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Abstract
The year 1975 can be claimed to be the year of inception for the research and development of solid polymer electrolytes 
(SPEs) for Lithium-Ion Batteries (LIB), when the ionic conductivity of polyethylene oxide–alkaline metal ion complex was 
found by Peter Wright from the University of Sheffield. However, SPE research has undergone a leapfrog development, with 
conductivity values improving from 1 × 10–7 S·cm−1 to 1 × 10–1 S·cm−1. The seed of development of SPEs spurs from the 
need for introducing design freedom to battery structures as well as the need for leak-proof electrolytes, greater operational 
safety, higher energy density, and other considerations. While the benefits of SPEs are evident, poor interfacial contact is a 
major factor limiting their application. This review presents the history of SPEs and shows how the additive manufacturing 
(AM) could prove beneficial for the improvement of performance and the functional implementation of SPEs. While the 
article articulates a technical review of additively manufactured SPEs, it also provides a lab-to-market perspective that could 
aid in shaping the future of green technology in energy storage. It also aims to provide an overall picture about the evolution 
and diversity of research advances in the development of greener SPEs through AM technology.

Keywords  Solid-state battery · Additive Manufacturing · 3D Printing · Li-ion battery · Solid Polymer Electrolyte · 
Sustainability

1  Introduction

The industrial revolutions of various eras have largely been 
fueled by the accessibility of reliable and cost-effective 
sources of energy. With the electrification of a greater num-
ber of devices, the demand for electrical energy storage 
has continued to increase. Electrical energy storage offers 
a more dependable and eco-friendlier source of energy, 
especially for the storage of energy derived from renewable 
sources over long periods of time. Lithium-ion (Li-ion) bat-
teries, which emerge to the current industry standard, are 
used in various applications such as wearables, textiles, 

electric vehicles, and Internet of Things devices [1–3]. 
Such advanced alkali-ion or alkali-metal batteries require 
high-performance electrolytes, but the standard liquid elec-
trolytes used in these batteries pose safety concerns. Solid 
electrolytes have the potential to improve the energy density 
and safety of batteries. The rise of additive manufacturing 
(AM) or 3D printing has enabled the creation of functional 
electronics, including batteries [4–7]. Several companies are 
working to create 3D-printed batteries for large-scale adop-
tion in order to offer a greener and more sustainable prod-
uct. Despite the development of new generations of high-
energy–density rechargeable batteries, Lithium-ion batteries 
remain the most popular. However, these batteries are reach-
ing their performance limits. As society moves towards zero-
carbon emissions, batteries with higher energy and power 
density, improved ecological footprint, and exceptional life-
time, reliability, safety, and environmental sustainability will 
be required. Achieving these goals may require the develop-
ment of batteries that approach their theoretical limits.
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1.1 � Why Battery Sustainability is Important?

Batteries have played a crucial role in the transition to 
green energy by eliminating emissions from fossil fuel 
technologies. However, the manufacturing process still 
depends on natural resource mining, which negatively 
impacts the environment. To promote sustainability, action 
is needed at every stage of a battery’s life cycle, from the 
extraction of raw materials used in its manufacturing to 
the recycling of the battery at the end of its service life. 
Improving battery performance through the use of novel 
methods, by itself, is not enough to achieve sustainability; 
resource consumption must also be minimized. Some bat-
tery materials, such as copper and lithium, are expected to 
become scarce due to the annual consumption rates in the 
devices that use these batteries [8]. Therefore, adopting a 
circular economy approach could reduce environmental 
impacts and costs by recovering energy and converting 
material waste into by-products or energy to avoid the con-
sumption of virgin materials [9–12]. The circular economy 
has already shown positive applications in the battery 
manufacturing industry with automobile companies such 
as Tesla, Toyota, etc. already partnering with Redwood 
Materials, a battery materials recycling company to reduce 
dependencies on mineral.

1.2 � Challenges and Opportunities for Lithium‑Ion 
Batteries as Green Technology

The energy storage capabilities of lithium-ion batteries 
(LIBs) have been challenged on various grounds, as some 
dispute the claims that LIBs are a green technology. The 
following paragraphs discuss the energy storage capacity, 
durability, costs, safety, and charging time of LIBs as well 
as the mileage range for vehicles that use LIBs.

Energy density and retention: The introduction of LIBs 
has motivated technological advances in electrochemical 
energy storage [13]. Due to their non-aqueous electrolyte 
systems, LIBs are able to maintain three times greater cell 
voltage levels than other energy storage technologies that 
use aqueous rechargeable chemistries [14]. However, only 
marginal improvements in the LIBs have been made. To 
date, nearly all of the specific energy improvements can 
be attributed to engineering improvements such as active 
material capacity and cell/electrode optimization [15]. 
The rate of performance improvement has slowed over 
the years, posing hurdles for the electrification of vehicles. 
The automotive industry has various cathode- and anode-
specific targets to guide research on batteries [16, 17], and 
the United States Advanced Battery Consortium has mate-
rial-level goals [17] that were translated from vehicle-level 

goals [18]. Since initial commercialization, cathodes for 
LIBs have been made from layered lithium metal oxides, 
which have seen improved material stability that enables 
them to tolerate higher voltages through coatings, dopants, 
and improves their operating conditions  [19]. In parallel, 
the use of various metals (i.e., nickel, manganese, and alu-
minum) instead of cobalt has enabled a reduction in cost 
[20, 21]. A lithium-rich layered oxide is capable of meet-
ing European Council for Automotive R&D standards for 
cathodes [16]. The LIB anode market has been predomi-
nantly captured by carbon compositions, which are barely 
able to meet the energy targets. Today, lithium and silicon 
are the most explored anode materials due to their poten-
tial to meet these targets. There remain numerous techni-
cal hurdles surrounding the utilization of lithium that will 
require significant engineering to be overcome. While car-
bon blends have been commercially used for years, silicon 
is a viable material to use for anodes [22, 23]. However, 
pure silicon hinders performance due to the large volume 
changes during cycling and the resulting lithium loss due 
to continuous solid–electrolyte interphase formation and 
particle isolation. Silicon as a system has the intercalation 
ability to tolerate additional mass that results from the 
lithium storage capacity of the battery [24, 25].

Battery durability: Durability is the biggest success met-
ric for batteries in electric vehicles (EVs). Original equip-
ment manufacturers who offer warranties generally require 
strict quality control to avoid any inaccuracies of derived 
parameters of interest such as Coulombic efficiency and 
capacity [26]. Accelerated testing is able to confirm long-
term battery degradation in a shorter frame of time, as 
compared to tests under actual operating conditions over 
the course of several months [27]. The two remaining chal-
lenges in battery testing are (1) to select a set of tests that 
can fully characterize the degradation rate across the operat-
ing conditions the battery is expected to encounter during 
customer use, and (2) to confirm that these degradation rates 
are not significantly accelerated at some later stage in the life 
of the battery (which is considered to be a “rollover” deg-
radation process). To test the hypothesis that the degrada-
tion rate accelerates as a battery ages, some research groups 
[28–30] have developed a framework to predict the rollover 
of graphite–lithium nickel–manganese–cobalt oxide cells 
that exhibit two degradation mechanisms: (1) the consump-
tion of cyclable lithium and (2) shuttle mechanisms that 
consume electrolyte solvent. Lithium plating is quantified 
separately using Coulombic efficiency measurements across 
multiple rates and temperatures [31]. In order to provide 
accurate service life predictions under real-world conditions, 
3D electrochemistry models are needed to accurately rep-
resent the cell and pack designs and the corresponding deg-
radation process [32–34]. The machine learning approach 
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is a vital complement to physics-based data analytics, as it 
allows available data to be mined to support optimization 
modelling [35, 36].

Cost reduction: Cost reduction practices are often detri-
mental to the environment. However, the high cost of EVs as 
compared to the cost of internal combustion engine vehicles 
(ICEVs) is a major hurdle for the large-scale adoption of 
EVs. Battery manufacturing has undergone a major over-
haul, with an 80% cost reduction over the past decade drop-
ping from around $1300/kWh to $100/kWh as shown in the 
Fig. 1 [38,39]. Much of the cost reduction in recent years 
was realized due to optimization of current manufacturing 
processes, as process innovations that reduce energy con-
sumption, manufacturing time, and capital expenditure all 
stand to make an impact [38 ,40, 41]. Most of the cost reduc-
tion for producing LIBs can be attributed to the swapping of 
80% cobalt with nickel, as metals such as cobalt are costly 
and have significant supply chain challenges [42]. Compli-
mentary cost reduction opportunities arise out of the indi-
rect monetary benefits that arise from battery recycling, as 
electric commercial vehicles tend to have 40% lower main-
tenance costs [43], and lifetime fuel costs can be reduced by 
60% with the use of electricity as fuel (depending on loca-
tion) [44]. Although the greenhouse footprint for manufac-
turing EVs is higher than that for ICEVs [45], the emissions 
associated with the electricity supply mix are lower for EVs 
than ICEVs[46, 47].

Safety: The large-scale adoption of LIB technology has 
motivated significant research efforts on safety in automotive 
applications in terms of thermal [48, 49] mechanical [50,51] 
electrical[52, 53] and safety modelling and testing systems 
[54, 55]. Various regulations on LIB technology have been 
adopted by regulatory agencies in Europe [56] the Republic 
of Korea[57] and the United Nations [58, 59]. Electrolytes 

have been the focus of a global dialogue surrounding battery 
safety, as electrolytes are one of the main reasons why LIBs 
have experienced thermal runaway, causing vehicles to catch 
fire. Electrolytes, in spite of being electrochemically inert, 
are made from volatile and flammable organic solvents, 
salts, and additives, and their safe operating temperature is 
below 80 °C[55, 60]. The separators that serve as a barrier 
between the electrodes are very thin (perhaps 10–30 µm in 
thickness). Cathodes, on the other hand, actively undergo 
phase transformation and oxygen release in the overcharging 
state, which has a significant impact on the battery’s thermal 
stability [61]. Lithium dendrite formation on the anodes is 
problematic, as lithium dendrite is able to break the contact 
between the active materials, and it can pierce the separa-
tor (causing a short circuit and thermal runaway). Although 
these issues have been mitigated, traces of dendrites can still 
be found in the edges of graphite anodes [62]. One way to 
deal with this issue is to accelerate the discovery of novel 
materials for electrodes and electrolytes using techniques 
like Material Acceleration Platforms (MAPs) which is dis-
cussed under Sect. 1.3.

Charging time and mileage range: Two of the key param-
eters determining the success of any EV are charging time 
and mileage range. Direct current fast charging allows up 
to 80% state of charge at 350 kW in about 40 min that can 
deliver a range of a few hundred miles. The United States 
Department of Energy is aiming to deliver fast charging that 
can provide a range of 200 miles in 7.5 min of charging [63]. 
LIBs have high energy because of the low electrochemical 
potential for lithium-ion intercalation in carbon. However, 
this leads to unintended lithium plating (in which metallic 
lithium forms around the anode of the battery during charg-
ing) due to negative electrode potential that is close to that 

Fig. 1   Cost trend for LIBs from 
2010 to 2022. Reproduced with 
permission [37] Copyright 
2023, Volta Foundation
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of lithium which can lead to performance loss, capacity fade, 
and an increased risk of short circuiting [64].

