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Abstract

Base-rate neglect is a pervasive bias in judgment that is conceptualized as underweighting

of prior information and can have serious consequences in real-world scenarios. This bias is

thought to reflect variability in inferential processes but empirical support for a cohesive the-

ory of base-rate neglect with sufficient explanatory power to account for longer-term and

real-world beliefs is lacking. A Bayesian formalization of base-rate neglect in the context of

sequential belief updating predicts that belief trajectories should exhibit dynamic patterns of

dependence on the order in which evidence is presented and its consistency with prior

beliefs. To test this, we developed a novel ‘urn-and-beads’ task that systematically manipu-

lated the order of colored bead sequences and elicited beliefs via an incentive-compatible

procedure. Our results in two independent online studies confirmed the predictions of the

sequential base-rate neglect model: people exhibited beliefs that are more influenced by

recent evidence and by evidence inconsistent with prior beliefs. We further found support for

a noisy-sampling inference model whereby base-rate neglect results from rational discount-

ing of noisy internal representations of prior beliefs. Finally, we found that model-derived

indices of base-rate neglect—including noisier prior representation—correlated with propen-

sity for unusual beliefs outside the laboratory. Our work supports the relevance of Bayesian

accounts of sequential base-rate neglect to real-world beliefs and hints at strategies to mini-

mize deleterious consequences of this pervasive bias.

Author summary

Base-rate neglect is a common bias in judgment, a bias defined by a tendency to underuse

older information when forming a new belief. This bias can have serious consequences in

the real world. Base-rate neglect is often cited as a source of errors in medical and legal

decisions, and in many other socially relevant contexts. Despite its broad societal rele-

vance, it is unclear whether current theories capture the expression of base-rate neglect in

sequential belief formation, and perhaps more crucially why people have this bias in the

first place. In this paper, we find support for a model that describes how base-rate neglect

influences belief formation over time, showing that people behave in a way that matches

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010796 December 22, 2022 1 / 37

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ashinoff BK, Buck J, Woodford M, Horga

G (2022) The effects of base rate neglect on

sequential belief updating and real-world beliefs.

PLoS Comput Biol 18(12): e1010796. https://doi.

org/10.1371/journal.pcbi.1010796

Editor: Samuel J. Gershman, Harvard University,

UNITED STATES

Received: May 17, 2022

Accepted: December 6, 2022

Published: December 22, 2022

Copyright: © 2022 Ashinoff et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data is publicly

available on OSF (https://osf.io/fz3e4/).

Funding: Author B.K.A. was supported by a

National Institute of Mental Health (NIMH;https://

www.nimh.nih.gov/) T32 Postdoctoral Fellowship

(T32-MH018870). This work was also supported

by NIMH grants awarded to author G.H (R01-

MH114965 and R01-MH117323). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0002-9271-2464
https://orcid.org/0000-0002-6609-2724
https://orcid.org/0000-0001-5485-5280
https://doi.org/10.1371/journal.pcbi.1010796
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010796&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010796&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010796&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010796&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010796&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010796&domain=pdf&date_stamp=2023-01-10
https://doi.org/10.1371/journal.pcbi.1010796
https://doi.org/10.1371/journal.pcbi.1010796
http://creativecommons.org/licenses/by/4.0/
https://osf.io/fz3e4/
https://www.nimh.nih.gov/
https://www.nimh.nih.gov/


theoretical predictions. Knowing how base-rate neglect influences beliefs over time sug-

gests possible strategies that could be implemented in the future to minimize its impact.

We also find support for a model which may explain why people exhibit base-rate neglect

in the first place. This model suggests that people’s representation of older information in

the brain is noisy and that it is therefore rational to underuse this older information to

some extent depending on how noisy or unreliable its representation is. Finally, we show

that our measures of base-rate neglect and noise in the representation of older informa-

tion correlate with variation in real-world belief oddity, suggesting that these models cap-

ture belief-formation processes likely to dictate functioning in real-world settings.

Introduction

Accurate judgments in the face of equivocal—even nearly unequivocal—evidence depend crit-

ically upon incorporating prior knowledge about the probability of different scenarios, often

referred to as their base rate. Consider a doctor deciding whether a patient has a rare disease

(i.e., one with a very low base rate). She orders a diagnostic test that is 99% accurate, and it

comes back positive. Intuitively, you may reason it is likely that the patient has the disease.

However, in this case a positive test result is actually associated with a very low probability of

the disease. In this scenario, neglecting to account for the base rate may lead to a misdiagnosis

and serious negative outcomes. This example illustrates the pervasive bias known as base-rate

neglect [1–5] and its potential real-world consequences. Far from merely being a hypothetical

example, studies have shown that diagnosticians tend to discount known disease rates [6] and

relevant medical history [7–9]. Research into base-rate neglect in other areas further highlights

its broad societal relevance: for example, base-rate neglect leads to an overestimation of success

in environmentally relevant pursuits [10], inaccurate judgments about job candidates [11],

and errors in legal decision-making [12–14]. However, despite its importance, the mechanisms

governing base-rate neglect and its longer-term effects on human belief updating are poorly

understood.

Starting with foundational work on base-rate neglect [5], previous theoretical [1,2,5,15–17]

work has formalized base-rate neglect in a Bayesian framework as an underweighting of prior

beliefs, or beliefs summarizing previously observed information into the a priori probability of

a state or event without additional information—mathematically equivalent to its base rate [2].

This Bayesian framework extends to belief updating in sequential contexts [2,15,16] that

encompass and go beyond classically studied ‘one-shot’ scenarios, and which arguably have

more ecological validity[18]. Crucially, in the context of sequential belief updating, under a

Bayesian model where underweighted prior beliefs are iteratively updated upon observation of

new evidence samples, theoretical work indicates that base-rate neglect should impact belief-

updating dynamics in a lawful manner, simultaneously producing two main effects [2,15,16].

First, base-rate neglect in this context, henceforth referred to as ‘sequential base-rate neglect’,

should result in more reliance on newer information to form beliefs—a recency bias. Second,

it should result in a specific form of prior-dependent belief updating—with smaller updates to

prior-consistent evidence—that imposes a lower boundary on belief certainty over the long

run. These two model predictions imply that the beliefs of a sequential base-rate neglecter,

unlike those of an unbiased observer, should critically depend on the order in which evidence

is presented and reach different levels of certainty even when presented with the same amount

of evidence. Importantly, these theoretical predictions have not been jointly or systematically

tested in empirical studies.
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Previous empirical work is broadly consistent with the notion that base-rate neglect coexists

with a recency bias [19–31]. However, whether the degree of base-rate neglect that individuals

exhibit is commensurate with both the recency bias and the prior-dependent belief updating

in a way that aligns with the abovementioned theoretical predictions remains unknown. Test-

ing these predictions would ideally require a sequential belief-updating paradigm that incen-

tivizes true beliefs, has sufficient evidence samples, is conducive to quantitative analysis, and

systematically manipulates evidence order. In contrast, previous work on base-rate neglect has

often used single [4,32] or short series of evidence samples [19–22,24–30,33,34], non-incentiv-

ized paradigms[4,35], or qualitative designs [19–23,33,34]. These concerns raise the possibility

of various confounds [36] and further limit the ability of previous paradigms to characterize

critical belief-updating dynamics predicted under sequential base-rate neglect.

To address this gap in the literature, we developed and validated a novel probability-estima-

tion task (Fig 1) adopting an “urn-and-beads” design [4,5,35], which we combined with

computational modeling to test the predictions of the abovementioned weighted Bayesian

framework of sequential base-rate neglect (Fig 2). Critically, our task systematically and selec-

tively manipulated the evidence order of relatively long (8-sample) sequences and used an

incentive-compatible belief-elicitation procedure [36–39].

Another outstanding issue in this literature relates to the underlying explanation for base-

rate neglect and its (sub)optimality. While base-rate neglect can lead to adverse outcomes in

one-shot scenarios [6–14], whether it can generally be considered suboptimal depends upon

the theoretical framing. Early views framed base-rate neglect as a consequence of qualitative

differences in the assessed representativeness [40] or relevance [5] of prior information relative

to new evidence samples that are more immediately significant and thus disproportionately

influential. An implication of these and related views [41–44] is that base-rate neglect results

from a suboptimal heuristic strategy. In contrast, recent explanatory (functional or mechanis-

tic) theories of belief updating [16,45,46] suggest that sequential base-rate neglect may repre-

sent an optimal response to perceived volatility in the environment [45,46] or to internal

capacity limitations in the precision of information processing [16]. We thus evaluated these

alternative accounts in order to advance a functional explanatory model of base-rate neglect

[41].

Our results in two independent online studies confirm the joint predictions of the weighted

Bayesian model on the dynamic hallmarks of sequential base-rate neglect. We additionally

show that interindividual variability in sequential base-rate neglect measures derived from

task behavior correlates with a tendency to hold odd beliefs outside the laboratory, further sup-

porting the real-world relevance of sequential base-rate neglect. Finally, we provide initial sup-

port for a capacity-limited noisy-sampling model of sequential base-rate neglect that predicts

the interindividual relationships with response variability observed in the data, supporting a

framing of base-rate neglect as a rational response to an imprecise prior representation.

Results

In each trial of the probability-estimates beads task (Fig 1A and Methods), participants had to

estimate the probability of and eventually determine the identity of a “hidden” box, either a

‘blue box’ mostly filled with blue beads or a ‘green box’ mostly filled with green beads—with

the bead ratios of blue to green beads being reciprocal and explicitly shown. The hidden

box was randomly selected on each trial and remained the same for the duration of the trial.

