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We propose a new theory for fluid-structure interactions of
cantilever microbeams undergoing small amplitude vibra-
tions in viscous fluids. The method is based on the concept
of nonlocal modal hydrodynamic functions that accurately
capture 3D fluid loading on the structure. For short beams
for which 3D effects become prominent, existing local theo-
ries based on 2D fluid approximations are inadequate to pre-
dict the dynamic response. We discuss and compare model
predictions in terms of frequency response functions, modal
shapes, quality factors, and added mass ratios with the pre-
dictions of the local theory, and validate our new model with
experimental results.

1 INTRODUCTION
Over the last few decades, vibrations of cantilever struc-

tures in viscous fluids have received intense research interest
from the fluid-structure interaction (FSI) community, with
applications in atomic force microscopy, sensing and ac-
tuation in micromechanical systems (MEMS), biomimetic
robotic propulsion, piezoelectric fanning, and microscale en-
ergy harvesting systems [1–4]. Central to these studies, is
the challenging estimation of the hydrodynamic forces on
the vibrating solid structures. Arguably, the most fruitful ap-
proach has been that of [5, 6] which is based on the assump-
tion of two dimensional (2D) unsteady Stokes flow around
infinitely long beams, where only local transverse displace-
ments are considered for a rigid cross section. The resulting
local theory condenses the description of the hydrodynamic
forces in a complex hydrodynamic function that can be used
in structural dynamics models. This highly successful local
theory has been shown to be accurate for the prediction of the
first few flexural resonance frequencies and quality factors of
slender submerged cantilevers.

Despite this success, recent interest has focused on ap-
plications of microplates and cantilevers with low aspect ra-
tios [7] for which the local theory is inadequate. Recent stud-
ies [8, 9] have observed that traditional theories based on 2D
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fluid approximations or strip theory integration fail to capture
the nonlocality of the fluid loading on the structure, which is
important for low aspect ratios and high mode numbers.

The progress in the context of flexural vibrations in liq-
uids has not been reflected on studies of torsional oscillations
of beam-like structures in viscous fluids, which to date re-
main sparse. The seminal contribution in [10] provides the
linear and local theory for torsional oscillation of submerged
cantilever beams, relating the distributed hydrodynamic mo-
ment exclusively to the local twist of the beam axis and the
nondimensional frequency of vibration, via a so-called com-
plex hydrodynamic function. In [11], the local approach was
expanded to finite amplitude vibrations, by incorporating a
nonlinear correction to the hydrodynamic function. This cor-
rection captures the effect of vortex shedding and convec-
tive nonlinearities by augmenting the hydrodynamic moment
with nonlinear hydrodynamic damping. While not specifi-
cally focused on torsion, in [12], a semi-numerical method
was presented to investigate the FSI problem for a vibrat-
ing microcantilever plate underwater. Torsional modes were
identified therein along with discrepancies from the local the-
ory for lower aspect ratios. However, a truly nonlocal theory
for torsional vibrations in viscous fluids has not been pre-
sented to date. As such, our understanding of this fundamen-
tal dynamics problem remains incomplete.

In this paper, we develop a three dimensional (3D) non-
local theory for torsional vibrations of a submerged thin can-
tilever, by focusing on low aspect ratios structures undergo-
ing small amplitude vibrations. Our method constitutes an
“exact” solution, since the FSI problem is constructed in full
3D with only the assumption of thin cantilever. Therefore,
effect of boundary conditions, finite aspect ratio, and nonlo-
cality are naturally captured by this method. Our approach
employs a semi-analytical FSI solver developed by our group
based on the oscillatory Stokeslet theory [13, 14]. The FSI
solution determines the distributed hydrodynamic loading
resulting from the entire vibration profile of the cantilever.
Such solution is then coupled to the traditional structural dy-
namics formalism via representation of the hydrodynamic
operator on the basis of the structural modes. This leads to
the new concept of the nonlocal modal hydrodynamic func-
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Fig. 1. Schematics and nomenclature of the problem. At any point,
the transverse deflection is w(x,y, t) = yθ(x, t), with θ(x, t) the
twist angle of the beam axis.

tion matrix. Importantly, the FSI problem is solved “offline”
for a desired combination of geometry and dynamic parame-
ters. As a result, our coupled method is computationally in-
expensive, while retaining its “exact” semi-analytical nature.
In fact, the only approximations in our method consist in the
numerical discretization and can be controlled as desired.

