Check for
Updates

Neurodiverse Programmers and the Accessibility of Parsons
Problems: An Exploratory Multiple-Case Study

Carl Haynes-Magyar
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
chaynesm@cs.cmu.edu

ABSTRACT

Parsons problems are computer programming puzzles that require
learners to place code blocks in the correct order and sometimes in-
dentation. Introductory computer programming instructors use
them to teach novices how to code while optimizing problem-
solving efficiency and cognitive load. While there is research on
the design of Parsons problems for programmers without disabili-
ties and programmers with visual or motor impairments, research
regarding their accessibility for programmers with cognitive dis-
abilities is scant. To identify the accessibility barriers and benefits
of Parsons problems for neurodiverse programmers, an exploratory
multiple-case study was conducted. Participants were asked to read
eight chapters of an interactive eBook on Python and to solve Par-
sons problems. Within-case analyses of 15 retrospective think-aloud
interviews with five novice programmers with disabilities led to
four recommendations for improving the cognitive accessibility of
Parsons problems. For example, programmers with seizure disor-
ders may experience seizures when solving programming problems
that require numeric calculations. Hence, creating a range of Par-
sons problems that do not require mental arithmetic could improve
the learning experience for programmers with seizure disorders
and those who struggle with mental calculations by lowering their
cognitive load. Given this study’s qualitative and exploratory ap-
proach, it does not offer conclusive, broadly generalizable results.
Yet, it reveals detailed and promising avenues for exploration in
computing education research that might elude many quantitative
techniques.

CCS CONCEPTS

» Human-centered computing — Empirical studies in acces-
sibility.

KEYWORDS

Cognitive Accessibility, Inclusive Assessment, Introductory Pro-
gramming, Neurodiversity, Parsons Problems

ACM Reference Format:

Carl Haynes-Magyar. 2024. Neurodiverse Programmers and the Accessibility
of Parsons Problems: An Exploratory Multiple-Case Study. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630898

This work is licensed under a Creative Commons Attribution
International 4.0 License.

491

(SIGCSE 2024), March 20-23, 2024, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626252.3630898

1 INTRODUCTION

While 3.48% of programmers are physically (visibly) disabled, 22.6%
of programmers are neurodiverse (invisibly disabled) [44]. In par-
ticular, the percentage of developers who identify as having a con-
centration or memory disorder (10.6%), anxiety disorder (10.3%),
and mood or emotional disorder (9.7%) has increased since 2021
[44, §Neurodiversity]. Learners with cognitive, learning, and neu-
rological disabilities represent 33% of nearly seven million disabled
students with the potential to be computer programmers [28], but
several things may dissuade them from learning how to code. In
particular, challenges to providing computing education to students
with disabilities include choosing the right pedagogical approach
and creating accessible learning materials and technologies [34,
§Students with Disabilities].

Parsons problems are an active learning pedagogical technique
that require learners to place blocks in the correct order and some-
times the correct indentation; they can also include distractor blocks
that are not a part of the correct solution [16]. Prior research has
provided evidence that Parsons problems and their variants can
improve problem-solving efficiency, lower cognitive load, teach
learners to identify and apply programming patterns, challenge
learners, and be of use for learning to most undergraduate novice
programmers [16, 19, 23, 24, 60]. Studies have also shown that dis-
tractors make these problems more difficult, increase self-reported
extraneous cognitive load (i.e., the complexity of how the infor-
mation to be learned is presented), and can increase time-on-task
without increasing problem discrimination [14, 22, 53]. But are
these drag-and-drop computer programming practice problems
accessible to neurodiverse learners?

Neurodiversity signifies individual variation in cognitive func-
tion, behavioral traits, and affect; it is an umbrella term considered a
‘moving target’ that is useful for how it helps us imagine the world
from something other than a neurotypical perspective—thereby
decentering cognitive norms about, for example, rates of learning
[5, 9, 52]. Most research on learning design has focused on neu-
rotypical individuals [35], and there is relatively little computing
education research on learners with cognitive disabilities and how
they learn to program [12, 33]. In a recent systematic literature
review on Parsons problems, researchers also pointed out the lack
of investigations into the experiences of underrepresented pro-
grammers such as neurodiverse learners [16]. Hence, the research
question addressed in this study was:

RQ1: What do neurodiverse learners report are accessibility barri-
ers or benefits when solving Parsons problems?

https://orcid.org/0000-0002-9637-6285
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630898
https://doi.org/10.1145/3626252.3630898
https://survey.stackoverflow.co/2022/#section-demographics-neurodiversity
https://dl.acm.org/doi/10.1145/2971329
mailto:chaynesm@cs.cmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630898&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

This is the first research study focused on the accessibility of
Parsons problems for novice programmers with cognitive, learning,
and neurological disabilities (also referred to as neurodiverse). The
design considerations highlight both the individual and the overall
needs of programmers with disabilities that could have a curb-cut
effect—that is, programmers without disabilities could benefit from
addressing the needs of neurodiverse programmers. Each design
recommendation is grounded in prior research within and outside
the field of computing education. Importantly, this is an exploratory
multiple-case study with a small N (see [38]) that was intended
to be a careful qualitative analysis of neurodiverse programmers
solving Parsons problems. Additional studies would need to be
conducted in other contexts with programmers with and without
disabilities to determine the generalizability of these findings.

2 RELATED WORK

This section reviews the literature on 1) neurodiverse learners and
2) Parsons problems.

