
SANN: Programming Code Representation Using Attention
Neural Network with Optimized Subtree Extraction
Muntasir Hoq

North Carolina State University
Raleigh, NC, USA
mhoq@ncsu.edu

Sushanth Reddy Chilla
North Carolina State University

Raleigh, NC, USA
schilla@ncsu.edu

Melika Ahmadi Ranjbar
North Carolina State University

Raleigh, NC, USA
mahmadi@ncsu.edu

Peter Brusilovsky
University of Pittsburgh
Pittsburgh, PA, USA
peterb@pitt.edu

Bita Akram
North Carolina State University

Raleigh, NC, USA
bakram@ncsu.edu

ABSTRACT
Automated analysis of programming data using code representa-
tion methods offers valuable services for programmers, from code
completion to clone detection to bug detection. Recent studies
show the effectiveness of Abstract Syntax Trees (AST), pre-trained
Transformer-based models, and graph-based embeddings in pro-
gramming code representation. However, pre-trained large lan-
guage models lack interpretability, while other embedding-based
approaches struggle with extracting important information from
large ASTs. This study proposes a novel Subtree-based Attention
Neural Network (SANN) to address these gaps by integrating differ-
ent components: an optimized sequential subtree extraction process
using Genetic algorithm optimization, a two-way embedding ap-
proach, and an attention network. We investigate the effectiveness
of SANN by applying it to two different tasks: program correctness
prediction and algorithm detection on two educational datasets con-
taining both small and large-scale code snippets written in Java and
C, respectively. The experimental results show SANN’s competitive
performance against baseline models from the literature, including
code2vec, ASTNN, TBCNN, CodeBERT, GPT-2, andMVG, regarding
accurate predictive power. Finally, a case study is presented to show
the interpretability of our model prediction and its application for
an important human-centered computing application, student mod-
eling. Our results indicate the effectiveness of the SANN model in
capturing important syntactic and semantic information from stu-
dents’ code, allowing the construction of accurate student models,
which serve as the foundation for generating adaptive instructional
support such as individualized hints and feedback.

CCS CONCEPTS
• Applied computing → Education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3615047

KEYWORDS
program analysis; code representation; static analysis; algorithm
detection; program correctness prediction

ACM Reference Format:
Muntasir Hoq, Sushanth ReddyChilla,MelikaAhmadi Ranjbar, Peter Brusilovsky,
and Bita Akram. 2023. SANN: Programming Code Representation Using At-
tention Neural Network with Optimized Subtree Extraction. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge
Management (CIKM ’23), October 21–25, 2023, Birmingham, United Kingdom.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3583780.3615047

1 INTRODUCTION
Programming code representation is becoming an important area
of research due to its growing application in various intelligent
functionalities such as code classification [9, 43], bug detection
[12, 39], and code summarization [1, 22]. A significant challenge
posed by program analysis is the vast state space of programming
code and the complex code structures that hinder the process of
effectively capturing the semantic and syntactic information of
programs [26, 28, 41]. Due to the success of different embedding
and deep learning techniques in natural language processing (NLP)
[19, 21, 37], these approaches are gaining popularity in representing
source code. These approaches try to map from the vast state space
of programs to condensed numerical vector forms. Various stud-
ies have shown the effectiveness of embedding program Abstract
Syntax Trees (ASTs) in representing and analyzing programming
code [5, 6, 31, 32]. However, multiple challenges are associated with
this task, including effectively capturing the syntactic and semantic
information of large programs with deep ASTs [26, 44]. The emer-
gence of large language models pre-trained on massive amounts of
data is a step toward addressing this issue [13]. However, they lack
interpretability, which is critical in human-centered computational
applications, including student modeling and personalization.