Participants were shown beads drawn from the hidden box one at a time. After each bead sam-

ple, and once before seeing any samples, participants had to report an estimate of the probabil-

ity that the hidden box was the blue or the green box using a slider. At the end of a trial, after
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seeing 8 bead samples and reporting 9 estimates, participants made a binary choice about the

hidden box. Critically, the task included various novel manipulations at the trial level to allow

testing of the predictions of the weighted Bayesian model of sequential base-rate neglect (Fig

2): we systematically manipulated evidence strength (majority-to-minority ratio of bead colors

Fig 1. Task schematic. (a) Trial structure of the probability-estimates beads task. Participants are first shown two boxes, a ‘green box’ mostly filled with

green beads and a ‘blue box’ mostly filled with blue beads. The ratio of blue to green beads (bead ratio) is shown. Participants are instructed that one of

these two boxes, referred to as the “hidden box”, is selected at random, and that their task is to estimate which box is the hidden box based on beads drawn

from it. Next, they are shown an obscured representation of the hidden box, but no bead is drawn. Participants then make a first probability estimate

using a slider to indicate their perceived probability that the hidden box is either the blue or green box. White circles on top of the screen are used as

placeholders to illustrate the remaining samples that will be drawn during the trial. After this first estimate, participants see the hidden box again but this

time a bead rises out of the box. Participants are then asked to report a second probability estimate after seeing the first bead. The drawn bead replaces the

leftmost available placeholder, starting a sequential visual record of beads drawn during a trial. This process of drawing and estimating repeats until

participants have observed 8 samples and reported 9 estimates per trial. At the end of the trial, participants make a binary choice of the box they believe is

the hidden box. After this choice, a new trial begins. (b) Task variable space showing bead-ratio conditions on the y-axis (each shown in a different shade

of blue) and an evidence-order metric (evidence asymmetry) on the x-axis, with negative values indicating front-loading of majority beads (more majority

beads, beads consistent with the identity of the hidden box, in the first half of the 8-bead sequence) and positive values indicating back-loading (more

majority beads in the second half). The absolute value of the x axis corresponds to more extreme front- or back-loading (the most extreme being a

sequence where 5 majority beads are all in the front or all in the back, respectively, and the least extreme being sequences where beads are evenly

distributed around the middle). Larger circles reflect sequences with more majority beads. Sequences are organized in mirror-opposite pairs, with two

example pairs shown on the right. Note that the examples illustrate majority beads as black and minority beads as white (albeit in the task majority beads

were green or blue consistent with the identity of the hidden box in a given trial). Trials were selected to span the full range of the evidence asymmetry

space while avoiding confounds with the bead-ratio condition (Fig 1B) and cumulative evidence (S1 Fig).

https://doi.org/10.1371/journal.pcbi.1010796.g001
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in the hidden box, or ‘bead ratios’) and crucially the evidence order and symmetry of the

8-bead sequences, which we arranged as mirror-opposite sequence pairs presented in pseudo-

random order (Fig 1B).

In the context of this task, sequential base-rate neglect is mathematically equivalent to

underweighting of prior beliefs in a recursive weighted Bayesian model [1,2] (Methods) of the

Fig 2. Model predictions for sequential base-rate neglect under the weighted Bayesian model. An agent with sequential base-rate neglect (ω1 <

1.00; for these simulations: ω1 = 0.88), in blue, is compared with a Bayesian ideal observer (ω1 = 1), in grey, on the 60:40 bead-ratio condition. Values of

ω2(60:40) are 0.51 (or between 0.31 and 0.66 in the shaded regions in panels d-e) consistent with observed mean values (and 25th to 75th percentile range)

in our prior work with a similar beads task [31]. (a) Simulated sequential probability estimates for two mirror-opposite sequences for a base-rate

neglecting agent (blue/solid) and the ideal Bayesian observer (grey/dashed). Majority beads are shown as black and minority beads as white for

illustrative purposes. Belief trajectories for front-loaded sequences show a gradient from dark to light and those for the back-loaded sequences

transition from light to dark (b) Simulation of the recency bias, defined as the difference between the final probability estimate after 8 beads between

mirror-opposite pairs, as a function of the absolute evidence asymmetry of the pairs. As in Fig 1, larger circles reflect sequences with more majority

beads. The fit line shows the fixed effect of absolute evidence asymmetry on the final estimate difference. The simulated base-rate neglecter shows

higher estimates for back-loaded sequences (compared to their front-loaded mirror opposites), particularly for sequence pairs with more evidence

asymmetry. This effect varies with evidence strength and is strongest in the 90:10 condition (S2A Fig). See S2E Fig for a simulation of an agent that

overweights the prior. The lower-case delta shows the example from (a). (c) Simulation of the magnitude of logit-belief updates as a function of the

prior with respect to the color of the current evidence. For illustrative purposes, the x-axis has been discretized into bins equivalent to 0.1 increments of

prior beliefs in probability space. The y-axis represents the mean magnitude of the logit belief updates (the difference in the log-odds of the prior and

the posterior belief). The Bayesian ideal observer has constant logit belief-updates. In contrast, the simulated base-rate neglecter shows logit-belief

updates that depend upon the prior belief, with relatively larger updates for prior-inconsistent evidence (left of the vertical dashed line) and smaller for

prior-consistent evidence (right) (see S2B Fig for a condition-wise simulation). The fit line reflects the fixed effect of logit-prior on the logit-belief

update, which we refer to as prior-dependent belief updating. The model predicts main effects of logit-prior and bead-ratio condition, but no

interaction S2B Fig. See S2D Fig for a simulation illustrating the distinct scaling effects of ω2 and S2F Fig for a simulation of an agent that overweights

the prior. (d) Simulation demonstrating the predicted relationship between ω1 and the evidence asymmetry slope (blue fit line from b). (e) Simulation

of the predicted relationship between ω1 and mean final estimate difference (average of blue data points in b). (d,e) The blue and grey dots show the

values for the base-rate neglecting and Bayesian ideal observers simulated in (a,b,c).

https://doi.org/10.1371/journal.pcbi.1010796.g002
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form: logit(posterior)d = ω1�logit(prior)d + ω2�logit(likelihood)d, where d is a given draw of an

evidence (bead) sample, and logit(prior)d = logit(posterior)d−1. In short, this model forms a pos-

terior belief about the hidden box after a new sample is drawn (at d) by integrating a weighted

prior probability of the hidden box (the belief before observing the new sample) and a

weighted likelihood determined by the color of the new bead sample at draw d and the bead

ratio for the trial. While the likelihood weight ω2 multiplicatively scales all evidence samples

equally for a given bead ratio, the prior weight ω1 affects the evidence samples differentially as

a function of the draw number d. In particular, prior underweighting (ω1<1) or sequential

base-rate neglect, implies exponential discounting of older evidence samples as a function of

number of draws into the past (i.e., the older the information, the more it is neglected or dis-

counted). Theoretical predictions under this model suggest that sequential base-rate neglect

should manifest as two main dynamic effects commensurate with the degree of base-rate

neglect [2,15,16]: a recency bias (Fig 2B) and prior dependence in belief updating (Fig 2C).

Using this paradigm, we conducted two online studies which produced high-quality data

consistent with in-person studies based on extensive quality checks (see Online Data Quality
in Methods).

Study 1

After exclusions (Methods), data for 151 participants were analyzed for Study 1.

Manipulation check. We first checked whether the draw-by-draw probability estimates

for the hidden box reported by participants indicated that they generally engaged in the task as

we expected. Indeed, averaging across all sequences and participants, probability estimates

showed a gradual increase towards higher probabilities for the true hidden box as the number

of observed beads increased, and the rate of this increase was higher for bead-ratio conditions

denoting stronger evidence ([90:10]>[60:40]>[51:49]; interaction of bead draw [0–8] by

bead-ratio condition: t160.66 = 26.15, p = 8.82x10-60, linear mixed-effects model; Fig 3A and S4

Table), suggesting that participants’ beliefs tracked the cumulative evidence strength of

observed samples over a trial. This effect was also obvious in most individual participants and

in an analysis restricted to a subset of 16 identical sequences (see Methods) across 60:40 and

90:10 bead-ratio conditions ([90:10] > [60:40]; interaction of bead draw [0–8] by bead-ratio

condition: t182.96 = 11.81, p = 2.79x10-24, linear mixed-effects model; Fig 3A inset and S5

Table). The first estimates before seeing any bead were generally unbiased S3 Fig and no sys-

tematic between-trial effects were apparent.

Behavioral signatures of sequential base-rate neglect. As mentioned above, the weighted

Bayesian model predicts that base-rate neglecters (ω1 < 1) should have a recency bias. In the

sequential context relevant here, the recency bias should manifest at the end of a sequence as

higher final probability estimates for the true hidden box when more majority beads (beads

whose color is consistent with the true identity of the hidden box) are presented towards the

end versus the beginning of the sequence (“back-loaded” versus “front-loaded” sequences,

respectively). This would directly show that more recent samples, closer to the end of the

sequence, have a stronger influence on the final estimate relative to older samples closer to the

beginning (Fig 2A). Furthermore, model simulations showed that this effect should be more

apparent when comparing pairs of sequences with more extreme front-loading and back-load-

ing (Fig 2B), which we quantified based on a linear weighted sum of majority beads in the

sequence based on their order (1st to 8th position) and which we refer to as ‘evidence asymme-

try’ (with respect to the middle of the sequence). In contrast to a base-rate neglecter (prior

weight ω1 < 1), the Bayesian ideal observer exhibits path- or evidence-order-independence in

its final beliefs, as do observers with different likelihood weighting (ω2 6¼ 1; S2 Fig).

PLOS COMPUTATIONAL BIOLOGY How and why base rate neglect biases beliefs over time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010796 December 22, 2022 6 / 37

https://doi.org/10.1371/journal.pcbi.1010796


Fig 3. Study 1 participants show behavioral signatures of sequential base-rate neglect which scale with model-derived prior underweighting. (a)

Group mean of average probability estimates over bead draws for each bead-ratio condition. Participants updated beliefs progressively toward the

correct hidden box with steeper slopes for stronger evidence. The inset shows the same data limited to matched (identical) sequences for the 60:40 and

90:10 conditions. Solid lines and shaded regions reflect the mean and standard error of the mean (SEM) of the weighted Bayesian model fits across

participants. (b) Group mean of final estimate difference as a function of evidence asymmetry. Each data point shows the difference in the probability

estimate after 8 beads for a back-loaded and a front-loaded sequence comprising a mirror-opposite pair, with positive values indicating higher

estimates for back-loaded sequences consistent with recency bias. Solid lines and shaded regions reflect the mean and SEM of the weighted Bayesian

model fits. Consistent with model predictions (Fig 2B), the data shows a recency bias scaling with evidence asymmetry. (c) Group median of individual

medians for the magnitude of logit-belief updates as a function of the logit prior with respect to the color of the current bead sample, divided by bead-

ratio condition. The x-axis is discretized into bins equivalent to 0.1 increments of the prior belief in probability space (with a lower limit of 0.01 and an

upper limit of 0.99; data only binned for visualization). The y-axis represents the magnitude of the logit-belief updates (the difference in the log-odds of

the prior and posterior beliefs). Solid lines and shaded regions reflect medians and 95% bootstrapped confidence intervals of the weighted Bayesian

model fits. Although not displayed for visual clarity, the confidence intervals for the raw data overlap substantially with the model fits. For visualization

only, we excluded extreme outlier or noisy data points (logit belief updates > 2, individual median values based on less than 3 data points for a given

bin, group median values based on less than 25% of individuals) for a total exclusion of 6.96% of the data. Consistent with model predictions (Fig 2C),

the data shows prior-dependent belief-updating with less updating for prior-consistent evidence (right of the vertical dashed line; i.e. an overall

negative slope). Note that at the group level this effect appears to be non-monotonic (with slightly positive slope towards the rightmost end) due to

aggregation of data across individuals with different ω1 values, since individuals with ω1 > 1 are predicted to have and exhibit more updating to prior-

consistent evidence (i.e., positive slopes; S2 Fig). (d) Formal model comparison for data from study 1. We compared 10 different models as in our

previous work [31]. Each model is defined by its free parameters, which are reflected on the x-axis. See S28 Table for details. The winning model was

defined as the model with the highest protected exceedance probability, which was the same as in our previous work [31] and in study 2 (S6 Fig). (e)