For our novel theory, we present frequency response
functions, modal shapes, quality factors, and added mass
ratios and compare them with the predictions of the local
theory. We also elucidate the nature of the nonlocal hydro-
dynamic function and the coupling of otherwise orthogonal
structural modes via the fluid. This clarifies the importance
of the off-diagonal terms of the modal hydrodynamic func-
tion matrix that have not been discussed before in the liter-
ature. Importantly, we verify our nonlocal theory with ex-
perimental results in the literature, demonstrating excellent
agreement and predictive capabilities.

2 MODEL DEVELOPMENT
We consider a thin beam, submerged in a fluid, subjected

to small-amplitude torsional vibrations. The beam is located
in the xy-plane, while its length, width, and thickness are
aligned with the x, y, and z axes, respectively. The time vari-
able is indicated with t. The origin of the reference frame
is at the centroid of the fixed cross-section at x = 0. We in-
dicate length, width, and thickness of the plate as L, b, and
h, respectively. We assume that h ≪ b so that the solid is
modeled as a mathematical surface with zero thickness. The
nomenclature and geometry of the problem are displayed in
Fig. 1.

2.1 Governing equations
We use here the classical treatment of torsion for rectan-

gular thin cross section beams, see for example [10, 11]. In
this framework, torsion and other deformation modes, such
as bending or extension, are decoupled. The beam density
(mass per unit volume) is indicated with ρs. The beam is
comprised of an isotropic and homogeneous material, with
Young’s modulus E and Poisson’s ratio ν. The beam is sub-
ject to torsional vibrations along its axis x. The basic hypoth-

esis is that the displacement field can be recovered from the
axis twist angle θ(x, t) via the relation w(x,y, t) = yθ(x, t),
see Fig. 1. Relevant static and stiffness property for the cross
section are the moment of inertia It = b3h/12 and the tor-
sional stiffness GJt where G = E/(2(1 + ν)) is the shear
modulus and Jt = bh3/3 a geometric section property.

For underwater vibrations, we enrich the conventional
equations of motion for the twist angle θ(x, t) of thin rect-
angular cross sections, with the nonlocal contribution of the
surrounding fluid, that is,

GJt
∂2θ(x, t)

∂x2 −ρsIt
∂2θ(x, t)

∂t2 = mt(x, t)+H t [θ(x, t)] (1)

where mt(x, t) represents a moment (torque) per unit length
along the axis of the beam. Eq. (1) is supplemented by
fix-free boundary conditions. Here, H t describes the hy-
drodynamic moment per unit length produced by the fluid-
structure interactions as the beam axis is twisting with a time
law θ(x, t). This is a linear but nonlocal term, and constitutes
the novel contribution of this paper. This is also a substantial
departure from the local approaches explored in [10, 11].

Focusing on steady state harmonic vibrations, we recast
the problem in the frequency domain. Specifically, for a lin-
ear harmonic vibration problem occurring at the radian fre-
quency ω, it is convenient to replace the physical twist angle
with its phasor θ̂(x,ω), such that θ(x, t) = Im

[
θ̂(x,ω)eiωt

]
with i =

√
−1, see for example [11]. Here and in the fol-

lowing, a superimposed hat indicates phasor quantities. In
addition, we attack the equations of motion in the frequency
domain via the Galerkin method, see [15], to rephrase the
continuum problem in a finite-dimensional matrix formula-
tion. Specifically, we rewrite the phasor of the twist angle
as a superposition of “modes” as θ̂(x,ω) = ∑i q̂i(ω)φi(x),
where the q̂i are modal coefficients to be determined and, as
assumed modes, we select the in-vacuo modes of a fixed-
free rod under torsion, that is, φi(x) = sin(λix/L) where
λi = (2i−1)π/2 is an eigenvalue solution of the characteris-
tic equation cos(λi) = 0, see [15]. Note that these modes are
arbitrarily scaled to unitary tip rotation.

