n)
s Authoring Worked Examples for Java Programming

with Human-Al Collaboration

Jiaze Ke

Mohammad Hassany
moh70@pitt.edu
University of Pittsburgh
Pittsburgh, PA, USA

Arun Balajiee Lekshmi

Narayanan
arl122@pitt.edu
University of Pittsburgh
Pittsburgh, PA, USA

ABSTRACT

Worked examples are among the most popular types of learning
content in programming classes. However, instructors rarely have
time to provide line-by-line explanations for a large number of
examples typically used in a programming class. In this paper, we
explore and assess a human-AlI collaboration approach to authoring
worked examples for Java programming. We introduce an authoring
system for creating Java worked examples that generates a starting
version of code explanations and presents it to the instructor to
edit if necessary. We also present a study that assesses the quality
of explanations created with this approach.

CCS CONCEPTS

« Computing methodologies — Natural language processing;
« Social and professional topics — CS1.

KEYWORDS
Code Examples, Authoring Tool, Human-AI Collaboration

ACM Reference Format:

Mohammad Hassany, Jiaze Ke, Peter Brusilovsky, Arun Balajiee Lekshmi
Narayanan, and Kamil Akhuseyinoglu. 2024. Authoring Worked Exam-
ples for Java Programming with Human-AI Collaboration. In The 39th
ACM/SIGAPP Symposium on Applied Computing (SAC "24), April 8-12, 2024,
Avila, Spain. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3605098.3636160

1 INTRODUCTION

Program code examples known also as worked examples play a cru-
cial role in learning how to program [7]. A typical worked example
presents a code for solving a specific programming problem and
explains the role and function of code lines or code chunks. In text-
books, these explanations are usually presented as comments in the
code or as explanations on the margins. which is known for its low

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC °24, April 8-12, 2024, Avila, Spain

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0243-3/24/04.

https://doi.org/10.1145/3605098.3636160

jlazek@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

Peter Brusilovsky
peterb@pitt.edu
University of Pittsburgh
Pittsburgh, PA, USA

Kamil Akhuseyinoglu
kaa108@pitt.edu
University of Pittsburgh
Pittsburgh, PA, USA

efficiency. Recognizing that this approach is not engaging, several
research teams developed dedicated learning tools that offered more
interactive and engaging ways to learn from examples [1, 4, 6].

A modern interactive tool for studying code examples, such
as PCEX system [4] provides interactive access to code examples
augmented with instructor explanations, enabling students to selec-
tively study explanations for code fragments they want. Separating
explanations from the code keeps the code intact and allows to
study explanations at several levels of detail (Figure 1).

PCEX and similar example-focused tools demonstrated their
effectiveness in classroom studies, but their practical impact, i.e.,
broader use by instructors was limited due to the authoring bot-
tleneck. Although the creators of example-focused learning tools
such as PCEX usually provide a good set of worked examples that
can be presented through their tools, many instructors prefer to
use their own favorite code examples. The instructors are usually
happy to broadly share the code of examples they created (usually
adding it to the course Web page), but they rarely have time or pa-
tience to augment their favorite examples with detailed line-by-line
explanations.

Several approaches have been explored in the past to resolve this
authoring bottleneck. For example, learner-sourcing approach en-
gaged students in creating and reviewing explanations for instructor-
provided code [5] while NLP was used for automatic extraction of
explanations from available sources, such as lecture recordings [6].
In this paper, we present an alternative approach to address the
authoring bottleneck based on human-AI collaboration. With this
approach, instructors provide the code of their favorite examples
along with the statements of the programming problem they are
solving. The Al engine based on large language models (LLM) ex-
amines the code and generates explanations for each code line. The
explanations could be reviewed and edited by the instructor. To sup-
port and explore this authoring approach, we created an authoring
system, which we expect to radically decrease the time to create a
new interactive worked example. The system is briefly introduced
in the next section.

