit volume) is indicated with ρs. Material properties include Young’s modulus E and Poisson’s ratio ν. The classical

Kirchoff-Love plate equations in the time domain for the displacement field w(x, y, t) can be found for example in [66]

and are expressed, by neglecting membrane behavior, as

D∇4w(x, y, t) + ρsh
∂2w(x, y, t)

∂t2
= f (x, y, t) (B.1)

where f (x, y, t) represents a distributed load per unit area, D = Eh3/[12(1 − ν2)] is the plate flexural rigidity, and

∇4 is the bilaplacian operator, that is, ∇4w = w,xxxx + 2w,xxyy + w,yyyy. Note that Eq. (A.1) can be recovered from

Eq. (B.1) by neglecting all dependence on the y coordinate, setting to 0 each derivative with respect to y, integrating

over y ∈ (−b/2, b/2), and replacing the Young’s modulus in Eq. (A.1) with E′. Vice versa, Eq. (A.6) cannot be

obtained directly from Eq. (B.1), because the underlying hypotheses are different.

For the plate problem, typical cantilever (fixed-free-free-free) boundary conditions are given by

w = 0 and w,x = 0 at x = 0

w,xxx + (2 − ν)w,xyy = 0 and w,xx + νw,yy = 0 at x = L

w,yyy + (2 − ν)w,yxx = 0 and w,yy + νw,xx = 0 at y = ±b/2

(B.2)

If a Galerkin approach were to be used in the derivation of the structural matrices, a complete set of basis functions

that satisfies all the boundary conditions in (B.2) should be employed. A natural choice would be the dry plate modes,

which however are not known exactly in the general case. Alternatively, we could select a set of basis functions

that do not satisfy the boundary conditions, but then boundary terms would need to be added to formulation of the

matrices [53].

A more practical approach is the use of Rayleigh-Ritz method, from the expressions of the potential and kinetic

energy of the plate. The potential elastic energy U and the kinetic energy T are given, respectively, by [41, 39, 52]

U =
1

2

∫ b/2

−b/2

∫ L

0

D
[

(w,xx)2 + (w,yy)2 + 2νw,xxw,yy + 2(1 − ν)(w,xy)
2
]

dxdy

T =
1

2

∫ b/2

−b/2

∫ L

0

ρsh

(

∂w(x, t)

∂t

)2

dxdy

(B.3)

We then use, as the assumed modes, separable functions obtained as the product of the dry modes of a fixed-free

cantilever in the x-direction, that is, the φi(x) above in Eq. (A.4), and of a free-free cantilever [60] in the y-direction,

that we indicate with ϕi(y). These are ϕ0(y) = 1, describing the cross sectional translational rigid body mode (for plate

cylindrical bending), ϕ1(y) = 2y/b, describing the cross sectional rotational rigid body mode (for plate torsion), and

ϕi(ȳ) = Ci

[

sin(λiȳ/b) + sinh(λiȳ/b) − sin(λi) − sinh(λi)

cos(λi) − cosh(λi)
[cos(λiȳ/b) + cosh(λiȳ/b)]

]

(B.4)

for i ≥ 2, with ȳ = y + b/2, for notational convenience. The eigenvalues λ satisfy the characteristic equation

cos(λi) cosh(λi) − 1 = 0 and, besides the double root λ0 = λ1 = 0 their first few values (for i ≥ 2) are 4.7300407,

7.8532046, 10.9956078, 14.1371655. The corresponding first few scaling coefficients Ci are given by −2.035619,

1.998447, −2.000067, 1.999997. Here again, for relatively large mode order, the calculation of the eigenfunctions in

Eq. (B.4) is numerically ill-conditioned because of the presence of hyperbolic functions. If i larger than approximately

10 is desired in double-precision calculations, the expression in Eq. (B.4) should be replaced with its asymptotic ver-

sion provided in [67].