Performance optimization is one of the main strategies 
towards achieving the green revolution promised by the 
adoption of LIBs. The success of this revolution depends 
on the development of batteries that incorporate high-per-
formance electrolytes with a high degree of compatibility 
between the anode and cathode. As liquid electrolytes are 
highly volatile, they may experience thermal runaway—
especially at elevated temperatures. Hence, there exist strong 
motivations for replacing the liquid electrolytes that are cur-
rently used in batteries for Internet of Things devices, elec-
tric vehicles, and other devices.

1.3 � The Future of Sustainable Batteries

The European Commission has set a goal to reduce green-
house gas emissions by 55% and transition to a carbon–neu-
tral society by 2030, which requires advanced batteries with 
improved energy and power density as well as excellent lon-
gevity, reliability, safety, and environmental sustainability. 
In addition, the production of batteries must be scalable, 
sustainable, and cost-effective. BATTERY 2030 + , a large-
scale and long-term European research initiative, aims to 
address these challenges and guide the development of bat-
teries of the future through a chemistry-neutral approach 
whose aim is not to only develop specific battery chemistry 

but to provide a generic toolbox for future to transform the 
way we develop and design batteries.

An accelerated path to a climate-neutral society can be 
achieved through three chemistry-neutral approaches: (1) 
accelerated discovery of battery interfaces and materials, 
(2) integration of smart functionalities, and (3) cross-cutting 
areas (Fig. 2). These goals align with the roadmaps pub-
lished by several organizations and nations, including the 
European Association for Storage of Energy, the Energy 
Materials Industrial Research Initiative, the European 
Council for Automotive R&D, the Joint Research Centre 
of the European Commission as well as national roadmaps 
developed in China, Finland, India, Japan, and the United 
States [65].

1.3.1 � Accelerated Discovery of Battery Interfaces 
and Materials

The development of high-performance materials and com-
ponents is essential for creating batteries with higher energy 
and power. The BATTERY 2030 + initiative proposes the 
creation of a materials acceleration platform (MAP) for bat-
teries that will utilize high-throughput automated synthesis 
and characterization, materials and interface simulations, 
autonomous data analysis and data mining, and artificial 
intelligence (AI) and machine learning to accelerate the 
discovery and optimization of battery materials, interfaces 
(which play a critical role in battery reactions but are not 
well understood), and cell designs. BATTERY 2030 + pro-
poses to develop a battery interface genome (BIG) to under-
stand and optimize these processes. A shared European data 
infrastructure can be developed to acquire, handle, and ana-
lyze data from all aspects of the battery development cycle. 
AI-based tools and physical models can be used to analyze 
large amounts of data generated by the various approaches. 
The integration of BIG and MAP (each of which is discussed 
in greater detail below) is expected to result in a signifi-
cant increase in the speed of new discoveries for developing 
safe, long-lasting, and sustainable ultra-high-performance 
batteries [65].

Materials Acceleration Platform (MAP): The develop-
ment of advanced materials is crucial for clean energy tech-
nologies, particularly for emerging battery technologies. 
Traditional trial-and-error–based development processes 
for high-performance battery materials and cell designs 
are expensive and time-consuming; and more than a dec-
ade can pass from the initial discovery to commercializa-
tion. BATTERY 2030 + proposes the creation of a battery 
MAP to accelerate the discovery and optimization of bat-
tery materials, interfaces, and cells. The proposed BIG-MAP 
infrastructure is modular and versatile, accommodating all 
emerging battery chemistries, material compositions, struc-
tures, and interfaces [66]. MAP utilizes AI to integrate and 

Fig. 2   Developing sustainable batteries of the future through syn-
ergy between a climate-neutral approach and a chemical-neutral 
approach [65]. Copyright 2022, Wiley
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orchestrate data acquisition and utilization from various 
approaches and technologies such as computational mate-
rials design, modular and autonomous synthesis, robotics, 
and advanced characterization. The integration of all MAP 
elements will enable AI-orchestrated and fully autonomous 
discovery of battery materials and cells with unprecedented 
breakthroughs in development speed and performance [67]. 
The creation of autonomous, self-driving laboratories capa-
ble of designing and synthesizing novel battery materials 
and of conducting and interpreting experiments on the fly 
will create an efficient, closed-loop materials discovery pro-
cess [68]. Its implementation will require the integration of 
all relevant European expertise.

Battery Interface Genome (BIG): In addition to the inter-
face between the electrode and the electrolyte, batteries also 
have interfaces between other important components (such 
as the current collector and the active material). To master 
and design these interfaces, there is a need to combine their 
characterization in both time and space using physical and 
data-driven models—including models to study ion transport 
mechanisms and the role of electrons in interfacial reactions. 
Control of interfacial reactivity can help extend the stability 
of the battery; otherwise, it can limit the battery’s cycle life. 
Interphases are complex, as they involve multiple reactions 
and processes that span a range of time and length scales, 
and their properties depend on various factors such as the 
composition of the electrolyte and the external conditions. 
Therefore, understanding, controlling, and designing the 
function of these interfaces and interphases [69] is essential 
for developing high-performing, sustainable batteries. The 
concept of BIG is based on the idea of catalyst design [70] 
where the binding energy of the reaction intermediates is 
related to a descriptor, and the identification and measure-
ment of the descriptor value can help inform the design of 
the materials used for the catalyst. To achieve this for battery 
interfaces and interphases, which are complex phenomena 
with multiple interrelated factors, will require the use of 
multi-scale modeling, AI, and high-throughput characteri-
zation techniques to generate comprehensive and accurate 
data sets. The goal of BIG is to establish a fundamental 
understanding of battery interfaces and interphases across 
various chemistries, from established lithium-ion technology 
to other emerging technologies.

1.3.2 � Integration of Smart Functionalities

The development of smart sensing and self-healing func-
tionalities is essential to improve the safety, reliability, 
and cycle life of batteries. Despite the inevitability of bat-
tery degradation, efforts can be made to alleviate external 
factors such as extreme temperatures, mechanical stress, 
or aging in order to enhance sustainability, economic effi-
ciency, and reliability. Achieving this requires that smart 

sensing and self-healing capabilities be incorporated into 
batteries that would enable non-invasive sensing technolo-
gies with spatial and temporal resolution to be used to 
monitor key parameters, identify defective components for 
self-repair, and observe reactions during real-world opera-
tion as well as to detect early signs of battery failure, ther-
mal runaway, and aging. This particular approach focuses 
on developing self-healing functionalities in batteries to 
realize predictable lifetimes and documented states of 
health and safety, thereby improving acceptance rates in 
primary and secondary applications.

Sensing: The development of on-board [71] electrochemi-
cal impedance spectroscopy devices and battery manage-
ment systems has had limited success for improving battery 
quality, reliability, and service life [35]. To enhance battery 
cycle life and longevity, direct temperature monitoring at 
the cell level is needed as well as an understanding of physi-
cal parameters and parasitic chemical processes to improve 
knowledge of battery science. Battery state of charge estima-
tion has been a longstanding problem, and although various 
monitoring methods have been developed over the years, 
there is still no accurate solution. Most of the sensing activ-
ity relies on sensors located outside the battery cells that 
provide only limited information regarding the macroscopic 
properties of the battery. Recent research has focused on 
implantable sensors, with fiber Bragg grating sensors and 
other sensors showing promise for accurately monitoring 
the temperature, pressure, and strain upon cycling to sup-
port imaging of the cell temperature and estimation of the 
battery state of charge without interfering with cell perfor-
mance. While implementation of sensing technologies for 
battery modules and systems has been attempted, challenges 
remain for the various types of sensing technology used. 
These obstacles must be overcome in order to make non-
invasive battery sensing a reality.

Self-healing: The quality, reliability, lifetime, and safety 
(QRLS) of rechargeable batteries depend on the electro-
chemical and chemical ageing processes in the battery 
cell. To improve the QRLS of the cell, the first step is to 
detect irreversible changes [72]. The self-healing function-
alities built into the cell, which can be autonomous or non-
autonomous [73] can significantly contribute to the QRLS 
of the cell. The self-healing functionalities are in addition 
to preventive functionalities such as designed interfaces 
and optimized materials. Different self-healing function-
alities have different kinetics, depending on the material or 
energy that is transported to the site of damage [35]. These 
functionalities should be developed alongside sensors and 
integrated into the cell/packs along with advanced battery 
management systems. To date, only a limited number of self-
healing approaches in the battery field have benefited from 
the general strategies and formalisms that are well estab-
lished in nature. Battery scientists have developed polymers 
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having intrinsic self-healing properties based on dynamic 
supramolecular assembly, such as hydrogen bonding, elec-
trostatic crosslinking, and host–guest or van der Waals 
interactions [74, 75].

1.3.3 � Areas of Convergence

The battery of the future will prioritize sustainability and 
circular economy principles, including life cycle assess-
ment [70] to ensure efficient manufacturability and recy-
clability at an early stage. Collaborative efforts in materials 
discovery and development, manufacturing, and recycling 
will drive the development of new battery technologies. 
The Fourth Industrial Revolution (Industry 4.0) [76] and 
digitalization will be leveraged to optimize cell designs and 
manufacturing methodologies through modeling and AI 
[77], while new recycling concepts (such as reconditioning 
and reusing active materials and electrodes) will be explored 
to reduce waste. The feasibility of scaling up new materials 
and battery cells, in addition to recycling and reusing com-
ponents at low cost and using climate-neutral approaches, 
will be a key consideration.

Manufacturability: The manufacturing of future battery 
technologies needs to be viewed through the lens of Industry 
4.0 and digitalization, as it involves integrating the outcomes 
of efforts to achieve BIG-MAP, self-healing, and sensors 
into a holistic process for manufacturing battery cells [78]. 
The use of modelling and AI can enable the creation of 
digital twins for innovative cell designs and manufacturing 
processes, which would minimize the need for traditional 
trial-and-error experiments. By employing fully digital man-
ufacturing techniques, it will be possible to optimize process 
parameters and determine their impacts on the intermediate 
and final product. These virtual models can then be used to 
improve control over battery manufacturing facilities and 
production lines.