This study proposes a novel Subtree-based Attention Neural
Network (SANN) with optimized subtree extraction using Genetic
Algorithm (GA) for program representation and analysis. We em-
ploy GA optimization to dynamically split the program AST based
on a particular modeling task. Using GA, we further optimize the
maximum depth of each subtree, the maximum number of nodes in
each subtree, and the maximum number of subtrees per program.
The optimization process leads to capturing substantial structural
and semantic information with fewer and smaller non-overlapping

783

https://doi.org/10.1145/3583780.3615047
https://doi.org/10.1145/3583780.3615047
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615047&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Muntasir Hoq, Sushanth Reddy Chilla, Melika Ahmadi Ranjbar, Peter Brusilovsky, & Bita Akram

subtrees compared to extracting all the possible subtrees, which
enables the model to analyze larger and deeper ASTs. These sub-
trees also help to capture semantic information more efficiently
for their sequential extraction. A two-way embedding approach
is then used to capture syntactic and semantic information across
subtrees and programs. This is done by incorporating a subtree-
based embedding for each subtree of a program and a node-based
embedding for each subtree node. The optimized subtree extraction
process, along with the two-way embedding approach, allows our
model to capture task-specific structural information from code
dynamically. Furthermore, an attention neural network combines
subtree-level information according to its importance for the pre-
diction task at hand. This attention mechanism allows the model
to retain important subtree information in the final representation
of the program. A combination of these approaches makes SANN
effective in capturing useful information from program ASTs and
analyzing larger ASTs while being interpretable. The embedded
code can be further used in different prediction and analysis tasks
such as code classification [28, 36], bug finding [24, 34], automatic
hint generation [29, 30], etc.

The effectiveness of our model is validated by using it in two pro-
gram analysis tasks using publicly available educational datasets in
two different programming languages, Java and C. Task 1 identifies
the correctness of students’ solutions for eight Java programming
problems. It is based on the CodeWorkout [28] dataset, which con-
sists of relatively small programs that represent correct and incor-
rect solutions for each problem, resulting in massive state space for
possible programs. Task 2 conducts algorithm detection in student
solutions of C programming problems. It is based on the OJ dataset
[26, 31], which contains correct solutions for 104 assignments that
are relatively large and complex, resulting in larger and deeper
ASTs. These two tasks provide insight into students’ mastery of
algorithms and their ability to solve a problem with specific require-
ments correctly. Taken together, these tasks show the effectiveness
span of our model for analyzing relatively large and diverse ASTs.

The experimental results demonstrate that SANN competes suc-
cessfully with several popular approaches reported and explored
previously, including code2vec [6], ASTNN [44], TBCNN [31], GPT-
2 [23], CodeBERT [13], and MVG [26] as well as some traditional
Machine Learning (ML) techniques such as SVM, KNN, and XG-
Boost. We further demonstrate the interpretability of the SANN
model in which a student’s response to a coding problem is ana-
lyzed by investigating the most important subtree of the student’s
code AST affecting the results. Analyzing the syntactic and se-
mantic information from student code structures provides insight
into student programming skills [8]. Coupled with interpretability,
it can further improve pedagogical approaches, provide adaptive
course content recommendations, identify struggling students, and
improve the overall process of learning programming [16]. Our
model aims to generate accurate, effective, and trustworthy results
by capturing important structural and semantic information from
various sizes of ASTs while maintaining the ability to interpret its
decision-making process.

In this study, we answer the following research questions:

• RQ1: How well does SANN perform in predicting program
correctness in sparse datasets with small ASTs?

• RQ2: How well does SANN perform in detecting algorithms
from programs with larger and deeper ASTs?

• RQ3: How effective is the optimized subtree extraction process
using GA?

• RQ4: Does the integration of subtree-based and node-based
embedding (the two-way embedding approach) help in improv-
ing the performance of SANN?

• RQ5: Does the sequential subtree extraction process help in
retaining semantic information?

2 RELATEDWORK
Different methods for representing programming code have evolved
over time. Different data-based methods [33, 42] tried to map pro-
grams as functions where input data of the programs help to ana-
lyze the program with specific outputs. Sequence-based approaches
[7, 46] tried tomanipulate programs as natural language and applied
different NLP techniques to analyze programs. Recently, different
tree-based [5, 6, 31] and graph-based [26, 45] approaches have
shown promising results in representing programs using ASTs and
program graphs by adding edges to those ASTs.

At the same time, analysis of student programming data has
gained popularity in recent years. Recently, AST-based techniques
for analyzing programs have successfully captured program-specific
information. For example, [35] used a contextual tree decomposi-
tion algorithm on programASTs to generate automated hints. In [3],
students’ proficiency in various program-associated concepts was
assessed using data-driven models. In another study [2], structural
n-grams of varying sizes were used to represent the ordinal and
hierarchical program structures. However, these approaches are
not effective enough for analyzing large programs because their
information extraction process is not equipped to capture complex
code structures represented by large bodies of code.