The assumed modes of the cantilever plate are then given by ΦI(x, y) = φi(x)ϕ j(y), provided that a suitable

numbering convention is adopted that maps the pair of indices (i, j) to the index I. One such possible ordering,

that does not use information on the maximum number of modes used for the expansion, could be given by I =

(i + j − 1)(i + j)/2 + ( j + 1). The ordering is similar to Cantor’s enumeration or diagonal traversing of the entries of

a matrix and, for example, the mode with i = 3, j = 1 would be uniquely identified with the index I = 8. In general,

however, this ordering does not ensure that the modes are sorted by increasing natural frequency, although this does
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not cause any issues. While the numbering convention is used in the calculations, we often refer to mode (i, j) to

indicate the plate mode φi(x)ϕ j(y) for clarity of exposition.

Using Hamilton’s principle, and following standard procedures [39], the Rayleigh-Ritz stiffness and mass matrix

terms in Eq. (4) are expressed by

kIJ =

∫ b/2

−b/2

∫ L

0

D
[

ΦI
,xxΦ

J
,xx + Φ

I
,yyΦ

J
,yy + ν(Φ

I
,xxΦ

J
,yy + Φ

I
,yyΦ

J
,xx) + 2(1 − ν)ΦI

,xyΦ
J
,xy

]

dxdy

mIJ =

∫ b/2

−b/2

∫ L

0

ρshΦ
IΦJdxdy

(B.5)

Note the symmetry of the mass and stiffness matrices. Similarly, the forcing term gives rise to a “modal” forcing

vector, whose I-th component is given in the time domain by
∫ b/2

−b/2

∫ L

0
f (x, y, t)ΦI(x, y)dxdy. The double integrals of

this section are performed numerically via Gauss-Legendre quadrature points, see [39] where relevant computational

details can be found, although therein Legendre polynomials are used for the modes in the y-direction. It should

be noted that the choice of assumed modes in the Rayleigh-Ritz method is arbitrary, provided that the modes form a

complete basis and satisfy the essential boundary conditions of the problem, see also [52]. Once the stiffness and mass

matrices are determined via numerical integration, the solution of the eigenvalue problem [K − ω2 M]q = 0 provides

the in vacuo natural frequencies and mode shapes of the cantilever plate [60, 52]. These will include cylindrical (beam-

like) bending modes, torsional modes, and proper plate-like modes. As above, we will also consider scaled versions,

denoted with a superimposed tilde, of the stiffness and mass matrices, defined as K = DLbK̃ and M = ρshLbM̃.

These forms help better highlight the role of fluid loading.

Although not pursued in depth in this paper, the mechanics models can be easily extended to orthotropic plates,

that are often of interest in the analysis of crystalline silicon-based microsystems [68, 35]. In this case, we assume

the elastic properties to be constant in the through-the-thickness direction, and we indicate with ci j the components in

Voigt notation of the material’s elastic tensor, such that the stresses σi j are related to the strains ǫkl via σi j = Ci jklǫkl.

We have c11 = C1111 = Ex/(1 − νxyνyx); c22 = C2222 = Ey/(1 − νxyνyx); c12 = C1122 = νxyc22 = νyxc11; and

c66 = C1212 = Gxy. As usual, Ex and Ey indicate the Young’s moduli in the x- and y-direction, respectively, Gxy is the

shear modulus in the xy-plane, and the Poisson ratios νi j describe a contraction in the j-direction when extension is

applied in the i-direction; note also that νi j = ν ji(E j/Ei), see [69]. As customary, by denoting with Di j =
∫ b/2

−b/2
ci jz

2dz

the stiffness moduli of the plate, Eq. (B.1) is replaced by [70, 66]

[

D11

∂4

∂x4
+ 2(D12 + 2D66)

∂4

∂x2∂y2
+ D22

∂4

∂y4

]

w(x, y, t) + ρsh
∂2w(x, y, t)

∂t2
= f (x, y, t) (B.6)