Recyclability: To accommodate new materials and cell 
architectures, new recycling concepts [79] such as recon-
ditioning or reusing electrodes will be required, and this 
requires input from and coordination between material 
suppliers, cell and battery manufacturers, main application 
actors, and recyclers. Sustainability, dismantling, and recy-
cling will be considered in battery designs and manufactur-
ing processes, enabling a circular economy with reduced 
waste, a small CO2 footprint, and the intelligent use of 
strategic resources. Design for recycling will be integrated 
into the algorithms for automated materials discovery, with 
input parameters such as the criticality of raw materials as 
well as raw material toxicity and socioeconomic aspects. 
Since the European Union implemented Batteries Direc-
tive 2006/66/EC [79], the battery recycling industry has 
significantly evolved. This directive established extended 
producer responsibility, forcing battery producers or third 

parties to finance the costs of recycling battery waste. The 
European Union also issued supporting/guidance documents 
and recycling efficiency regulations. Recycling methods 
are classified based on the battery chemistry and process 
used. The most widely applied recycling method for battery 
waste is pyrometallurgy, where battery components that have 
been fragmented by physical means and sorted before they 
undergo heating to extract/purify metals.

2 � Solid Polymer Electrolytes for sustainable 
Batteries

Different methods and strategies have been explored to 
enhance battery performance. The modification of electro-
lytes is broadly accepted and has been explored as one way 
to improve the current performance levels of LIBs. Modi-
fications by incorporating additives help induce the forma-
tion of solid electrolyte interface layer at the active material/
electrolyte interface [80–87]. In a solid polymer electrolyte 
(SPE), a specific class of polymers is considered as an alter-
native to the currently used organic liquid electrolytes, as the 
polymers in this class have superior mechanical properties 
and electrochemical stability [88]. However, SPEs exhibit 
low ionic conductivity at room temperature and have high 
contact resistance.

An SPE can be defined as a solid-state membrane with 
a moderate to high ionic conductivity ( ≥ 10−4 S·cm−1) at 
room temperature. The ionic conductivity of this class of 
polymers was first demonstrated in 1973 by Peter Wright’s 
group at University of Sheffield using polyethylene oxide 
(PEO) blended with an alkali metal salt [89]. The first practi-
cal demonstration of an all-solid-state battery was published 
by Armand et al. [90]. In 1991, Armand reported a Li-ion 
conducting electrolyte made using a novel salt, lithium 
bis(trifluoromethanesulfonyl)imide (LiTFSI), on a single 
ion conductive polymer [91]. Since then, electrolytes that 
incorporate various transport ions (H + , Li + , Na + , K + , 
Ag + , Mg2 + , etc.) have been reported. Various theoretical 
approaches have been applied to understand the ion transfer 
process as well the physical/chemical processes occurring at 
the polymer electrolyte/electrode interface [92, 93].

Generally, the SPE functions as an ion-conducting 
medium between electrodes while serving as an electroni-
cally insulating layer. Some of the common selection criteria 
to be considered for a sustainable SPE are as follows: high 
ionic conductivity and lithium-ion transference number; 
a wide electrochemical window to ensure stability at the 
electrode/electrolyte interface; high mechanical stability 
to ensure good processibility as well as to curtail dendrite 
growth; minimal electrode/electrolyte resistance that aids in 
reducing polarization during battery operation; good electri-
cal insulation to prevent short circuits and self-discharge; 
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and other characteristics such as low cost, ease of manu-
facturing, and environmentally friendly production. These 
selection criteria act as the chief motivations for advancing 
solid polymer electrolytes toward commercialization. In the 
following sections, we will discuss broadly studied polymer 
electrolytes and how some of these electrolytes can be used 
to leverage additive manufacturing processes (i.e., 3D print-
ing) to produce sustainable batteries in the future [93–96].

2.1 � Types of Polymer Electrolytes

Since the discovery of ion-conductive polymer electrolytes 
in 1973 [89] , the prime objective of researchers has been 
focused on enhancing the ionic conductivity of the polymer 
electrolytes—along with the other properties mentioned in 
the previous section—so that their conductivity would be 
close to those for liquid/aqueous electrolytes. To accomplish 
this, it is necessary to understand and deconstruct the effects 
of the different parameters on the performance of the poly-
mer electrolyte. Currently, various articles have appeared 
in the literature that describe studies on different classes of 
SPEs. The most fundamental and comprehensive classifica-
tion of SPEs is based on their physical properties and the 
methods used for their preparation [97, 98]. Based on the 
studies in the literature, SPEs can be classified into the fol-
lowing five broad groups.

Conventional polymer-salt complex/dry SPEs: Conven-
tional SPEs are prepared by dissolving ionic salts in a polar 
polymer host such as polyethylene oxide (PEO) or polypro-
pylene oxide (PPO). PEO and PPO are chosen as polymer 
hosts mainly because they are able to form a stable dry com-
plex that exhibits a relatively high ionic conductivity [99]. 
The stability of the SPE is improved when the lattice ener-
gies of the polymer and the inorganic salt are low. A higher 
ionic conductivity is achieved when the ratio of salt to ethyl-
ene oxide is lower. However, in general, as the concentration 
of the lithium-ion salt increases, both the conductivity and 
the lithium-ion transference number decrease [100].

Plasticized polymer salt complex: A common method 
used to improve the performance of the SPE is to mix a large 
amount of a liquid plasticizer, such as polyethylene glycol 
(PEG) and/or aprotic organic solvents (such as dimethylsul-
foxide) of low molecular weight, with the dry SPE matrix. 
This not only reduces the degree of crystallinity but also 
enhances the movement of the polymer chains. Addition-
ally, the addition of plasticizers may also promote ion dis-
sociation and, thus, increase the number of ions available 
for charge transport [101]. Plastic crystals can also be con-
sidered as a type of solid plasticizer: one example is succi-
nonitrile (SCN), which has a plastic crystal phase between 
its crystal melting temperature of − 388 °C and its plastic 
crystal–isotropic melt transition at 58.8 °C [102]. Long 
and coworkers were the first to show fast ion conduction in 

molecular plastic crystals containing SCN plastic crystals 
and lithium salts [103]. However, these SCN/lithium salt 
mixtures have a paste-like appearance and lack mechanical 
strength [104, 105]. Later, plastic crystalline SCN was used 
as a solid plasticizer in the polymer electrolyte membrane 
(PEM) containing PEO/lithium salt composites, where PEO 
serves as the matrix [106–108]. Recently, Echeverrie et al. 
successfully fabricated completely amorphous plasticized 
solid polymer electrolytes under the guidance of ternary 
mixtures of PEO/SCN/LiTFSI [102]. They demonstrated 
that at room temperature, the ionic conductivity of some 
completely amorphous compositions can reach the level 
of superionic conductors, with a conductivity as high as 
2.9 × 10–3 S·cm−1 for a 35/35/30 PEO/SCN/LiTFSI compo-
sition. Amorphous SCN not only plasticizes the polymer 
matrix, but it can also ionize the LiTFSI salt. Since PEO is a 
linear polymer, these completely amorphous PEMs can form 
self-standing films, but the films are fragile and have low 
mechanical strength and modulus. To address these issues, 
photo-crosslinking strategies have been adopted to fabricate 
various polymeric electrolyte membranes to provide strong 
mechanical support and flexibility to the PEM composites.

Gel polymer electrolytes: The addition of liquid plasticiz-
ers can enhance the ionic conductivity of PEM by effectively 
preventing crystallization and/or reducing the glass transi-
tion temperature of the host polymers in gel-type electro-
lytes. Aprotic organic solvents such as ethylene carbonate 
(EC) [108–110]  and propylene carbonate (PC) [111, 112] 
are commonly used liquid plasticizers, but oligomeric poly-
ethylene glycols and their derivatives[113–115] and phtha-
late derivatives [116] can be also used for this purpose. 
In general, the ionic conductivity of the PEMs is reported 
to reach the level of 10–5 to 10–4 S·cm−1 by using liquid 
plasticizers [111]. However, the reintroduction of liquid 
plasticizers in PEMs can negatively impact battery safety, 
and the thermal stability of electrolytes containing liquid 
plasticizers has been a concern, as evaporation of the liq-
uid plasticizer during annealing in vacuum can lead to a 
rapid decline in ionic conductivity, as noted by Nicotera 
et al. [117]. Although this may not reflect the actual con-
ditions in battery operation, the thermal stability of such 
gel-type electrolytes should be closely monitored, especially 
when operated under vacuum.

Rubbery electrolytes: Angell and co-workers introduced 
the concept of a “rubbery electrolyte,” which is a new type 
of polymer electrolyte system created by mixing different 
lithium salts into polymer hosts such as PEO and PPO. 
This polymer electrolyte is known as the “polymer-in-salt” 
system and has a high concentration of salt and a small 
amount of polymer host [118], unlike conventional “salt-in-
polymer” systems where the concentration of salt is lower. 
When a small amount of polymer is added to the salt mix-
ture, it forms a rubbery material with a low glass transition 
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temperature; however, the salt tends to crystallize at lower 
temperatures, which affects the electrochemical stability of 
these electrolytes and limits their application. There remains 
a lack of understanding of the mechanism for ion transport 
in rubbery electrolyte systems, and it is believed that the 
high degree of ion clusters and their transport through the 
bulk material are responsible for the high ionic transport in 
polymer-in-salt systems [119–121].

Composite polymer electrolytes: The major challenges in 
the operation of lithium polymer batteries involve the reac-
tivity at the Li/Li+ interface and the growth of a passivation 
layer, leading to an increase in internal resistance. Safety 
concerns are another major issue. Recent studies have sug-
gested that these issues can be mitigated by using composite 
solid polymer electrolytes (CSPEs), which are solid polymer 
electrolytes dispersed with nano or micro-sized filler parti-
cles of inert ceramic materials. The use of these particles 
in SPE host materials improves the morphological, electro-
chemical, and mechanical properties of the SPE membranes 
[122–125] and provides improved electrode/electrolyte com-
patibility and safety. The effects of various types of ceramic 
filler particles on the properties of CSPEs have been studied 
by several researchers [126–133].

2.2 � Composite Polymer Electrolytes 
as a Sustainable Choice

Polymer electrolytes consisting of a high-molecular-
weight polymer matrix and dissolved lithium salt are 
advantageous in that they are flexible and adhere well to 
electrodes. However, they have a low ionic conductivity 
(from 10–4 to 10–6 S·cm−1) and low lithium transference 
numbers (ranging from 0 to 0.3) at room temperature. 
Thus, PEO-based polymer electrolytes are considered a 
preferred option for lithium batteries. Generally, ion trans-
port in polymer electrolytes is thought to be influenced by 
the relaxation of the polymer [134–139]. To achieve a high 
ionic conductivity, a high rate of polymer relaxation is 
required, which has not yet been achieved in dry polymer 
electrolytes at room temperature. The types of polymer 
electrolytes can be alternatively grouped into two subtypes 
based on the type of additive used for the improvement 
of ionic conductivity: composite polymer electrolytes and 
quasi-solid-state electrolytes. Composite polymer electro-
lytes (Fig. 3) are electrolytes in which the inorganic ceram-
ics are dispersed as fillers in an ion-conductive polymer 
host. Various research efforts have been devoted to the 
study of polymer-rich electrolytes (known as ceramics in 
polymer), which are typically based on PEO. These elec-
trolytes exhibit easy film processibility and, in some cases, 
ionic conductivity values are observed to increase incre-
mentally at room temperature when inactive ceramics are 
added in small amounts. This enhancement is attributed 

to small amounts of ceramic particles that can curtail the 
polymer crystallization [135–140]. An alternative method 
that is gaining attention is the use of polymer-in-ceramic 
electrolytes, which have a significant ceramic component. 
This approach is considered a promising way to improve 
the development of all-solid-state batteries. Such electro-
lytes allow for efficient ion conduction through the ceramic 
material and its interface [141–147].