In many recent studies, different embedding techniques have
demonstrated their effectiveness in compressing programming code
into a vector representation. [6] proposed a code2vec model in
which each AST is split into paths between each pair of leaf nodes
(referred to as context paths) while an attention mechanism is used
to embed them into code vectors. It effectively predicted method
names for programs written by professional software engineers. In
[28, 39], the effectiveness of the code2vec model was shown using
student programming data in program correctness prediction and
bug detection tasks. In [32], an ast2vec model was introduced to
generate vector embeddings from ASTs using a variational autoen-
coder by merging subtree information recursively. Other examples
are code2seq [5] and ASTNN [44], where the information from
ASTs is extracted using context paths and statement trees, respec-
tively. [31] proposed a TBCNN model in which a convolutional
kernel was used to capture AST information and embed them using
max pooling. Recently, different pre-trained Transformer-based
large models are also becoming popular in programming code anal-
ysis tasks [10, 13, 17, 23]. Another recent study [26] proposed a
graph-based embedding model MVG that uses different graph in-
formation, i.e., control-flow, data-flow, and read-write graphs, and
embeds them using a gated graph neural network with the help
of max pooling. Both [26, 31] showed the effectiveness of their

784

SANN: Programming Code Representation Using Attention Neural Network with Optimized Subtree Extraction CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 1: Architecture of code vector generation and prediction from extracted subtrees

models in algorithm detection tasks in student programs. Previ-
ous studies such as [26, 31, 32] have shown promising results with
relatively small programs. However, they might be less effective
with larger programs, which require preserving structural infor-
mation for large and deep ASTs in the final vector representation.
Effective representation can be hindered by merging structural in-
formation recursively or using max pooling, leading to the loss of
syntactical and semantic information in the representation process
[44]. Moreover, most of the previous studies [5, 6, 32, 44] use a
static approach for AST splitting regardless of the tasks they are
assigned. Splitting an AST into the same context paths, statement
trees, or subtrees may limit the effectiveness of selecting the most
task-relevant features.

The proposed SANN model addresses gaps in the domain by dy-
namically capturing task-relevant information, aggregating node-
level and subtree-structural information, and preserving long-term
dependencies in large and deep ASTs. The optimized subtree ex-
traction process, facilitated by genetic algorithms (GA), splits ASTs
into non-overlapping subtrees of dynamically determined sizes
based on the prediction task. This approach helps SANN generalize
over larger and deeper ASTs while efficiently capturing semantic
information through sequential subtree extraction and embedding.
Unlike code2vec, which only embeds leaf nodes and context paths,
SANN embeds individual nodes and subtrees, providing deeper
insight into the local semantics of ASTs. The dynamic AST splitting
process optimizes subtree size to retain task-specific information,
while the attention mechanism ensures that important subtrees
receive greater attention to prevent information loss. The archi-
tecture of the attention mechanism further enables us to identify
and interpret the results and paves the way for creating adaptive
instructional support based on the explanations. Overall, SANN’s

architecture effectively represents programming code by capturing
essential syntactic and semantic information across various AST
sizes in an interpretable manner.

3 METHODOLOGY
In this section, we introduce our Subtree-based Attention Neural
Network (SANN) model. SANN uses an attention neural network to
encode source code into vector forms. Subtrees are extracted from
source code AST sequentially, where the size of the subtrees is op-
timized by a Genetic algorithm (GA). These subtrees are embedded
using a two-way embedding approach to embed into corresponding
subtree vectors. After that, an attention neural network generates
the source code vector for each program. We can divide the whole
model into two components: i) Optimized sequential subtree ex-
traction using GA (Figure 3) and ii) Code vector generation and
prediction (Figure 1). The following subsections delineate the design
of the model.

3.1 Optimized Sequential Subtree Extraction
Using Genetic Algorithm

An Abstract Syntax Tree (AST) represents the abstract syntactic
structure of a source code [15]. Therefore, it can be used to under-
stand the lexical semantics and syntactic structure of a source code
(Figure 2). We extract subtrees from ASTs sequentially and optimize
the process using GA as illustrated in Figure 3. ASTs are gener-
ated from source code using existing parser tools. We split an AST
into non-overlapping subtrees at a granular level. This approach
of extracting non-overlapping subtrees helps avoid repeating and
redundant information in the input, which results in fewer and
smaller subtrees and maximizes the amount of information that

785

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Muntasir Hoq, Sushanth Reddy Chilla, Melika Ahmadi Ranjbar, Peter Brusilovsky, & Bita Akram

Figure 2: AST with subtrees of max level 2 for a Java code

Figure 3: Flowchart for subtree extraction process using GA

can be captured from an AST, given the computational resource
constraints.