Similarly, we replace the expression for the elastic energy U in Eq. (A.3) with [70, 52]

U =
1

2

∫ b/2

−b/2

∫ L

0

[

D11(w,xx)
2 + D22(w,yy)

2 + 2D12w,xxw,yy + 4D66(w,xy)
2
]

dxdy (B.7)

The orthotropic plate stiffness matrix can be calculated by following the same procedure as above. We obtain

kIJ =

∫ b/2

−b/2

∫ L

0

[

D11Φ
I
,xxΦ

J
,xx + D22Φ

I
,yyΦ

J
,yy + D12(ΦI

,xxΦ
J
,yy + Φ

I
,yyΦ

J
,xx) + 4D66Φ

I
,xyΦ

J
,xy

]

dxdy (B.8)

Appendix B.1. Numerical validation of the mechanical model

The mechanical model is validated for numerical accuracy against results from a commercial finite element method

(FEM) solver. In this section, we report a representative case for an isotropic and an orthotropic microplate, inspired

by the systems discussed in [35, 68]. For the isotropic case, we consider a silicon microplate with L = 500 µm,

b = 250 µm, and h = 10 µm, with ρs = 2330 kg/m3, E = 169 GPa, ν = 0.25. In our Rayleigh-Ritz model, we use

10 modes in the x-direction and 10 modes in the y-direction. We use 41 Gauss-Legendre quadrature points in both

the x- and y-direction to accurately evaluate the integrals in Eq. (B.5). For the orthotropic case, we use the same plate

geometry, as well as the same numerical details for the integration, while we adopt the following material coefficients

31



from [68]: Ex = Ey = 169 GPa, Ez = 130 GPa, νyz = 0.36, νzx = 0.28, νxy = 0.064, Gyz = Gzx = 79.6 GPa, Gxy =

50.9 GPa. This leads to elastic tensor coefficients approximately equal to c11 = c22 = 169.7 GPa, c12 = 10.86 GPa,

and c66 = 50.9 GPa. Incidentally, there appears to be some typos in the matrix in Eq. (8) of Ref. [68] where the ci j

coefficients are reported.

Finite element simulations are conducted in the commercial software package ANSYS Mechanical APDL 17.0,

and are similar to the setup discussed in [39]. Briefly, the plate is modeled as a 2D solid and shell elements are used

in the simulation, with only bending (and no membrane) stiffness consistently with our strain energy formulations

in Eq. (B.3). Also, to closely approximate the hypothesis of our mechanical model, we suppress out of plane dis-

placements and neglect rotational degrees of freedom in the element technology. For this elementary problem, the

rectangular plate is meshed with 5000 mapped square elements of 5 µm side. The first few modes are resolved via a

modal analysis in the software which uses block Lanczos methods for the eigenvalue problem, whose size is 15300

equations. For comparison, our Rayleigh-Ritz model only contains 100 equations. Results of the modal analysis

are presented in Table B.2, where the first 10 natural frequencies of the systems are expressed in kilohertz. In every

case, our mechanical model recovers FEM results with less than 0.3% relative error. This validates the Rayleigh-Ritz

method presented in this appendix for the mechanical problem.

Table B.2: Verification of the mechanical model for isotropic and orthotropic plate against results from FEM results. Resonance frequencies for

the first ten modes of the plate are expressed in kilohertz.

Isotropic Silicon Orthotropic Silicon

Mode Present FEM % error Present FEM % error

1 56.160 55.994 0.296 55.099 55.088 0.021

2 246.583 246.414 0.069 217.568 217.530 0.017

3 350.607 349.589 0.290 345.216 345.162 0.016

4 799.708 798.640 0.133 714.341 714.070 0.038

5 983.385 980.685 0.275 966.681 966.678 0.000

6 1517.542 1513.750 0.250 1393.222 1392.950 0.020

7 1528.167 1525.130 0.199 1462.241 1461.950 0.020

8 1933.988 1929.700 0.222 1884.026 1883.900 0.007

9 2074.021 2070.940 0.149 1904.363 1904.400 -0.002

10 2513.833 2507.830 0.239 2335.088 2335.290 -0.009

Appendix C. Further details on the fluid problem

Appendix C.1. Oscillatory Stokelets for 3D flow field calculations

Equation (8) can be used to reconstruct the full 3D velocity field of the fluid in response to a net traction [[τ]](x)