Because of the linearity of the operators in Eq. (1), using
the modal representation of the twist angle and projecting on
the modes φ j(x) yields a set of linear algebraic equations for
the modal amplitudes in the form

∑
i

∫ L

0
GJtφ

′′
i φ jdx q̂i −ω

2
∑

i

∫ L

0
ρsItφiφ jdx q̂i =∫ L

0
m̂tφ jdx+∑

i

∫ L

0
H t

ω[φi]φ jdx q̂i (2)

where a superimposed prime indicates derivative with re-
spect to x and we have omitted the dependent variables for
brevity. Importantly, H t

ω is the hydrodynamic moment non-
local operator in the frequency domain so that H t

ω[φi(x)] de-
scribes the distributed moment per unit length due to fluid-
structure interactions when the beam is vibrating along mode
φi(x) at a frequency ω.
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In compact form, this expression can be rewritten as

[KKK −ω
2MMM−HHHt(ω)]q̂qq = m̂mm (3)

where KKK and MMM are the traditional stiffness and mass matri-
ces of the system, q̂qq is the vector of modal coefficients, m̂mm is
the modal forcing vector. The main contribution of this work
is the complex-valued modal hydrodynamic function matrix
HHHt(ω), whose entries are

[HHHt(ω)] ji = h ji(ω) =
∫ L

0
H t

ω[φi(x)]φ j(x)dx (4)

This term is novel, and physically describes the projection
of the hydrodynamic moment due to vibration along mode i
onto mode j. Energy considerations reported elsewhere (and
numerical experimentation) also demonstrate that the ma-
trix HHHt(ω) is symmetric but not Hermitian, so that h ji = hi j.
As opposed to local formalisms common in the literature,
the global motion of the structure is used for the calculation
of the hydrodynamic loading at any point and therefore our
approach naturally takes into account boundary conditions,
edge effects, and finite aspect ratios in the fluid-structure in-
teraction problem.

As shown later, HHHt(ω) is a complex-valued matrix that
displays a complicated dependence on the frequency ω.
From Eq. (3), it can be deduced that the real part of HHHt(ω)
captures the effect of an hydrodynamic added mass moment
of inertia that will shift the “wet” resonance frequencies of
the system. Similarly, the imaginary part of HHHt(ω) describes
the hydrodynamic damping and captures the reduction of the
vibration amplitude at wet resonance, as compared to in-
vacuo vibrations. Both these effects will be discussed in
detail in Section 3. In the next subsection, we will detail
the calculation of the terms hi j from the solution of the fluid
problem.

2.2 Oscillatory Stokeslet solution of the fluid problem
The calculation of the hydrodynamic load due to a pre-

scribed structural deformation w(x,y, t) at a frequency ω pro-
ceeds by following in part the approach in [16]. Briefly,
the hydrodynamic regime of interest is the unsteady Stokes
flow, for which convective nonlinearities are neglected. The
fluid is incompressible, with density ρ f and viscosity µ f , and
gravity or body forces are neglected. The structure is subject
to harmonic and vanishingly small-amplitude steady state
torsional vibrations. The ensuing structural velocity, through
the no-slip condition, is used as boundary conditions for the
fluid velocity field. Under these assumptions, the evolution
of the fluid velocity field is also time-harmonic. Building on
the oscillatory Stokeslets formalism in [13, 14], the govern-
ing equations are

iωŵ(x̄xx) =
1

8π

∫
D

P̂(xxx,ω)S33(xxx, x̄xx;α)dxxx (5)

where D is the domain of the beam D= (0,L)×(−b/2,b/2).
Eq. (5) relates the phasor of the solid velocity iωŵ(x̄xx) at a
point x̄xx = (x̄, ȳ) on the structure to the phasor of the net hy-
drodynamic load, or net traction, P̂(xxx,ω) at a different point
xxx = (x,y) on the beam, via a kernel S33(xxx, x̄xx,α) which is only
a function of the distance r = |xxx− x̄xx| and of the nondimen-
sional parameter α =