The evidence asymmetry slope (equivalent to a single line fitted across all conditions in panel b) is plotted against the prior-weight ω1, showing a

negative correlation. This correlation closely follows model predictions indicated by the black line (as in Fig 2D but with shaded regions including

variability in likelihood-weight ω2 parameters between the 25th and 75th percentile range of observed values in our previous work [31]). Marginal

violin plots show group medians and interquartile ranges. (f) The mean final estimate difference is shown against ω1, again showing a correlation that

follows the model prediction (black line as in Fig 2E). Marginal violin plots show group medians and interquartile ranges. (e, f) Asterisks indicate a

significant sign-rank tests of group medians against the corresponding reference values indicated by the dashed lines. Note that results in (e) and (f)

were robust to the exclusion of outliers with an ω1 more than 3 scaled median absolute deviations [52] from the median (ω1<0.75; 11 outliers): after

their removal, the correlation between ω1 and the evidence asymmetry slope was still significant (ρ = -0.58, p < 10−307), as was the correlation between

ω1 and the mean final estimate difference (ρ = -0.53, p = 2.32 x 10−12). Posterior predictive checks further recapitulate the range of values in the data

(S10–S12 Figs).

https://doi.org/10.1371/journal.pcbi.1010796.g003
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Our task design included a systematic sequence-level manipulation of evidence order and

asymmetry (Fig 1B) to allow for a direct demonstration of recency bias. Per the above explana-

tion, a simple test for this bias consisted of comparing the final probability estimate between

mirror-opposite sequence pairs that had the same number of majority beads and bead ratio

but in which majority beads were either front-loaded or back-loaded (Fig 2A). Critically, the

data showed evidence-order-dependence in the form of a recency bias consistent with sequen-

tial base-rate neglect: pair-wise differences in final probability estimates were higher for back-

loaded versus front-loaded sequences (mean final estimate difference > 0, p = 1.66x10-8; sign-

rank test) and this positive difference increased with evidence asymmetry (evidence asymme-

try slope > 0, p = 2.22x10-11; sign-rank test), with steeper slopes for stronger evidence

([90:10]>[60:40]>[51:49] bead-ratio conditions; bead ratio x evidence asymmetry interaction:

t151.46 = 3.107, p = 0.002, linear mixed-effects model; Fig 3B and S6 Table). All three findings

conformed with the predictions of the sequential base-rate-neglect model.

A further prediction of the weighted Bayesian model is that sequential base-rate neglect

induces a form of prior-dependent belief updating whereby, as the prior increases in favor of

one option, the magnitude of logit belief updates to prior-consistent evidence decreases, and it

increases to prior-inconsistent evidence (Fig 2C). This impedes reaching full certainty in

beliefs over the long run, resulting in more “moderate” beliefs [1,2,17]. In contrast, the ideal

observer would predict belief updates of constant magnitude in logit space. In line with

sequential base-rate neglect and our model predictions, we observed that mean logit belief

updates in response to prior-consistent evidence tended to decrease as prior certainty

increased (logit-prior main effect: t150.30 = -2.643, p = 0.009; Fig 3C), an effect which was inde-

pendent of the bead-ratio condition (logit-prior x bead-ratio interaction: t143.13 = 0.903,

p = 0.368; linear mixed-effects model; S7 Table).

Thus, these model-agnostic results show evidence-order dependence and prior-dependent

updating that are generally consistent with the predictions of sequential base-rate neglect

under the weighted Bayesian model [1,2,17,31] and are satisfactorily captured by this model

based on posterior predictive checks (shaded regions in Fig 3A–3C).

Relationship between model-agnostic and model-based measures of sequential base-

rate neglect. We carried out a group-level model comparison of variants of Bayesian-infer-

ence models, including the (unweighted) Bayesian ideal-observer model, as in previous work

[31] (see Methods). As in this previous work, the winning model (Fig 3D; S8 Table) was the

weighted Bayesian model with a prior-weight parameter (ω1) and one likelihood-weight

parameter per condition (o2ðlÞ
, where (l) is one of the three bead-ratio conditions). Examining

the fitted prior-weight ω1 parameter values across participants revealed substantial interindi-

vidual variability and a general tendency for underweighting of prior beliefs (ω1<1:

p = 2.27x10-4, sign-rank test), consistent with sequential base-rate neglect. Critically, and con-

sistent with the model predictions (Fig 2D and 2E), participants exhibiting lower ω1 values

tended to exhibit stronger recency biases and stronger modulation with increasing evidence

asymmetry in their final probability estimates (mean final estimate difference: ρ = −0.60,

p<2.22 x 10−308; evidence asymmetry slope: ρ = −0.64, p<2.22 x 10−308; Spearman correlation;

Fig 3E and 3F). The evidence asymmetry slope and the mean final estimate difference also cor-

related strongly with each other (ρ = −0.63, p<2.22 x 10−308). Note that the model-predicted

relationship between the prior weight ω1 and these model-agnostic measures of recency bias

(Fig 2D and 2E) is non-monotonic for very low values of ω1 but monotonic for the range of ω1

values roughly over 0.75, where the majority of our data are (92.72%); results held when analy-

ses were restricted to this monotonic range (see Fig 3 caption). Furthermore, prior-dependent

updating—the slope of the logit belief update in the direction of the evidence as a function of
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the logit prior—across all bead-ratio conditions positively correlated with ω1 (ρ = 0.71, p<2.22

x 10−308), and negatively correlated with the evidence-asymmetry effect (ρ = −0.50, p = 1.32 x

10−10) and the mean final estimate difference (ρ = −0.49, p = 2.57 x 10−10). These model-pre-

dicted relationships all held when controlling for the three o2ðlÞ
parameters, and the model

root-mean-squared error (RMSE; S9 Table) and were robust to exclusion of potential outliers

(see Fig 3 caption).

This indicates consistency across model-based and model-agnostic analyses and highlights

the specificity of the relationship between ω1 and the predicted behavioral signatures of

sequential base-rate neglect. Furthermore, measures of general cognition [47] and psychopa-

thology [48] did not show a specific relationship with ω1, suggesting that variability in ω1 is

unlikely to reflect domain-general factors (despite sufficient variability in both; S4 Fig and

S10–13 Tables).

Relationship between laboratory indices of sequential base-rate neglect and odd real-

world beliefs. Individuals with more extreme sequential base-rate neglect may tend to hold

peculiar beliefs due to excessive susceptibility to new evidence (i.e., recency bias) combined

with an inability to resolve belief uncertainty [2] (per prior-dependent belief updating). To

examine the relevance of interindividual variability in the task-based measures of sequential

base-rate neglect to real-world beliefs, we collected a self-report questionnaire that measures

proclivity to various odd or unusual beliefs (Peters Delusions Inventory [PDI] [49]; Methods).

We did not observe significant relationships between the relevant measures of sequential base-

rate neglect and PDI scores (S9 Table). However, very few participants had high PDI scores

based on previously published cutoffs [50,51] (only 1–15 participants or ~1–10% of the sam-

ple), thus limiting our power to detect relationships with PDI. To address this, we conducted a

second study that used pre-screening to ensure an adequate range of PDI scores.

Study 2

Pre-screening, exclusions, and retained sample. To ensure a wide range of PDI scores

and sufficient high PDI participants with odd beliefs, Study 2 used a pre-screening procedure

following prior work [53–56] (Methods). The study consisted of two parts: (i) a pre-screening

based on the PDI (and, secondarily, on the Paranoia Checklist; Methods), and (ii) a separate

experimental session involving administration of a second PDI and the task discussed above

(separated on average by 3.5 days). Critically, the pre-screening used unbiased PDI-score cut-

offs derived from previously published norms [49] (under 34.9 for low PDI and over 82.9 for

high PDI; Methods). After exclusions (Methods), 116 participants were retained of whom 91

comprised the main sample: 34 in the high PDI group and 57 in the low PDI group (S1 Table;

Fig 4A and 4B inset). Attesting to the effectiveness of (and need for) the pre-screening, note

that only 2 participants from study 1 would have been classified as high PDI based on study 2’s

pre-screening cutoffs.

Direct replication of results from study 1. As further validation of our task and model,

we replicated the critical results from study 1 in the main sample of study 2 (Fig 4 and S2

Text), including the winning model (S6 Fig; S8 Table).

Group differences in sequential base-rate neglect reflect variability in real-world odd

beliefs. Having ensured enough variability in odd beliefs (i.e., PDI scores), we tested whether

the high and low PDI groups differed on the relevant measures of sequential base-rate neglect.

Both groups separately showed recency biases (mean final estimate difference and evidence

asymmetry slope; all p<0.009), but only the high PDI group showed the prior-dependent

belief-updating effect (low PDI: p = 0.41; high PDI: p = 0.02; sign-rank tests). There were no

group differences for the recency bias measures (mean final estimate difference or evidence

PLOS COMPUTATIONAL BIOLOGY How and why base rate neglect biases beliefs over time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010796 December 22, 2022 9 / 37

https://doi.org/10.1371/journal.pcbi.1010796


PLOS COMPUTATIONAL BIOLOGY How and why base rate neglect biases beliefs over time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010796 December 22, 2022 10 / 37

https://doi.org/10.1371/journal.pcbi.1010796


asymmetry slope; all p>0.48) or for the prior-dependent belief-updating effect, although the

latter trended towards significance (p = 0.083, rank-sum test; Fig 5A). Crucially, the model-

based measure of sequential base-rate neglect did differ between the groups, with more

sequential base-rate neglect (lower ω1) in the high PDI compared to the low PDI group

(p = 0.018; rank-sum test; effect-size Cliff’s delta δ = 0.30). No group differences were observed

in the other model parameters (o2ðlÞ
: all 0.43>p>0.09; rank-sum tests; -0.10>δ>-0.21; Fig 5A

and S22 Table).

Consistent with the observed group differences, an exploratory dimensional analysis

(including 25 participants with PDI scores in an intermediate range between the high and low

cutoffs in addition to the 91 comprising our primary groups per the pre-screening protocol;

n = 116) showed that individuals with more unusual beliefs tended to exhibit lower ω1 (ρ =

−0.25, p = 0.007) and a trend towards stronger prior-dependent belief-updating (i.e., a more

negative slope; ρ = −0.17, p = 0.065). The relationship with ω1 held after controlling for all

three o2ðlÞ
parameters and the model RMSE (ρ = −0.22, p = 0.021; Fig 5C and S23 Table). The

relationship with ω1 also held after controlling for demographic variables including age, bio-

logical sex, race, education, handedness, smoking and drug use status, and previous hospitali-

zations for psychiatric and neurological conditions (ρpartial = −0.24, p = 0.021), and none of

these variables related to PDI scores. Our secondary measure of odd beliefs, the Paranoia

Checklist, also correlated with ω1 (ρ = −0.23, p = 0.014) and the prior-dependent belief-updat-

ing (ρ = −0.12, p = 0.039). Overall, the results of study 2 suggest that a laboratory measure of

sequential base-rate neglect relates specifically to odd beliefs outside the laboratory.

