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ABSTRACT

This paper presents a comparison of two instructional strategies
meant to help learners better comprehend code and learn program-
ming concepts: reading code examples annotated with expert ex-
planation (worked-out examples) versus scaffolded self-explanation
of code examples using an automated system (Intelligent Tutoring
System). A randomized controlled trial study was conducted with
90 university students who were assigned to either the control
group (reading worked-out examples, a passive strategy) or the ex-
perimental group where participants were asked to self-explain and
received help, if needed, in the form of questions from the tutoring
system( scaffolded self-explanation, an interactive strategy).

We found that students with low prior knowledge in the ex-
perimental condition had significantly higher learning gains than
students with high prior knowledge. However, in the control condi-
tion, this distinction in learning outcomes based on prior knowledge
was not observed. We also analyzed the effect of self-efficacy on
learning gains and the nature of self-explanation. Low self-efficacy
students learn almost twice as much in the interactive condition
versus the passive condition although the difference was not signif-
icant probably because of low sample size. We also found that high
self-efficacy students tend to provide more relational explanations
whereas low self-efficacy students provide more multi-structural
or line-by-line explanations.
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1 INTRODUCTION

The number of undergraduates who pursue a computer science
major has increased dramatically [11]. Furthermore, there is an
increasing demand for programming skills for non-CS majors. As a
result, introductory CS courses, commonly known as CS1, are in
high demand. However, various studies [8, 9, 12] reveal that these
courses are challenging and have high attrition rates. Although
the failure rates mentioned in these studies are questioned in some
works [11], there is room for pedagogical improvement to meet the
demand and standards for these courses. Our work presented here
is a step in this direction.

Teaching and learning computer programming presents unique
challenges and complexity compared to other subjects [28]. Fowler
et al. [19] suggest that the difficulty of learning to program may
have been worsened by an overemphasis on code writing at the
expense of code reading proficiency. By prioritizing the former over
the latter, novice programmers may have missed crucial opportuni-
ties to develop a deeper understanding of programming concepts
and techniques. Lopez et al. [26] found that student performance on
code reading and tracing questions accounts for 46% of the variance
in their performance on code writing questions [26]. The study also
found a correlation between the ability of a student to explain a
piece of code using plain English and their ability to write similar
code. Whalley et al. [43] argued that novice programmers must
possess the ability to comprehend a given piece of code and its
underlying knowledge and strategies before being able to write it.
This requires understanding the code at a higher level of abstraction,
such as its relational purpose, rather than simply focusing on its
individual lines of code [43]. Indeed, to prepare students for writing
code, activities like code tracing and code reading should be used
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because they allow beginners to develop a conceptual understand-
ing of basic programming skills with a lower cognitive load than
writing code itself. For these reasons, our work focuses on pedagog-
ical strategies to help students in CS1 courses better comprehend
code and ultimately learn and master computer programming.

Another challenge in CS education, particularly in CS1 courses,
is the need to scale instruction given that the number of CS and
non-CS students has been increasing substantially. This could be
addressed with the use of advanced learning technologies such as
intelligent tutoring systems (ITSs) that can be deployed at scale
and can provide effective tailored one-on-one instruction to every
student. It is well documented that one-on-one instruction, i.e.,
tutoring, is among the most effective instructional methods [41].
When coupled with scalable, computer-based technologies, it results
in scalable, effective instructional platforms.

The study presented in this paper investigates the effectiveness
of scaffolded self-explanation as a tutoring strategy for code com-
prehension and learning by comparing it to the traditional self-
guided reading strategy while accounting for other factors, such
as student prior knowledge and self-efficacy. We experiment with
a novel teaching and learning environment for CS education in
the form of an Intelligent Tutoring System called DeepCodeTutor
designed to help learners develop code comprehension skills and
master programming concepts via scaffolded self-explanations. The
development of DeepCodeTutor is based on self-explanation theo-
ries [15], the Socratic method of instruction guiding students’ code
comprehension and learning processes using a series of hints in
the form of guiding questions which are triggered following con-
structivist learning theories according to which students construct
their own knowledge and get help in the form of hints only when
needed, and the ICAP framework [16], which postulates that Inter-
active instruction and learning is more effective than Constructive
instruction and learning, which in turn is more effective than Active
and Passive instruction and learning. Our work presented here is
part of our larger goal of understanding the relationship between
factors such as self-efficacy and prior knowledge, students’ major
(CS vs. non-CS), instructional strategies such as scaffolded self-
explanations, and outcomes such as comprehension, learning, and
retention.

The remainder of the paper is organized as follows. We start
with reviewing the most relevant related work. In the subsequent
section, we present the main instructional material and targeted
computer science concepts, such as loops and arrays. The descrip-
tion of the experimental system follows, and then the experimental
design and the results of the study are presented. We end the paper
with conclusions and a discussion of future work.