The main content of the paper is focused on answering the feasi-
bility question, which we consider as the first step in “proving” our
approach: to what extent code explanations generated by ChatGPT
could be considered satisfactory to serve as the basis for human-Al
collaborative authoring. To answer this question, we performed a


https://orcid.org/0009-0004-8893-8454
https://doi.org/10.1145/3605098.3636160
https://doi.org/10.1145/3605098.3636160
https://doi.org/10.1145/3605098.3636160
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605098.3636160&domain=pdf&date_stamp=2024-05-21

SAC 24, April 8-12, 2024, Avila, Spain

>

‘ Example: STDUENT: PointTester

Construct a class that represents a point in the Euclidean plane. The class should contain data that represents the points integer
coordinates (xy). The class should also include getter and setter methods for accessing and changing the point's coordinates
and a method to translate the point, e, shift the point's location by the specified amount

The class PointTester! instantiates an object from this class, sets the (xy) coordinates of the point, and translates the point by
the specified amount.

1 public class PointTester {
public static void main(Stringl] args) {

M PREVIOUS  NEXT

This line translates the point's location
by shifting the x-coordinate by 11 and
the y-coordinate by 6.

system.out.println("The point's
"+ point.gety() + ")")

!
9 )

10 class Point {

coordinates: (" + point.getx() + °,

terint dx. int dv) { (5}

Figure 1: Studying a code example in the PCEX system: 1)
problem description, 2) source code of problem solution, 3)
explanations for the highlighted line.

user study in which TAs and students compared code explanations
created by experts through a traditional process with examples
created by ChatGPT.

2 HUMAN-AI COLLABORATIVE AUTHORING

In the collaborative authoring process supported by our tool, the
main task of a human author is to provide the code of the example
and the statement of the problem that the code solves. The main
task of ChatGPT is to generate the bulk of code line explanations
on several levels of detail. As an option, a human author could
edit and refine the text produced by ChatGPT to adapt it to the
objectives of the class and the target students. As in any productive
collaboration, each side does what it is best suited to do, leaving the
challenging work to the partner. In the tool interface (Figure 2) the
author should click "Generate" to generate the explanations, and
then click "Use the Explanations" to add them to the example. The
tool provides the human author several opportunities to control the
outcome of the explanation generation process: 1) the author can
tune the prompt to their needs, 2) the author can decide whether to
include or exclude a generated explanation, and 3) the author can
edit or remove the explanation after it is edited. More details about
the authoring system and its interface could be found in [3]

3 EVALUATION

To assess the quality of the explanations generated by ChatGPT
using the best-performing prompt with options tuned through the
internal evaluation, we performed a user study. In this study, we
compared the explanations generated by ChatGPT with the explana-
tions created by experts for the same PCEX examples. Unlike some
earlier studies that used beginner students to evaluate ChatGPT
explanations, we used more experienced users, advanced under-
graduate and graduate students. The reason for this difference is
that in our authoring system, direct users of the ChatGPT explana-
tion are not consumers of explanations, but prospective authors. In
the implemented human-AlI collaborative authoring approach, au-
thors have the option to edit the generated explanation. Thus, it is
up to the prospective authors to decide how good the explanations
are since their perception of quality impacts the amount of their

102

Identify and Explain Lines X

Given the following program description and accompanying source code, identify and explain
lines of the code that contributes directly to the program objectives and goals. Also include
lines that handles input/ouput.  But ignore main class and method definitions, common IE'

import statements and java comments.
When considering each identified line, ensure explanations provide the reasons that led to the
line inclusion, prioritizing them based on their relative importance while also preventing any

unnecessary duplication or repetition of information.
' Use the Explanations
@ Exclude Line

« This line creates a new instance
of the Point class and assigns it to
the variable 'point’.

public class PointTester {
public static void main(String[] args) { Il
Point point = new Point();
point.setx(7);
point.setY(2);
point.translate(1l, 6);

1
2
3
4
5
6
7 ~ It contributes directly to the
8

System.out.printin{*The point's coordinates: (" + p

i program objective of creating a
9} point object.
10 class Point {
1 private int x;
12 private int y;
13 public void translate(int dx, int dy) {
14 x 4= dx;

Figure 2: The explanation generation interface, a) default
prompt (author can tune the prompt - optional), b) example
code (lines with explanations are marked with a purple bor-
der), c) generated explanations for the selected line.

work: poor explanations will require a lot of editing, while good
explanations could be accepted as-is or with minimal changes.