on the plate. The full expressions for the kernels S 13, S 23, and S 33 for calculation of the fluid velocities in the x, y,

and z directions, respectively, are adapted from [51] and, with the nomenclature of this paper, are

S i3 = A(R)
δi3

r
+ B(R)

rir3

r3
(C.1)

Here, δi j is the Kronecker delta, r = x − x̄ indicates the vector between one point x on the cantilever and one point x̄

in the fluid domain, ri are its components, and r = |r| its magnitude. In addition, R =
√

iαr and

A(R) = 2e−R(1 + 1/R + 1/R2) − 2/R2; B(R) = −2e−R(1 + 3/R + 3/R2) + 6/R2 (C.2)

By calculating the curl of the velocity vector, we can also use our BEM approach to determine the vorticity vector in

the flow field by evaluating

ζ̂i(x) = εi jk

∂

∂x̄ j

ûk(x̄) =
1

8π

∫

D

[[τ̂]](x)εi jk

∂S k3(x, x̄;α)

∂x̄ j

dx =
1

8π

∫

D

[[τ̂]](x)Ωi3(x, x̄;α) dx (C.3)
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with εk ji the Levi-Civita symbol and

Ωi3 = 2εi3ℓ(rℓ/r
3)e−R(R + 1) (C.4)

is the oscillatory rotlet [51]. Note, in particular, that ζ̂3 = 0, as expected. More in general, the spatial derivative of the

velocity ∂ûi/∂x̄ j can be calculated via the kernel

∂S i3(x, x̄;α)

∂x̄ j

= C(R)
r jδi3

r3
+ D(R)

rir jr3

r5
− B(R)

(riδ3 j + r3δi j)

r3
(C.5)

with
C(R) = A(R) − R

∂A(R)

∂R
= 2e−R(3/R2 + 3/R + 2 + R) − 6/R2

D(R) = 3B(R) − R
∂B(R)

∂R
= 30/R2 − 2e−R(15/R2 + 15/R + 6 + R)

(C.6)

Representative 3D flow fields obtained with the unsteady singularities above are reported in the main text for

selected shapes at wet resonance of the vibrating plate.

Appendix C.2. Remarks on numerical aspects of the fluid problem

Using the scaling proposed in Eq. (16), the governing parameters of the hydrodynamic problem are the aspect

ratio Λ and the frequency parameter β. Without lack of generality, in our numerical solution to the integral equation

in Eq. (9) and successive calculation of h̃i j(β), we explore the space of parameters by first letting unit width b = 1 m,

and ρ f = 998.2 kg m−3 and µ f = 1.003 × 10−3 Pa s for liquid water at room temperature. The dimensional frequency

ω and cantilever length L are selected as to provide values in the range β ∈ [100, 106] and Λ ∈ [1, 20], respectively, so

as to explore the limits of very viscous to essentially inviscid behavior, for slender beams to square plates geometries.

A discussion of the asymptotic treatment of the hydrodynamic problem for very low to moderate nondimensional

frequencies can be found in Appendix D.

The numerical solution of the integral equation in Eq. (9) is obtained by discretizing the surface of the cantilever

into progressively finer meshes of 8 × 8, 16 × 16, 32 × 32, and 64 × 64 panels, with trigonometric refinement towards

the edges, following our previous work [46]. The trigonometric refinement ensures progressively smaller panel sizes

as one approaches the edges, and has unique singularity-handling capabilities as discussed for example in [22]. This

is particularly important when dealing with the singular velocity and pressure behavior on the solid surface sharp

edges. Examples of a typical mesh is shown in Fig. 1. Results are found to be essentially indistinguishable between

the 32 × 32 mesh and the 64 × 64 mesh, especially for moderately large values of β. Thus, the 64 × 64 mesh is used

everywhere in this study.