Quasi-solid-polymer electrolytes (QSPEs) include a wide 
variety of composites consisting of liquid electrolyte and 
polymer matrix. Plasticized polymer electrolyte and gel 
polymer electrolytes (GPEs) are similar, and the main dif-
ference between them is the concentration of plasticizer: 
a plasticized polymer electrolyte has a low concentration, 
while a GPE has a higher concentration. Since they exhibit 
similar properties, the distinction is not always clear. QSPEs 
comprise a spectrum of composite compounds classified as 
either GPEs or ionogel polymer electrolytes. QSPEs have 
widely varying mechanical properties that range from an 
absolute solid to a paste-like form. Polymer hosts include 
PEO, polyacrylonitrile, poly(methyl-methacrylate), poly 
(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) 
and polyethylene glycol diacrylate (PEGDA), among others. 
Succinonitrile (SCN), ethylene carbonate (EC), polyethylene 
glycol (PEG) and diethyl carbonate (DEC) are commonly 
used plasticizers/solvents used as GPEs [149–152]. Iono-
gels are materials made of ionic liquids and a polymer or 
inorganic nanomaterials, which can conduct ions through 
a solvent or a softened polymer. Ionogels have a solvation 
structure and conduction mechanism that are like those of 
high-concentration liquid electrolytes, and the addition of 

Fig. 3   Diagram showing the composite polymer electrolytes that con-
tribute to various battery properties [148] Copyright 2020, Wiley
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inorganic nanomaterials are known to improve the mechani-
cal properties and interfacial stability. Ionogel Solid Electro-
lytes are ionic liquids confined within ceramic scaffolds that 
can be inert or a superionic conductor [153–155].

2.3 � Recyclable Polymer Electrolytes

Various polymers can be used for making polymer elec-
trolyte membranes. For example, some studies report the 
use of PEO [156] or polyvinyl chloride (PVC) for produc-
ing PEM, while others report the use of polyvinylidene 
fluoride (PVDF) [157, 158] , polymethyl methacrylate 
(PMMA) [159, 160], and polyvinyl alcohol (PVA) [161]. 
If PVC is buried in the ground, biodegradation is difficult, 
and environmental problems may arise, as it remains in the 
ground for a long time. In the case of PVC, it is usually 
used up when it is burned and treated. However, even if 
PVC is burned completely, some amount of microplastic 
remains; these tiny particles of plastic are persistent organic 
pollutants that become concentrated in the tissues of living 
organisms [162].

Research on the use of PVDF as a PEM is being actively 
conducted. Since this material is also used as a binder for 
the cathode and anode in a battery, there will be no sense of 
alienation between the materials when positioned between 
them. In addition, the melting point of PVDF, which is a flu-
orine-based polymer, is about 177 °C (which is about 150 °C 
lower than that for polytetrafluoroethylene); since PVDF is 
dissolved in a polar solvent, it has excellent processability. 
It is strong in acids and bases as compared to other polymers 
due to its excellent chemical resistance, and it has excellent 
flame-retardant performance because it contains fluorine ele-
ments. It is also used as an insulator due to its large dielectric 
constant and low electrical conductivity. When a PEM made 
of PVDF is positioned between a cathode and an anode, it 
can effectively function as a separator. Therefore, various 
studies on the application of filters and membranes made 
of PVDF have been conducted [163, 164]. However, fluo-
ropolymer has high resistance to various environments, and 
research on how to recycle this material is very limited. J. 
Wu and co-workers studied ways to restore membrane func-
tion when the PVDF membrane has been damaged by using 
a small amount of solvent and a catalyst [165]. In another 
study, by Zhao et al., the separation of all components in the 
lithium iron phosphate cathode was demonstrated through a 
three-step separation process [166]. In this and other studies, 
the PVDF used in the cathode was retrieved by dissolving in 
a N-methyl pyrrolidone (NMP) solvent [163–167].

Polymethyl methacrylate (PMMA) is a polymer that is 
non-toxic when it meets human skin, and it is a low-cost 
material. PMMA is very compatible with aprotic liquid elec-
trolytes, has high ion conductivity, and has better anodic 

stability than a membrane made with PEO [168]. Unlike 
other polymers and condensation polymers, PMMA is diffi-
cult to recycle into its component monomers. Therefore, the 
monomer (methyl methacrylate) is obtained from PMMA 
through pyrolysis [169].

PVA, a water-soluble polymer with low polymeriza-
tion stability that is typically made from polyvinyl acetate 
through saponification, has low toxicity and can be used 
to easily form a solid. Because PVA is a biodegradable 
material, it can be readily decomposed by Fusarium lini, a 
phytopathogenic fungus that penetrates the soil and lives in 
plants [170]. Alipoori et al. prepared a GPE using PVA [171] 
and they used a battery test to verify the ion conductivity 
and electrochemical stability of the GPE. However, a mem-
brane made from this material is not easy to recycle, as 
it is difficult to separate the polymer used in the PEM, as 
combustion is required to separate the cathode and anode 
materials [172].

2.4 � Biodegradable Materials for Polymer 
Electrolytes

To achieve a biodegradable polyethylene, numerous stud-
ies have been conducted on chitosan, polycaprolactone, and 
cellulose. Cellulose polymers, which are made by polymer-
izing several glucose molecules to form a glycosidic bond, 
are used as the raw material for natural fibers [173]. Many 
hydroxide groups in the monomer can be hydrogen-bonded 
with oxygen atoms in neighboring chains, thereby achieving 
sufficient tensile strength for the polymer [174]. The Du’s 
research team studied the GPE of lithium-ion batteries using 
cellulose (which is biodegradable and is made from renew-
able sources) that is low in cost [175]. The results showed 
that the GPEs in these batteries achieved an ion conductivity 
of 6.34 × 10–3 S·cm−1, and a membrane with good interfa-
cial compatibility was manufactured. A cellulose nanofiber 
separator for lithium-ion batteries was studied by Chun 
et al. [176], who demonstrated that the cellulose-containing 
separator had better ion conductivity and electrolyte wetta-
bility than an existing polypropylene-based separator.

Jaishankar and coworkers produced solid polymer elec-
trodes by blending chitosan and polyethylene glycol in vari-
ous ratios to obtain ion conductivity of 0.46 × 10–3·cm−1, 
and they demonstrated that linear sweep voltammetry was 
stable up to 3.3 V [177]. The chitosan was polymerized with 
poly(ethylene glycol) diglycidyl ether (PEGGE) to synthe-
size a reusable and low-cost GPE with a 3D cross-linked 
structure [178]. The resulting material showed excellent 
lithium transference characteristics, good electrochemical 
stability to the lithium anode, and acceptable battery cycle 
stability.

In another study, a membrane for lithium-ion batteries 
was manufactured using an electron spun biodegradable 
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polylactide with poly 3-hydroxybutyrate [179]. It was shown 
that each polymer has relatively low electrochemical sta-
bility but has high stability at a specific ratio and an ion 
conductivity of 14.7 × 10–3 S·cm−1. More recently, a GPE 
was manufactured with a cellulose acetate/poly-L-lactic acid 
composite [180]. The ion conductivity and electrochemical 
stability of the composite were found to be excellent and, in 
particular, the GPE had a high initial discharge capability as 
compared to that of a Celgard separator.

2.5 � Fabrication of Reusable Polymer Electrolytes

To recycle the polymer electrolyte membrane, the membrane 
must be well dissolved in a specific solvent or chemically 
replaced to another functional group. In addition, to facilitate 
its separation from the components of the battery, it should 
not have any side reactions with other substances. Piana and 
coworkers reported that about 5 tons per year of polygly-
cidol (which has a similar chemical structure to polyethylene 
oxide), can be recycled from the epichlorohydrin industry 
waste [181]. In addition, GPE was polymerized using this 
polymer, and sodium-ion batteries were fabricated to demon-
strate renewable polymer materials. The use of water-soluble 
cellulose for GPE in lithium-ion energy storage devices was 
also studied [182]. It was shown that unused GPEs could be 
recycled using protic solvents.

2.6 � Methods Used for Processing Electrolytes

Commonly reported and commercially used methods for thin 
film fabrication include radio-frequency sputtering, direct 
current magnetron sputtering, magnetron sputtering, thermal 
evaporation, and vapor deposition techniques such as pul-
sar laser deposition, electron cyclotron resonance sputtering, 
and aerosol spray coating [183]. Thick ceramic electrolytes 
are also synthesized from powdered materials by a hot-
pressing method, in the form of pellets thicker than 0.5 mm. 
A dry-milling process is used to prepare fine powders, but 
these thick ceramic electrolytes are rigid and brittle, and 
they create poor interfacial contacts that lead to high battery 
impedance. Additionally, void space in the electrolyte and 
electrode/electrolyte interface can promote lithium dendrite 
growth, causing short circuits and mechanical degradation. 
Therefore, high pressure (5–70 MPa) is required for cell 
operation [184–197].

Solid polymer electrolytes can be manufactured through 
powder-based processing or wet-chemical processing. The 
powder-based processing involves dry ball milling and dry-
pressing or isostatic hot-press processing like that used in the 
manufacture of inorganic solid electrolytes. This is a simple 
process, but it is time-consuming and is difficult to scale 
up. Wet-chemical processing involves dispersing powdered 
materials in a solvent, forming polymer electrolytes through 

solution casting, coating, or electrospinning. Wet-chemical 
processing is a high-throughput method but requires removal 
of the solvent. Gel electrolytes are produced using similar 
methods as polymer electrolytes, but the solvents are incor-
porated in the polymer matrix [189–193].

Carbon paste electrodes, which consist of polymer and 
inorganic components, are designed to achieve exceptional 
synergistic effects such as enhanced conductivity and 
improved interfacial properties [193–195]. Their manufac-
turing strategies include electrospinning, which produces 
interlaced and highly porous nanofibers with a large surface-
to-volume ratio and improved mechanical strength [183, 
195]. Limited mass loading of inorganic materials is typi-
cally used in composite solid electrolytes to prevent agglom-
eration or the potential deterioration of the ionic conduc-
tivity and mechanical strength of the electrolytes. A recent 
development in composite solid electrolytes is the use of 
electrophoretic deposition to create novel, thin-film solid 
polymer-in-ceramic electrolytes using a simple and inex-
pensive method [142,143, 147].