2.1 Neurodiversity

Neurodiversity refers to individual variation in cognitive function,
behavioral traits, affect, and sensory functioning differing from
the general or ‘neurotypical’ population [49]. Judy Singer, a soci-
ologist and autistic rights advocate, coined the term in 1999 [52].
Proponents view autism, attention deficit hyperactivity disorder,
Tourette syndrome, dyslexia, hearing voices, bipolar disorder, down
syndrome, dementia, and other neurominority experiences “as com-
ponents on a broader continuum of sensory, affectual, and cognitive
processing” [49, p. 2]. Neurodiversity is a challenge to the deficit
(medical) model that portrays neurominorities as “ill, broken, and in
need of fixing” where neurological deficits/disorders are exclusive
to the individual [48, p. 1]. In contrast, the social model of disabil-
ity concerns external forces that enforce restrictions on disabled
people [49].

Most research on learning design has focused on neurotypical
individuals [35], and there is relatively little research in computing
education on learners with cognitive disabilities [33]. Accessibility
research has disproportionately focused on blind and low-vision
users [36]. Autism, intellectual or developmental disabilities (IDD),
and cognitive impairment account for under 10% of papers within
accessibility research and case studies only account for 4.0% of meth-
ods used [36]. Hence, this paper presents an exploratory multiple-
case study of five participants with distinct and slightly overlapping
cognitive disabilities to fill the gaps. This study carefully analyzes
neurodiverse programmers’ engagement with an interactive Python
eBook that includes Parsons problems.

2.2 Parsons Problems

Parsons problems are drag-and-drop practice exercises that require
learners to place code blocks into the correct order and sometimes
indentation. In 2006, Dale Parsons and Patricia Haden developed
them for introductory programming courses to maximize engage-
ment, help students learn syntax, introduce common errors, model
well-written code, and provide instant feedback [45]. These types
of problems enable learners to demonstrate semantic and strategic

492

Carl Haynes-Magyar

knowledge without having to generate syntax, although some stu-
dents use syntactic clues within the blocks to piece together the
solution without necessarily understanding the problem, which can
lead to a trial-and-error problem-solving strategy [14, 63]. These
problems typically only have one correct solution, yet there are
many ways to write code from scratch [45].

Parsons problems prompt the kind of explicit learning computer
scientist have advocated for [55]. Explicit learning is facilitated by
direct and unambiguous delivery of procedures and scaffolding to
guide learners through the learning process with clear goals and
ways to measure success [2]. Instructors have used Parsons prob-
lems as both formative and summative assessments [14]. Scores
on Parsons problems correlate highly with scores on write-code
assignments [7, 14]. Since Parsons and Haden’s initial study, re-
searchers have developed a variety of Parsons problems; they can
vary by dimension, feedback, adaptation, and use of distractors.
Parsons problems are also used to scaffold learning how to write
code from scratch [26, 27]. Yet the extent to which Parsons problem
research generalizes to programmers with disabilities is unknown.

2.2.1 Accessibility of Parsons Problems. Most research on teaching
programming to learners with cognitive disabilities has focused on
block-based programming—a popular approach used to increase
inclusion and equity in the classroom because it’s an appealing ac-
tivity [12, 63]. Accessibility research on block-based programming
has mostly focused on K-12 programmers with visual or motor im-
pairments using the Scratch visual programming language [39, 40]
and promising new research using Quorum Blocks [56]. Several
challenges exist for learners with visual impairments, including
navigating, comprehending, debugging, and skimming code [41].
However, block-based programming is distinct from Parsons prob-
lems in terms of the problem statement, the scope of the problem,
and the design of the user interface [16]. Generally, environments
for block-based programming are open-ended, in contrast to Par-
sons problems, which are not.

Parsons problems can feature two types of adaptation. Intra-
problem adaptation happens when the difficulty of the current
problem is dynamically reduced after three incorrect attempts. Each
time the learner clicks the “Help Me” button to initiate the intra-
problem adaptation, the system will remove a distractor block from
the solution, or if no distractors are left and more than three blocks
remain in the solution, it will combine two blocks into one. In
addition, inter-problem adaptation happens when the difficulty of
the next problem is changed based on the learner’s performance on
the previous problem. If the learner struggles, the next problem can
be made easier by removing some or all of the distractor blocks. If
they solved the previous problem in one attempt, the next problem
could be made harder by using all the distractor blocks and showing
them randomly mixed in with the correct blocks. These features
can aid us in creating cognitively accessible learning experiences.

Parsons problem research has generally focused on what neu-
rotypical individuals prefer (Parsons or write-code problems) and
their computational practices, perspectives, and attitudes inside
classrooms or labs (i.e., how they solve Parsons problems, whether
they find them useful, and if they comprehend the adaptation pro-
cess) [16]. Hence, this study explores the cognitive accessibility [see

Neurodiverse Programmers

31] of Parsons problems for neurodiverse programmers learning to
code outside of the classroom.

3 METHODOLOGY

To answer the research question, I conducted an exploratory multiple-
case study [62]. Case study methodology was originally intended
for exploratory purposes [18]. Exploratory case studies are designed
to discover what’s happening, search for new insights, and generate
ideas and working hypotheses for future research [62]. Case studies
are also a popular research design of inquiry into how learners with
cognitive disabilities learn how to program [12].