2 RELATED WORK

In this section, we briefly highlight prior work on ITSs for com-
puter science education, scaffolded self-explanation as a learning
strategy, and comparative studies on the effectiveness of this ap-
proach compared to reading worked-out examples. We also discuss
prior studies on the role of self-efficacy in learning. Bandura [6]
defined self-efficacy as “people’s judgments of their ability to orga-
nize and execute the courses of action required to attain designated
types of performance. The relationship between self-efficacy and
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performance is straightforward. Students with high self-efficacy
are more confident in their ability to learn and succeed, positively
affecting their motivation and engagement and, ultimately, their
overall performance [6]. Such students may need less scaffolding
for their code comprehension and learning. The progress rate and
overall performance are mediated by other factors, such as prior
knowledge and instructional strategy. For instance, students with
higher prior knowledge will more likely perform well early on,
e.g., early successful steps on whatever instructional tasks they
are working on, and make steady progress towards their learning
goal. On the other hand, students with less prior knowledge will
need more support early on. Adaptive educational technologies
such as ITSs can monitor students’ performance at each step while
they engage in instructional activities and offer the support needed,
at the right moment and in the right dosage, by each individual
learner.

Indeed, a number of intelligent tutoring systems (ITS) have been
developed to teach computer programming effectively. In 1986, An-
derson and Skwarecki [4] developed the Lisp tutor, an intelligent
tutoring system to provide tutoring to novice Lisp programmers
where learners’ input were continuously observed in order to pro-
vide scaffolding in case if the learner struggles or makes an error.
In 2001, Graesser et al. [21] proposed AutoTutor, introducing a
conversation agent to assist students in introductory computer
literacy courses. AutoTutor is based on constructivist learning the-
ories [1, 42] that assume that learning is more effective and deeper
when learners actively generate explanations, justifications, and
functional procedures, rather than being passive recipients of in-
formation to read. Alshaikh et al. [3] introduced a Socratic Tutor
for the comprehension of source code for novices using a series
of guiding questions derived from the abstract syntax trees of the
statements in a code example. All students saw the same sequence
of guiding questions regardless of their background. In our case,
the guiding questions as hints are dynamically triggered by stu-
dent performance, and thus different students will receive different
guiding questions tailored to their needs. The questions prompt
students to self-explain the code as a comprehension and learning
strategy coupled with feedback from the tutor.

Self-explanation is explaining the learning material to oneself
through speaking or writing [27]. Self-explanation is an effective
strategy to help students learn and comprehend the target mate-
rial in various domains [14, 15]. Studies with undergraduate [34]
and high school students [2] have found that those who applied
self-explanation techniques while studying worked-out examples
performed better on programming tasks compared to those who did
not use these strategies. Furthermore, the use of self-explanation
strategies has shown an improvement in understanding program-
ming concepts in introductory computer science courses [30, 38].

According to research conducted by Crippen et al. [17], pair-
ing a worked example with a self-explanation prompt resulted in
significant improvements in performance, problem-solving skills,
and self-efficacy. A study [38] found that the Socratic method of
guided self-explanation is more effective than free self-explanation
in teaching novice code comprehension. Although self-explaining
generally has positive effects on learning, it can be implemented
more passively or interactively. In general, more interactive strate-
gies are considered more effective according to the ICAP framework



Exploring The Effectiveness of Reading vs. Tutoring For
Enhancing Code Comprehension For Novices

[16]. In our scaffolded self-explanation strategy, students interact
with an ITS and thus the effectiveness of their learning is improved.

The role of prior knowledge and its relationship to other factors
such as the relative difficulty of the instructional tasks compared
to students’ knowledge level has been studied by VanLehn and
colleagues [41] in the context of Newtonian Physics. They compared
the effectiveness of different forms of instruction, including human
tutoring (spoken and computer-mediated), natural language-based
computer tutoring, and text-based control conditions, and found the
tutorial dialogue to be more beneficial for novices studying content
written for intermediates. However, when novices studied material
written for novices or intermediates studied material written for
intermediaries, the tutorial dialogue was not consistently more
effective than text-based control conditions, which is confirmed
by our study presented here. This suggests that the effectiveness
of the tutorial dialogue may depend on the level of preparation
of the student and the match between the student’s preparation
and the content of the instruction [18]. Although previous research
suggests that increased student interaction, i.e., a more interactive
learning/teaching strategy, such as one-on-one tutoring, leads to
better learning outcomes [41], it is possible that other factors, such
as motivation or verbal fluency, could influence both the student’s
interaction (e.g., during tutoring) and their learning gains. Our work
will help to better understand the role of interactive learning and
its relation and interaction with factors such as motivation, self-
efficacy, and prior knowledge and their impact on various student
outcomes. As noted above, our focus here is on evaluating the
effectiveness of instructional strategies and examining the role
of prior knowledge and self-efficacy in learning outcomes when
employing different strategies.

Motivation in general and self-efficacy in particular is another
important factor that impacts student performance and learning,
which we considered in our work. According to a 2016 review [7],
self-efficacy is the key factor in predicting the academic success of
university students. Self-efficacy is a widely studied motivational
factor in education, including computer science (CS) education. CS
education researchers have found a strong connection between
self-efficacy and CS student outcomes and have worked to improve
methods of measuring self-efficacy in CS settings [25].