We recruited 15 evaluators, six graduate students who usually
serve as assistants or instructors in programming classes (we refer
to them as authors) and 9 undergraduate students who completed
a Java programming class. The participants had to provide their
responses through an evaluation form and received an Amazon gift
card as compensation.

The evaluation form included 8 examples from PCEX system [4],
each with a problem description and solution code. For each code
line, the form displayed an explanation generated for this line by
ChatGPT and by an expert. The participants had to rate both ex-
planations for a given line of code and compare them. The order
of ChatGPT and expert explanations for a given line of code was
randomized, and the evaluators did not know which explanation
was generated by ChatGPT or the expert. The expert explanations
for the PCEX examples were written by instructors and polished
over several years of classroom use, so they offer a good basis for
comparison.

To evaluate the explanations, the participants had to rate to what
extent each explanation is complete and which is better. We defined
a better explanation as “providing more information, going deeper,
better connecting to programming concepts”. The participants had
to use the following metrics:

(1) Explanation 1 is sufficiently complete: Not complete (0), Com-
plete (1), Very complete (2)

(2) Explanation 2 is sufficiently complete: Not complete (0), Com-
plete (1), Very complete (2)

(3) Which explanation is better? Both are the same (0), Explana-
tion 1 is better (1), Explanation 2 is better (2)

From the collected responses, we excluded lines that had Chat-
GPT or expert explanations but not both. For the remaining 45 lines
of code, we observed from the evaluators’ ratings for the question



Authoring Worked Examples for Java Programming
with Human-Al Collaboration

Not complete=0 Complete=1 Very complete=2

ChatGPT
Students 0.00% 13.33% 86.67%
Authors 1.48% 32.59% 65.93%
Overall 0.59% 21.04% 78.37%
Expert
Students 2.22% 55.56% 42.22%
Authors 14.07% 57.78% 28.15%
Overall 6.96% 56.44% 36.59%

Table 1: Percentage of Ratings for different items on the scale
for “Explanation 1/ 2 is sufficiently complete?”

Explanation
Rating Students Authors Overall
Both are the same =0  32.84% 14.44%  25.48%
Expert is better = 1 16.05% 27.41%  20.59%
ChatGPT is better =2 51.11% 58.15% 53.93%

Table 2: Percentage of Ratings for the different items on the
scale for “Which explanation is better?”

“Explanation 1 is sufficiently complete?” or “Explanation 2 is suffi-
ciently complete?” that the ChatGPT explanations were rated as
0.59% (not complete), 21.04% (complete) and 78.37% (very complete)
compared to Expert explanations as 6.96% (not complete), 56.44%
(complete), and 36.59% (very complete). In response to the ques-
tion “Which explanation is better?”, evaluators selected ChatGPT
as the better explanation in 53.93% of lines, compared to experts
(20.59%); and in the rest of the lines (25.48%) both were rated the
same. Our calculations of the inter-rater reliability for the ratings
of the question “Which explanation is better?” using Fleiss-Kappa
gave us 0.182, p < 0.01 score of agreement. This can be interpreted
as "slight agreement" based on the 2-raters/2-categories table. Given
that Fleiss-Kappa is a chance-corrected coefficient, it can be inter-
preted as a better agreement due to the high number of subjects.

We observe that the students did not rate ChatGPT explanations
incomplete at all with their (13. 33%) and (86. 67%) ratings, indicat-
ing that ChatGPT explanations are complete and very complete,
respectively. The authors also rated the ChatGPT explanations as
complete (32.59%) or very complete (65.93%). Hence, a majority
of authors and students find the ChatGPT explanations complete,
as shown in Table 1. In terms of comparing which explanations
is better, 51.11% and 58.15% of students and authors, respectively,
find that the explanations of ChatGPT are better for the given lines
of code. On average, the authors rated the ChatGPT explanations
more complete than the students, and the students preferred the
ChatGPT explanations more than the authors, as summarized in
Table 3. A direct comparison of two options, based on the question
“which explanation is better (ChatGPT vs Expert)?”, is presented
in Table 2. Given that the assessment was performed using blind
rating, this is an encouraging result for the use of generative Al for
authoring tools.