3.1 Participants

The author recruited novice programmers with disabilities from a
postsecondary research institution in the northern Midwest of the
United States via a flyer sent to several listservs. Participants were
eligible if they had a cognitive, learning, or neurological disability
as categorized by W3C’s Web Accessibility Initiative (WAI) and
defined by the Diagnostic and Statistical Manual of Mental Disor-
ders, Fifth Edition (DSM-V). They were asked to fill out a sign-up
questionnaire used to screen participants, which included a prior
programming experience survey [25] and a disability questionnaire
derived from [3] if they were eligible. Participants received a $500.00
stipend for completing the study. Five participants completed the
study; demographic information about each participant is shown
in Table 1; their ages ranged from 21 to 38.

3.2 Materials

The eBook used in this study is an interactive version of Dr. Charles
Severance’s Python for Everybody. It features typical instructional
material (text, pictures, videos) and interactive features with im-
mediate feedback (code-writing problems, debugging problems,
Parsons problems, multiple-choice questions, fill-in-the-blank ques-
tions, and matching questions) [17]. The eBook covers program-
ming fundamentals (strings, variables, loops, conditionals, func-
tions), data structures (lists, tuples, dictionaries), object-oriented
programming, and an introduction to data science (Files, Beauti-
ful Soup, APIs, Databases). Participants were asked to complete
eight sets of reading and programming practice problems (see Table
2). There were a total of 32 Parsons problems that had anywhere
between zero and five distractor blocks. For an example of the
problems used in this study see Figure 1.

3.3 Protocol

Participants were reminded via email once a week to complete the
reading and practice assignments. The deadline for completing the
study was flexible. Upon completing each week, participants were
also asked to answer an open-ended question. It asked them to
“Please read over the strategies, standards, and resources from W3C
for making the web accessible to people with cognitive disabilities
by clicking on this link and then answer the following question.
Did you encounter any accessibility barriers and/or benefits while
using the interactive eBook today? If so, please explain?”

I conducted three retrospective think-aloud interviews with each
participant online via Zoom after they completed the reading and
practice problems for weeks three, six, and eight. First, I asked

493

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Create a function password_maker(word_list) that takes a list of words, word_list
and returns a string with the first and last character of each word in a list. For example,

password_maker("show", "me", "the", "money") would return swmetemy .

Drag from here Drop blocks here

1 |password += first_char 4 def password_maker(word_list):
2 |password = ""

for word in word_list:

return word_list

, | return password

6 |first_char = word[0]

last_char = word[-1]

password += last_char

Figure 1: Example Parsons problems from Chapter Seven

participants for consent. Second, I asked them to solve a set of
computer programming problems while I took notes to support
my observations. Finally, I followed up with the participants about
their responses to the open-ended question about the cognitive
accessibility of Parsons problems.

3.4 Analysis

Multiple-case studies can be examined through both within-case
analysis and cross-case synthesis [62]—the latter has been used
in computing education research to understand the needs of as
little as two participants [54]. Each of the retrospective think-aloud
interviews were transcribed and then qualitative analysis was per-
formed using ATLAS.ti. The author developed a codebook using
a structural coding approach based on the research question: one
code for accessibility barriers and one code for accessibility benefits
[50]. The author and a colleague coded 20% of the transcripts and
identified examples independently until we reached 100% agree-
ment based on recommendations from [21]. The author coded the
remaining transcripts independently.

4 RESULTS AND DISCUSSION

Each week, the participants were asked if they encountered any
accessibility barriers or benefits while solving the Parsons problems
at the end of each chapter and, if so, to explain. Within-subject
analyses led to one design recommendation about increasing the
cognitive accessibility of Parsons problems for each participant.
Each participant picked their pseudonym.

4.1 Programmers with Seizure Disorders

Amanda reported experiencing focal seizures when solving Par-
sons problems due to the presence of numbers. Focal seizures can
originate in the temporal, frontal, occipital, or parietal lobe [see
47]. In response to the question about the cognitive accessibility of
Parsons problems, Amanda said:

https://www.w3.org/WAI/people-use-web/abilities-barriers/#cognitive
https://www.py4e.com/lessons
https://www.w3.org/WAI/cognitive/
https://ATLAS.ti

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Carl Haynes-Magyar

Table 1: Participant Demographics

Pseudonym Gender Ethnicity Disability Programming
Experience

Amanda (she/her) Female White Mental Health Disability; SPSS, R
Neurodiverse; Seizure
Disorder

Claire (she/her) Female White Attention Deficit SPSS, R
Hyperactivity Disorder
(ADHD); Neurodiverse

User (they/them) Agender Russian-Yakut ~ADHD; Mental Health None
Disability

Sophia (she/her or they/them) Female Latina Learning Disability; Mplus, SPSS, R
Mental Health Disability;
Memory Impairment

John (he/him) Male Asian, White ~ Neurodiverse; Tourette None

Syndrome

Table 2: Weekly eBook Chapter Assignments with Estimated
Reading Time

Week Chapter # of Pages Estimated
Reading Time
1 Variables, Expressions, 14 40 min.
and Statements
2 Debugging 5 30 min.
3 Conditional Execution 11 40 min.
4 Functions 13 40 min.
5 Loops and Iterations 8 40 min.
6 Strings 13 40 min.
7 Lists 15 46 min.
8 Dictionaries 7 33 min.

Notes: The estimated reading time is based on 200 words per minute.