The maximum depth level for each subtree can be denoted as 𝑙 .
In Figure 2, the subtrees are shown for a simple Java code snippet
where 𝑙 = 2. In this case, each subtree will have a max level of two,
and a node will not be considered a subtree’s root if it is already
present in another subtree. We choose the sequence of the root for
each subtree sequentially using a breadth-first traversal. Each sub-
tree is constructed using preorder traversal of nodes starting from
the root. In Figure 2, we can see that the total number of subtrees
is 3, and the length of the subtrees varies from 1-4. We need a fixed
number of subtrees per program for the subtree-based embedding
and a fixed length for all subtrees for the node-based embedding.
Change of 𝑙 influences the optimal max length of subtrees and the
optimal max number of subtrees per program. We use GA to op-
timize 𝑙 , max length of subtrees, and max number of subtrees for
the dataset to overcome the huge computational time required to
find the most optimal parameter by exploring the large parameter
domain. In this study, we consider the last two parameters to have
equal values to decrease training time and resources and refer to
them as𝑚𝑎𝑥_𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑠𝑖𝑧𝑒 .

GA is similar to the process of natural evolution, a meta-heuristic
and stochastic optimization technique [18]. It is used in previous
studies to optimize parameters where the parameter space is large

[4, 38]. The main feature of GA is the population of “chromosomes”.
The process can be divided into six stages: initialization, fitness
calculation, terminal condition check, crossover, selection, and mu-
tation. At the initialization step, we set a chromosome arbitrarily as
the initial value of 𝑙 and𝑚𝑎𝑥_𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑠𝑖𝑧𝑒 in the search space using
binary bits representing genes of each value. The chromosome’s fit-
ness is set to the accuracy of the model’s prediction. Crossover and
mutation help to generate new solutions and introduce diversity
in them. Fitness is determined for the newly generated chromo-
somes, and the model verifies the termination criteria. The highest
accuracy is considered optimal fitness. Population size, number of
generations, and gene length play an important role in finding the
optimal solution. In this study, the aforementioned parameters are
set to 4, 4, and 10, where the first 3 bits of the gene represent 𝑙 , and
the later bits represent𝑚𝑎𝑥_𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑠𝑖𝑧𝑒 . Mutation probability and
crossover probability are set to 0.6 and 0.2, respectively. The initial
population is initialized randomly using the Bernoulli distribution.
Likewise, ordered crossover, shuffle mutation, and roulette wheel
selection are used.

In this approach, we can effectively split an AST into a sequence
of subtrees, which can be used as the input for the later part of the
model. Sequential extraction ensures the preservation of subtree-
order and semantic information of the source code. Using GA, we
can determine the maximum depth for each non-overlapping sub-
tree extracted, the maximum number of subtrees, and the maximum
length of each subtree for the given dataset to consider in the later
phases. This helps to reduce the size and number of subtrees needed
to gain insight into the local structure of ASTs.

3.2 Subtree Vector Generation
After the extraction of subtrees from an AST, the subtrees are
embedded following a two-way embedding approach: subtree-based
embedding to embed each subtree of the sequence and node-based
embedding to embed each subtree node. This process requires the
training of two embedding matrices: one for the subtree-based
embedding and another for the node-based embedding, which can
be denoted as 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 , and 𝑛𝑜𝑑𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 , respectively.

𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 ∈ R |𝑆 |×𝑑 ; 𝑛𝑜𝑑𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 ∈ R |𝑋 |×𝑑

Here, 𝑆 is the set of all subtrees in the subtree sequences, and 𝑋

is the set of all AST nodes observed during the training time. The
subtree and the node matrices are initialized with random values
and are learned during the training process. SANN gets knowl-
edge of similarities in subtrees and nodes from the subtree-based
embedding and the node-based embedding, respectively. Thus, by
incorporating these two embedding processes, the two-way embed-
ding approach enables the model to identify similar code structures.
The embedding size 𝑑 ∈ N represents the dimension of vectors
and is a hyperparameter of our model. The value of 𝑑 is empiri-
cally determined depending on GPU memory, computing time, and
model complexity. In literature, this value ranges from 100-500 [6].
The value of 𝑑 can be different for subtree-based embedding and
node-based embedding, but in this study, we kept the same value
for both of the embeddings.