2.7 � Societal Need for 3D Printing of Solid‑State 
Batteries

The recent technological disruptions around the Internet of 
Things and artificial intelligence are the most obvious rea-
sons for the increased implementation of wireless remote 
sensing operation and automation-based systems. These 
systems impose specific and stringent requirements on the 
design and properties of energy sources such as batteries. 
Conventional battery geometries are a major restriction: as 
products are designed around batteries, designers are forced 
to compromise a product’s functionality in terms of the foot-
print, weight, operating range, capacity, and other aspects, 
hence making the end user application more sustainable.

Additive manufacturing is a promising method for creat-
ing battery components that can overcome limitations of tra-
ditional fabrication methods. This technique is particularly 
useful for creating solid-state electrolytes, which are now 
being used in various types of batteries. Printed solid-state 
electrolytes are easier to create using 3D printing methods 
than with liquid-infused separators. They are also less sen-
sitive to environmental conditions and, as they have non-
porous shapes, they can be used as a substrate for creating 
complete battery structures with arbitrary shapes [198–207].

Additive manufacturing (AM), involves the layer-by-
layer deposition of materials to produce 3D structures 
based on a computer-aided design model [208–211]. Since 
its inception in the 1980s, various 3D printing techniques 
have been developed, and many unique frameworks have 
emerged in recent years. The American Society for Test-
ing and Materials categorizes 3D printing techniques into 
seven groups (shown in Table 1): material extrusion, vat 
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photopolymerization, material jetting, binder jetting, sheet 
lamination, powder bed fusion, and directed energy deposi-
tion [212]. Lanceros-Méndez and Costa, in their 2018 book 
Printed Batteries: Materials, Technologies and Applica-
tions [198], discussed methods for producing printed elec-
trodes and current collectors. The relevant AM techniques 
for polymer electrolytes are direct ink writing, filament fab-
rication, stereolithography and material jetting. Despite the 
significant amount of research conducted, the available liter-
ature on the subject is limited and does not provide sufficient 
information to fully understand the relationship between the 
composition, properties, ion transport, and interface effects 
of materials printed using advanced 3D printing techniques. 
The scale of the part size and the resulting properties of the 
part depend on the 3D printing method and the material used 
for printing. In general, 3D printing provides the freedom to 
design, enables rapid prototyping, mass customization, and 
opens up new possibilities for application development [198, 
213, 214].

3 � Relevant Methods of Additive 
Manufacturing for Solid Polymer 
Electrolytes

Of the general techniques for 3D printing, four are appro-
priate for producing solid polymer electrolytes. These four 
techniques are described in greater detail below:

Material Extrusion: Direct ink writing (DIW) a material 
extrusion–based 3D printing method where a relatively 
viscous or gel ink is fed from a pressurized reservoir to a 

needle that ejects ink onto the printing substrate. It is typi-
cally used for continuous filament writing, which requires 
the ink to have specific properties such as shear thinning 
property of the ink, where the viscosity of the ink reduces 
under shear within the nozzle and holding shape quickly 
setting on the substrate holding after being extruded out 
of the nozzle. While inks for many types of active materi-
als have been designed to meet these criteria, adapting 
inks from other fabrication methods to be used in DIW 
is not always a straightforward process [215]. Another 
method relevant here would be fused filament fabrication. 
This method involves using a heated dispenser nozzle to 
extrude semi-molten thermoplastic materials onto a sub-
strate. The materials are then layered and cooled, forming 
a solid final product [216].

Vat photopolymerization (VPP): In this 3D printing 
method, solid objects are created by layers from a liquid 
resin. Light energy (e.g., laser or lamp) is used to solidify the 
resin by photopolymerization, and a stage moves a platform 
with the solid object to allow a new area to be covered with 
the resin. The resins used for VPP are photopolymers that 
react with photons. The resins used for printing battery com-
ponents should incorporate both electrochemically active 
materials and printable resin, and they must be adjusted to 
meet the specific requirements for VPP printing [217].

Material Jetting (MJP): Generically MJP is a category of 
AM methods in which droplets of feedstock material. Aero-
sol jet printing (AJP) is sub type MJP relevant for printing 
PE’s. This technique involves using a carrier gas to break 
down a fluid into tiny droplets and depositing the droplets 
onto a printing substrate. The method produces even and thin 

Table 1   Classification of additive manufacturing processes
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layers of material. However, ink formulation can be difficult, 
as the ink must be able to be formed into small droplets, 
must have a specific viscosity and surface tension, and must 
be able to maintain a consistent particle size distribution 
without aggregation or settling [218].

3.1 � 3D Printable Polymer and Composite 
electrolytes

Although the materials used as polymer electrolytes are 
like those used in 3D printing inks, they may not be ideal 
for printing purposes. Various research groups have been 
working to modify the properties of these inks to make 
them both printable and ion conductive. Table 2 draws a 
contrast between 3D printed batteries and conventional type 
batteries.

The use of VPP to print a PEO-based polymer electrolyte 
was demonstrated by He et al. (Fig. 4a), in which UV-cur-
able additives such as PEG-diacrylate, succinonitrile pre-
cursors, and lithium bis(trifluoromethanesulfonyl)imide salt 
were added to the ink. The ink was used to produce a func-
tional 3D-printed PEO-based polymer electrolyte, which was 
tested in lithium iron phosphate/PE/lithium metal half-cells. 
The electrolyte exhibited a relatively good ionic conductivity 
of 3.7 × 10–4 S·cm−1 at room temperature and over 1.0 × 10–3 
S·cm−1 at 50 °C. The ionic conductivity showed a typical 
Vogel–Tammann–Fulcher behavior for amorphous polyeth-
ylenes produced by casting [219]. In a different study, Chen 
et al. used a micro-stereolithography technique (Fig. 4b) 
and incorporated a liquid electrolyte into a photopolymer to 
produce a gel electrolyte [220]. This gel electrolyte showed 
better ionic conductivity at room temperature (4.3 × 10–3 
·cm−1 at room temperature, 80% liquid-electrolyte content), 

Table 2   State of the art comparison of value proposition and competitive edge

Battery type Design freedom Volumetric, energy 
and power density

Manufactur-
ing scalability

Hype cycle Competitive edge

3D printed solid state batteries High High Low Peak of inflated expectation Customizability and 
high performance

Conventional batteries Low Medium High Plateau of productivity Scalability and low cost

Fig. 4   VPP 3D printing of polymer electrolytes: a spiral polymer 
electrolyte Reproduced with permission [219] Copyright 2020, ACS 
Publications, b micro-scale interdigitated GPE, Reproduced with per-

mission  [220] Copyright 2023, IOP publishing c) coin-shaped GPE 
Reproduced with permission [221]   Copyright 2022 MDPI, Basel, 
Switzerland
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whereas the all-solid polymer electrolyte studied by He 
et al. was less durable and was effective for only a few 
cycles before the cell short-circuited [219, 220]. Recently, 
Norjeli et al. used a VPP method (Fig. 4c) to 3D-print a 
micro-scale GPE that exhibited an ionic conductivity of 1.2 
mS·cm−1 at a low lithium salt content (10 wt%) in ambient 
conditions [221].

Deiner et al. used AJP to produce a PEO solid polymer 
electrolyte without a UV-curable system by using a suspen-
sion-based ink that was dried in a post-processing step. They 
tested two types of lithium salts, lithium difluoro(oxalato)
borate and lithium trifluoromethanesulphonate, with the 
addition of alumina as a filler, and they achieved a conduc-
tivity of about 5 × 10–4 S·cm−1 at 80 °C. The most conduc-
tive printed electrolyte was able to achieve a conductivity 
greater than 10–5 S·cm−1 at 45 °C. The printed electrolyte 
showed either Vogel–Tammann–Fulcher or Arrhenius 
behavior based on the polymer-to-salt ratio. The printed 
electrolyte was used in lithium/lithium iron phosphate bat-
teries, which had a 15-h discharge rate (C/15) with a capac-
ity of 85 mAh/g at 45 °C and a capacity of 160 mAh/g at 
75 °C [222].

Cheng et al. used a DIW method with a PVDF-based ink 
and a TiO2 ceramic additive [199]. The solvent in the PVDF 
was replaced with an ionic liquid electrolyte before printing, 
which required a mild elevated temperature but no post-pro-
cessing. The printed gel electrolyte showed better room-tem-
perature ionic conductivity than most solid electrolytes but 
was not as high as LiPF6-based gel electrolytes [223–225]. 
Li/MnO2 cells with a DIW-printed electrolyte had an aver-
age Coulombic efficiency of 98.6% for over 100 cycles and a 

higher capacity than a cell with a cast electrolyte [199]. Wei 
et al. [226] used a DIW ink that incorporated all electrolyte 
components, which avoided the need for post-processing, 
but they used PC as the solvent and used UV-curing for the 
binder matrix after printing that required the entire process 
to be completed inside an argon-filled glovebox (see Fig. 5).

Three recent studies show that it is possible to use UV-
curable gel electrolytes for 3D printed polymer batteries. 
In one study, Muench et al. [227] created inks made of an 
ionic liquid and a UV-curable binder and tested them with 
amorphous silica as the ceramic filler. The use of the UV-
curable binder eliminated the need for high temperatures 
during the printing process. The resulting ionic conductiv-
ity of the gel electrolyte was very high (0.74 S·cm−1), but 
it was used in an all-organic battery rather than a Li-ion 
battery. In another study, Cheng et al. [228] used the DIW 
method to print PEO-based UV-curable polymer-ionic-liquid 
composite electrolytes with added silane-treated hexagonal 
boron nitride thermal conductors to mitigate thermal runa-
way issues. The Li-ion battery using this printed electrolyte 
had a high specific discharge capacity and a stable Coulom-
bic efficiency for 100 cycles at room temperature. Finally, 
Gambe et al. [229] demonstrated direct ink writing and cur-
ing using (LITFSI: EMI-TFSI): (HEMA: ethylene glycol 
Di-methacrylate) with Silica reinforcements as a rheologi-
cal aid for shape retention post extrusion while exhibiting 
a room temperature ionic conductivity of 2 × 10−3 S·cm−1. 
Other unconventional DIW methods that include the use of 
coextrusion carbon fiber composites with polyethylene shells 
for batteries and supercapacitors have also been reported 
[230–233].

Fig. 5   Multilateral 3D printing using direct ink writing to print battery components: a schematic diagram of the design; b images and Process 
visualization of the 3D printed layers Reproduced with permission [226] Copyright 2018, Wiley
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The FFF method, which includes solvent-free extrusion, 
is a promising method for manufacturing solid electrolytes 
for Li-ion batteries because it is fast, easily scalable, and 
environmentally friendly. However, it is currently not widely 
used in the continuous manufacturing of solid electrolytes 
for Li-ion batteries [234–236]. Most reports of FFF of elec-
trolytes for Li-ion and lithium-metal batteries focus on the 
printing of polymer membranes, which are then infused with 
liquid electrolytes. One example is the use of polylactic acid 
(PLA) infused with LiClO4 in PC/ethyl methyl carbonate 
(ECM), which had an ionic conductivity of 8.5 × 10–5 S·cm−1 
and was able to retain its mechanical integrity and ionic con-
ductivity after 24 h. The FFF technique has also been used 
to print a complete 3D battery with all components based 
on PLA. However, conduction in PLA is a major issue, and 
more research is needed to improve the dispersion of fillers 
in the PLA matrix [237].