‘I've had two seizures....The first three days, it didn’t
happen. I think [during the chapter on conditional exe-
cution and functions]. Numbers are sometimes trigger-
ing for me...usually, when I have a seizure, I'll put my
head down to get blood back to my head. I normally feel
kind of faint. I don’t have convulsive seizures. I have
focal seizures....It’s not really anything that can be con-
trolled. It’s just the presence of numbers, and sometimes
if I'm going through [the material] too fast. If it says
it’s going to take forty minutes, it’ll probably take me
two hours.”

This observation led to the following design consideration:

Learners with seizure disorders may experience more seizures when
solving Parsons problems that require mental calculations.

While pace may be a factor, this finding is consistent with pre-
vious research on the relationship between mental arithmetic and
seizures [61]. Ingvar and Nyman [29] termed this epilepsia arith-
metices to describe a sort of reflex epilepsy in which mental arith-
metic results in clinical seizures. Amanda also reported that her

494

seizures come from her right temporal lobe, consistent with re-
search on number processing in the temporal lobe and epilepsy
[13].

4.2 Programmers with ADHD and Tourette
Syndrome

Claire reported that distractor blocks improved her comprehension
and helped with the inattention she experienced while solving
Parsons problems.

During one of the think-aloud sessions, when solving a problem
with three distractor blocks, Claire expressed that she was not
preoccupied with them but focused and knew what to do (see Figure
1 for an example of distractor blocks paired using the word ’or’).
She said that she was not distracted by them because she “didn’t
pay enough attention to them or how many there were, but rather,
she paid attention to choosing the correct block. Claire commented,

‘T actually think the distractors are beneficial because I
have to think about the code itself rather than just the
order...having the [distractor blocks] makes me think
about which one of [the blocks] is the correct way to do
this [the correct approach], so for the future, I've already
thought about that and processed it a little more because,
without it, I'm kind of prone to just glancing at it and
saying, ‘Oh, that looks right.” But then I didn’t have to
think about exactly what it is.”

Claire said she thought distractor blocks would be better for
some learners with ADHD. She agreed with the statement that
the distractor blocks caused her to focus and pay attention. Claire
explained:

“because if I read something, sometimes I'll just read it
for....this is an analogy, but I've learned a lot of foreign
languages, and I've found when I'm trying to learn the
vocabulary and I just look at a word, I'll understand
what the word means. But then if I have to recall it,
won’t know how to spell it correctly....the [distractors]
make me think about the spelling or how it’s written.
And then I understand it better. I actually have to look
at it and think about it.”

Neurodiverse Programmers

Similarly, John, who openly identified as having Tourette Syn-
drome and being neurodiverse, expressed a preference for paired
distractor blocks —blocks linked by ‘OR’—due to his eye and motor
tics. John said, “..with my Tourette syndrome, it takes extra time to
type, and moving things around using a mouse takes a lot longer
for me just because there are interruptions.”

This observation led to the following design consideration:

Learners with an attention-deficit/hyperactivity disorder (ADHD)
or Tourette syndrome may learn more from Parsons problems with
paired versus jumbled distractor blocks.

Attention-deficit/hyperactivity disorder (ADHD) is frequently
diagnosed in people with Tourette syndrome [57]. Learners such as
Claire, who have ADHD, experience an increase in distractibility
[1]. “Inattention involves difficulties with keeping the learner’s
attention focused and to shift the focus of attention as necessary”
[46, p. 75]. Similarly, programmers with Tourette syndrome, like
John, experience impaired motor control, which John identified as
an interruption/distraction when learning. Distractor blocks are
extra code blocks not part of a correct Parsons problem solution.
Whereas past researchers have found distractors increased extra-
neous cognitive load [22] and time-on-task [53], the present study
provides evidence that paired distractor blocks may improve focus
for learners with ADHD or Tourette syndrome. This would be a
desirable difficulty [cf. 6]. Unpaired distractors may not focus the
attention of learners with ADHD and not support efficient drag-and-
drop actions for learners with Tourette syndrome who experience
tics—“sudden, habit-like movements or utterances that typically
mimic some fragment of normal behavior and involved discrete
muscle groups” [57, p.956]. Moreover, researchers who have in-
vestigated how learners with ADHD learn introductory computer
programming concepts state one approach is to use completed ex-
amples [46] of which Parsons problems can be considered a variant
[16].

4.3 Programmers with a Mental Health
Disability
User had stated that they had a mental health disability, so I followed

up with them about it. When asked what kinds of positive content
or activities would raise their energy and mood, User responded:

“One of the things that I do for emotional regulation
is look at videos of cats....I would [also] say empow-
ering social justice content like an article about a so-
cial work problem or social media content in which a
person understands how taking care of themselves is
actually resistance and a revolutionary practice. There’s
a whole range of things that feel affirming....a social
Justice program—people would be all over that—and
gender fluidity. I don’t think that kind of thing exists
though...”

User reported that they watched videos of cats to regulate their
emotions while learning and that they would be motivated by social
justice-oriented, relevant, interest-driven Parsons problems. This
observation led to the following design consideration:

495

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Learners with an attention-deficit/hyperactivity disorder (ADHD)
or a mental health disability may experience an increase in (1) focus
or (2) positive emotions if presented with relevant or interest-driven
Parsons problems.