According to Bandura [6], an individual’s perceptions and beliefs
about the efficacy of a course of action affect an individual’s decision
to pursue or continue a task, the level of effort put forth on the task,
tenacity in the face of task challenges, and overall task performance.
Bandura further suggests that individuals with high domain self-
efficacy are more likely to decide to take on complex work, put up
more effort to complete it, and continue when the activity becomes
more difficult.

Self-efficacy also influences the types of strategies individuals
use and the coping mechanisms they use to deal with challenges
and obstacles. Cernusca and Price [13] used a path analysis model to
demonstrate that self-efficacy, perceived engagement, and perceived
difficulty are all important predictors of students’ final performance
in CS1. Ramalingam and Wiedenbeck [33] developed a 32-item in-
strument to measure self-efficacy in computer programming, which
consists of four subscales: “Independence and Persistence,” “Simple
Programming Tasks,” “Self-Regulation,” and “Complex Program-
ming Tasks”. These factors represent an individual’s belief in their
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ability to work independently, complete basic programming tasks,
regulate their own learning, and tackle complex programming chal-
lenges. Ramalingam et al. [32] expanded their earlier research on
self-efficacy in computer programming by investigating the role
of previous experiences, self-efficacy, and mental models in shap-
ing students’ performance in an introductory programming course.
Their study examined how these factors can influence an individ-
ual’s success in learning to program. Their findings indicate that
self-efficacy in programming is influenced by prior programming
experience and increases throughout the course and that the stu-
dent’s mental model of programming also influences self-efficacy.
Lewis et al. [22] conducted a study to understand the factors that
influence the student’s decision to major in computer science. The
study found that students’ self-assessment of their programming
ability which is based on their prior experience, programming tasks
efficiency, and course grades influences their persistence to a com-
puter science major. In a recent study, Lishinski [24] found that
self-efficacy beliefs can create reciprocal feedback loops with per-
formance, impacting the success of computer science students in
their courses.

This paper builds on this prior work and explores the effective-
ness of reading as compared to scaffolded self-explanation through
our proposed intelligent tutoring system, the role of prior knowl-
edge and self-efficacy in students’ learning of programming con-
cepts, and its interaction with instructional strategies such as scaf-
folding self-explanations.

3 CONTENT

For the main tasks in our experiment, we used a selection of Java
code examples from the DeepCode codeset [35]. The DeepCode code-
set is a collection of Java code examples annotated with explanations
by experts and can be used for various purposes, including code
comprehension and learning tasks in introductory programming
courses. The DeepCode codeset was chosen for its strong theoretical
foundations, which are based on a number of theories, including
code comprehension and self-explanation theories and the ICAP
framework [16, 40]. It was also explicitly designed to develop In-
telligent Tutoring Systems that scaffold students’ code-completion
processes. These two factors make it an ideal choice for the code
comprehension tasks in our study. The code examples in the Deep-
Code codeset include most topics in introductory programming
courses, such as operators, loops, arrays, methods, and classes.
Each of the code examples in the DeepCode codeset is broken
down into major logical blocks, each of which implements a clear
functionality or sub-goal of the overall goal of the code. The expla-
nations that accompany the code examples are divided into two
main types: logical step and logical step details. These correspond
to the domain and program models, respectively, of major code com-
prehension theories [37]. The details of the logical steps also link
the domain model with the program model, thus, corresponding
to the integrated model in code comprehension theories [37]. The
code examples were designed to minimize the domain knowledge
needed for full understanding and center around relatable, world-
knowledge tasks or contexts, such as determining if a given year is
a leap year. There is another type of explanation called statement-
level explanations, which focuses on the new concept introduced
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in each example. The code examples are sequenced so that each
introduces only one new concept and relies on previously mastered
concepts to manage the cognitive load. However, we do not use this
sequencing in our work presented here as our experiment was just
one session. The sequencing of topics and examples is important
for semester-long use.

Additionally, the DeepCode codeset includes scaffolding ques-
tions for logical and statement-level expert explanations, which
human or computer-based instructors can use as hints to scaf-
fold students’ comprehension and learning. For instance, following
socio-constructivist theories of learning, these hints in the form of
questions are progressive, starting with vague hints and becoming
more and more informative, eventually providing fill-in-the-blank-
type hints. This socio-constructivist approach allows the student to
construct their knowledge by themselves as much as possible and
only provides help through hints in the right dosage only when
the student is floundering. In our study, we extended the scaffold-
ing questions used in the DeepCode examples to scaffold students’
understanding in multiple dimensions of code comprehension as
identified by [38]: inferences, control flow, data flow, program model,
domain model, and integrated model. In sum, our tutoring system
aims to assess and assist the student in developing a deep under-
standing of the target code examples and learning programming
concepts.

4 SYSTEM DESCRIPTION

As noted above, we compared two approaches to study code exam-
ples. In the first approach, participants simply read Java code ex-
amples augmented by expert explanations (worked-out examples).
In the second approach, the students worked with code examples
using a conversational Intelligent Tutoring System (ITS) known as
the DeepCodeTutor.