The two-way embedding of each subtree consists of an embed-
ding of the subtree itself and an embedding of its nodes. These two
embeddings are referred to as 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 and𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 ,

786

SANN: Programming Code Representation Using Attention Neural Network with Optimized Subtree Extraction CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

respectively. Let the subtree sequence for a source code be 𝑆𝑖 = {𝑠1,
𝑠2, ..., 𝑠𝑛 } and the node sequence of each subtree be 𝑠𝑖 = {𝑥𝑖1 , 𝑥𝑖2 , . . . ,
𝑥𝑖𝑛 } where 𝑥𝑖 𝑗 ∈ 𝑋 and 𝑠𝑖 ∈ 𝑆 .

We obtain the node vector for each subtree node by looking
up its value in the 𝑛𝑜𝑑𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 . After summing up the vectors
representing each node in a subtree, we get 𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 : the
node-based embedding for a single subtree [5].

𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 (𝑠𝑖) =
∑︁
𝑗

𝑛𝑜𝑑𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑥𝑖 𝑗)

Similarly, we get 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 : the subtree-based embedding
for each subtree by looking up its value in the 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 .

𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 (𝑠𝑖) = 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑠𝑖)
To merge the embedding vectors generated from the two-way em-
bedding approach, we concatenate both the 𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 and
the 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 to a single embedded vector: 𝑒𝑖 ∈ R2𝑑 .

𝑒𝑖 = [𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑, 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑] ∈ R2𝑑

After that, a time-distributed fully connected layer generates the
subtree vector 𝑠𝑣𝑖 from the embedded vector 𝑒𝑖 by applying 𝑡𝑎𝑛ℎ
activation function element-wise on the multiplication of 𝑒𝑖 with
the weight matrix𝑊 . This combines the node-level and subtree-
level information.

𝑠𝑣𝑖 = 𝑡𝑎𝑛ℎ(𝑊 · 𝑒𝑖)
Here, 𝑡𝑎𝑛ℎ is the monotonic hyperbolic tangent activation function
ranging from -1 to 1. This increases the model’s expressiveness.𝑊
is the learned weight matrix for the fully connected layer where
𝑊 ∈ R2𝑑×2𝑑 . For convenience, the height of W is kept the same as
the height of 𝑒𝑖 , which is determined by the subtree vector length.

3.3 Source Code Vector Generation Using
Attention

At this stage, SANN employs an attention neural network to con-
dense all the subtree vectors for anAST into a single source code vec-
tor 𝑐 . This attention mechanism determines a single scalar weight
for each subtree vector 𝑠𝑣𝑖 and takes a weighted average to ag-
gregate all the subtree vectors. An attention vector 𝑎𝑣 ∈ R2𝑑 is
initialized randomly at the start and learned simultaneously while
training. The attention weight 𝑎𝑖 is calculated for each subtree
vector 𝑠𝑣𝑖 by the normalized inner product of 𝑠𝑣𝑖 and the global
attention vector 𝑎𝑣 . Attention weight 𝑎𝑖 for each subtree vector
𝑠𝑣𝑖 is calculated using a standard softmax function so that all the
attention weights have a sum of 1, and the exponents in the soft-
max equation provide positive attention weights. Calculating an
attention weight 𝑎𝑖 using the softmax function is as follows:

𝑎𝑖 =
𝑒𝑥𝑝 (𝑠𝑣𝑇

𝑖
· 𝑎𝑣)∑𝑛

𝑗=1 𝑒𝑥𝑝 (𝑠𝑣𝑇𝑗 · 𝑎𝑣)

Theweighted average of the subtree vectors using attentionweights
is then used to determine the vector representation of an entire
source code snippet, 𝑐 ∈ R2𝑑 . As determined by the attention
network, this is a linear combination of the subtree vectors {𝑠𝑣1,
𝑠𝑣2, . . . , 𝑠𝑣𝑛 } weighted by the importance of each subtree.

𝑐 =

𝑛∑︁
𝑖=1

𝑎𝑖 · 𝑠𝑣𝑖

Thus, while generating the source code vector, the most significant
subtree receives the most attention.