Computing education researchers have found there is a need to
support self-regulated learning (SRL) strategies such as emotional
regulation in computer science education (CSEd) [20] and to design
“intelligent systems that respond adaptively to students’ emotions”
when learning how to program [11, p. 30]. Kinnunen et al. [32]
used a media computation approach to explore learners’ emotional
experiences with Java programming assignments and found that
students with negative programming experiences reflect positively
on their self-efficacy. Learning scientists have also posited that “be-
cause learning is influenced in fundamental ways by the context in
which it takes place, schools and classrooms should be learner and
community-centered” [42, p. 22]. Context and culture are critical
aspects of learning. And furthermore, research shows that partic-
ipants like User and Sophia, who struggled with math problems,
benefit from intelligent tutoring systems that personalize problems
to students’ out-of-school interests [59].

List ingices work the same way s string adices
- Aoy 'mjrec\\or EXpression can be vsed as an inde
ST fou tey Yo (ead or wrle an elemenl Fhat does
not erist, you 3elT an Lalex Erroc.
“IF gnindex has a y\esah’/z veloe, it Covnts Lalhiad

l

Trom the end of the st

The in
lowercase
Ycheeses = UChedlar, "Edun’, Gouda']

p(’.n% ("Blom' in cheeses)

pﬁn%(‘Bee' in cheeses)

opecator alse worlss on Vists:

L ovhelt
frve G Similar 4o i in chepler 7
False
D . . r . [! \
(_)Z.U,\L\(Vs p("n'—.zi by the 7ov‘3uw.n\,) Stattrme,rs?
alist =04, 2,9 68] s
alistf2] = Tree =S 42 Teee (8]
tat (alish) S o 1 2 '
pf,ﬁx,&nﬁr Hlety & 3 4
L s the inde< oeing -L‘Lr\Ju

Figure 2: Sophia’s Handwritten Notes on Lists

4.4 Programmers with Memory Impairment

Sophia’s memory was impaired due to a traumatic brain injury.
She reported that longer and more complex chapters in the eBook
required note-taking and that she interacted better with text on
paper than eBooks because of her memory impairment. She and
Claire took copious notes and used them to solve Parsons problems.
In particular, when solving problem two during the last think-aloud
session, Sophia used her notes on lists to help (see Figure 2). This
observation led to the following design consideration:

Learners with memory impairment or ADHD may need easy access
to their notes to increase their problem-solving performance.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

This observation is consistent with research linking note-taking,
memory, and comprehension and the usefulness of note-taking and
concept mapping in introductory computer science courses [30].
Note-taking is an active learning strategy that improves problem-
solving performance [58]. Sophia engaged in both constructive (free-
form) and active (summarized/copy-and-pasted) note-taking [8].

4.4.1 Limitations. First, this study only examined five novice pro-
grammers with different and some overlapping disabilities; one
cannot assume these findings will generalize to other contexts. A
replication of this study with a larger sample of learners who iden-
tify with each of the participants’ disabilities would further support
each corresponding design recommendation and whether these
findings can be generalized across learners and contexts.

Second, participants in this study were not exposed to other
environments for solving Parsons problems and learning how to
program; hence, the results may be a byproduct of the interactive
eBook used in this study.

4.4.2 Future Work. Future investigations into the effectiveness of
Parsons problems for learners with disabilities should compare
their experiences with different environments that support Parsons
problems. Various programming practice websites and open-source
tools support instructors and learners in using Parsons problems
including Codio, Codespec, Epplets, js-parsons, PraireLearn, Rune-
stone Academy, and UPP (the Unnamed Parsons Problem Tool).
Furthermore, human-computer interaction (HCI) research is rich
with measures such as Fitts’ law that may help us better investigate
human movement and accessibility concerns [37].

Disciplines offer us an excellent way to be sensitive to varia-
tions in learning [4], and computing education instructors and
researchers have called for us to increase computing in other disci-
plines (also known as CS + X) [51]. Future research should investi-
gate how we can develop discipline-specific programming problems
in Python and other languages that increase cognitive relevance
[10] and the quality of the overall learning experience.

Finally, future research on Parsons problems should explore
paradigms such as Grid-Coding, speech-driven programming, and
the use of problem-solving stages to improve accessibility for neu-
rodiverse programmers, sighted, blind, and low-vision (BLV) pro-
grammers, and programmers with motor impairments [15, 43].

5 CONCLUSION

With the appropriate scaffolding and support, neurodiverse learn-
ers can excel at computer programming. This work contributed to
the first empirical multi-case study on how neurodiverse learners
learn how to program outside of the classroom with an interactive
eBook with Parsons problems. Think-aloud observations led to the
generation of five design considerations about how to improve the
cognitive accessibility of Parsons problems. First, there exists a rela-
tionship between mental arithmetic and clinical seizures that should
inform how instructors and cognitive tutors decide which computer
programming problems to present to novice programmers. Second,
this work highlights the impact that paired vs. jumbled distractor
blocks may have on the learning experience for programmers with
disabilities. This has implications for how we create these kinds
of blocks and when we should and should not present them to

496

Carl Haynes-Magyar

learners (i.e., we would not want to make it harder for learners with
tics to choose between these blocks). This work also adds to the
findings on emotional regulation in computer science education
concerning its importance in the design of computer programming
problems. And, providing a space for note-taking may improve
the problem-solving performance of programmers with disabili-
ties. Future research should explore the generalizability of such
observations with larger groups of learners who identify with each
case.

ACKNOWLEDGMENTS

I thank Aadarsh Padiyath for their help in analyzing the think-
aloud observations. This research was funded by the Rackham
Graduate School and Rackham Fellowships Office at the University
of Michigan.