103

SAC ’24, April 8-12, 2024, Avila, Spain

All Students Authors
ChatGPT* 1.867 (0.133)  1.644 (0.258) 1.778 (0.163)
Expert” 1.400 (0.388)  1.141 (0.465)  1.296 (0.408)
Which is better?  1.183 (0.510) 1.437 (0.373)  1.284 (0.427)

Table 3: Average (Stdev) Ratings - “*Completeness

4 CONCLUSION

In this paper, we introduce a worked example authoring tool that
utilizes ChatGPT for the automatic generation of line-by-line code
explanations and report the results of a study that assessed the
quality and completeness of generated explanations. Although there
have been several attempts to use LLMs such as OpenAI Codex
or ChatGPT [2, 8, 9] to generate code explanations, our work is
the first attempt to integrate the power of LLM into an example
authoring tool that enables prospective example authors to produce
fully explained worked example through human-AI collaboration.
To our knowledge, our work is also the first one that compared
the quality and completeness of instructor-authored and ChatGPT-
generated code explanations from the prospects of both authors
and learners. The presented study is the first step in evaluating
the value and feasibility of collaborative example authoring. To
reliably assess the quality of explanations produced through human-
Al collaboration and their value for students, we plan to run a
multisemester-long study engaging instructors to use the tool to
produce worked examples for their classes.

REFERENCES

[1] Peter Brusilovsky, Michael V. Yudelson, and I-Han Hsiao. 2009. Problem Solving
Examples as First Class Objects in Educational Digital Libraries: Three Obstacles to
Overcome. Journal of Educational Multimedia and Hypermedia 18 (2009), 267-288.
Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng, and Liang-Yi Li.
2023. GPTutor: A ChatGPT-Powered Programming Tool for Code Explanation. In
Artificial Intelligence in Education. Springer Nature Switzerland, Cham, 321-327.
Mohammad Hassany, Peter Brusilovsky, Jiaze Ke, Kamil Akhuseyinoglu, and
Arun Balajiee Lekshmi Narayanan. 2023. Authoring Worked Examples for Java
Programming with Human-AI Collaboration. Report arXiv:2312.02105. arXiv. https:
//doi.org/10.48550/arXiv.2312.02105

Roya Hosseini, Kamil Akhuseyinoglu, Peter Brusilovsky, Lauri Malmi, Kerttu
Pollari-Malmi, Christian Schunn, and Teemu Sirkia. 2020. Improving Engagement
in Program Construction Examples for Learning Python Programming. Interna-
tional Journal of Artificial Intelligence in Education 30, 2 (01 Jun 2020), 299-336.
I-Han Hsiao and Peter Brusilovsky. 2011. The Role of Community Feedback in the
Student Example Authoring Process: an Evaluation of AnnotEx. British Journal of
Educational Technology 42, 3 (2011), 482-499.

Kandarp Khandwala and Philip J. Guo. 2018. Codemotion: expanding the de-
sign space of learner interactions with computer programming tutorial videos.
Proceedings of the Fifth Annual ACM Conference on Learning at Scale (2018).
Marcia C. Linn and Michael J. Clancy. 1992. The case for case studies of program-
ming problems. Commun. ACM 35 (1992), 121-132.

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny,
Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code Expla-
nations Generated by Large Language Models in a Web Software Development
E-Book. In 54th ACM Technical Symposium on Computer Science Education V. 1
(Toronto ON, Canada) (SIGCSE 2023). 931-937.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gener-
ation of Programming Exercises and Code Explanations Using Large Language
Models. In 2022 ACM Conference on International Computing Education Research -
Volume 1 (ICER °22). 27-43.


https://doi.org/10.48550/arXiv.2312.02105
https://doi.org/10.48550/arXiv.2312.02105

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