SiO2/PLA-based membranes containing 40% polyethyl-
ene glycol dimethyl ether with a molecular weight (MW) of 
500 were 3D-printed by Maurel et al. [238]. They found that 
through SiO2 addition, a more porous structure is formed, 
and this contributes to faster electrolyte uptake. The most 
conductive membrane was the one containing 7% SiO2, and 
the ion transport was believed to occur mainly via polyethyl-
ene glycol dimethyl ether domains. Plasticizer addition was 
used to increase the lithium iron phosphate loading within 
the positive electrode to 52% wt while still maintaining flex-
ibility for the filament to be printed. A 3D-printed lithium 
iron phosphate/carbon battery with a two-layered separator 
delivered a reversible capacity of 30 mAh/g at C/40, corre-
sponding to 15 mAh/g for the total composite (or 6.5 mAh/
cm2 when considering the total volume of the battery).

Vinegrad et al. [239] used FFF to print polylactide-PEO 
blended membranes, in which the influence of the relative 
content of polymers on the ease of extrusion and print-
ing were studied. Four polymer samples containing PLA: 
hPEO (High MW = 5 × 106): lPEO (Low MW = 2 × 103) 
of different proportions (25:40:35, 40:30:30, 40:40:20, 
0:50:50)%(w/w) were extruded, and the sample contain-
ing 25% PLA appeared to be the most ductile and had 
sufficient mechanical strength. The calculated porosity of 
the neat PLA and the blended polymer samples was very 
low (not exceeding 4% for all compositions), indicating 
that the films are dense and contain few to no pores. In 
addition, ionic liquid N-butyl-N-methyl pyrrolidinium 
bis(trifluoromethanesulfonyl)imide with dissolved LiTFSI 
salt was infused into the membranes under vacuum, form-
ing free-standing plasticized quasi-solid films. A complex 
interplay was found between the ionic liquid uptake and 
the Li-PEO/Li-PLA interactions, which influenced phase 
transitions, conductivity, and self-diffusion coefficients. 
The quasi-solid printed electrolyte showed higher bulk-
conductivity values with increased PEO content and 

increased concentration of lithium imide salt. A compari-
son of the ionic conduction properties of quasi-solid-state 
3D-printed electrolyte plasticized by ionic liquid of pris-
tine PLA and PLA-PEO printed blends showed that neat 
PLA has a low bulk-conductivity of 7 × 10–6 S·cm−1; upon 
being mixed with PEO, the ionic conductivity increased 
by almost 1.5 orders of magnitude, approaching 2 × 10–4 
S·cm−1 at 60 °C.

FFF printing of all-solid-state electrolytes composed of 
LiTFSI, PEO, and PLA was performed in an inert atmos-
phere by Ragones et al. [240, 241]. In these studies, the 
printing process was complicated by the high ductility of the 
filament, but this was resolved by the addition of 1% SiO2 
or Al2O3 nanoparticles. It was found that the printing of the 
filament lowered the degree of crystallinity of the compos-
ite electrolytes but induced order in the crystalline entities. 
Time-of-flight secondary ion mass spectrometry analysis 
was used to find the lateral distribution of PEO, PLA, lith-
ium salt, and ceramic additive. The conductivity values of 
the printed LiTFSI:(PLA-PEO) Al2O3- or SiO2-containing 
electrolytes were found to be lower than those reported for 
neat LiTFSI:PEO electrolytes, but the bulk conductivity 
of the 3D-printed electrolytes was more than one order of 
magnitude higher than that of the cast electrolytes. In both 
these studies, the group was able to demonstrate a fully 3D 
printed solid state battery. Katcharava et al. [242] studied 
the influence of nano SiO2 fillers at different concentrations 
to explore the 3D printability; however, the filler modified 
filaments showed very low ionic conductivity 10–5 S·cm−1 
at 80 °C.

Maurel et al. [243] created a 3D-printable solid lithium-
ion PEO filament using a PEO:LiTFSI mixture and fed it 
through a FFF 3D printer (Fig. 6). However, the filament 
exhibited poor mechanical properties, and the process of 
printing using this filament required modifications to be 
made to the printer. The extrusion process resulted in a com-
pact filament microstructure, in contrast to the large spheru-
lites and visible pores seen in cast films. The researchers 
used different sample holders to measure the conductivity, 
and they found that the conductivity varied depending on 
the orientation of the PEO chains, which was attributed to 
the extrusion process. This data is consistent with the results 
reported in previous studies.

High-performance solid-polymer and composite electro-
lytes that can be printed using the FFF method may open up 
new possibilities for creating a bipolar multilayer battery 
using a one-shot co-extrusion technique [244, 245]. This 
method could be applied in flexible batteries for electronic 
and wearable applications as well as for electric vehicles 
(where it would allow for effective integration of the battery 
not only at the bottom of the car but in other locations as 
well). The Bolloré Group (France) is mentioned as a pio-
neer in the production of thin-film electrodes using extrusion 
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techniques. It is expected that such one-shot extruded/printed 
batteries will show significant improvement in discharge 
capacity, cycle life, and internal resistance as compared to 
mechanically assembled cells. To summarize Table 3 shows 
the quantitative comparison of different 3D printed solid 
polymer electrolytes.

The field of using printing techniques for advanced non-
lithium batteries (sometimes referred to a beyond-lithium 
batteries) is a relatively new field and is still under develop-
ment. Researchers have been exploring the use of printing 
techniques for different types of electrodes for non-lithium 
batteries but have yet to fully utilize printed solid electro-
lytes for this purpose. Studies have shown that it is possible 
to print high-performance sodium ion (Na-ion) batteries 
using methods such as drop-on-demand inkjet printing [246] 

and FFF [247], but challenges remain in terms of improving 
the robustness of the printing process and the electrochemi-
cal performance of the batteries produced using this method. 
Further research on battery design and ink compositions may 
lead to better results without the need to make significant 
changes to the printing system.

3.2 � Challenges and Limitations Associated 
with Additive Manufacturing of SPEs

Despite the considerable research efforts in this field, there is 
a lack of comprehensive publications that thoroughly investi-
gate the intricate interplay between composition, properties, 
ion transport, and interfacial phenomena associated with 
printing methods. One notable printing technique is Direct 

Fig. 6   Fused filament fabrication of a PEO/LiTFSi solid polymer electrolyte Reproduced with Permission [243] Copyright 2020, IOP science

Table 3   Quantitative comparison of 3D printed Solid Polymer Electrolyte Systems and their respective ionic conductivity values (RT: Room 
Temperature)

Formulation Ionic Conductivity (S/cm) Printing process References

PEGDA/SCN/LiTFSI 3.7 × 10–4 @RT SLA [223] 
4.8 × 10–3 @RT Micro SLA [224]

Poly Urethane Acrylate: Lithium Perchlorate: Dimethyl Formamide 1.2 × 10–3 @RT Aerosol Jet printing [225]
PEO/LiDFOB/Al2O3(EO:Li = 10:1)  > 10–5 @ 45 °C Aerosol Jet Printing [226]
PVDF-Co-HFP + TiO2 | Pyr13TFSi + LiTFSI 5.81 × 10–5 @RT Direct Ink Write [199]
PVDF + 1butyl-3-methylimidazolium-TFSI 0.74 × 10–3 @RT Direct Ink Write [227]
S-hBN/TEGDME | LiTFSI | 1-methyl-1-propylpyrrolidinium 

bis(trifluoromethyl sulfonyl)imide
0.47 × 10–3 @RT Direct Ink Writing [228]

(LITFSI: EMI-TFSI): (HEMA: ethylene glycol dimethacrylate)
@ 7% SiO2

2 × 10−3 @RT  Direct Ink Writing [229]

PLA: LiPF6:PC/EMC 1.7 × 10–3 @20 °C Fused Filament Fabrication [237]
PLA: LiClO4:PC/EMC 8.5 × 10–5 @RT Fused Filament Fabrication [237]
PLA: LiTMFS: PC/EMC 3.9 × 10–5 @RT Fused Filament Fabrication [237]
(PLA: PEGDME 500): EC/DMC: LiPF6 1.2 × 10–4 @RT Fused filament fabrication [238]
PLA (MW = 5 × 106): PEO(MW = 2 × 103): Pyr14TFSI + LiTFSI 0.2 × 10–3 @RT Fused Filament Fabrication [243]
PLA: PEO: LiTFSI 2.18 × 10–3 @90 °C Fused Filament Fabrication [247]
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Ink Writing (DIW), which utilizes a viscous gel ink fed from 
a pressurized reservoir to a needle for continuous filament 
writing. The ink must possess specific rheological charac-
teristics that enable it to flow within the printing head com-
ponents while rapidly solidifying on the substrate. Another 
technique, Stereolithography (SLA), employs photopoly-
merization to construct solid objects layer-by-layer using 
a container of liquid resin ink and a laser. SLA requires a 
light-curable binder system, and the inks used must incor-
porate both electrochemically active materials and printable 
resin. Aerosol Jet Printing (AJP) involves atomizing droplets 
from a fluid reservoir and depositing them as an unordered 
jet of minuscule droplets onto the substrate. Developing inks 
for AJP poses challenges in terms of droplet formation, vis-
cosity, surface tension, and particle distribution. Addition-
ally, the widely used Fused Deposition Modeling (FDM) or 
Fused Filament Fabrication (FFF) technique relies on heat-
ing and extruding thermoplastic materials in a semi-molten 
state, layer-by-layer, to fabricate solid products.

Traditional liquid electrolytes employed in Lithium-
ion Batteries (LiBs) consist of Li salts dissolved in aprotic 
organic solvents, but their flammability and vulnerability to 
moisture pose safety concerns. As a result, researchers are 
exploring alternative electrolyte options, including liquid, 
polymeric, and solid-based electrolytes. Polymer electro-
lytes offer advantages such as ease of processing, resistance 
to mechanical deformation, and low flammability. They 
also exhibit improved interfacial contact and compatibility 
compared to inorganic solid electrolytes. However, poly-
mer electrolytes generally demonstrate relatively low ionic 
conductivity at room temperature and exhibit enhanced 
performance at higher temperatures. Gel polymer electro-
lytes combine the mechanical stability of polymers with the 
ionic conductivity of liquid electrolytes. On the other hand, 
solid electrolytes offer enhanced safety, broader operating 
voltages, and high energy density for various applications. 
Nevertheless, achieving a uniform interface and minimiz-
ing contact resistance between electrodes and solid-state 
electrolytes remains a challenge. While gel electrolytes can 
achieve high ionic conductivity, solid-state, polymer-based 
electrolytes are preferred for improved durability. These 
solid-state electrolytes maintain their structure and exhibit 
good lithium-ion conductivity even after exposure to UV 
radiation, making them suitable for 3D-printed solid-state 
Lithium-ion Batteries (LIBs). Finally in terms of large-scale 
technology adoption, current state of the art both for 3D 
printing and solid state batteries needs optimization in ease 
of material processing and improvement of cycle time to 
compete with conventional batteries available in the market.