For each combination of aspect ratio and frequency desired, in the numerical solution, the unknown [[τ̂]] is as-

sumed to be piecewise constant on each mesh panel, and the resulting discrete boundary element problem is solved as

in [46]. Specifically, x̄ is evaluated at the center of each panel, and integrals ofA(|x− x̄|, α) are evaluated numerically

with the adaptive 2D quadrature method in the subroutine quad2d in the software package MathWorks MATLAB.

We remark that, when constructing the system matrices, if x and x̄ belong to different panels (off-diagonal terms), the

integrand is well-behaved and the numerical integration is trivial. On the other hand, in the calculation of diagonal

terms in the system matrices, the singularity inA as x = x̄ must be carefully accounted for, by following for example

the procedure in [46], which relies on explicit integration of the singularity. System matrices are constructed for each

combination of aspect ratio and nondimensional frequency and are inverted once and for all (and, in fact, stored in

factored form) before the calculation of [[τ̂]] for a given left-hand side in Eq. (9). Representative calculations of the

net hydrodynamic traction profiles corresponding to prescribed velocity profiles are shown in Fig. 2. After the h̃i j(β)

terms are calculated, Eq. (16) is used to determine the dimensional values to include in structural dynamics equations.

The last detail necessary for the determination of the modal hydrodynamic forces lies in the treatment of possible

values of β and Λ that may appear in the structural dynamic equations but have not been explicitly calculated with the

procedure discussed above. In fact, the operator H(ω) in Eq. (5) should be interpreted as a function of the real-valued

variable ω, while only a finite set of values of ω (or, equivalently, β) are used in the determination of the modal

hydrodynamic function. Similarly, it is not practical to simulate all aspect ratios of interest, as a new set of matrices

has to be constructed, with possibly significant computational cost. To obviate this computational limitation, we

construct interpolation tables from the available 2D space in (β,Λ). Specifically, a first interpolation is performed as a

function of Λ to determine the operator H(ω) at a set of discrete β points for a desired aspect ratio. Finally, a second
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interpolation as a function of β is used for the estimation of modal hydrodynamic forces at desired frequencies to

be used in structural dynamics calculations. This approach is robust and computationally inexpensive and conducted

in the software package MathWorks MATLAB using the subroutine interp1 with option makima. An alternative

approach to the interpolation could be the identification of suitable fit functions for the real and imaginary parts of all

the entries of the matrix H(ω), similar to those presented in [29]. This could also be extended to the different aspect

ratios. However, in this paper, we will not pursue this avenue, as the added complexity of developing extensive look

up tables of numerical coefficients does not result in improved theoretical or numerical understanding of the problem.

Appendix D. Low frequency asymptotic behavior

In this section, we develop an asymptotic theory for the nonlocal modal hydrodynamic function matrix that is

valid in the limit of low frequency behavior. This dynamic range rigorously incorporates the steady Stokes regime,

where fluid forces are proportional to velocities (and the hydrodynamic functions are purely imaginary), and extends

to a “quasi-steady” regime, where the forces are expressible in powers of the frequency.

Our point of departure are Eqs. (9) and (10). We use a perturbation solution scheme for the Fredholm integral

equation in Eq. (9) similar to the one discussed in [71]. Since in the steady Stokes regime α → 0, we first consider a

series expansion of the kernelA(r, α) about α = 0. This yields

A(r, α) =
1

r
− 4(1 + i)

3
√

2
α +

3

4
irα2 + O(α3) (D.1)

The zero-th order term of the expansion, A0(r) = 1/r, is the (3,3) component of the Oseen tensor localized on the

plate surface, see also [51], while the first order term of the expansion −A1α, with A1 a complex constant, can be

considered as a perturbation of the tensor describing the steady Stokes regime. We retain up to the second order

expansion, α2A2, for a reason that will become clear later. Note that this last term is purely imaginary and scales with

r.