√
ωρ f b2/µ f . In [16], S33(xxx, x̄xx,α) was

rewritten as S33(xxx, x̄xx,α) = A(|xxx− x̄xx| ,α), with

A(r,α) = 2
e−

√
iαr

r

(
1+

1√
iαr

− i
α2r2

)
+

2i
α2r3 (6)

For a given velocity profile, aspect ratio, and a pre-
scribed ω (or, equivalently, α) Eq. (5) can be solved to de-
termine the net hydrodynamic traction by using the bound-
ary element technique in [16]. Here, we solve Eq. (5) when
the structure velocity is produced by vibration along a desig-
nated mode, that is,

iωȳφi(x̄) =
1

8π

∫
DDD

P̂φi(xxx,ω)S33(xxx,xxx′′′;α)dxxx (7)

where we have used P̂φi to indicate the net traction due to
vibration along mode φi. An example of such calculation is
shown in Fig. 2 which displays the real and imaginary part of
the phasor of P̂φ1 at a representative frequency. Note here, the
complicated (and in fact singular) behavior of the traction in
the vicinity of the boundaries. These effects, that are known
to exist, cannot be captured by traditional local approaches
such as those in [10] based on two-dimensional approxima-
tions of the fluid problem, see [5, 6].

Once the net traction has been numerically determined,
the hydrodynamic moment per unit length is H t

ω[φi] =∫ b/2
−b/2 yP̂φidy, so that its projection on the beam modes is

hi j(ω) =
∫ L

0

∫ b/2

−b/2
yP̂φi(x,y,ω)dyφ j(x)dx (8)

Importantly, notice that because of the complicated two-
dimensional distribution of the traction, the moment is not
proportional to a mode shape, as is postulated in the local
approaches. This results in non-zero off-diagonal compo-
nents for the modal hydrodynamic function matrix, which
have never been identified before for torsional vibrations.
This finding is an important difference between our present
theory and local approaches.

It is convenient to normalize the hi j terms by introduc-
ing h̃i j = hi j/(πρ f ω2b4L/8). In this way, h̃i j depend only
on a nondimensional frequency parameter β = α2/(2π) and
the aspect ratio Λ = L/b. As in the fluid problem the struc-
tural properties are not specified, ω should be regarded as a
free parameter. Thus, the components of the modal hydro-
dynamic function matrices can be determined in this way for
a variety of frequencies and aspect ratios of interest. We use
interpolation between calculated values to estimate HHHt(ω) in
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Fig. 2. Real and negative imaginary part of the net traction phasor profile on the surface of the beam for vibration along the first mode φ1 at
α =

√
2π ·100, for aspect ratio Λ = 1.
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Fig. 3. Representative components of the modal hydrodynamic
function matrix H̃HH for aspect ratio Λ = 1. Note the non-zero off-
diagonal components.

the solution of Eq. (3) for frequencies that have not been
explicitly calculated. An example of the calculation of the
h̃i j for Λ = 1 over a broad range of β values is displayed in
Fig. 3, which also clearly displays the non-diagonal nature of
the operator H t

ω even when its components are specified with
respect to an orthogonal basis. While conventional methods
only consider diagonal terms, off-diagonal terms cannot be
ignored, as they can be 10-15% of the diagonal values at low
frequencies.

3 RESULTS
3.1 Experimental validation

To provide experimental validation for our new nonlo-
cal theory, in Fig. 4 we show a comparison between the
predictions of the present model against experimental mea-
surements of torsional vibrations in [11], for the first tor-

sional mode of a flexible submerged cantilever. Note that
in [11], spurious effects of the cantilever deflection were
eliminated from the torsion data via postprocessing of the
experimental measurements. The material used in the exper-
iments is a 5-mil thick (127µm) Mylar sheet. Dimensions are
L= 150mm and b= 25mm (Λ= 6). Material properties, ob-
tained from the manufacturer, are E = 5GPa, ν = 0.38, and
ρ = 1390kg/m3. Structural damping, as determined in [11]
from in-air free vibrations, is set to η = 0.012. Thus, a com-
plex shear modulus G = E(1+ iη)/[2(1+ν)] is used in the
construction of the stiffness matrix in Eq. (2). Fluid proper-
ties are those for standard water at room temperature. Exper-
imental data are obtained from the top-right panel of Fig. 9
of [11] which correspond to small amplitude of oscillation
for which the response of the system is presumed to be lin-
ear.