The DeepCodeTutor approach involved presenting students with
individual Java code examples, each accompanied by a clear de-
scription of the program’s goal. Students were asked to provide
self-explanations for the given code. These explanations are sup-
posed to describe the functionality of the code in terms of logical
steps/subgoals (domain model of the code) and explain how those
logical steps are implemented (program model of the code) and
how these are interlinked (the integrated model). These initial self-
explanations were subsequently evaluated using automated seman-
tic similarity methods. These methods compared the student’s ex-
planations with expert-provided explanations, such as those found
in the ‘DeepCode’ code examples. Semantic similarity assessment
was performed at both the sentence and paragraph levels, employ-
ing various features for comparison [36]. These features included
an alignment score, determined by the optimal sentence alignment
using chunks and a branch-and-bound solution to the quadratic
assignment problem, word embeddings, and unigram overlap with
synonym checks, bigram overlap, and the BLEU score [31]. If the
similarity score reached 0.5 or higher, the student’s explanation was
deemed correct, and they progressed to the next task. In cases where
the similarity score ranged from 0.4 to 0.5, the student’s explanation
was considered partially correct, and additional scaffolding was
provided to address the incorrect portions. The selection of the 0.5
threshold value was informed by previous research [23].
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The goal of DeepCodeTutor is to help students comprehend and
explain the logical step and logical step details of a given code. If
a student provides a complete and correct explanation, they will
receive positive feedback and a summary explanation of what the
code does. If the student misses important aspects or has miscon-
ceptions, DeepCodeTutor will use scaffolding questions to guide
their comprehension and learning. The number of hints provided
may vary depending on the student’s needs. For instance, initially,
the hints are vague, and if the student still struggles, the hints will
be more and more informative eventually ending with a bottom-out
hint in the form of a fill-in-the-blank question. The system will sim-
ply present the explanation if the student cannot provide a correct
answer to the bottom-out hint.

The user interface of DeepCodeTutor consists of the following
components. The goal description for the Java code example is
displayed in the top left corner of the app and is highlighted in
red for immediate attention and easy visibility for students (Fig. 1,
A). The interactive code editor (Fig. 1, B) displays the target code
example that the student should study to understand and explain.
The code example is divided into logical blocks/chunks separated
by empty lines. When a question is asked about a specific block/line
of code, as shown in the figure, the target block is highlighted in
yellow. On the right side of the interface (Fig. 1, C), is a display
box that shows the entire dialogue history, displaying the student’s
response in blue on the right and the tutor’s response in green on
the left. The student input box is in the bottom right corner of the
interface(Fig. 1, D). While it is beyond the scope of this paper to
present all the details of DeepCodeTutor’s design, it is important
to note that we conducted several pilot studies prior to our main
study. The primary objective of these pilot studies was to assess the
functionality of our intelligent tutoring system. These pilot studies
involved small groups of graduate and undergraduate students (with
sample sizes ranging from 5 to 10) and yielded positive results.

5 EXPERIMENTAL DESIGN

We conducted a randomized controlled trial experiment to explore
the effectiveness of scaffolded self-explanations provided through
the DeepCodeTutor. Students were randomly assigned to one of
the two experimental conditions: the control group (worked-out ex-
amples) versus the experimental group (scaffolded self-explanation
through DeepCodeTutor).

The experimental group worked with the DeepCodeTutor (Fig. 1)
introduced earlier while the control group studied expert-annotated
code examples from the DeepCode codeset. Figure 2 shows the
prompt asking students to read the annotated code example in
the control condition. In the control condition, participants could
move on to the next task only after confirming that they had read
the annotated code example and the accompanying explanations,
which was also evaluated based on whether the student scrolled to
the end of the annotated code example.

The two groups worked with the same Java code examples, that
is, all participants were exposed to equivalent content. Participants
in both groups were tested for their mastery of the target concepts.
The pre-and post-tests consisted of predicting the output of five Java
code examples, which were aligned with the five main experimental
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Dialogue History

In this next example, we will focus on concepts related to arrays. We will do that with the help of a program whose goal is to ~

calculate the average of numbers.

<

Once you are done reading the code, type your explanation of what the code does at the bottom of the Dialogue History box. Please go on and

do your best to explain your understanding of the code and its output in as much detail as you can.

9

= public class AverageOfNumbers {
public static void main(String[] args) {

double[] numArray = {8,6,11,7};
double sum = 0.0;
double average:

for (int i = 0; i < numAurray.length; i++) {
sum += numArray[i]:

1
I

average = sum / numAurray. length;
System.out.format("The average is: %.2f", average);

Please go on and do your best to explain your understanding of the
code and its output in as much detail as you can.
The first step of the program declares the variables needed to store a
set of numbers, their sum, and their average.

Bravo!

The first step of the program declares the variables needed to store a
set of numbers, their sum, and their average.

Can you explain in detail how the goal of the current block of code is

actually implemented (lines 4-6)?
v

&

Enter your answer

The array variable numAfray is declared to store the
numbers whose average will be computed. The variable
sum is declared to represent the sum of the numbers.
The value of the sum is initialized to 0. Also, the variable
average of double type is declared to hold the average
value of the numbers. y

Figure 1: A screenshot of the DeepCodeTutor Interface: It includes (A) the goal description for each task, (B) an interactive
Java code editor that shows the current Java code example, (C) a dialogue history of the interaction between the tutor and the
learner, and (D) an input box for the learner to type their responses.

tasks. The performance of the students on these tests was used to
calculate the main outcome variable: normalized learning gains.