We postulate that the hydrodynamic stresses on the plate can also be expressed in a power series of α so that

[[τ̂]] = [[τ̂]]0+α[[τ̂]]1+α[[τ̂]]2+O(α3). Upon substituting these expressions in Eq. (9), neglecting higher order terms

in α, and indicating the phasor of the transverse (nondimensional) velocity of the plate with iŵ/b, we obtain

iŵ(x̄)/b =
1

8π

∫

D

(

[[τ̂]]0(x) + α[[τ̂]]1(x) + α2[[τ̂]]2(x)

)(

A0(|x − x̄|) − αA1 + α
2A2(|x − x̄|)

)

dx (D.2)

Note that ŵ is here considered of order O(α0) without loss of generality, as Eq. (D.2) is linear. Equating powers of α

and neglecting terms of order O(α3), Eq. (D.2) leads to the following three integral equations

∫

D

[[τ̂]]0(x)A0(|x − x̄|)dx = i8πŵ(x̄)/b (D.3)

∫

D

[[τ̂]]1(x)A0(|x − x̄|)dx = A1

∫

D

[[τ̂]]0(x)dx (D.4)

∫

D

[[τ̂]]2(x)A0(|x − x̄|)dx = A1

∫

D

[[τ̂]]1(x)dx −
∫

D

[[τ̂]]0(x)A2(|x − x̄|)dx (D.5)

which must be solved sequentially for [[τ̂]]0 from Eq. (D.3), [[τ̂]]1 from Eq. (D.4), and [[τ̂]]2 from Eq. (D.5). Interest-

ingly, the same kernel 1/r appears in the left hand side of all the integral equations above. Therefore, solution of the

stress distributions only involves the construction and inversion of a single real-valued matrix, for a given plate aspect

ratio. This task can be approached with the same methods described in Appendix C.2. We remark that, also in this

case, in the calculation of diagonal terms in the system matrices, the singularity 1/r in the kernel must be carefully

handled by explicit (although trivial) integration.

A few comments, stemming from the analytical structure of Eqs. (D.3), (D.4), and (D.5), are in order. At the

zero-th order, because the kernel A0 is real, the hydrodynamic stresses [[τ̂]]0 are imaginary, and thus, in phase with

the velocities, consistently with the notion of steady Stokes flow [72]. These stresses, therefore, contribute only to

hydrodynamic damping. At the first order, we observe that the right hand side of Eq. (D.4) is a constant, for any value
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Figure D.16: Representative components of the hydrodynamic function matrix H̃ (markers) for aspect ratio Λ = 1, along with the asymptotic

scaling laws (dashed lines) showing the components of H̃A in the basis of the cantilever beam modes. In (a): log-log plot of the asymptotic

behavior with emphasis over the low frequency range. In (b): semilog plot comparison of the asymptotic formula in an intermediate frequency

range.

of x̄. Furthermore, the real and imaginary part of this constant are numerically equal. This means that the solution of

the hydrodynamic stresses [[τ̂]]1 will be a complex-valued vector, whose real and imaginary part are equal. Therefore,

at the first order in α, the hydrodynamic forces will include an added mass effect and a hydrodynamic damping effect

which are numerically equivalent. Finally, it can be easily shown that, at the second order, the right hand side of

Eq. (D.5) is purely real, thus leading to a real-valued fluid force in quadrature with the velocity, that is, an added mass.