To study the base excitation response of the torsional
system, the moment per unit length mt term in Eq. (2) is
specialized to mt = (ω2ρsIt + H t

ω[111])B̂(ω), where B̂(ω) is
the phasor of the base excitation (possibly, a frequency-
dependent real number describing the amplitude of the base
angle of rotation) and H t

ω[111] is the hydrodynamic loading due
to rigid body rotation of the plate at the excitation frequency
ω. Note that this term is also a novel corollary of the present
theory and is calculated from Eq. (7) by substituting φ(x)
with the function identically equal to 1 along the axis of the
beam. Correct estimation of this term, which is also nonlo-
cal, is important for the accurate evaluation of the magnitude
of the base excitation and, therefore, of the response of the
elastic system. Remarkably, this term cannot be predicted
with the local formulation as in [10, 11].

Predictions of the present nonlocal theory are expressed
as the frequency response function of the tip twist angle
normalized by the amplitude of the base excitation, that is∣∣∑i q̂i(ω)φi(L)/B̂(ω)

∣∣, in Fig. 4, over the frequency range
[1,6]Hz. Despite the experimental scatter past the resonance
peak, which is likely due to experimental uncertainties in the
data in [11], the present theory is in excellent agreement with
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Fig. 4. Comparison of the predictions of the nonlocal theory against
the experimental measurement reported in [11] for the first torsional
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Fig. 5. Frequency response functions of the submerged cantilever
beam for aspect ratio Λ = 1. The thin dashed line indicates the
in-vacuo FRF of the structure.

the data from the literature, in terms of both the qualitative
shape of the FRF curve, as well as the quantitative predic-
tions of the natural frequency, quality factor, and amplitude
of the excitation and response. Importantly, no tuning param-
eters are used in the derivation of these results. This finding
further confirms and validates our approach.

3.2 Numerical results and exploration of the theory
The characteristics of the present theory are discussed

with reference to underwater torsional vibrations of a sil-
icon microcantilever beam (E = 169MPa, ν = 0.33, ρ =
2320kg/m3) with dimensions L = 200µm, h = 2µm, and
b = 200µm. Fluid properties are ρ f = 997kg/m3 and µ f =
8.59×10−4 Pa · s. The first twenty modes are used in all cal-
culations. The first four undamped in-vacuo torsional modes
of the cantilever appear in the frequency range [0,1000]kHz,
at approximately 131kHz, 392kHz, 653kHz, and 914kHz,
along with the first eight estimated “wet” modes as shown
in Fig. 5. The fifth in-vacuo mode occurs at approximately
1175Hz.

Fig. 5 displays the magnitude of the twist angle FRF
produced by a time-varying harmonic moment of magnitude
b · 1µN ·m applied at the free tip of the cantilever. We dis-
play the magnitude of this FRF for in-vacuo vibrations and
for submerged vibrations as predicted by the local theory
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Fig. 6. Quality factor Q and added mass MA for aspect ratio Λ= 1.

in [10] and our nonlocal theory, for aspect ratio Λ = 1. For
the first “wet” mode, the local and nonlocal theories predict
the damped frequencies at 33kHz and 36kHz, with a differ-
ence of 8%. For “wet” mode 2, the local theory predicts a
damped resonance at 102kHz, while the present theory sug-
gests 122kHz. The local theory underestimates the natural
frequency by more than 25%. As the mode number increases
more, the discrepancy further increases, up to 36% for the
fifth “wet” mode.