3.3 � Opportunities

To enhance solid polymer electrolytes, there is poten-
tial in investigating alternative structures such as cross-
linked polymers or unconventional polymer electrolytes 
that offer higher room temperature conductivities or 
improved mechanical strength compared to standard PEO 
electrolytes. Another unexplored area is the utilization of 
ceramic-reinforced polymer matrix composites and hybrid 
polymer/ceramic materials for 3D printing of solid-state 
lithium-ion batteries. Like nontraditional polymers, these 
composite materials aim to retain the favorable process-
ability of polymers while enhancing their conductive 
properties and mechanical strength. Additionally, there is 
an opportunity to delve into the 3D printing of ceramic-
based electrolytes, particularly in terms of post-deposition 
processing, enabling their incorporation into battery cells. 
Advancing knowledge in 3D printing and processing of 
ceramic-based electrolytes would open doors to explor-
ing printed battery systems combining ceramic electro-
lytes with lithium metal anodes. Lastly, beyond the need 
to identify printing parameters and processes for a wider 
range of electrolyte materials, the ultimate challenge lies 
in pushing digitally printed solid-state batteries beyond 
the demonstration stage to showcase their performance 
and integration benefits. These benefits are expected to 
arise through micro- and mesoscale structuring of battery 
cell components and the macro-scale integration of printed 
batteries into the structural elements of the devices they 
power.

4 � Commercial Landscape of Additive 
Manufacturing of Solid‑State Batteries

Battery technologies can be classified liquid state battery 
and solid-state battery. The 3D printing battery technology is 
a subset of solid-state battery. After 2018, four new compa-
nies that produce 3D printed batteries have been established: 
Sakuú (United States), Blackstone Technology (Germany), 
Blue Spark Technologies (United States), and Photocentric 
(United Kingdom) [198, 248]. All of these companies are 
unique in their own way. With the advent of the fourth indus-
trial revolution, innumerable battery technologies are being 
developed, with diversity in terms of the type of electro-
lyte (solid or liquid), the chemistry of the battery elements 
(cathode, anode, and electrolytes), and the manufacturing 
techniques (jelly roll construction, coin cell construction, 
or 3D printing). Surveying the competitive landscape is 
particularly important for identifying any unmet needs and 
for finding ways to develop disruptive technologies. In this 
case, it would be naïve to say that all or none of today’s 
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battery technologies can be considered as competitors to 
the proposed technology. An outlook illustration of the 3D 
printed battery manufacturing ecosystem is shown in Fig. 7 
and the following sections explain in detail about the key 
players and market potential surrounding this sector of bat-
tery manufacturing.

4.1 � Additive Manufacturing

The 3D printing/rapid prototyping services industry has 
experienced rapid growth over the past five years, driven 
by technological advancements and increased applica-
tions of 3D printing technology. Although some companies 
have bypassed industry services by purchasing their own 
machines, the demand for these services has continued to 
grow due to the normalization of 3D printing. Over the 
course of the COVID-19 pandemic, the industry was able to 
continue operations without disruption due to remote devel-
opment and design services and automated physical printing, 
which led to solid growth in 2020. In 2021, the market size 
was $14 billion, which represents a growth of 15.6% in total 
over the five years leading up to 2021, with a growth of 
8.6% in 2021, as the economy recovered from the pandemic. 
The performance of the 3D printing and rapid prototyping 
services industry is closely linked to R&D expenditures in 
the manufacturing sector, as 3D printing a cost effective, 
rapid, and less costly way to create prototypes than using 
traditional manufacturing processes for this purpose. In total, 
25% of industry revenue was derived from outsourcing of 
the development/design of custom prototypes by their cli-
ents. As the growth of 3D printing brought down the costs 
for prototyping, operators were able to raise prices for their 

skilled services and target the consumer market with cost-
effective customized 3D-printed products. Over the next five 
years, the revenue in the industry is expected to continue to 
grow as 3D printing and rapid prototyping become more 
accessible and the price of 3D printers decreases. The mar-
ket size is forecasted to grow 21% from years from 2021 to 
2026 and is expected to reach $77.83 billion by 2030 [249].

4.2 � Lithium Battery Manufacturing

The lithium battery manufacturing industry experienced 
growth in the five years leading up to 2020 due to the growth 
of the EV industry. However, this growth was impacted by 
offshoring trends in electronics manufacturing, particularly 
when Apple moved its lithium-ion battery supplier to China 
in 2017. This has resulted in an estimated 6.8% decline in 
revenue (to $1.5 billion over five years) and a 9.7% drop 
in 2020 alone. The lithium battery manufacturing industry 
has faced a sharp decline in revenue due to the impact of 
the COVID-19 pandemic on supply chains and EV sales. 
Despite this, the industry remains strong and is expected to 
continue growing in the future, driven by partnerships such 
as Tesla Inc. and Panasonic Holdings Corp. as well as joint 
ventures such as that between Panasonic and Toyota Motor 
Corp. The cost savings from vertical integration are expected 
to make EVs more competitive, but the average profit margin 
has fallen due to lower demand. Despite this, the industry’s 
profit margin has increased overall during this period. The 
lithium battery manufacturing industry is expected to grow 
over the next five years as major automakers seek to enter the 
EV market. Joint ventures—such as the partnership between 
General Motors Company and LG Chem Ltd. and the 

Fig. 7   An Illustration of the 3D printed battery manufacturing ecosystem.
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partnership between Panasonic and Toyota—are expected to 
contribute significantly to the industry’s growth. The Volta 
foundation group summarized (Fig. 8) the supply chain, 
key players and corresponding market cap and growth rate.
[37] However, lithium battery producers in the Asia–Pacific 
region are expected to maintain their dominance, limiting 
the growth of the domestic industry in the United States. 
Despite this, the industry is expected to see an annualized 
increase in revenue of 3.0%, reaching $1.8 billion over the 
next five years. The landscape of battery manufacturing sec-
tor consists of raw material mining, processing, component 
manufacturing, cell manufacturing, battery data and energy 
storage system and battery recycling ensuring a circular 
economy. The overall battery manufacturing industry rev-
enue will also continue to increase, rising at an annualized 
3.2% to reach $12.0 billion by the year 2026 [250, 251].

4.3 � Production of Solid‑State Batteries

The future production capacity of solid-state batteries is 
highly uncertain and depends on technological advance-
ments and corporate strategies. Polymer solid-state batter-
ies currently have a production capacity of less than 2 GWh, 
with expected growth to 2–15 GWh by 2025 and to 10–50 
GWh by 2035. Sulfide solid-state batteries, which are not 
yet on the market at a large scale, are expected to have a 
capacity of 0–5 GWh in 2025, growing to 20–50 GWh by 
2035. The oxide solid-state battery market is expected to 
be smaller in size, with a capacity of 0–1 GWh in 2025, 
growing to only 10–20 GWh by 2035. The global market for 

lithium-ion batteries is projected to expand from its current 
400 GWh to 0.5–2 TWh by 2025, 1–6 TWh by 2030, and 
2–8 TWh by 2035, primarily due to the use of conventional 
liquid electrolyte technology. Solid-state batteries currently 
make up less than 0.5% of the overall lithium-ion battery 
market but are predicted to make up more than 1% by 2035. 
Table 4 shows some of the major players in the solid-state 
battery ecosystem. Liquid electrolyte LIBs are expected to 
continue to dominate the market, with solid-state batteries 
needing time to establish themselves as a major technol-
ogy. Polymer-based solid-state batteries are currently on the 
market, but their operating temperature of 50–80 °C limits 
their applications to systems that are in regular use with only 
small idling periods outside charging periods, such as elec-
tric buses. However, further applications are envisioned for 
use in automated guided vehicles or other industrial applica-
tions, with stationary storage also considered promising. By 
the end of the decade, with further developments in polymer 
solid-state battery technology, passenger cars and trucks are 
also considered promising applications [252].

4.4 � Commercial Viability of 3D Printed Batteries

The global 3D printing market was valued at $14 billion 
in the year 2021 and is expected to grow to $77.83 billion 
by the year 2030, with a compound annual growth rate of 
21% from 2021 to 2030. The market for 3D printed bat-
teries is expected to grow at a compound annual growth 
rate of 19.53% between 2020 and 2030 [248]. The three 
major 3D-printed battery startups—Sakuú, Blackstone, 

Fig. 8   EV battery manufacturing landscape of companies with a market capitalization greater than $1B Reproduced with permission [37] copy-
right 2023, Volta foundation



339International Journal of Precision Engineering and Manufacturing-Green Technology (2024) 11:321–352	

1 3

and Photocentric—have been making huge strides towards 
commercialization.

Several companies provide standard and customized 
printed batteries to meet a variety of application require-
ments. Leading producers of printed batteries include 
BrightVolt (United States), Power Paper Ltd. (United 
States), Enfucell Oy (Finland), Blue Spark Technologies, 
Imprint Energy Inc. (United States), and Prelonic Technol-
ogies (Austria) [198]. The most widely available printed 
batteries are non-rechargeable and feature zinc-manganese 
dioxide with ZnCl2 as an electrolyte. These batteries are 
printed on plastic substrates and have an open circuit 
voltage of approximately 1.6 V, as seen in the batteries 
produced by Blue Spark and Enfucell. These batteries 
do not contain heavy metals and can be used in the tem-
perature range from − 30 °C to 65 °C. BrightVolt, offers 
high-energy–density printed batteries based on solid-state 
electrolytes uses a proprietary polymer matrix electrolyte.

Sakuú developed Kavian printing platform 3D printers 
for solid-state batteries that are lighter and cheaper than tra-
ditional methods. They use a combination of 3D printing 
techniques to halve the battery manufacturing process steps. 
The Kavian platform reduces manufacturing costs by 33% 
and factory size by 44%, aiming for 100% recyclability with 
a powder-to-powder recycling system. Sakuú’s Swift Print 
Battery Technology binder jetting and metal material jetting 
with AI-based quality control produces smaller and lighter 
batteries with twice the energy density of leading Li-ion 
batteries. This technology reduces waste and toxic materials 
during manufacturing and recycling, enabling high-volume, 
rapid battery production with fewer emissions [253].

Blackstone Technology is a European startup that uses a 
3D printing method called Thick Layer Technology to man-
ufacture batteries that are more environmentally friendly, 
cheaper, and have higher energy density. This technology 
aims to solve problems associated with current battery 

production methods, and it allows for printing batteries 
in any shape using a single system. The use of 3D print-
ing in battery production can result in significant savings 
in capital and operational costs. Additionally, Blackstone’s 
technology increases energy density by 20%, reduces energy 
consumption by 25%, and enables the addition of additives 
or the printing of thin current collectors or embedded elec-
tronic components. It also facilitates automatic high-speed 
production [254].