We can now proceed to the definition of the asymptotic modal hydrodynamic function matrix. Similar to the

development of Eq. (14), we denote with χ̂φ j |0, χ̂φ j |1, and χ̂φ j |2 the zero-th, first, and second order solutions, respectively,

of Eqs. (D.3), (D.4), and (D.5) when the velocity is prescribed to the j-th mode shape, that is, iφ j(x)

hA
i j(ω) = µ fω

∫

D

φi(x)[χ̂φ j|0(x, ω) + αχ̂φ j |1(x, ω) + α2χ̂φ j |2(x, ω)]dx (D.6)

where the superscript A indicates the asymptotic form. Scaling this expression consistently with Eq. (16), we thus

divide by the term (π/4)ρ fω
2b2L, leaving an ω term in the denominator of hA

i j
. Recalling that ω is proportional to β

and α is proportional to
√
β, we obtain for the asymptotic hydrodynamic function matrix the following form

H̃A(β) = iβ−1N0 + (1 + i)β−1/2N1 + N2 (D.7)

where N0, N1, and N2 are real-valued, constant matrices that depend only on the aspect ratio of the plate (once

the modal basis is prescribed). A physical interpretation of the powers in Eq. (D.7), which are consistent with the

classical development of unsteady boundary layer theory [73, 47, 74] (although derived for large β) and generalize

the local asymptotic results in [1] or the semi-empirical results in [29], stems from the observation that H̃A(β) would

multiply an acceleration-like term in Eq. (18). The power β−1 thus describe an integrator, and therefore a damping

term proportional to velocity (steady Stokes forces). The power β−1/2 is instead a Basset-like “history” term, as a

multiplication by a 1/
√

iω in the frequency domain corresponds to a convolution with a term 1/
√
πt in the time

domain. Finally, the constant term represents a component in phase with the acceleration, that is, an added mass term.

This expression provides the desired asymptotic representation for the modal hydrodynamic function matrix and

is depicted for illustration in Fig. D.16 for unit aspect ratio. This particular figure reproduces the data discussed in

Fig. 4(b), although replotted in an extended window to the very low β range to illustrate the asymptotic behavior. Note

that in the asymptotic analysis, the perturbation parameter is α ∼
√
β; thus, the validity of the asymptotic approxi-

mation is expected only for low values of β. It should be noted that, as opposed to Fig. 4, the data are reported on a
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log-log scale in Fig D.16(a), so as to better display the scaling laws at low frequency. Because of the presence of pos-

itive and negative values, we decide to report the absolute values of the real and imaginary parts of the hydrodynamic

function; to this choice is also due the presence of peculiar “dips” in the data, which likely identify a zero-crossing

point in the data and the asymptotic expressions. The asymptotic behavior is reported in Fig D.16(b) in semilog scale

to accentuate the small values of the hydrodynamic functions at high frequency. As expected, discrepancies seem

more pronounced in the relatively large β range, where the asymptotic expression becomes inaccurate; however, all

the trends of the data are correctly captured. In addition, the quality of the asymptotic approximation does not seem

uniform over all the components of the hydrodynamic function matrix.

Note that we do not expect to recover the exact hydrodynamic function behavior over such a broad range of fre-

quency as that presented, with only a three term expansion as in Eq. (D.7). For comparison, note that in [1], the

correction alone for a thin rectangular versus circular cross section was presented in terms of a (6,6)-order Padé ap-

proximant valid over ten decades of nondimensional frequency. Although we do not further pursue the hydrodynamics

in the extremely low frequency range in this paper, the value of Eq. (D.7) is also to provide an alternative, numeri-

cally stable way to calculate the modal hydrodynamic function matrix in the very low β range, where the approach

described in Sec. 3 becomes numerically ill-conditioned and slowly convergent.

Acknowledgments

This material is based in part on work supported by the National Science Foundation under Grant No. 1847513.

The authors would like to thank the anonymous reviewers for their careful reading of the manuscript and for giving

useful suggestions that have helped improve the work and its presentation.

References

[1] J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, Journal of

Applied Physics 84 (1) (1998) 64–76.

[2] A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-Bouhacina, J.-P. Aimé, Hydrodynamics of oscillating atomic force microscopy cantilevers
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