Further quantitative insight for our proposed solution
can be obtained by evaluating the quality factors and the
added mass of the first five “wet” modes for Λ= 1, see Fig. 6.
These parameters are estimated as Q = ωp/(ω2 −ω1); and
MA = (ωv/ωw)

2−1. Here, quality factors are estimated with
the half-power point method [15] where ωp denotes the fre-
quency of the peak response, ω1 and ω2 are the frequencies
of the lower and upper half-power points. For the added
mass, the subscripts v or w indicate in-vacuo or “wet”, re-
spectively, for the resonance frequencies. For the first “wet”
mode, the local and nonlocal theory predict the quality fac-
tors Q = 8.93 at 33kHz with MA = 14.76 and Q = 7.69 at
36kHz with MA = 12.24, respectively. The local theory over-
estimates the damping and the added mass by 16% and 21%.
For wet mode 2, the local theory predicts the damping as
Q = 15.19 at 102kHz with MA = 13.77, while the present
theory with “wet” hydrodynamic operator obtains Q = 12.12
at 122kHz with MA = 9.32. The local theory overestimates
the quality factor and the added mass predicted by the non-
local theory by more than 25% and 50%. As mode number
increases, the discrepancy increases, up to 36% in damping
and 170% in the added mass at the fifth “wet” mode.

An important feature of our method is that the vibra-
tion shape is not imposed a priori to calculate the hydrody-
namic load, as in [7, 16], but the actual shape is instead re-
covered from the solution of Eq. (3). As such, the shapes
at resonance are not the in-vacuo mode shapes and they dif-
fer substantially from the predictions of the local theory, as
shown in Fig. 7. The main source of discrepancy is in the
non-diagonal nature of the HHHt(ω) matrix, and in the way all
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Fig. 7. Deformed shapes at “wet” resonance for Λ = 1. In (a):
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Fig. 8. Quality factor Q and added mass MA for aspect ratio Λ= 4.

modes are coupled and excited by the nonlocal fluid loading.
This phenomenon cannot be predicted by the local theory.

Analysis of the cantilever responses clearly shows that
the current approach differs significantly from the local the-
ory, especially for high mode numbers. This conclusion is
in line with the findings in [6] and originates from neglect-
ing the entire structure’s movement in the estimation of the
hydrodynamic loading at each location along the cantilever
axis. While the local approach is generally accurate for slen-
der structures and low modes, it fails to produce accurate
results for the cases of interest in this study. However, we
here investigate its limits of validity by considering a sec-
ond cantilever with b = 50µm so that the aspect ratio is a
less extreme Λ = 4. Predictions on added masses and qual-
ity factors are displayed in Fig. 8. These demonstrate that the
nonlocal theory is close to the local theory for damping espe-
cially for the first two “wet” modes. These are with Q = 7.38
at 240kHz and Q = 12.50 at 752kHz, whereas the local the-
ory predicts Q = 7.55 at 236kHz and Q = 12.76 at 732kHz.
These values correspond to 2.3% and 4.3% differences for

the damping, respectively. For the added masses, the esti-
mation of the local and nonlocal theories are 3.89 and 3.58
vs. 3.73 and 3.34 for the first and second “wet” modes, re-
spectively. These values correspond to 4.3% and 7.2% differ-
ences for the first two “wet” modes, respectively. For higher
modes, the difference in damping increases up to 5.8% at the
fifth “wet” mode where the difference is risen to 25% for
the added mass. Interestingly, for the fourth and fifth mode,
the local theory seems to underestimate the quality factors
instead of overestimating as in the first three modes.

4 CONCLUSION
In this paper, we developed a nonlocal theory for the

small amplitude torsional vibrations of a submerged can-
tilever beam. The predictions of our theory show excellent
agreement with experiments. Comparison with the classical
local theory of [10] highlights important deviations for low
aspect ratios and high mode number. This result is theoret-
ically expected as the local theory cannot predict boundary
effects due to finite aspect ratio.

In turn, our theory is “exact”, as the fluid treatment is
fully three-dimensional and correctly captures the full load-
ing on the entire structure. Approximations in our theory
are related to numerical truncation and can be systematically
removed. While accurate, our theory is numerically inexpen-
sive, as the FSI problem is solved once and for all, for proto-
typical vibration scenarios, and its results are seamlessly in-
tegrated in conventional structural models via the novel con-
cept of nonlocal modal hydrodynamic function matrix.