REFERENCES

[1] Rebecca Adams, Paul Finn, Elisabeth Moes, Kathleen Flannery, and Albert Skip
Rizzo. 2009. Distractibility in Attention/Deficit/ Hyperactivity Disorder (ADHD):
the virtual reality classroom. Child Neuropsychol. 15, 2 (March 2009), 120-135.
Anita L Archer and Charles A Hughes. 2010. Explicit Instruction: Effective and
Efficient Teaching. Guilford Publications.

Brianna Blaser and Richard E Ladner. 2020. Why is Data on Disability so Hard to
Collect and Understand?. In 2020 Research on Equity and Sustained Participation
in Engineering, Computing, and Technology (RESPECT), Vol. 1. ieeexplore.ieee.org,
1-8.

R Brooks. 2011. Making the case for discipline-based assessment. Literary Study,
Measurement, and the Sublime (2011).

Robert Chapman. 2020. Defining neurodiversity for research and practice. In
Neurodiversity studies. Routledge, 218-220.

[6] Ouhao Chen, Juan C Castro-Alonso, Fred Paas, and John Sweller. 2018. Undesir-
able Difficulty Effects in the Learning of High-Element Interactivity Materials.
Front. Psychol. 9 (Aug. 2018), 1483.

Nick Cheng and Brian Harrington. 2017. The Code Mangler: Evaluating Coding
Ability Without Writing any Code. In Proceedings of the 2017 ACM SIGCSE Techni-
cal Symposium on Computer Science Education (Seattle, Washington, USA) (SIGCSE
’17). Association for Computing Machinery, New York, NY, USA, 123-128.
Michelene T H Chi and Ruth Wylie. 2014. The ICAP framework: Linking cognitive
engagement to active learning outcomes. Educ. Psychol. 49, 4 (Oct. 2014), 219-243.
Lynn Clouder, Mehmet Karakus, Alessia Cinotti, Maria Virginia Ferreyra, Gen-
oveva Amador Fierros, and Patricia Rojo. 2020. Neurodiversity in higher educa-
tion: A narrative synthesis. Higher Education 80, 4 (2020), 757-778.

Erica Cosijn and Peter Ingwersen. 2000. Dimensions of relevance. Inf. Process.
Manag. 36, 4 (July 2000), 533-550.

Mayela Coto, Sonia Mora, Beatriz Grass, and Juan Murillo-Morera. 2022. Emotions
and programming learning: systematic mapping. Computer Science Education 32,
1 (Jan. 2022), 30-65.

Elaine Cristina Juvino De Araujo and Wilkerson L Andrade. 2021. A Systematic
Literature Review on Teaching Programming to People with Cognitive Disabil-
ities. In 2021 IEEE Frontiers in Education Conference (FIE). ieeexplore.ieee.org,
1-8.

M Delazer, A Gasperi, L Bartha, E Trinka, and T Benke. 2004. Number processing
in temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 75, 6 (June 2004),
901-903.

Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the Fourth international Workshop
on Computing Education Research (Sydney, Australia) (ICER '08). Association for
Computing Machinery, New York, NY, USA, 113-124.

Md Ehtesham-Ul-Haque, Syed Mostofa Monsur, and Syed Masum Billah. 2022.
Grid-Coding: An Accessible, Efficient, and Structured Coding Paradigm for Blind
and Low-Vision Programmers. In Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology (Bend, OR, USA) (UIST 22, Article 44).
Association for Computing Machinery, New York, NY, USA, 1-21.

Barbara J Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho
Leinonen, Craig S Miller, Briana B Morrison, Janice L Pearce, and Susan H Rodger.
2022. Parsons Problems and Beyond: Systematic Literature Review and Empirical
Study Designs. In Proceedings of the 2022 Working Group Reports on Innovation
and Technology in Computer Science Education (Dublin, Ireland) (ITiCSE-WGR
"22). Association for Computing Machinery, New York, NY, USA, 191-234.
Barbara J Ericson and Bradley N Miller. 2020. Runestone: A Platform for Free, On-
line, and Interactive Ebooks. In Proceedings of the 51st ACM Technical Symposium

=
)

(13]

(14]

[15

=
&

(17

https://www.codio.com/
https://www.codespec.org/
https://epplets.org/
https://js-parsons.github.io/
https://us.prairielearn.com/
https://runestone.academy/user/login?_next=/
https://runestone.academy/user/login?_next=/
https://github.com/HiruNya/Parsons-Tool
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org

Neurodiverse Programmers

on Computer Science Education (Portland, OR, USA) (SIGCSE °20). Association for
Computing Machinery, New York, NY, USA, 1012-1018.

Bent Flyvbjerg. 2006. Five Misunderstandings About Case-Study Research. Qual.
Ing. 12, 2 (April 2006), 219-245.

Flynn Fromont, Hiruna Jayamanne, and Paul Denny. 2023. Exploring the Dif-
ficulty of Faded Parsons Problems for Programming Education. In Proceedings
of the 25th Australasian Computing Education Conference (Melbourne, VIC, Aus-
tralia) (ACE °23). Association for Computing Machinery, New York, NY, USA,
113-122.

Rita Garcia, Katrina Falkner, and Rebecca Vivian. 2018. Systematic literature
review: Self-Regulated Learning strategies using e-learning tools for Computer
Science. Comput. Educ. 123 (Aug. 2018), 150-163.