Study 3

Functional explanations for sequential base-rate neglect. Thus far, we have shown evi-

dence that human behavior in a sequential belief-updating task generally conforms to the pre-

dictions of a weighted Bayesian model of sequential base-rate neglect. Specifically, this model

jointly predicts a recency bias and a pattern of prior-dependent updating as well as interindi-

vidual relationships with prior underweighting that we observed empirically. Further, interin-

dividual variability in sequential base-rate neglect correlates with real-world belief oddity.

However, this descriptive model does not provide a normative explanation as to why sequen-

tial base-rate neglect is such a predominant feature or why it varies across individuals. It also

does not address whether prior underweighting may or may not be an optimal strategy under

realistic constraints.

Study 3 thus aimed to address these outstanding mechanistic questions of why people

exhibit base-rate neglect and whether it could reflect an optimal strategy. To do so, we consid-

ered models that explain variation in prior weighting as a rational response to external or

internal factors. We specifically considered a first class of functional models that explains

Fig 4. Replication in study 2 of results from study 1. (a, b) Mean final estimate difference as a function of evidence asymmetry for the

low and high PDI groups independently (S18 and S19 Tables). Solid lines and shaded regions reflect the mean and SEM of the weighted

Bayesian model fits. The center inset shows the exponential fit of the distribution of PDI global scores from study 1 (grey line) and study 2

(black line), indicating the cutoffs for high and low PDI by vertical dashed lines. (c, d) Logit-belief updates as a function of logit prior by

bead ratio for the low (c; S20 Table) and high (d; S21 Table) PDI groups. Group medians of individual medians for logit-belief updates are

shown and other conventions follow Fig 3C. Solid lines and shaded regions reflect medians and 95% bootstrapped confidence intervals of

the weighted Bayesian model fits. (e) Evidence asymmetry slopes are plotted against ω1 by group. Other conventions as in Fig 3E. Marginal

violin plots show the group medians and interquartile ranges. The asterisk indicates a significant rank-sum test comparing group medians

of ω1. (f) Mean final estimate differences are plotted against ω1. The marginal violin plot shows the group medians and interquartile

ranges. (e, f) The solid black line shows model predictions as in Fig 2E and 2F. As in Fig 3, after excluding outliers [52] (ω1<0.82; 11

outliers), the correlation between ω1 and the evidence asymmetry slope was still significant (ρ = -0.37, p = 1.08 x 10−4), as was the

correlation between ω1 and the mean final estimate difference (ρ = -0.47, p = 7.32 x 10−7).

https://doi.org/10.1371/journal.pcbi.1010796.g004
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sequential base-rate neglect and its variability as a consequence of perceived variability in the

environment [45,46] and a second class that explains it as a rational adjustment to a noisy

internal sampling process [16]. In the first, in a volatile environment where the underlying evi-

dence-generating process can change abruptly, the relevance of evidence before an inferred

change point should be proportional to the certainty that a change point occurred. Thus, an

optimal agent that perceives the environment as volatile will tend to decrease the prior weight

around potential change points, therefore exhibiting sequential base-rate neglect. This class of

model should be less applicable to the stable environment in the current task, but we reasoned

that participants could still assume some degree of volatility despite explicit instructions to the

contrary. The second class of models prescribes the optimal behavior for an agent with limited

cognitive resources [57]. Under the noisy-sampling model [16] within this class, the agent can

only access an imprecise, noisy representation of prior beliefs through random sampling of its

internal representation (i.e., the distribution of the logit prior resulting from additive noise); it

is possible to increase precision of the prior representation by increasing samples at the cost of

allocating more internal cognitive resources, but the optimal strategy balances this cost against

that of prediction inaccuracy (Fig 6A). Given this, the optimal strategy in this capacity-limited

agent consists of decreasing the prior weight more in response to greater noise in the prior
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Fig 5. Prior underweighting relates to belief oddity outside the laboratory. (a) Summary of group-level differences (S22 Table) for model-based and

model-agnostic measures between the low (n = 57) and high (n = 34) PDI groups. Bar plots are effect size (Cliff’s delta, δ) and 95% confidence intervals. (b)

Scatterplot showing a negative correlation between ranked mean PDI scores and ω1 (n = 116). Values are adjusted by o2ðlÞ
parameter values and the model fit

(RMSE) for specificity as in the partial Spearman correlation analysis. Boxplots show medians (blue lines) and 25th and 75th percentiles (bottom and top

edges, respectively). The solid black line reflects the least-squares linear fit to the data points. Mean PDI is the average of the global PDI scores across the pre-

screening and the experimental sessions for each participant.

https://doi.org/10.1371/journal.pcbi.1010796.g005
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representation [16]. Because more noise in the prior representation should lead to more vari-

able responses, even after accounting for structured variability due to sequential effects the

noisy-sampling model predicts a correlation between the degree of sequential base-rate neglect

and (unstructured) response variance. In contrast, the alternative volatility-based model we

considered here does not predict this correlation in the context of our task (S7 Fig).

We thus assessed the interindividual correlation between prior-weight ω1 and response var-

iance across all 267 participants from studies 1 and 2. A clear correlation was observed with ω1

when using the unexplained variance by the weighted Bayesian model (the model RMSE) as

an index of unstructured response variability (ρ = −0.40, p = 8.9 x 10−12, Spearman correlation;

Fig 6A). This relationship was also present in each independent sample (S24 Table). To cir-

cumvent potential artifacts of modeling, we also derived a model-agnostic measure of response

variance focused on the unstructured variability of responses under identical circumstances—

specifically, the aggregate response variance of logit probability estimates for repeated, identi-

cal sequence fragments matched on bead color and bead ratio (Methods), which we refer to as

the response variance for simplicity and which captures variability that cannot be attributed to

sequential evidence-order effects. Using this measure, we again found a correlation with ω1 in

the expected direction (ρ = −0.46, p<2.22 x 10−308; Fig 6B). Again, this relationship was also

present in each independent sample (S24 Table). Although this result does not rule out the

broader class of volatility models, it is more consistent with the noisy-sampling model; we thus

further explored the ability of the latter model to capture our data.

The noisy-sampling model captures belief-updating behaviors described by the

weighted Bayesian model. The noisy-sampling model posits that the prior and likelihood

weights of the weighted Bayesian model (ω1 and ω2(l)) scale negatively with the respective

noise in the representation of the prior and likelihood, captured respectively by parameters

s2
prior and s2

likelihood ðlÞ (S25 Table). The noisy-sampling model also includes parameters o2
prior and

o2
likelihood ðlÞ that reflect the uncertainty in the distribution of logit priors and logit likelihoods

that the agent might encounter (here held constant for model fitting to avoid parameter trade-

off; Methods). Perhaps unsurprisingly given that the structure of the noisy-sampling model

reduces to the weighted Bayesian model, when fitted to our data (Methods) the noisy-sampling

model captured comparable variance (correlation of explained R2 between models: ρ = 0.93)

and the σ2 noise parameters closely correlated with the corresponding weights of the weighted

Bayesian model (mean Spearman correlation ρ = −0.92; Fig 6C and S8 Fig) in the full sample

combining studies 1 and 2 (n = 267). Under the noisy-sampling model, behavioral variability

is partly due to noise in the internal representation of variables such as the prior. If this is true

and it explains the observed correlation between ω1 and response variance, prior noise should

correlate with response variance. Consistent with this, the fitted parameter s2
prior correlated

with response variance (ρ = 0.35, p = 5.06 x 10−9; Fig 6D and S24 Table). Control analyses eval-

uating contributions of o2
prior suggested that this parameter had no meaningful contribution to

response variance or base-rate neglect (S9 Fig and Methods).

Alternative explanations to noisy sampling. A possible alternative explanation of the

observed correlation between prior weight ω1 and response variance may be that individuals

respond more inconsistently not because of noisy internal representations but due to other

lower-level factors such as distraction or late motor noise. In other words, some inattentive

participants could in principle tend to respond randomly. Although this is unlikely based on

control analyses (S8 Fig and S9 Fig), if this were the case, perhaps data from these individuals

was better fitted with lower ω1 values due to modeling artifacts. To evaluate this possibility, we

assessed robustness of parameter recovery for the weighted Bayesian model and the noisy-

sampling model in the presence of levels of late noise that could capture random responding
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during the task (Methods). These analyses showed that parameter recovery of the relevant param-

eters (ω1 and s2
prior) had no appreciable biases at levels of late noise matching the observed behav-

ioral variability in the data (Fig 6E and 6F), suggesting that variability in their fitted values is

unlikely to stem from lower-level factors irrelevant to the noisy-sampling model. Moreover, an

explanation of prior underweighting in terms of inattentiveness may predict modulations of

response times by ω1 that were not present in the data (S27 Table). Altogether, these results speak

against an explanation in terms of inattention or random responding and support noisy represen-

tation of prior beliefs as a more tenable explanation for sequential base-rate neglect.

Relationship between prior noise and real-world odd beliefs. Because belief oddity cor-

related with sequential base-rate neglect (lower ω1) in study 2, and the previous results imply that

prior noise (s2
prior) could explain sequential base-rate neglect, we next asked whether prior noise

could account for belief oddity. In the main sample from study 2, the high PDI group showed

higher s2
prior than the low PDI group (p = 0.007, rank-sum test; δ = -0.34; Fig 7A). No group dif-

ferences were observed in the other model parameters (s2
likelihood ðlÞ: all 0.40>p>0.12, rank sum

tests; 0.18>δ>-0.53) or in response variance (p = 0.12, rank-sum test; δ = -0.20; S26 Table).

These results suggest that high PDI may be specifically associated with increased prior noise.

An exploratory dimensional analysis (using the same sample as in Fig 5B and 5C) further

showed a correlation between prior noise s2
prior and more unusual beliefs (ρ = 0.29, p = 0.002;

Fig 7B), even after controlling for all three s2
likelihood ðlÞ parameters and the noisy sampling model

RMSE (ρ = 0.265, p = 0.0048; S24 Table). Altogether, these results suggest that noisy prior rep-

resentations may explain sequential base-rate neglect and interindividual variability in odd

beliefs outside the laboratory.