5.1 Protocol

The study was carried out through Zoom! in groups according to
the availability of the students. First, the students were briefed about
the experiment, given the opportunity to ask questions, and then
asked to sign a consent form if they agreed to proceed. Then they
completed a background questionnaire about their main language
of communication, programming experience, and current major.
This was followed by a self-efficacy questionnaire and a pre-test,
which assessed the students’ prior knowledge of the programming
concepts covered in the main experimental tasks: variables and
operator precedence, nested if-else statements, loops, arrays, and cre-
ating objects and using their methods. The main tasks refer to the
five code-reading tasks of the experiment.

Before starting the main task, the participants were provided
with clear instructions on how to access and navigate the system
used under their assigned conditions. After that, participants were
placed in Zoom breakout rooms. They were requested to share
their screens as they engaged in their assigned activities while
closely monitored by a research coordinator (a graduate student).
A graduate student was also available to answer questions during
the experiment.

After completing the main tasks, the students took a post-test
focused on the same concepts as covered in the pre-test and main
tasks. Finally, the students completed an evaluation survey about
their perception of the DeepCodeTutor. The system anonymously

Ihttps://zoom.us
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recorded all student input and tracked the time associated with
each action.

5.2 Participants

We recruited 90 students from an introductory Java programming
class in an undergraduate Computer Science program at a large
public university in the US. In the class, students learned Java
programming through lectures, readings, and recitations. They also
practiced Java knowledge through weekly homework assignments.

The participants’ majors included Computer Science, Data Sci-
ence, Computational Biology, Physics, Statistics, Engineering, Com-
putational Social Science, Economics, and Statistics. Most of the par-
ticipants were CS majors (n = 55). Fourteen participants identified
themselves as non-native English speakers. Of the 90 participants,
89 completed the experiment, 47 in the control group, and 42 in the
experimental group.

5.3 Instrumentation of Self-Efficacy

We assessed self-efficacy using a self-report survey using Askar and
Davenport’s computer programming self-efficacy scale [5]. This
scale focuses on students’ ability to learn and perform well in com-
puter science courses, specifically their problem-solving confidence,
debugging confidence, confidence in mastery, and confidence in
receiving a good grade (i.e., success in the course). The student’s re-
sponse was recorded on a 5-point Likert scale: (1) Strongly disagree;
(2) Disagree; (3) Neither agree nor disagree; (4) Agree; (5) Strongly
agree for different questions. All questions were formulated with
positive language. The questions used in the self-efficacy survey
can be found in Table 4.
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In this next example, we will focus on concepts related to arrays. We will do that with the help of a
program whose goal is to calculate the average of numbers.

Your task s to read the shown code and understand what it does. Once you are done reading the code and the
comment, Try to comprehend the program in term of the end goal of the program and also mentally trace the
execution of the program.

- public class AverageOfNumbers {
public static void main(String[] args) {

Figure 2: A screenshot displaying the prompt for reading the
annotated code example in the control condition.

The Cronbach’s Alpha for the ten items among all participants
was found to be 0.85, which indicates that response values for each
participant across all the items are consistent. To calculate the
average self-efficacy score for each participant, the average of the
responses to all questions was taken.

5.4 Performance Assessment

Normalized learning gain (NLG) [39] was used as the main per-
formance metric to assess the effectiveness of the two different
learning strategies, as it allows consistent analysis of diverse stu-
dent populations with varying prior knowledge [29]. In our case, the
NLG is calculated using the following formula (maximum possible
post-test score = 5):

posttest—pretest
5—pretest

if posttest > pretest

osttest—pretest .
NLG = PpTepst if posttest < pretest
discard if posttest = pretest = 5 or 0
0 if posttest = pretest
6 RESULTS

We organize this section around four major research questions our
work has addressed.

RQ1: How Does the Effectiveness of Scaffolded Self-explanation

using DeepCodeTutor Compare to Reading in Improving
Code Comprehension Among Novice Learners?

We use normalized learning gain to measure the effectiveness of
learning strategies. To compute the normalized learning gains for
the two groups in our experiment, data from 21 participants in the
control group and 11 participants in the experimental group were
excluded because they had perfect pre-test and post-test scores.
Similarly, the data of one participant was omitted from the analysis
because they scored 0 on both the pre-test and the post-test. After
eliminating these participants, the remaining participants in the
study had an average pretest score of 3 (N=26, S.D = 1.23) in the
control group and around 2.9 (N=30, S.D=1.41) in the experimen-
tal group. A t-test (t-val=-0.08, Sig. = 0.21) indicated that the two
groups had similar levels of pre-test scores/prior knowledge. It is to
be noted that any parametric techniques mentioned in this section
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(Section 6) met all the underlying assumptions, such as, normal
distribution, random sampling, independence of observations, and
homogeneity. Similarly, the t-test (t-val = -0.39, Sig.= 0.35) for the
average self-efficacy for each group indicates that there is no signif-
icant difference between the average self-efficacy of the two groups.
That is, the two groups were equivalent in terms of prior knowledge
and self-efficacy.