3.4 Prediction
After the attention layer and source code vector generation, SANN
employs an output layer with a softmax activation to classify code
into respective class labels from the generated code vector, 𝑐 = {𝑐1,
𝑐2, . . . 𝑐2𝑑 }. The output layer generates a classification vector, 𝑧
= {𝑧1, 𝑧2, . . . , 𝑧 |𝑌 | } for each code vector using a dense layer with
output values for each class, where 𝑌 is the set of class labels. The
final output after softmax activation, 𝑜 = {𝑜1, 𝑜2, . . . , 𝑜 |𝑌 | } can be
represented as the probability of the code snippet belonging to each
class label 𝑦𝑖 in a categorical manner. This is calculated as:

𝑜𝑖 =
𝑒𝑥𝑝 (𝑧𝑖)∑ |𝑌 |
𝑗=1 𝑒𝑥𝑝 (𝑧 𝑗)

Therefore, 𝑜𝑖 is the probability of a code snippet belonging to class
𝑦𝑖 . The output of these probabilities by the softmax layer ranges
from 0 to 1. Finally, SANN predicts the code snippet as the class
with the highest probability of 𝑜𝑖 .

4 EXPERIMENTS
We perform two classification tasks to investigate the effectiveness
of our SANN model: i) Program correctness prediction (Task 1) and
ii) Algorithm detection (Task 2). We also compare the performance
of our SANN model with some state-of-the-art models from the
literature as well as some traditional ML techniques.

4.1 Datasets
We use two educational datasets to conduct our experiments. For
Task 1, we use the CodeWorkout dataset consisting of students’ code
submissions to Java programming problems on the CodeWorkout
platform1 labeled by their correctness: correct or incorrect [11]. We
selected multiple student programs from 8 different problems from
the Spring 2019 semester. In Task 2, we use the OJ dataset, which
consists of student C programming solutions to different algorith-
mic problems collected from the Online Judge (OJ) platform2 [31].
These programs are from 104 distinct algorithmic classes. These two
datasets have been used in the literature for program correctness
prediction [27, 28] and algorithm detection [26, 31].

Since uncompilable programs cannot generate ASTs, they are
removed from the datasets. Table 1 shows some statistics for both
datasets. We can see that the OJ dataset contains relatively larger
and deeper ASTs than the CodeWorkout dataset. Also, compared
to the CodeWorkout dataset, fewer data points are available per
class (500 data points per 104 classes). The CodeWorkout dataset,
on the other hand, contains shorter ASTs and a significantly larger
number of data points per class (4000 data points per 2 classes). The
CodWorkout dataset is particularly sparse since each class contains
student-generated correct and incorrect solutions to eight different
problems. Each dataset enables us to assess the affordances of our
model for unique challenges presented by programming data. Using
the CodeWorkout dataset, we can show the effectiveness of our
model in capturing syntactic and semantic information to identify a
1https://codeworkout.cs.vt.edu/
2http://poj.org/

787

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Muntasir Hoq, Sushanth Reddy Chilla, Melika Ahmadi Ranjbar, Peter Brusilovsky, & Bita Akram

Properties Task 1 Task 2
Dataset CodeWorkout OJ
Language Java C
Compilable problems 9403 52000
Classes 2 104
Max AST depth 22 76
Avg AST depth 8.2 13.4
Max AST nodes 464 7027
Avg AST nodes 76 190

Table 1: Dataset statistics

student’s ability to solve a problem correctly in a sparse state space.
Similarly, using the OJ dataset, we can verify the effectiveness of
our model in identifying students’ code structures, patterns, and
mastery of algorithms from relatively larger programs.

4.2 Experimental Settings
We used pycparser3 and javalang4 tools to parse C and Java pro-
gramming code into ASTs, respectively. For both tasks, we split our
dataset into 80% training and 20% testing data in a stratified way to
keep the same class ratios in both training and testing data. In the
optimized subtree extraction process, we use 25% of the training
data (20% of the whole dataset) to optimize the subtree size-related
parameters using GA. For the CodeWorkout dataset, the max level
for each subtree is set to 3, and both the maximum length of each
subtree and the maximum number of subtrees per program are set
to 100 using GA. Similarly, these values are set to 2 and 90 for the
subtrees extracted from the OJ dataset. Due to time and resource
constraints for training the deep learning models, we set the em-
bedding size hyperparameter by changing its value manually to
get the best output. The embedding size of both subtree-based and
node-based embedding is set to 256 from {64, 128, 256}. As a result,
each source code vector has a size of 512. We use a dropout [40] of
0.2 on the subtree vectors. During training the model, the Adamax
optimizer [14] with the default learning rate of 0.001 is used to
learn the weight of the matrices. The batch size is set to 128. The
maximum number of epochs is set to 200 with an early stopping
patience of 50 to stop overfitting the model.