Discussion

In this study, we leveraged computational modeling and a novel task developed to test the

joint predictions of a weighted Bayesian model of sequential base-rate neglect. People tended

Fig 6. Relationship between prior underweighting, prior noise, and response variance. (a) Visual Schematic of Noisy Sampling

Model. The noisy-sampling model captures an iterative sequential belief updating process where the internal representation of

prior (and likelihood information) is noisy (see Methods). This is based on an agents’ uncertainty about the true values of the prior

and likelihood, given recent evidence, with variances s2
prior and s2

likelihood, and their assumed distributions of priors and likelihoods,

with variances o2
prior and o2

likelihood. Note that variables are in logit space and noise consists of an additive zero-mean Gaussian

distribution. Critical to the model are a noisy representation of the prior and likelihood where the noise is given by the functions

gðs2
prior; o2

priorÞ and gðs2
likelihood; o2

likelioodÞ. More noise (e.g., due to higher s2
prior) leads to more random variability in responses reflecting

the posterior belief (even for repetitions of identical sequence fragments, as captured by the model-agnostic measure of response

variance). Optimal inference results from adjusting weighting commensurate with the degree of noise, with optimal weights given

by the functions f ðs2
prior; o2

priorÞ and f ðs2
likelihood; o2

likelioodÞ. Finally, the optimal posterior is a weighted sum of the noisy prior and noisy

likelihood in logit space. Model fitting used 4 free parameters, 1 shared s2
prior parameter and condition-specific s2

likelihood parameters

(3), and a grid search with 4 fixed parameters for o2
prior (1) and o2

likelihood (3) (Methods). (b) Scatterplot of ranked response variance

rank and ω1 showing a negative relationship indicating that individuals with more sequential base-rate neglect have more

variability in their probability estimates for identical sequence fragments (Methods). (c) Scatterplot of ranked response variance

and prior noise s2
prior showing a positive relationship indicating that the model-agnostic measure of response variability scales with

the model-derived measure of prior noise. (b, c) Boxplots reflect median (blue) and 25th and 75th percentiles (bottom and top

edges, respectively). Black lines show the least-squares linear fit of the data points. (e, f) Noise-corrupted parameter recovery

analysis for the weighted Bayesian model (e) and the noisy-sampling model (f). The y-axis shows the percent deviation in the

recovered versus the original parameter values. The x-axis shows the magnitude of the late Gaussian noise added at the response

level in the model simulations in standard deviation. Each grey line depicts a single agent defined by a set of parameter values

across a range of noise levels. The red shaded area indicates the estimated range of response variance found in the actual data as a

95% confidence interval based on the median response variance (see Methods). On average (black line), the critical parameters are

adequately recovered, without systematic biases in their estimation for meaningful levels of late Gaussian noise (particularly for the

weighted Bayesian model), indicating that low-level factors such as general inattention or random responding are unlikely to

explain variability in ω1 values.

https://doi.org/10.1371/journal.pcbi.1010796.g006
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to exhibit base-rate neglect—defined as prior underweighting based on long-standing [5] and

recent theories [1,2]—which in a sequential context manifested in two ways consistent with

model predictions [1,2,17]: a recency bias, apparent in the raw differences in final probability

estimates between mirror-opposite sequences, and a form of prior-dependent updating, appar-

ent in the changes of probability estimates. Crucially, interindividual variability in the magni-

tude of these effects was commensurate with the degree of sequential base-rate neglect

exhibited by individuals. We also considered functional explanatory models of base-rate

neglect, and found initial support for a noisy-sampling model[16] whereby sequential base-

rate neglect represents an optimal response to noisy representation of prior beliefs—in con-

trast to classical theories that frame base-rate neglect as a suboptimal heuristic strategy [3,5].

The noisy-sampling model predicted correlations between sequential base-rate neglect and

unstructured response variance that we corroborated in the data. Finally, both model-derived

measures of sequential base-rate neglect and prior noise from our laboratory task correlated

with the endorsement of odd beliefs outside the laboratory, suggesting the relevance of these

computationally characterized processes to the development and maintenance of real-world

beliefs.

Our study goes beyond previous studies showing evidence-order effects in sequential belief

updating [19–31,33,34] in several ways. First, our study used explicit quantitative information

from a single evidence stream as the basis for both prior beliefs and the likelihood of evidence

samples. This allowed us to rule out meaningful baseline biases (S3 Fig) as each of two

Fig 7. Prior noise relates to belief oddity outside the laboratory. (a) Summary of group-level differences for noisy-sampling model-based and model-

agnostic measures between the low (n = 57) and high (n = 34) PDI groups. Bar plots are effect size (Cliff’s delta, δ) and 95% confidence intervals. (b) Scatterplot

showing a positive correlation between ranked mean PDI scores and s2
prior (n = 116). Values are adjusted by o2ðlÞ

parameter values and the model fit (RMSE) for

specificity as in the partial Spearman correlation analysis. Boxplots show medians (blue lines) and 25th and 75th percentiles (bottom and top edges,

respectively). The solid black line reflects the least-squares linear fit to the data points. Mean PDI is the average of the global PDI scores across the pre-screening

and the experimental sessions for each participant.

https://doi.org/10.1371/journal.pcbi.1010796.g007
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alternative states was confirmed to be considered equally likely before any evidence was pre-

sented. It also equalized the relevance and representativeness of the prior and likelihood infor-

mation, making interpretations of base-rate neglect in terms of qualitative differences between

observed evidence and base-rate information [5,40] less tenable. Second, we used a validated

belief-elicitation procedure that financially incentivized participants to report their true beliefs

[35,36,38]. Third, we used computational modeling to parse the role of prior weighting during

sequential belief updating. Combined with longer sequences and a novel manipulation of evi-

dence order, this allowed us to systematically characterize evidence-order effects and empiri-

cally confirm the theoretical prediction [1,2,4,32] that sequential base-rate neglect expresses

itself as a combination of recency bias and prior-dependent belief updating imposing a ceiling

on belief certainty. And fourth, past studies have found an association between cognitive biases

and odd beliefs [58–63] in the general population. However, their primary findings center on

correlations between odd beliefs and broadly defined or composite measures of reasoning or

cognitive biases—rather than more narrowly defined and more interpretable cognitive con-

structs defined via computational modeling. These broader measures have yielded mixed

results, possibly due to the qualitative nature of the reasoning tasks or other limitations such as

a small number of trials. In contrast, the current study identified a specific relationship

between a precisely defined computational measure of sequential base-rate neglect from a

well-controlled paradigm and a subjective report of odd beliefs in the general population.

A unifying theory for why people exhibit sequential base-rate neglect has been lacking [41].

A classic influential view of base-rate neglect framed it as a heuristic strategy [5,40–44],

although this notion lacked clear support and a fully developed explanatory framework. Here,

we provide empirical support for an alternative functional (mechanistic) model [16] that

explains sequential base-rate neglect as an efficient response to noise in the internal represen-

tation of prior beliefs. Individuals are assumed to have a certain trait-like degree of prior noise,

or imprecision, and they can adapt to it by modulating its influence or weight on belief updat-

ing. Given limited internal resources (e.g., cognitive or metabolic), individuals must balance

the internal costs of precision against the cost of incorrect predictions [64–66]. And given the

limited precision with which prior information can be represented, the optimal strategy is to

discount prior information (i.e., to neglect the base rate) in proportion to the degree of prior

imprecision. We also considered alternative explanations to the noisy-sampling model, includ-

ing lower-level factors such as inattention, ultimately deeming an explanation in terms of a

response to internal prior noise to be more tenable. Partly supporting this conclusion, we

found empirical support for a key prediction of the noisy-sampling model that the degree of

prior noise should relate to the amount of unstructured variability reflected in response vari-

ance (beyond structured variability related to evidence-order effects). This conclusion is also

in line with the finding that the degree of base-rate neglect depends on the perceived trustwor-

thiness of prior information [67]. Our results may also be reconciled with the observation that

recency bias is more prevalent upon sequential belief elicitation (as in our paradigm) versus

end-of-sequence single-shot belief elicitation [24], at least if we assume that belief updates only

occur upon each elicitation [1,2], since more elicitations should lead to more prior discounting

with each belief update. Generally speaking, our results thus align with an emergent literature

supporting the relevance and biological plausibility of sampling-based inference models [68–

77]. While here we focused on a specific model of inference under internal capacity con-

straints, our main results are broadly consistent with this model family—including a learning-

to-infer model where prior underweighting and sequential biases arise through learning of

contextual information [78]—and thus support further examination of these models in future

work.
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Finally, we extended previous field work linking sequential base-rate neglect to real-world

judgments by demonstrating that individuals with more sequential base-rate neglect and nois-

ier prior beliefs tend to endorse more odd beliefs in their daily lives [79]—beliefs that are likely

to influence how they function in society [53,80–86]. Notably, this has implications for psychi-

atric disorders involving delusions [17,31] or odd unsupported beliefs. Previous literature has

emphasized a “jumping to conclusions” [87–92] bias in schizophrenia, although interpreta-

tions of this bias in terms of altered belief updating in relation to delusions remains question-

able [17,31,93–96]. Using a similar approach to the current paper, we previously showed that

variability in sequential prior weighting correlated with the clinical delusion severity in schizo-

phrenia [31], suggesting a role for sequential base-rate neglect in belief psychopathology. Our

finding that sequential base-rate neglect drives evidence order effects implies that different

sequences of information may lead to inconsistent differences in certainty (and by extension

information sampling) in schizophrenia [17], which could explain mixed results in this litera-

ture [93–95]. Systematic manipulations of evidence order such as the ones we introduced here

may thus be helpful in clarifying the computational mechanisms underlying delusions. Fur-

ther, our results also emphasize that alterations in noisy-sampling (and other limited-capacity)

inference processes should be evaluated as candidate explanations for maladaptive or patho-

logical beliefs, particularly given increasing support for their role in adaptive behaviors [97,98].

Our results indicate that sequential base-rate neglect makes human observers rely dispro-

portionately on recent evidence. They also hint at a potential strategy that could be used to

avoid or minimize potentially harmful consequences of sequential base-rate neglect. By manip-

ulating the magnitude of evidence asymmetry, we showed that recency biases tend to disap-

pear in sequences with balanced information (i.e., they approach zero as evidence asymmetry

approaches zero; e.g., as shown in Fig 3B). This suggests that sequential information curated to

maximize evidence symmetry may facilitate the development of unbiased beliefs. This principle

could apply to real-world situations where unbiased, objective judgments are vital, like a clini-

cian making a diagnosis or a jury rendering a verdict. In the former case, previous work has

shown that the order of information affects diagnostic accuracy [8,20,99], so ensuring a bal-

anced sequence of information—e.g., via medical decision-making scripts [100]—could plausi-

bly minimize biases and improve diagnostic accuracy. More generally, our results suggest that

symmetrically interleaving opposing pieces of evidence may yield a more balanced synthesis of

the information at hand.

In summary, we have showed that base-rate neglect manifests sequentially as a combination

of recency bias and prior dependence in belief updating, that this process may result from a

noisy representation of prior beliefs, and that it likely contributes to the formation of odd

beliefs in the real world. Altogether, our findings suggest that sequential base-rate neglect is

not just a mathematical quirk or an artifact of laboratory methods but a robust feature of

human belief formation.