David Hammer and Leema K Berland. 2014. Confusing Claims for Data: A
Critique of Common Practices for Presenting Qualitative Research on Learning.
Journal of the Learning Sciences 23, 1 (Jan. 2014), 37-46.

Kyle James Harms, Jason Chen, and Caitlin L Kelleher. 2016. Distractors in
Parsons Problems Decrease Learning Efficiency for Young Novice Programmers.
In Proceedings of the 2016 ACM Conference on International Computing Education
Research (Melbourne, VIC, Australia) (ICER ’16). Association for Computing
Machinery, New York, NY, USA, 241-250.

Carl C Haynes and Barbara J Ericson. 2021. Problem-Solving Efficiency and
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI 21, Article 60). Association for Computing Machinery,
New York, NY, USA, 1-15.

Carl Haynes-Magyar and Barbara Ericson. 2022. The Impact of Solving Adaptive
Parsons Problems with Common and Uncommon Solutions. In Proceedings of the
22nd Koli Calling International Conference on Computing Education Research (Koli,
Finland) (Koli Calling "22, Article 23). Association for Computing Machinery, New
York, NY, USA, 1-14.

Edward Holden and Elissa Weeden. 2003. The impact of prior experience in an
information technology programming course sequence. In Proceedings of the 4th
conference on Information technology curriculum (Lafayette, Indiana, USA) (CITC4
’03). Association for Computing Machinery, New York, NY, USA, 41-46.
Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using Adaptive Par-
sons Problems to Scaffold Write-Code Problems. In Proceedings of the 2022 ACM
Conference on International Computing Education Research - Volume 1 (Lugano
and Virtual Event, Switzerland) (ICER °22, Vol. 1). Association for Computing
Machinery, New York, NY, USA, 15-26.

Xinying Hou, Barbara J Ericson, and Xu Wang. 2023. Understanding the Effects
of Using Parsons Problems to Scaffold Code Writing for Students with Varying
CS Self-Efficacy Levels. In Proceedings of the 23rd Koli Calling International Con-
ference on Computing Education Research (Koli, Finland) (Koli Calling °23, Vol. 1).
Association for Computing Machinery, New York, NY, USA, 1-12.

Office of Special Education Programs Individuals with Disabilities Education
Act (IDEA). 2021. U.S. Department of Education.

D H Ingvar and G E Nyman. 1962. Epilepsia arithmetices: A new psychologic
trigger mechanism in a case of epilepsy. Neurology 12, 4 (April 1962), 282-282.
Taina Kaivola and Heikki Lokki. 2010. Using concept mapping as a note taking
tool in computer science. https://helda.helsinki.fi/bitstream/handle/10138/27360/
cmc2010_a27.pdf?sequence=2. Accessed: 2023-5-3.

Terhi Karpénen. 2021. A Literature Review on Cognitive Accessibility. Stud.
Health Technol. Inform. 282 (June 2021), 259-270.

Piivi Kinnunen and Beth Simon. 2012. My program is ok — am I? Computing
freshmen’s experiences of doing programming assignments. Comput. Sci. Educ.
22, 1 (March 2012), 1-28.

Varsha Koushik and Shaun K Kane. 2019. “It Broadens My Mind”: Empowering
People with Cognitive Disabilities through Computing Education. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19, Paper 514). Association for Computing Machinery, New

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

[40] Aboubakar Mountapmbeme and Stephanie Ludi. 2021. How Teachers of the

Visually Impaired Compensate with the Absence of Accessible Block-Based Lan-
guages. In Proceedings of the 23rd International ACM SIGACCESS Conference on
Computers and Accessibility (Virtual Event, USA) (ASSETS 21, Article 4). Associa-
tion for Computing Machinery, New York, NY, USA, 1-10.

Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Address-
ing Accessibility Barriers in Programming for People with Visual Impairments:
A Literature Review. ACM Trans. Access. Comput. 15, 1 (March 2022), 1-26.
National Academies of Sciences, Engineering, and Medicine, Division of Behav-
ioral and Social Sciences and Education, Board on Science Education, Board on
Behavioral, Cognitive, and Sensory Sciences, and Committee on How People
Learn II: The Science and Practice of Learning. 2018. How People Learn II: Learners,
Contexts, and Cultures. National Academies Press.

Obianuju Okafor and Stephanie Ludi. 2022. Voice-Enabled Blockly: Usability Im-
pressions of a Speech-driven Block-based Programming System. In Proceedings of
the 24th International ACM SIGACCESS Conference on Computers and Accessibility
(Athens, Greece) (ASSETS °22, Article 64). Association for Computing Machinery,
New York, NY, USA, 1-5.

Stack Overflow. 2022. Stack Overflow Developer Survey 2022.

Parsons and Haden. 2006. Parson’s programming puzzles: a fun and effective
learning tool for first programming courses. of the 8th Australasian Conference
on ... (2006).

Colin Pilkington and Helene Gelderblom. 2010. Using the Karplus learning cycle
to teach learners with ADHD introductory computer programming. African
Journal of Research in Mathematics, Science and Technology Education 14, 1 (Jan.
2010), 73-84.

Colin Reilly and Rebecca Ballantine. 2011. Epilepsy in school-aged children: more
than just seizures? Support Learn. 26, 4 (Nov. 2011), 144-151.

Scott Michael Robertson. 2010. Neurodiversity, Quality of Life, and Autistic
Adults: Shifting Research and Professional Focuses onto Real-Life Challenges.
Disabil. Stud. Q. 30, 1 (2010).