We believe that our nonlocal theory provides a novel
perspective on hydrodynamic loading in high-frequency tor-
sional vibrations of small aspect ratio structures, of particu-
lar interest for MEMS applications in liquid. We remark that
this work focuses on the beam torsional behavior with the ad-
hoc “mechanics of materials” theory that is extensively used
in practice, following the fundamental contributions of [10].
Nonlocal hydrodynamics integrated in plate-like mechanics,
which may be dominant for lower aspect ratio structures, will
be presented elsewhere.
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Bouhacina, T., and Aimé, J.-P., 2005. “Hydrodynam-
ics of oscillating atomic force microscopy cantilevers
in viscous fluids”. Journal of Applied Physics, 97(7),
p. 074907.

[2] Manzaneque, T., Ruiz-Dı́ez, V., Hernando-Garcı́a, J.,
Wistrela, E., Kucera, M., Schmid, U., and Sánchez-
Rojas, J. L., 2014. “Piezoelectric MEMS resonator-
based oscillator for density and viscosity sensing”. Sen-
sors and Actuators A: Physical, 220, pp. 305–315.

6 Copyright © by ASME



[3] Eastman, A., and Kimber, M. L., 2014. “Flow shaping
and thrust enhancement of sidewall bounded oscillating
cantilevers”. International Journal of Heat and Fluid
Flow, 48, pp. 35 – 42.

[4] Behbahani, S. B., and Tan, X., 2016. “Bio-inspired
flexible joints with passive feathering for robotic fish
pectoral fins”. Bioinspiration & biomimetics, 11(3),
p. 036009.

[5] Tuck, E. O., 1969. “Calculation of unsteady flows due
to small motions of cylinders in a viscous fluid”. Jour-
nal of Engineering Mathematics, 3, pp. 29–44.

[6] Sader, J. E., 1998. “Frequency response of cantilever
beams immersed in viscous fluids with applications
to the atomic force microscope”. Journal of applied
physics, 84(1), pp. 64–76.

[7] Gesing, A., Platz, D., and Schmid, U., 2022. “A numer-
ical method to determine the displacement spectrum of
micro-plates in viscous fluids”. Computers and Struc-
tures, 260, p. 106716.

[8] Atkinson, C., and de Lara, M. M., 2007. “The fre-
quency response of a rectangular cantilever plate vi-
brating in a viscous fluid”. Journal of Sound and Vi-
bration, 300(1-2), feb, pp. 352–367.

[9] Shen, N., Chakraborty, D., and Sader, J. E., 2023. “Fre-
quency response of cantilevered plates of small aspect
ratio immersed in viscous fluids”. Journal of Applied
Physics, 133(3), jan, p. 034501.

[10] Green, C. P., and Sader, J. E., 2002. “Torsional fre-
quency response of cantilever beams immersed in vis-
cous fluids with applications to the atomic force micro-
scope”. Journal of Applied Physics, 92(10), pp. 6262–
6274.

[11] Aureli, M., Pagano, C., and Porfiri, M., 2012. “Nonlin-
ear finite amplitude torsional vibrations of cantilevers
in viscous fluids”. Journal of Applied Physics, 111(12),
p. 124915.

[12] Gesing, A., Platz, D., and Schmid, U., 2022. “Vis-
cous fluid-structure interaction of micro-resonators in
the beam-plate transition”. Journal of Applied Physics,
131, p. 134502.

[13] Clarke, R., Jensen, O., and Billingham, J., 2008.
“Three-dimensional elastohydrodynamics of a thin
plate oscillating above a wall”. Physical Review E,
78(5), p. 056310.

[14] Pozrikidis, C., 1989. “A singularity method for un-
steady linearized flow”. Physics of Fluids A: Fluid Dy-
namics, 1(9), pp. 1508–1520.

[15] Meirovitch, L., 1967. Analytical Methods in Vibrations.
MacMillan, London.

[16] Ahsan, S. N., and Aureli, M., 2018. “Three-
dimensional analysis of hydrodynamic forces and
power dissipation in shape-morphing cantilevers oscil-
lating in viscous fluids”. International Journal of Me-
chanical Sciences, 149, pp. 436–451.

7 Copyright © by ASME