Methods

Ethics statement

All participants provided written informed consent. This study was approved by the Institu-

tional Review Board at the New York State Psychiatric Institute (Protocol #6916).

Incentive-compatible probability-estimates beads task

Task aim. We developed a modified beads task building from previous work[31] where

participants had to infer the identity of a hidden state (blue or green box) based on multiple

samples of evidence (colored beads). We elicited probability estimates about the identity of the
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hidden state after each sample of evidence, allowing us to track the development of beliefs over

time. We manipulated both the strength of the evidence (bead ratio in the hidden box) and,

critically, the order in which the evidence samples were presented. The same task was used in

studies 1, 2, and 3.

Trial structure. Trials started with a 3-s presentation of two boxes with the same major-

ity-to-minority bead ratio and different majority bead color (i.e., the blue box and the green

box). To enhance clarity, the border of each box indicated the color of the majority bead color

in the box and the contents of each box were displayed in text above each box (e.g., “60 blue,

40 green”; Fig 1A). One box was presented on the left side of the screen and the other on the

right side of the screen. Next, participants were shown a white box with a black border and a

question mark, which represented the hidden box. The first time it was displayed in a trial, par-

ticipants just saw this hidden box for 1.5 s. On subsequent presentations of the hidden box, an

animated green or blue bead rose up out of the box with this animation lasting 1.5 s. Partici-

pants then reported a probability estimate about how likely they thought the hidden box was

the blue box or the green box. The top half of the screen showed a visual record of all beads

shown so far within the trial, so as to minimize the working-memory burden and associated

interindividual variability. The lower half of the screen displayed a black slider bar used to sub-

mit the probability estimate. Percentage values above each extreme of the slider indicated the

complementary probability estimates for each box. The slider tick did not appear until a partic-

ipant moved the mouse, and its starting point was randomized after each bead draw to mini-

mize anchoring. Probability-estimate responses were self-paced and the response window was

unlimited. After 8 samples were drawn and 9 probability estimates submitted, a binary choice

for the hidden box was prompted. On this choice screen, the boxes were labeled “Left” and

“Right” and participants had to respond with a corresponding (left or right) button press

within an unlimited response window. When a response was submitted, the border of the

selected box changed to yellow for 0.25 s to provide feedback that the selection was recorded.

A blank screen was then presented for 0.5 s before the next trial began.

Task structure. Participants completed 55 trials of the probability estimates task. At the

beginning the experiment, participants were instructed that one of two boxes was randomly

selected and hidden with equal probability: one containing mostly blue beads (blue box) or

one containing mostly green beads (green box). One box was presented on the left side of the

screen and the other on the right. The location of each box was determined at random on each

trial. For a given trial, the bead ratio could be 51:49, 60:40, or 90:10, with each box displaying

reciprocal ratios of bead colors. The participants’ task was to identify which box was selected

and accurately estimate its probability. During each trial, 8 bead samples were presented, one

at a time, and probability estimates were prompted before the first bead and after each of the

beads about the probability that the hidden box was the blue or the green one. Participants

were told that the individual beads were drawn randomly with replacement. To endow the

estimates with instrumental value, after seeing 8 beads participants made a binary choice

about the identity of the hidden box.

Incentive compatibility. During the instructions, to incentivize responses that accurately

reflected true beliefs and preferences, participants were informed they would be given an

endowment of $10 that they could keep in its entirety (losing $0 or $5) based on their perfor-

mance. After they completed all blocks of the experiment, $0 or $5 were subtracted from the

endowment based on their performance on one randomly selected response. This could be a

probability estimate (out of the 9 per trial over all trials) or a binary box choice (1 per trial). To

determine the payoff, we instituted a binarized scoring rule [39] that is more robust to risk

preferences and produces more accurate estimates than other commonly used methods [39],

particularly when combined with potential loss from an endowment as in our implementation
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and in previous work leveraging endowment effects [101,102] to maximize task engagement

and accuracy. If a probability estimate was chosen to determine the payoff, the probability of

losing $5 was a function of the squared error of the reported probability estimate relative to the

objective probability [103]. Specifically, a random value k from 0 to 1 was selected and partici-

pants lost $5 if the squared error of their chosen estimate was larger than k or $0 otherwise.

The binarized scoring rule thus implies a quadratic loss function where the probability of los-

ing $0 or $5, rather than the loss magnitude, depends on the precision of reported probability

estimates. This leads to a U-shaped relationship between the expected value of a response and

the posterior probability (S13 Fig). We also applied the binarized scoring rule to box choices,

which in this case reduced to losing $5 when the choice was incorrect or $0 otherwise.

At the end of the task, participants were shown the selected response and the payout realiza-

tion as explained above. To make the underlying principle of the scoring rule clear, an accessi-

ble explanation without excessive mathematical detail and several examples were presented to

participants during the instructions (S1 Movie). To ensure comprehension, four of the mis-

comprehension quiz questions (S31 Table, Questions 1, 3, 4, and 9) specifically probed partici-

pants’ understanding of the scoring rule.

Instructions, practice, and comprehension checks. To ensure participants completed

the task within a reasonable time frame and in one session, they were required to complete the

entire experiment within 4 hours (S14 Fig). The MTurk advertisement indicated that the task

could take up to 2 hours to incentivize participants to minimize breaks. To minimize the

incentive to rush through the task, participants were required to perform task trials for at least

40 minutes (and received additional trials if they completed the actual experimental trials ear-

lier). To ensure task comprehension, participants were given comprehensive and detailed

instructions for ~15–20 minutes. After the instructions, participants were required to complete

a miscomprehension quiz (S31 Table). They were required to achieve 100% accuracy on the

quiz or retake it until they did, consistent with prior work [48]. After the quiz, participants

completed 3 practice trials, one with each possible bead ratio, and could repeat the practice if

they wished. The practice-trial sequences were not used in the main experiment. A video dem-

onstrating the instructions, quiz, and practice trials is available (S1 Movie).

Sequences of evidence. Bead sequences were defined by the specific order of majority-to-

minority beads. The color (blue or green) of the majority beads in the hidden box, which

determined its identity, was randomly determined on each trial. Each bead-ratio condition

comprised a different set of pre-determined fixed sequences; these were chosen from a broader

set of all possible sequences of beads drawn randomly with replacement, in line with the

instructions. Out of the 55 trials, there were 26 unique sequences of evidence order (S30

Table). Of those, 16 sequences were identical across the 60:40 and 90:10 conditions (“matched

trials”). Sequences were presented in blocks of 11 trials, organized by the bead-ratio condition.

The order of blocks was the same for each participant: 60:40, 90:10, 51:49, 60:40, 90:10. Within

each block, sequences were selected at random without replacement from the sequence set.

We selected sets of sequences for which the distribution of majority beads over trials for a

given bead ratio matched the distribution of expected sequences of that ratio. To achieve this,

4 sequences were unique to the 51:49 condition, 6 sequences to the 60:40 condition, and none

to the 90:10 condition.

Critically, we constructed mirror-opposite sequence pairs to facilitate isolation of sequence-

order effects. Further, we aimed to vary sequences in their degree of evidence asymmetry, or

how extremely front- or back-loaded the majority beads were in a sequence. Here, and

throughout the manuscript, sequences are presented such that 1 (or black) represents the

majority bead color, and 0 (or white) the minority color. We quantified evidence asymmetry

as a linear weighted sum of a binary sequence, for instance [1 1 0 1 1 1 1 0], with each element
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in the sequence vector weighted as a function of their linear distance from the middle (weights:

[-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]). The result of the weighted sum (in this example, -2)

thus indicated that majority beads were presented mostly towards the beginning of the

sequence (front-loaded) with negative values. Positive values would indicate that majority

beads were presented mostly towards the end of the sequence (back-loaded). Greater absolute

values indicate more extreme back- or front-loading. Mirror-opposite sequence pairs had

identical bead-ratio, number of majority beads, and absolute evidence asymmetry such that

their comparison would isolate sequence-order effects. In particular, recency biases should

manifest as more certain beliefs (favoring the true hidden box) for back-loaded (compared to

front-loaded) sequences, particularly in sequences with greater evidence asymmetry.

Overall, we selected trials to span a range of evidence asymmetry, bead-ratio conditions,

and total number of majority beads (Fig 1B).

Questionnaires

Study 1. Before completing the probability estimates beads task, participants completed a

demographic survey (S1 Table) and the PDI22 (see S29 Table for the complete set of items). The

PDI is a 21-item questionnaire that measures odd, delusion-like ideas in the general population.

The experiences interrogated a range of more common experiences such as “do you ever feel as

if some people are not what they seem to be?” or “are you worried that your partner may be

unfaithful?” to more unusual ones, like “do you ever feel as if you are a robot or zombie without

a will of your own?” or “do you feel as if things in magazines or on TV were written especially

for you?” For each experience, the participant can endorse the belief with a Yes or No response.

If they report No, then the global item score is 0. If they report Yes, they must then report on a

scale of 1 to 5 how distressing the belief is (1 = not distressing at all, to 5 = very distressing), how

often they think about it (1 = hardly ever, to 5 = all the time), and their conviction about it

(1 = don’t believe it’s true, to 5 = believe it is absolutely true). The global item score is the sum of

these three responses plus the “Yes” endorsement. The global PDI score (with a possible range

of 0 to 336) is the sum of all the global item scores (each between 0 and 16).

Study 2. Participants completed the PDI and the Paranoia Checklist[104]. Although our

primary measure was PDI, we included the Paranoia Checklist for exploratory purposes to

assess the generalizability of the results and to confirm that recency bias was generally related

to odd beliefs and not to paranoid beliefs specifically. The Paranoia Checklist is a 18-item mea-

sure of paranoid beliefs in the general population.

Participants, Exclusions, and Retained samples

Study 1. Participants were recruited through Amazon MTurk, and the experiment was

run on gorilla.sc [105]. They were paid $10 plus a performance bonus of $5 or $10. Using

MTurk filters, we only invited participants who had already successfully completed at least 50

tasks with a 90% approval rate, who were under 55 years old, located in the US, and had an

MTurk Masters Qualification (given to workers who “demonstrate a high degree of success in

performing a wide range of [tasks] across a large number of requesters”).

The experiment comprised multiple components, including the task itself and question-

naires. Several participants began the study, completing the questionnaires but not the task.

These non-completers were excluded from all analyses. Importantly, at least for those who

completed the questionnaires (S1 Table and S2 Table) we did not find differences in belief

oddity (p = 0.484) or evidence for selection biases in completers on most relevant measures.