4.3 Task 1: Prediction of Program Correctness
In this task, we use the CodeWorout dataset to predict the correct-
ness of each program as correct or incorrect. Since the dataset has
a class imbalance, we use precision, recall, and F1-score as evalu-
ation metrics along with accuracy. We compare the performance
of our model with traditional ML techniques such as SVM, KNN,
and XGBoost. We use the TF-IDF feature extraction technique to
prepare the numerical inputs for these traditional ML models [25].
We use 10-fold cross-validation for the hyperparameter tuning of
SVM, KNN, and XGBoost. Apart from these models, we also com-
pare SANN with the code2vec [6], ASTNN [44], GPT-2 [23], and
CodeBERT [13] models from the literature.

3https://pypi.python.org/pypi/pycparser
4https://github.com/c2nes/javalang

• Traditional ML techniques: In addition to our SANN
model, we also applied several other ML models to eval-
uate the performance of our model, such as SVM, KNN, and
XGBoost. For SVM, the𝑘𝑒𝑟𝑛𝑒𝑙 is set to 𝑟𝑏 𝑓 from {𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑝𝑜𝑙𝑦,
𝑟𝑏 𝑓 } and 𝐶 to 10 from {0.1, 1, 10}. For KNN, 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is
set to 10 from {5, 10, 20} and 𝑝 to 2 (Manhattan distance). For
XGBoost, gamma is set to 1 from {1, 5, 9} and𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ to
6 from {3, 6, 10} [20].

• code2vec: code2vec splits an AST into all possible paths
between different leaf nodes. It embeds the starting and
ending nodes and the path between these two nodes in the
embedding process. It employs an attention mechanism to
merge path vectors into a unified code vector.

• ASTNN: AST-based Neural Network (ASTNN) is an RNN-
based deep learning model representing programming code.
It splits ASTs into small statement trees and encodes them
using a bidirectional RNN.

• GPT-2: GPT-2 is a Transformer-based large language model
with 1.5 billion parameters. In this study, we fine-tune GPT-2
for the given task.

• CodeBERT: CodeBERT is a Transformer-based model pre-
trained on 6.4 million code (Python, Java, JavaScript, PHP,
Ruby, Go). In this study, we fine-tune CodeBERT for the
given task.

4.4 Task 2: Algorithm Detection
We use the OJ dataset in this task, where we detect the algorithm
class for each class. Following previous studies [26, 31], we rely
on accuracy as the evaluation metric for this task. To compare the
performance of our model, we take into account some state-of-the-
art models from the literature, including TBCNN [31], code2vec [6],
ASTNN [44], GPT-2 [23], CodeBERT [13] and MVG [26].

• TBCNN: Tree-based Convolutional Neural Network
(TBCNN) uses a convolutional kernel to capture structural
information from program ASTs. It merges the information
using max pooling to generate code vectors.

• MVG:Multi-ViewGraph (MVG)model is a graph-based deep
learning model where control flow graphs, data flow graphs,
read-write graphs, and a combined graph are used to extract
information from programs with the help of a Graph Neural
Network to represent programming code.

5 RESULTS & DISCUSSION
In this section, we demonstrate the experimental results concerning
each research question. The first two research questions evaluate
the performance of SANN in comparison to previous state-of-the-
art models from the literature in addition to relevant traditional
ML models. The last three research questions aim to investigate
the effectiveness of different components of our model. Finally,
a case study of how the results obtained from this model can be
interpreted to inform adaptive educational technology is presented
in the later part.

RQ1: How well does SANN perform in predicting program correct-
ness in sparse datasets with small ASTs?