Photocentric has received significant investment from the 
government of the United Kingdom since 2020 to develop 
industrial 3D printers that can produce solid-state battery 
cells for EVs. Photocentric technology, still in the R&D 
stage, differs from the technology used by Sakuú and Black-
stone, as it uses resin 3D printing with a photopolymer. So 
far, the company has developed printable photopolymer 
resin–containing polymer electrolyte binders as well as 
anode and cathode powders. Their patent-pending technol-
ogy promises to enable low-cost mass production of light-
weight batteries for the UK market. As companies world-
wide work to improve battery manufacturing, all options 
are being considered to solve safety issues, support domestic 
production, secure material sourcing, and increase sustain-
ability [248].

4.5 � Circular Economy Through the Recycling 
of Batteries

The battery recycling industry collects and processes bat-
tery waste to facilitate safe disposal and to recover valuable 
materials. The growth in demand for industry services is 
due to regulations mandating or encouraging battery recy-
cling as well as the increasing number of used batteries that 
are entering the waste stream. However, the battery recy-
cling industry has been impacted by the COVID-19 pan-
demic, leading to a decrease in consumer recycling and a 

Table 4   Key players in the solid-state battery manufacturing industry Reproduced with Permission  [37]
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lower demand from downstream industries. Despite this, 
the industry was expected to realize an annualized increase 
in revenue of 5.6% to $765.0 million from 2016 to 2021, 
including a 7.7% increase in 2021 alone. Every year, the 
billions of batteries, both primary and secondary, that are 
discarded by consumers and businesses can pose a threat to 
the environment and public health if they are not properly 
disposed of. To address this issue, the Mercury-Containing 
Rechargeable Battery Management Act was passed by the 
United States Congress in 1996 to facilitate battery recy-
cling. Since then, state and local governments in the United 
States have gone beyond this legislation by implementing 
laws that mandate or encourage battery recycling through 
subsidies, landfill fees, and extended producer responsibility 
programs. These laws have generated a stable demand for 
battery recycling services; as collection rates increase, the 
industry can benefit from economies of scale, resulting in 
increased profits. The consumption of consumer electronics 
is expected to increase in the coming years, resulting in a 
larger number of used batteries entering the waste stream. 
This will lead to an expansion of state and local regula-
tions supporting the battery recycling industry and driving 
its growth. In addition, stability in the prices of virgin metals 
over the next five years will allow the industry to generate 
significant revenue through the sale of recovered materials 
during the recycling process (Fig. 9). The industry’s revenue 
is expected to increase at an annualized rate of 1.8% to reach 
$835.5 million by 2026 [255].

4.5.1 � Lithium‑Ion Battery Reutilization Strategies:

The growth of electric vehicles will lead to a significant 
number of retired battery packs. The management of end-
of-use (EOU) batteries involves the cooperation of gov-
ernments, consortia, manufacturers, users, and recycling 
facilities. Governments play a crucial role in establishing 

infrastructure and regulations. Collection systems vary 
across countries, with Japan and Europe enforcing manda-
tory laws for battery recovery. Mandatory recovery regula-
tions and a nationwide battery tracking system are essential 
for effective EOU battery utilization. The economic feasibil-
ity of battery refurbishment depends on pack architecture, 
which affects disassembly costs and state-of-health test-
ing. Battery design impacts the complexity of testing and 
extracting functional components. Optimization tailored to 
specific applications maximizes economic returns. The cho-
sen recycling route and technologies significantly influence 
economic feasibility and environmental impact, with cobalt-
containing batteries being more profitable to recycle.[257]. 
The challenges and opportunities that have been recognized 
of through the review are as follows:

•	 Manual disassembly of large battery packs is labor-inten-
sive and time-consuming, requiring dedicated machines 
and automated intelligent disassembly systems.

•	 Screening functional modules/cells is crucial for efficient 
battery refurbishment, reducing time and costs.

•	 Hydrometallurgical extraction can yield acceptable qual-
ity regenerated materials, but reducing wastewater, toxic 
gases, and cost is necessary for industrialization.

•	 Evaluating environmental impact and economic potential 
informs decision-making in battery recovery technolo-
gies.

•	 Collaborations among stakeholders are vital for the early-
stage battery refurbishing industry, with a focus on busi-
ness model innovation and knowledge exchange.

•	 Value recovery thinking should be integrated into the 
early design stage of batteries to facilitate recycling and 
improve the product life cycle.

Remanufacturing these lithium-ion battery packs can 
maximize their remaining value. A partial disassembly line 

Fig. 9   Circular economy driven by the Li-ion battery recycling Reproduced with permission [256]  Copyright 2019, Argonne National Labora-
tory
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model and hybrid genetic-firework algorithm were devel-
oped to optimize the disassembly process, considering 
factors such as the number of stations, smoothness, profit, 
energy consumption, and safety. The hybrid algorithm 
outperformed traditional algorithms, and future work will 
focus on adjusting parameters and addressing uncertainties. 
Screening retired battery cells based on remaining capac-
ity enables their reuse [258]. An adaptive genetic algorithm 
and neural network estimated battery capacity with high 
accuracy, showing potential for rapid screening of decom-
missioned power batteries [259]. Designing products for 
recyclability and recovery supports the circular economy, 
and strategies such as replacing screws with snap-fits and 
addressing coating obstacles can improve value recovery. 
This design method is applicable to various products, and 
future research will explore different curve types and estab-
lish capacity estimation models for diverse battery types 
[260].

5 � Discussion

All of the research accomplishments in developing Li-ion 
batteries over past three decades have seen large-scale accel-
eration efforts in terms of commercialization. To produce 
commercially and environmentally viable 3D-printed batter-
ies using solid polymer electrolyte, it is important to discuss 
how various technologies have emerged from the lab into 
the market. 3D printing/additive manufacturing technol-
ogy alone has seen major growth since its inception. The 
past decade has witnessed new innovations and applica-
tions in these directions, which is evident by their increas-
ing market growth and the exponential growth of the battery 
manufacturing field with the advent of EVs and Internet of 
Things–based wireless applications. That said, the case for 
a solid polymer electrolyte can be similar to that for solid-
state electrolytes, which have gained a great deal of popu-
larity due to their safety, reliability, and energy efficiency. 
Solid polymer electrolytes have the major upper hand when 
it comes shape customization because of their flexibility 
and other mechanical properties. Hence, 3D printing a solid 
polymer electrolyte could greatly make a compelling case 
with disruptive advantages surrounding ease of fabrication 
compared to other solid electrolytes because of easy proces-
sibility minimal need post processing steps. Companies such 
as Sakuú and Blackstone Technology have successfully com-
mercialized the 3D printing of batteries that use inorganic 
solid electrolytes have been successful because of their 3D 
printability complemented with competitive battery proper-
ties. Hence 3D printed polymer battery can be competitive 
if they are able to demonstrate high ionic conductivity, and 
good solid electrolyte interface, without any compromise 

in the electrochemical properties like high cycle number, 
energy density etc. Additionally, with growing concerns over 
environmental impacts of the materials extraction and bat-
tery disposals, it is necessarily to make the electrolytes and 
electrodes degradable and recyclable, opening sustainable 
avenues for circular economy and contribute to sustainability 
of life on planet earth.

6 � Summary

Since its introduction to the market in 1991, lithium-ion 
batteries have undergone significant evolution. The spe-
cific energy content of these batteries has nearly tripled, 
and their lifespan has more than tripled. Despite requiring 
advanced control systems and cell energy reserves, LIBs 
can now meet most automotive calendar and cycle life 
requirements while maintaining a high degree of safety. 
Moreover, the cost of LIBs has decreased significantly—
by almost two orders of magnitude in recent years. How-
ever, while LIBs have made great strides in performance 
and cost, they still are not able to meet the energy targets 
required by the automotive industry. As a result, various 
Beyond Lithium Ion (BLI) research initiatives were estab-
lished within the last decade or so. The three main tech-
nologies pursued in the initial BLI efforts were lithium-air 
(Li-O2), lithium-sulfur, and lithium-metal. Of these, lith-
ium metal has made the most progress in the past decade, 
and its potential impact is underscored by recent auto-
motive lithium metal cell targets from the United States 
Advanced Battery Consortium.

In order to transition towards a society with zero carbon 
emissions, it is necessary to develop batteries that have 
better performance, improved ecological footprints, and 
enhanced safety and sustainability. The European battery 
community must engage in cross-disciplinary and cross-
sectorial research efforts to achieve this goal. With its 
BATTERY 2030 + initiative, the community has adopted 
a chemistry-neutral approach to create a generic toolbox 
for the development, design, and manufacture of batter-
ies that will lead to the development of specific battery 
chemistries and technologies. They intend to promote the 
development of diverse battery technologies and build syn-
ergies in their understanding by addressing three themes. 
The first theme relates to the speedy discovery of battery 
materials by focusing on designing and improving critical 
battery components. The second theme focuses on inte-
grating smart features (such as self-healing mechanisms) 
into batteries to improve safety, reliability, and cycle life. 
Finally, the third theme recommends that basic research 
efforts must consider the manufacturability and recycla-
bility of batteries. Over the next ten years, the BATTERY 
2030 + initiative intends to develop a circular model by 
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incorporating specific R&D actions that are based on the 
considerations developed in the initial roadmap.

The use of polymer electrolytes in alkaline metal batter-
ies has gained attention, as it can minimize safety hazards. 
Polymer electrolytes can combine the benefits of inorganic 
electrolytes and other components to achieve desirable 
physicochemical properties. However, challenges remain 
in achieving high ionic conductivity and addressing inter-
facial issues between the polymer and inorganic compo-
nents of the battery. Thin-film fabrication techniques, such 
as atomic/molecular layer deposition, can improve ionic 
conductance and increase the energy density of these bat-
teries. Strategies such as introducing organic species on 
the surfaces of inorganic particles and lithophilic layers 
can help address interfacial issues, but uniform lithium 
plating is necessary for stabilizing the solid-state battery 
interface.

Solid-state electrolytes offer a solution to safety issues 
in using alkali-ion and alkali-metal batteries while provid-
ing high energy density and a long calendar lifetime. How-
ever, the challenge is to create custom-shaped solid-state 
batteries using innovative fabrication methods, and additive 
manufacturing is one of the most promising approaches for 
this purpose. Polymer and composite polymer electrolytes 
have been printed by different 3D printing processes that 
have varying ionic conductivity, and gel electrolytes have 
been produced that have shown higher ionic conductivity. 
Solid-state lithium-ion batteries with printed electrolytes 
have shown a high level of performance. PLA and PLA-
PEO solid electrolytes and membranes infused with organ-
ics and ionic liquids have been successfully 3D-printed. It 
is expected that much research will be accomplished on the 
sustainability of 3D-printed solid polymer electrolyte batter-
ies in the next decades, with enhanced productivity, a more 
reliable manufacturing process, higher conductivity, and 
greater energy density.
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