We also implemented exclusion criteria based on performance. First, to avoid “bots”, we

assessed if average responses were above a minimum of 350 ms (the approximate time needed
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to shift endogenous attention [106]). No participants were excluded by this criterion. Second, we

limited our analysis to participants who identified the “correct” box at the end of the bead sequence

with accuracy above 68% for 60:40 and 90:10 bead-ratio conditions based on the binomial chance

level (15 correct trials out of 22; accuracy criterion). Third, to assess engagement in the task, we

used a linear regression analysis predicting participants’ subjective probability estimates based on

the random starting point of the cursor on the sliding scale (see task details below) and the optimal

Bayesian estimate (i.e., the objective probability). Participants were excluded if the random cursor

start position significantly predicted their subjective estimates and the Bayesian estimate did not. If

both conditions were satisfied (random-estimates criterion), we reasoned that the participant was

likely trying to the task as fast as possible with no regard for accuracy. If the optimal Bayesian esti-

mate also predicted subjective estimates, we reasoned that the participant may have been engaged

in the task but was anchoring to the random cursor-start location, which was insufficient for exclu-

sion. A total of 213 participants began this study. 43 were non-completers, and 8 were excluded for

meeting either the accuracy or the random-estimates criterion.

To further determine if participants were correctly engaging the task, we developed 2 heu-

ristic models reflecting strategies that participants may have used and which would not reflect

belief updating. The first heuristic model (no-prior model; equivalent to ω1 = 0) reflects a strat-

egy where participants report fixed belief certainty in favor of the most recent evidence sample.

For example, for a blue bead they would report 0.8 in favor of the blue box and for a green

bead 0.8 in favor of the green box. The second heuristic model (observed-proportion) reflects

a similar strategy with the difference that the favored box is based on whichever color has been

drawn more often. For instance, after observing 3 blue beads and 1 green bead the participant

could report 0.8 in favor of the blue box and only change their estimate to 0.8 in favor of the

green box after observing more green than blue beads. The heuristic models, along with all the

belief updating models (S28 Table), were fit to the data for the 60:40 and 90:10 conditions. The

51:49 condition was not used here because the low evidence strength in this condition makes it

harder to determine whether estimates are consistent with heuristic strategies. We excluded

any participant whose 60:40 and 90:10 data was fit best by one of the heuristic models in a for-

mal model comparison using the BIC [107] at the individual level. Based on this criterion, 5

participants were excluded for being best fit by the no-prior model, and 6 participants by the

observed-proportion model. There were no significant differences in demographic characteris-

tics between participants who were included in the study and those who were excluded based

on performance criteria or non-completers (S2 Table).

In sum, 237 participants were recruited from Amazon MTurk, of whom 170 completed the

task. Of these, 8 were excluded for poor accuracy or random responding and 11 because their

data was best fit by a heuristic model which suggested they did not engage the task as intended.

After exclusions, 151 participants were retained and included in the primary analysis. S1 Table

shows the demographic information of all 151 completers who were included in the analysis

for study 1. Quality checks indicated the data was of comparable quality than similar in-person

studies (S14 Fig and S15 Fig; see Online Data Quality in Methods).
Study 2. Participants were recruited through Amazon MTurk, and the experiment was

run on gorilla.sc [105]. We implemented the same MTurk filtering criteria as in study 1, with

the exception that we did not limit participants to MTurk Masters so as to increase participa-

tion. We also excluded anyone who already participated in study 1. Study 2 consisted of two

parts. For part 1, participants were paid $2 to complete 2 questionnaires. 547 participants

started part 1, and 512 completed it (93.6%). Participants were invited back for part 2 based on

their questionnaire scores from part 1. 241 participants were invited to participate in part 2.

For part 2, participants completed 1 questionnaire and the probability estimates beads task.

The task and incentive structure was identical to study 1. 213 participants started part 2, and
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143 participants completed it (67.14%). We applied the same performance and model-based

exclusion criteria as in study 1. Using these criteria, 10 participants were excluded based on

their performance (accuracy and random-estimates criteria) and 17 due to evidence (BIC)

favoring heuristic models. There were no significant differences in demographic characteris-

tics between participants included in the study and those excluded based on poor performance

(S3 Table). For study 2, we analyzed the data for 116 participants (S1 Table). Across all 116

retained participants, PDI scores were stable between the pre-screening and experimental ses-

sions (ρ = 0.97) and both correlated strongly with the secondary measure of odd beliefs, the

Paranoia Checklist (all ρ>0.79). Quality checks again suggested comparable quality to similar

in-person studies (S14 Fig and S15 Fig).

Pre-Screening and PDI Classification. To ensure a wide enough range of odd beliefs and

sufficient sampling of meaningfully high levels [54], study 2 pre-screened participants based

on the PDI22. Participants with high or low belief oddity based on their PDI scores were

invited for the experimental session, with the cutoffs based on reported norms for PDI global

scores47 (mean of 58.9 and standard deviation of 48.0 in healthy individuals): mean plus 0.5

standard deviation (>82.9) for the high PDI group and mean minus 0.5 standard deviation

(<34.9) for the low PDI group. For secondary analyses, we also invited participants with high

(>17.15) or low (<6.65) frequency scores on reported norms for the Paranoia Checklist92. Par-

ticipants who were invited solely based on the Paranoia Checklist scores were only included in

exploratory dimensional analyses. Participants in the high and low PDI groups were gender-

and age-matched (within 2 years). Those who completed the experimental session completed

the PDI a second time (typically within 1–2 days of the pre-screening) and the mean PDI

across both sessions was used for dimensional analyses.

Data from these participants was again high quality (S9 and S10 Figs).

Study 3. Study 3 re-analyzes combined data from studies 1 (n = 151) and 2 (n = 116) in

267 participants.

Online data quality

In line with best practices for online studies [108–110], we limited recruitment (in study 1) to

those with a high reputation [111] and a record of active engagement with tasks, we imple-

mented strict exclusion criteria to ensure retention of participants who were most likely to

have been actively and honestly engaged in our task (S1 Table), and we assessed and found evi-

dence against selection bias (S2 Table and S3 Table). Attrition was consistent with previous

work in online samples [112] and unlikely to compromise validity based on previous analyses

[113]. We further confirmed that participant behavior was well captured by our model and

that participants completed the task within a reasonable time frame, both consistent with our

previous data from a related in-person study [31] (S14A Fig and S14C Fig). The precision of

probability estimates was also consistent with previous in-person work, providing evidence

that our incentive-compatible scoring method was effective (S14B Fig and S14D Fig). We also

show that our parameter estimates were reliable and consistent within participants across the

full duration of the task (S15 Fig). Finally, we conducted a noise-corrupted parameter recovery

analysis showing that our results were unlikely to be driven by general low-level factors such as

inattention or disengagement (Fig 6E and 6F). In line with previous online work

[105,114,115], these analysis support that our data was valid, reliable, and high-quality.

Model-agnostic measure of response variance

In keeping with the noisy-sampling model and previous work [2,17], we calculated the main

measure of behavioral response variance in logit space as the variance of the log-odds of
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probability estimates for identical sequence fragments. The prediction of the noisy sampling

model is that under identical circumstances, participants with a noisier prior representation

will have greater variability in their posterior beliefs that will result in more response variability

across instantiations. To isolate this variability, we determined the unique sets of sequence

fragments, defined as subsequences of beads starting at the first bead that were identical in

terms of bead-ratio condition and exact bead order (including bead color). For robustness, we

only analyzed subsequences presented a minimum of 3 times (after excluding sequences with

an incorrect final choice). (Note that the specific sequence fragments were identical in the

order of the majority versus minority beads but differed in color across individuals, as the

majority bead color of the hidden box was determined randomly for each subject.) For each

given sequence fragment, we then calculated the variance of the logit estimates across different

instantiations. We then calculated the median of variances across sequence fragments for a

given bead-ratio condition, and calculated the mean of the medians across conditions to

obtain the summary measure of response variance. We focus on this summary measure but

our results hold separately for response variance measured separately by bead-ratio condition

(S16 Fig).

Statistical analysis

To analyze the probability estimates from the task, we employed parametric linear mixed-

effects models, with random intercepts and slopes to account for within subject variance (Wil-

kinson Notation for all regressions is provided; see S1 Text). To minimize type 1 errors all lin-

ear mixed-effects models used the Satterthwaite correction for degrees of freedom [116]. To

minimize disproportionate contributions of repeat sequences on results, the probability esti-

mates for the only sequence that was repeated multiple times (i.e., the 8-majority bead

sequence in the 90:10 bead-ratio condition) were averaged across for each participant and ana-

lyzed as a single sequence.

To analyze the relationship between model-agnostic summary measures (mean final esti-

mate difference, the evidence asymmetry slope, prior-dependent updating slope, and response

variance) and model-derived parameter values (see modeling below), we employed non-

parametric tests because these variables were generally not normally distributed across partici-

pants based on Lilliefors tests at p<0.05. For group analyses of medians, we thus used sign-

rank within-group tests and rank-sum between-group tests. Cliff’s delta (δ) was used as a non-

parametric measure of effect size [117]. For dimensional analyses, we used Spearman correla-

tions and partial Spearman correlations to control for potential confounding variables. All

tests were considered statistically significant at p<0.05.

All analyses, including model-agnostic and model-based analyses, excluded trials

with incorrect final choices, since these were unlikely to reflect inferential processes of

interest and more likely to instead reflect model-unrelated lower-level factors such as inat-

tention or task disengagement. The weighted Bayesian model predicts incorrect choices

(due to evidence-order effects) at extreme levels of ω1. However, most of the errors we

observed in our data were not predicted by this model based on fitted estimates (S17 Fig),

suggesting that most errors were driven by lower-level factors like inattention. On average,

this resulted in the exclusion of 1.5% trials per participant (S17A Fig). Less critically, the

model goodness-of-fit was marginally improved after excluding trials with incorrect final

choices (S17B Fig). Nonetheless the results of analyses including these trials were virtually

unchanged.

Further, for all model-agnostic analyses involving the conversion of probability estimates to

logit space, subjective probability estimates of 1 and 0 were excluded to avoid infinity values.
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Computational modeling

Weighted Bayesian belief-updating model and variants. We fit several weighted Bayesian

belief updating models to the draw-by-draw probability estimates for each participant individually

and extracted best-fitting parameters for each model. All models in the model comparison were

variants of a weighted belief-updating model: logit(posterior) = ω1�logit(prior)+ω2�logit(likelihood).

In this model, logit(prior) represents the log-odds of the prior probability or belief on the

current draw before integrating the likelihood, and it is equivalent to the posterior probability

after the previous draw. logit(likelihood) represents the log-odds of the likelihood (or the log-

likelihood ratio), which is the strength of the sensory evidence given by the bead-ratio for a

specific bead draw with respect to the correct box. logit(posterior) represents the updated log-

posterior ratio about the probability that the beads are coming from the green or blue box after

combining the prior and the likelihood terms. The prior-weight ω1 is a free parameter that acts

as a multiplicative weight on the prior belief; it affects how much older evidence is incorpo-

rated into the updated beliefs, controlling a primacy-recency bias. Prior underweighting (ω1 <

1) captures sequential base-rate neglect, limiting belief certainty (Fig 2C) and inducing a

recency bias (Fig 2D and 2E) [2,4,17]. The likelihood-weight ω2 is a free parameter that scales

the likelihood term multiplicatively and equally for older and newer samples of evidence, pro-

ducing distinct effects from the prior-weight ω1 (S2D Fig).