In terms of normalized learning gains, we did not find significant
differences between the control group (M=0.22, S.D=0.54) and the
experimental group (M=0.26, S.D=0.40), although the students in
the experimental group had a greater average learning gain (Table
1).

To better understand the effect size of the strategy implemented
by DeepCodeTutor, we calculated Cohen’s d, which was found to
be a small effect size of 0.19 in favor of scaffolded self-explanation
using DeepCodeTutor.

We also analyzed the distribution of learning gains in both groups
using a heat map as shown in fig 3. Both groups exhibited notable
learning gains specifically for the main task #2, which covered the
nested if-else concept. For the main task #5, which covered the
concept of classes and objects, the experimental group had an ad-
vantage over the control group.

Table 1: Independent sample t-test for the learning gains of
the two experimental conditions.

Group N Mean SD t-val Sig.
Experimental Group 30 0.26  0.40
Control Group 26 022 054 034 0.33

RQ2: Is the Effectiveness of Reading Versus Tutoring In-
fluenced by Varying Levels of Prior Knowledge

We conducted a two-factor ANOVA to understand the effect of
experimental condition and student prior knowledge. We assigned
each student to a high or low prior knowledge group based on the
median pretest score for each condition (Med = 3.5 for the experi-
mental group and Med = 3 for the control group). We conducted a
t-test on the pretest score between students with low prior knowl-
edge (N = 15, M = 1.93, SD = 1.27) and students with high prior
knowledge (N = 15, M = 4.06, SD = 0.25) under both conditions. The
results indicate a significant difference in prior knowledge between
the two groups (t=6.32, p<0.05), which validates our split using the
median.

Table 2 shows the results of the two-factor ANOVA. It can be
noted that the main effect of the "Group" factor was not statisti-
cally significant (F(1, 52) = 0.17, p = 0.67), indicating no significant
differences in academic performance among the groups after imple-
menting the tutoring strategy. However, the main effect of "Prior
Knowledge" approached significance (F(1, 52) = 2.93, p = 0.092),
suggesting that prior knowledge influences academic performance.
In particular, the interaction effect between the "Group" and "Prior
Knowledge" was significant (F(1, 52) = 4.61, p = 0.03), indicating
that the impact of the tutoring strategy on learning varied based
on the prior knowledge of the participants.

To further examine the impact of the scaffolded self-explanation
delivered through the DeepCodeTutor on students with different
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Figure 3: Heatmap of learning gain per question for students
in (a) Experimental (b) Control group respectively

Table 2: Two-Factor ANOVA for the effects of Group and
Prior Knowledge on the dependent variable - the normalized
learning gains.

sum_sq df F PR(>F)
Group 0.03 1.0 0.17 0.67
prior_knowledge 0.62 1.0 293 0.09
group:prior_knowledge 051 1.0 461  0.036
Residual 11.05 52.0 - -

levels of prior knowledge, we did a t-test. As we can see in Table
3, there is a significant difference in the normalized learning gain
between low and high prior knowledge students in the experimen-
tal group, but no significant difference in the control group. This
suggests that the scaffolded self-explanation may be particularly
helpful for students with lower levels of prior knowledge which
exhibited the largest mean learning gains. Figure 4 shows that stu-
dents in the experimental condition with low-prior knowledge had
a higher median and average learning gain than students in other
conditions. The box plot also indicates that the spread of learning
gain is greater among students with high prior knowledge in the
control group, indicating more variation in learning gain within
this group than in others.

RQ3: How Does A Student’s Self-Efficacy Affect Their Learn-
ing When Using Different Learning Strategies: Reading Ver-
sus Scaffolded Self-explanations?

SAC ’24, April 8-12, 2024, Avila, Spain

Table 3: Learning Gain Comparison for Low vs. High Prior
Knowledge (Prior Knwldg) Student

Group PriorKnw N Mean SD t-val Sig.
. Low 15 046 0.33

Experimental High 15 007 039 291 0.003
Low 14 022 052

Control High ey 0.02 049

For RQ3, we first review the experimental results with an analy-
sis of participants’ self-efficacy. The average scores across all par-
ticipants for all the self-efficacy questions are shown in Table 4.
The control group’s scores are higher for all questions except the
last one. Participants reported the highest levels of self-efficacy in
their ability to understand Java conditional expressions and trace
well-defined iterative statements in Java. Conversely, participants
reported the lowest levels of self-efficacy with respect to their mas-
tery of Java programming concepts and their ability to achieve an
excellent grade in a Java programming class.
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Figure 4: Box plot showing the normalized learning gain com-
parison among low-prior and high-prior knowledge students
in the experimental and control conditions.

For the targeted concepts in our main experimental tasks (vari-
ables and operator precedence, nested if-else statements, loops,
arrays, and creating objects and using their methods), self-efficacy
scores are quite high (around 4.0 or above) indicating our sample is
biased toward high self-efficacy students. The average self-efficacy
for the experimental condition is lower than for the control con-
dition but not significantly lower. We calculated the average self-
efficacy for each group by taking the average of the self-efficacy
across all items in each group. The average self-efficacy among all
the participants was 3.96 (N=89, S.D = 0.48), 3.92 (N=42, S.D=0.48)
in the experimental group and 4.01 (N=47, S.D=0.47) in the control
group.