Hanna Bertilsdotter Rosqvist, Nick Chown, and Anna Stenning. 2020. Neurodi-
versity Studies: A New Critical Paradigm. Routledge.

Johnny Saldafia. 2021. The coding manual for qualitative researchers. The coding
manual for qualitative researchers (2021), 1-440.

Devin W Silvia, Marcos D Caballero, Thomas Finzell, Rachel Frisbie, Patti Hamer-
ski, Emily Bolger, Sarah Castle, Rachel Roca, and Paige Tourangeau. 2023. Com-
puting in Support of Disciplinary Learning. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 2 (Toronto ON, Canada)
(SIGCSE 2023). Association for Computing Machinery, New York, NY, USA, 1247.
Judy Singer. 2017. Neurodiversity: The birth of an idea.

] David H Smith, IV and Craig Zilles. 2023. Discovering, autogenerating, and

evaluating distractors for python parsons problems in CS1. Proceedings of the
54th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023),
March 15a+fi18, 2023, Toronto, ON, Canada 1, 1 (2023).

Melinda R Snodgrass, Maya Israel, and George C Reese. 2016. Instructional
supports for students with disabilities in K-5 computing: Findings from a cross-
case analysis. Comput. Educ. 100 (Sept. 2016), 1-17.

Elliot Soloway. 1986. Learning to program= learning to construct mechanisms
and explanations. Commun. ACM 29, 9 (1986), 850-858.

Andreas Stefik, Willliam Allee, Gabriel Contreras, Timothy Kluthe, Alex Hoffman,
Brianna Blaser, and Richard Ladner. [n.d.]. Accessible to Whom? Bringing
Accessibility to Blocks. Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2024), March 20a-£i23, 2024, Portland,
OR, USA 1,1 ([n.d.]).

James E Swain, Lawrence Scahill, Paul] Lombroso, Robert A King, and James F
Leckman. 2007. Tourette syndrome and tic disorders: a decade of progress. 7.
Am. Acad. Child Adolesc. Psychiatry 46, 8 (Aug. 2007), 947-968.

J Gregory Trafton and Susan B Trickett. 2001. Note-Taking for Self-Explanation
and Problem Solving. Human—Computer Interaction 16, 1 (March 2001), 1-38.

York, NY, USA, 1-12. [59

Candace Walkington and Matthew L Bernacki. 2019. Personalizing Algebra to

[34] Richard E Ladner and Maya Israel. 2016. “For all” in “computer science for all”. Students’ Individual Interests in an Intelligent Tutoring System: Moderators of
Commun. ACM 59, 9 (Aug. 2016), 26-28. Impact. International Journal of Artificial Intelligence in Education 29, 1 (March
[35] Christopher Luchs. 2021. Considering Neurodiversity in Learning Design and 2019), 58-88.
Technology. TechTrends 65, 6 (Nov. 2021), 923-924. [60] Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving Instruc-
[36] Kelly Mack, Emma McDonnell, Dhruv Jain, Lucy Lu Wang, Jon E. Froehlich, tion of Programming Patterns with Faded Parsons Problems. In Proceedings of the

and Leah Findlater. 2021. What Do We Mean by “Accessibility Research”? A
Literature Survey of Accessibility Papers in CHI and ASSETS from 1994 to 2019.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI °21, Article 371). Association for Computing Machinery,
New York, NY, USA, 1-18.

I Scott MacKenzie. 2017. Fitts’ Law. In The Wiley Handbook of Human Computer
Interaction. John Wiley & Sons, Ltd, Chichester, UK, 347-370.

Sharan B Merriam. 1995. N of I?: Issues of Validity and Reliability in. PAACE
Journal of lifelong learning 4 (1995), 51-60.

Lauren R Milne and Richard E Ladner. 2019. Position: Accessible Block-Based
Programming: Why and How. In 2019 IEEE Blocks and Beyond Workshop (B&B).
ieeexplore.ieee.org, 19-22.

2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21, Article 53). Association for Computing Machinery, New York, NY, USA,
1-4.

A J Wilkins, B Zifkin, F Andermann, and E McGovern. 1982. Seizures induced by
thinking. Ann. Neurol. 11, 6 (June 1982), 608-612.

Robert K Yin. 2018. Case study research and applications. Sage.

Rui Zhi, Min Chi, Tiffany Barnes, and Thomas W Price. 2019. Evaluating the
Effectiveness of Parsons Problems for Block-based Programming. In Proceedings of
the 2019 ACM Conference on International Computing Education Research (Toronto
ON, Canada) (ICER ’19). Association for Computing Machinery, New York, NY,
USA, 51-59.

https://helda.helsinki.fi/bitstream/handle/10138/27360/cmc2010_a27.pdf?sequence=2
https://helda.helsinki.fi/bitstream/handle/10138/27360/cmc2010_a27.pdf?sequence=2
https://ieeexplore.ieee.org

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neurodiversity
	2.2 Parsons Problems

	3 Methodology
	3.1 Participants
	3.2 Materials
	3.3 Protocol
	3.4 Analysis

	4 Results and Discussion
	4.1 Programmers with Seizure Disorders
	4.2 Programmers with ADHD and Tourette Syndrome
	4.3 Programmers with a Mental Health Disability
	4.4 Programmers with Memory Impairment

	5 Conclusion
	Acknowledgments
	References