Model fitting was performed for each subject using the Matlab function fmincon [118] in

order to minimize the root mean squared error (RMSE) between the model-estimated proba-

bilities and the probability estimates reported by the participant. Only estimates after bead

draws were used for fitting, and the participant’s first estimate before the first bead draw

defined the starting prior belief for a given trial. Data for sequences associated with an incor-

rect final decision were excluded from analyses. For robustness, participants’ data were each fit

100 times to each model, using random starting points between 0 and 20 for each free parame-

ter. Bounds were set to 0 and 20. The parameters associated with the iteration yielding the low-

est RMSE were taken as the best-fitting parameters for the participant and model. Formal

model comparison (for the same 10 models used for comparison in our previous work [31])

was conducted based on the Schwarz Bayesian Information Criterion (BIC)[107]:

BIC ¼ n � ln
P

error2

n

� �

þ l � lnðnÞ, where n is the total number of fitted probability estimates

(per participant), error is the difference between the actual probability estimates and the simu-

lated probability estimates, and l is the number of parameters in the model. BIC values were

used to calculate the protected exceedance probability (using the Variational Bayes Tool-

box [119]; Fig 3D and S6 Fig) for group-level Bayesian model selection.

Noisy-sampling model. Azeredo da Silveira and Woodford [16] described a noisy-sampling

model of belief updating where agents do not have access to the full prior distribution and instead

represent prior beliefs imprecisely via noisy internal samples. Under this model, a rational response

to imprecision in prior beliefs given the costs of precision and prediction inaccuracy is to under-

weight prior beliefs. This model thus provides a functional account for sequential base-rate neglect:

lower prior-weight results from, and is inversely proportional to, noise in prior beliefs.

Here, we specify this model in the context of sequential belief-updating in our task. The

noisy log-odds of the prior with respect to the true underlying state of the hidden box is:

rprior ¼ log
pmajority

pminority

 !

þ vp;where vp � N 0; s2

prior

� �
:
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rprior reflects the noisy internal representation of the prior. πmajority reflects the prior proba-

bility in favor of the true underlying state of the hidden box. πminority reflects the prior proba-

bility in favor of the incorrect state of the hidden box, where πmajority+πminority = 1. vp reflects

the Gaussian noise (in logit space) of the internal representation of the prior, which is centered

around 0 and has a variance of s2
prior. Similarly, the noisy log-odds of the likelihood with respect

to the true underlying state of the hidden box is:

rlikelihood ¼ log
lmajority

lminority

 !

þ vl;where vl � N 0; s2

likelihood

� �
:

rlikelihood reflects the noisy internal representation of the likelihood. λmajority reflects the like-

lihood in probability space in favor of the correct state of the hidden box, and. λminority reflects

the likelihood in favor of the incorrect state, where λmajority+λminority = 1. vl reflects the Gauss-

ian noise (in logit space) of the internal representation of the likelihood. The Gaussian noise is

centered around zero and its variance may vary per bead-ratio condition, where s2
likelihood can

take on values s2
51

; s2
60

, or s2
90

depending on the condition.

To calculate an optimal estimate of a participants’ beliefs in response to new evidence, we

must also define a probability distribution over the possible true underlying states; that is, we

must define the prior distributions from which the values {π, λ} may have been drawn. Here

we define these distributions as centered around their corresponding probability ratio,

log pmajority
pminority

� �
or log lmajority

lminority

� �
; where the variance of the distribution is given by o2

prior or o2
likelihood.

Further, o2
likelihood may similarly take on different values o2

51
, o2

60
or o2

90
per condition. The com-

plete generative model over true possible situations and the participants’ noisy internal repre-

sentations is specified by eight parameters: o2
prior; o2

51
; o2

60
; o2

90
; s2

prior; s2
51

; s2
60

; and s2
90

.

Conditional on the prior (before the observation of a new bead draw), we can determine

what optimal Bayesian inference of the true underlying state of the hidden box would be. The

equations described above imply that the true log-odds (based on previously available informa-

tion), zprior � log pmajority
pminority

� �
, and the prior have a joint, bivariate, Gaussian distribution. Conse-

quently, the distribution of zprior conditional on the noisy representation of the prior, rprior, will

also be a Gaussian distribution:

zpriorjrprior � Nðgprior � rprior; S2

priorÞ;

where gprior �
o2

prior

o2
prior þ s2

prior

and S2

prior �
o2

prior � s2
prior

o2
prior þ s2

prior

:

From this, the implied probability that the true state of the hidden box is given by:

prior ¼

Z
ezprior

1 þ ezprior

� �

f zpriorjrprior
� �

dzprior;

where f(zprior|rprior) is the density function of the conditional distribution. In order to compute

this quantity as a function of the ω2 and σ2 parameters, we use an analytical approximation

[120] of this integral:

logit priorð Þ ¼
gprior�rprior

rprior
;where rprior ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ
3

p2

� �

� S2

prior

s

> 1:
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ρprior is a correction owing to the fact that the posterior distribution is not concentrated

entirely at its mean. Then, we can substitute in the formula for prior to get:

logit priorð Þ ¼
gprior

rprior
� log

pmajority

pminority

 !

þ �prior;where �prior � N 0;
gprior � sprior

rprior

 !2 !

:

Here, we show the calculation for the prior, but the calculation of the likelihoods follows

the same logic and can be obtained by substituting the corresponding ω2 and σ2 parameters.

To calculate the posterior after each bead draw, we simply add or subtract the likelihood from

the prior depending on if the bead is in favor of or against the true underlying state of the hid-

den box. If the signal is in favor of the true underlying state of the hidden box, the posterior

would be:

logit posteriorð Þ ¼
gprior

rprior
� log

pmajority

pminority

 !

þ
glikelihood
rlikelihood

� log
lmajority

lminority

 !

þ �:

If the signal is against the true underlying state of the hidden box, the posterior would be:

logit posteriorð Þ ¼
gprior

rprior
� log

pmajority

pminority

 !

�
glikelihood
rlikelihood

� log
lmajority

lminority

 !

þ �:

In either case, � = �prior + �likelihood � N 0;
gprior �sprior

rprior

� �2

þ
glikelihood�slikelihood

rlikelihood

� �2
� �

.

The ω1 and ω2(l) parameters in the weighted Bayesian model correspond respectively to the

weights
gprior
rprior

and
glikelihood
rlikelihood

in the noisy-sampling model and are thus inversely proportional to the

noise parameters, s2
prior and s2

likelihood, respectively. They are also inversely proportional to the

parameters o2
prior and o2

likelihood representing the assumed uncertainty in the underlying logit

prior and likelihood distributions. In visual schematic of the model in Fig 6, the prior weight is

framed as the function f s2
prior; o2

prior

� �
¼

gprior
rprior

, the likelihood weight as the function

f s2
likelihood; o2

likeliood

� �
¼

glikelihood
rlikelihood

, and the noise parameters � as the functions gðs2
prior; o2

priorÞ ¼ �prior,

and gðs2
likelihood; o2

likelioodÞ ¼ �likelihood.

In fitting the model, consistent with previous work [121] we assumed that participants

would adapt to the context of the task, acquiring a realistic estimate of the uncertainty underly-

ing logit prior and likelihood distributions. Under this assumption o2
prior and o2

likelihood should

be relatively constant across participants, and the primary source of interindividual variability

should be reflected in the s2
prior and s2

likelihood parameters. To avoid the possibility of parameter

trade-off, our primary analysis fixed the o2
prior and the 3 o2

likelihood across the entire sample, but

allowed the s2
prior and the 3 s2

likelihood parameters to vary freely. To determine the appropriate val-

ues for the o2
prior and the 3 o2

likelihood parameters, we conducted a 4-dimensional grid search of

ω2 values from 0 to 1.4 in steps of 0.2, fitting the 4 σ2 parameters to each participant’s data for a

given set of ω2 parameter values. To do this we used the Matlab function fmincon [118] in

order to minimize the RMSE between the model-estimated probabilities and the probability

estimates reported by the participant. We then calculated the group-level BIC (based on RMSE

across all trials and participants) and selected the ω2 parameter values from the model with the

lowest value; these were: o2
prior ¼ 0:2, o2

51
¼ 0:2; o2

60
¼ 0:2; and o2

90
¼ 0:6. Fitted σ2 parameter

values from the noisy-sampling model with these fixed ω2 values were taken as best-fitting val-

ues and used in our main analyses. Since increased o2
prior and s2

prior parameter values could both
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lead to decreased prior weighting and response variance under this model (S7 Fig), we empiri-

cally assessed the possibility that o2
prior, and not s2

prior, could drive interindividual variability in

base-rate neglect and response variance. Instead of using fixed o2
prior parameter values, we took

the best-fitting values for each individual. Critically, these individually best-fitting o2
prior values

were uncorrelated with the prior-weight ω1 from the weighted Bayesian model and our mea-

sure of response variance (S18 Fig). Furthermore, comparisons of o2
prior parameter values fitted

for relevant subgroups (median-split groups based on ω1 or response variance) were inconsis-

tent with an alternative explanation of base-rate neglect in terms of variability in o2
prior.

Parameter recovery analysis. To generate simulated agents for parameter recovery, we

sampled agent model parameters from the range of fitted parameters values found in the real

data. Specifically, we randomly sampled parameters uniformly from the 10th to 90th percentile

of values to limit the influence of extreme values. Responses were then simulated on the experi-

mental trials that participants observed. Simulated observers started each trial with unbiased

prior beliefs about the hidden box and posterior beliefs after each draw were updated in logit

space according to the model. To evaluate the robustness of model fitting procedures to late

(e.g., motor) noise, varying magnitudes of zero-mean Gaussian noise were added to the logit

posterior beliefs after updating. This late noise was unrelated to the inference process, and thus

only affected the agents’ reported noisy estimates and did not propagate to subsequent prior

beliefs. To simulate realistic levels of late Gaussian noise, we estimated the variance that

matched the variability observed in the data. First, we determined the 95% confidence interval

of the median response variance at the group level in the actual data via bootstrapping. Next, we

simulated ten sets of random agents (n = 267 per set, as in the combined dataset for study 3)

across a range of late-noise variance levels. For each level, we calculated the median response

variance at the group level and the mean of the medians across the sets. We determined the esti-

mated noise range of the actual data to correspond to noise levels where this mean of medians

overlapped with the 95% confidence interval of the median response variance in the actual data.
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