We also asked students to self-report their years of program-
ming experience (not to be confused with professional program-
ming experience ) which can be viewed as a proxy for their prior
knowledge. The correlation between self-efficacy and programming
experience was 0.45 , and between self-efficacy and pretest scores
was 0.47. These results suggest that students are relatively good



SAC 24, April 8-12, 2024, Avila, Spain

Table 4: Average and Standard Deviation (in parentheses) of
self-efficacy per item.

Item Overall Control Exp

Avg(S.D) Avg(S.D) Avg(S.D)

I believe I will receive an excellent 3.7 3.74 3.66
grade in Java programming class.  (0.88)  (0.93)  (0.83)
I have mastered the concepts 3.49 3.57 3.4
taught in the Java programming (0.8) (0.81)  (0.78)
class.

I can read Java programs and make 4.0 4.10 3.88
changes to them according to some  (0.7) (0.75)  (0.62)
specified requirements.

I can write Java programs if given  4.07 4.14 4.0

a specified set of requirements. (0.7) (0.68)  (0.72)
I can mentally trace through the 3.47 3.55 3.38
execution of a long, complex Java (0.79)  (0.67)  (0.89)
program given to me.

I can understand Java’s conditional 4.56 4.57 4.54
expressions (e.g., if...else.. ). (0.53)  (0.53)  (0.54)
I can mentally trace well-defined it- 4.23 4.29 4.16
erative statements in Java (e.g., for (0.68)  (0.61)  (0.75)
loop and while loop).

I can understand the concepts of 3.94 3.95 3.92
objects and classes in Java, givena (0.67)  (0.68)  (0.66)
well-defined declaration of a Java

class.

I understand how the array data 4.21 4.29 4.11
structure works in Java and how to  (0.79)  (0.61)  (0.95)
use it when coding.

I can debug(correct the errors) a 3.92 3.91 3.92
long and complex program thatI (0.76)  (0.79)  (0.73)

had written and make it work.

at self-reporting their prior knowledge, i.e., self-assessing their
knowledge.

Table 5: Average and Standard Deviation(S.D) of self-efficacy
grouped according to pretest score.

Pretest Score N Avg S.D
5 36 413 04
4 23 402 031
3 16 395 0.59
2 3 346 0.12
1 7 345 049
0 337 3.29

The Table 6 presents the results of a two-factor ANOVA con-
ducted to assess the effects of the experimental condition and self-
efficacy on learning gains. The "Group" factor, representing the
experimental condition, yielded a non-significant main effect (F(1,
52) = 0.11, p = 0.73), indicating that there is no significant difference
in learning gain between the groups. Similarly, the "Self Efficacy”
covariate showed a non-significant main effect (F(1, 52) = 0.01, p
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df sum_sq mean_sq F PR(>F)
Group 1.0 0.027 0.027 0.11 0.73
self efficacy 1.0 0.004 0.004 0.01 0.89
Group: self efficacy 1.0 0.33 0.33 148 0.22
Residual 52.0 11.84 0.22

Table 6: Two-Factor ANOVA for the Effects of Group and
self-efficacy on the Dependent Variable

= 0.89), suggesting that self-efficacy did not have a significant im-
pact on learning gains. The interaction between the experimental
condition and self-efficacy was also non-significant (F(1, 52) = 1.48,
p = 0.22), indicating that the combined effect of these variables
on learning gains was not statistically significant. These findings
suggest that neither the experimental condition nor self-efficacy
exerted a significant influence on learning gain in this study.

To further investigate the effect of self-efficacy on learning gain
and experimental condition, we divided students in each condition
into two subgroups based on their self-efficacy scores: the low-
self-efficacy and high-self-efficacy subgroups. The threshold for
determining which subgroup a student belonged to was the me-
dian self-efficacy score, which was 3.9 for both groups (this median
value was obtained after discarding some data as noted in the nor-
malized learning gain analysis). This split resulted in a significant
difference in both pretest scores and average self-efficacy between
the subgroups (p-value < 0.05 in the control group and p-value <
0.05 in the experimental group), supporting our method to split the
groups based on self-efficacy. Although the learning gain in high
self-efficacy students is higher than that of the low self-efficacy
students, the difference was not statistically significant as shown
in Table 7.

Table 7: Learning gain comparison of low self-efficacy (S.E)
versus high self-efficacy (S.E) students.

Group N Mean SD t-val Sig.
LowSE 29 019 046
HighSE 27 030 048 086 0.39

Table 8: Learning gain of high and low self-efficacy students
in experimental versus control groups.

Group Self-Efficacy N Mean SD t-val Sig.
. Low 15 028 0.36

Experimental High 15 027 046 0.14 0.88
Low 13 0.13 055

Control High 13 032 053 0.85 0.39

Table 8 shows no significant difference in learning between stu-
dents with low and high self-efficacy in the experimental group,
suggesting that scaffolded self-explanation is equally effective for
all levels of self-efficacy. Interestingly, high-efficacy students have
similar mean learning gains in the two conditions. Importantly, Ta-
ble 8 also shows that students with high self-efficacy had twice the
learning gain compared to those with low self-efficacy when just
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reading expert-annotated code examples, although this difference
was not statistically significant. This may imply that the interac-
tive strategy helps the low-efficacy students twice as much as the
more passive strategy of reading experts’ code explanations. The
difference in learning, while large, is not significant and may be the
result of our small sample size (n = 13 for control high self-efficacy
and n = 15 for experimental low self-efficacy). This is something
we will need to explore with a bigger sample size in the future.

RQ4: How Do Self Explanations Vary Among Students
With Low and High Self-efficacy?

We further analyzed the nature of students’ self-explanations
while accounting for the self-efficacy level to see if there were any
significant differences. The self-explanation was only collected for
the participants in the experimental condition, as the control group
only engaged in reading worked-out code examples. We analyzed
students’ first self-explanations, i.e., explanations generated freely
without any scaffolding immediately after being prompted to read
and self-explain their understanding of the code (before any scaf-
folding from the computer tutor). We calculated the volume of those
first self-explanations by counting the number of content words
(nouns, verbs, adjectives, and adverbs) after removing common stop-
words (stopwords excluded common computer science terms such
as for; “while,’ and ’if’ and so on). A t-test (t-stat=0.59,p=0.55) for
the volume of self-explanation between low self-efficacy (M=22.5,
S.D=17.21) and high self-efficacy (M=26.4, S.D=23.86) indicated no
significant difference in the volume of explanations between the
two groups.

Next, we analyzed the nature of self-explanations. According
to Ramalingam and Wiedenbeck [32] there is a direct correlation
between self-efficacy and mental models in computer programming.
To this end, we analyzed the difference in explanations of low self-
efficacy students to that of students with high self-efficacy. We used
the SOLO taxonomy [10] to study differences in the nature of self-
explanation among low- and high-self-efficacy students inspired by
prior work which used the SOLO taxonomy to measure a student’s
understanding of a topic or concept [20].

We trained two graduate students on SOLO taxonomy. We asked
them to rate students’ free self-explanation (obtained on the first
prompt) based on the five levels of understanding in the SOLO
taxonomy. The inter-rater agreement between the two graduate
students was found to be 0.87.

We observed that when self-explaining the code, high-self-efficacy
students tend to provide more relational explanations (71%), which
describe the relationship between different parts of the code. On
the other hand, students with low self-efficacy tend to use a more
multi-structural or line-by-line approach to self-explanation(68%).
They focus on describing individual lines of code or actions taken
rather than explaining how they relate to the overall logic of the
program. For example, the following explanation is provided by a
high self-efficacy student for a code to find the smallest divisor of a
number: “Two integer variables are declared, num and divisor. Num
is assigned to the value 15, and the divisor starts with the smallest di-
visor larger than 1, 2. Then, the program runs through a while loop to
find the smallest divisor of num.” This contrasts with the explanation
of the same code by a student with low self-efficacy: “First, assign
the value 15 to the num variable. Then assign the value 2 to the divisor
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variable. After that, while the remainder of the num and divisor is not
equal to 0, you keep adding one to the divisor”. The difference in the
explanations suggests a surface-level understanding of the code for
low-self-efficacy students compared to high-self-efficacy students.

7 THREATS TO VALIDITY

One of the limitations of our study could be the relatively low diffi-
culty of the main tasks compared to student mastery level. Indeed,
most students (48%) had pre-test scores that were relatively high (4
or 5 out of a perfect score of 5), which means that our sample was
biased towards high knowledge. Similarly, our sample was biased
towards high-self-efficacy students. This may be the case because
we recruited students at the end of the semester, i.e., students had
an entire semester to master the programming concepts.

8 CONCLUSION AND FUTURE WORK

We examined the effectiveness of two instructional strategies (read-
ing explained code examples vs. scaffolded self-explaining of code
examples) and its impact on learning while students engage in code
comprehension tasks.

Our findings suggest that students with low prior knowledge in
the experimental group benefit significantly while using scaffolded
self-explanation compared to students with high prior knowledge.
In addition, the results of the experiment show a strong relationship
between self-efficacy and prior knowledge, which means that stu-
dents with low prior knowledge typically have low self-efficacy. In
turn, they need more support in the form of hints and feedback for
instructional purposes. The interactive strategy led to significantly
better learning for low-prior-knowledge students, whereas learning
gain of high prior knowledge students under the interactive condi-
tion was modest. This may be due to various reasons, including the
mismatch between the task difficulty (too easy for high-knowledge
students), which leads to some level of disengagement, including
disengagement in the post-test.

For future work, we plan to investigate further the role of self-
efficacy on learning and comprehension with a larger sample of
students. Furthermore, since our sample was biased toward higher
self-efficacy, we plan to change the timing of our experiment to the
middle of the semester before students had too many opportunities
to master the target concepts. Our results so far look promising, in
particular, for low-knowledge students students who need more
help, thus affirming the potential of advanced learning technologies
that implement interactive instructional strategies to help students
learn computer programming while engaging in code comprehen-
sion instructional tasks.
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