In Task 1, we use the CodeWorkout dataset, a small dataset with
relatively short ASTs across eight problems, including correct and

788

SANN: Programming Code Representation Using Attention Neural Network with Optimized Subtree Extraction CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Model Accuracy Precision Recall F-1 score
SVM1 0.74 0.71 0.70 0.70
KNN1 0.75 0.72 0.70 0.71
XGBoost1 0.77 0.75 0.74 0.74
code2vec1 0.79 0.76 0.76 0.76
ASTNN1 0.82 0.81 0.79 0.80
GPT-22 0.77 0.76 0.74 0.75
CodeBERT2 0.88 0.85 0.87 0.86
SANN1 0.87 0.86 0.83 0.85
1 Trained from scratch on CodeWorkout data
2 Pretrained model finetuned on CodeWorkout data

Table 2: Performance comparison for program correctness
prediction task on the CodeWorkout Dataset

incorrect solutions. Hence, we can see the performance of SANN
compared to other models in shorter ASTs with vast state-space sce-
narios. From Table 2, we can see that XGBoost performs best among
all traditional ML techniques. Programs like these contain different
token names in different programs, i.e., variable names such as 𝑖 , 𝑗 ,
𝑎, 𝑏, etc. This makes the prediction task difficult for traditional ML
models as they depend on shallow semantic information based on
token names. Both deep learning models outperform traditional ML
models. SANN significantly outperforms all other models, including
code2vec and ASTNN, with the highest accuracy, precision, recall,
and F1-score with values of 0.87, 0.86, 0.83, and 0.85, respectively.
SANN has slightly lower results than CodeBERT. However, a statis-
tical significance test shows no significant differences between the
results produced by SANN and CodeBert (𝑝-value>0.05), although
CodeBERT is pre-trained on 6.4 million code (1.5 million Java code).
On the whole, our results indicate that the SANN model performs
at the same level while being trained on a drastically lower amount
of data (16000 data points). This strongly suggests that our model
is capable of efficiently extracting important semantic information
from the programming data.

RQ2: How well does SANN perform in detecting algorithms from
programs with larger and deeper ASTs?

In Task 2, we evaluate the performance of SANN in the scenario
of deeper and larger ASTs, where we use the OJ dataset to detect
algorithms presented by programs. Retaining information in the
vector representation process becomes more challenging for larger
and deeper ASTs if we traverse and encode ASTs recursively in a
bottom-up way or use max pooling to merge information. It can
end up losing long-term context information. The optimized sub-
tree extraction process and the two-way embedding approach to
capture local syntactic and semantic information, coupled with
the use of the attention mechanism to assign different weights to
different subtrees based on their importance, SANN significantly
(𝑝-value<0.05) outperforms some of the prominent baseline models
from the literature, including code2vec, TBCNN, GPT-2, CodeBERT
(not pre-trainedwith C code) andMVG.with an accuracy of 96% (see
Table 3). However, the ASTNN model significantly (𝑝-value<0.05)
outperforms SANN with an accuracy of 97%. It is worth mentioning
that the classes in the OJ dataset have a dramatically lower number
of data points per class (about 500) compared to the classes in
the CodeWorkout dataset (4000 data points per class). Given the
relatively large number of parameters in the SANN model, the low
number of data points per class can result in overfitting of themodel,

Model code2vec1 ASTNN1 TBCNN1 GPT-22 CodeBERT2 MVG1 SANN1

Acc (%) 90 97 94 82 95 94.96 96
1 Trained from scratch on OJ data
2 Pretrained model finetuned on OJ data

Table 3: Performance comparison for algorithm detection
task on the OJ dataset

which affects its generalization error. We hypothesize that the per-
formance of the SANN model can be improved by providing more
data per class. We investigate this hypothesis by selecting 24 classes
of algorithms and merging them into four superclasses based on
their similarities. These superclasses consist of code based on string
comparison, sorting, string replacement, and reversing order in a
data structure. These classes have 3000 programs, which is higher
than the usual 500 programs per class of the OJ dataset. We classify
these superclasses using both SANN and ASTNN. SANN signifi-
cantly outperforms ASTNN with an accuracy of 99% (𝑝-value<0.05),
whereas ASTNN shows an accuracy of 98%. In summary, the results
show the effectiveness of SANN in efficiently capturing important
structural and semantic information from relatively large and deep
ASTs, enabling it to preserve long-term context information.

RQ3: How effective is the optimized subtree extraction process
using GA?

In SANN, we use an optimized subtree extraction process using
GA, where the size of non-overlapping subtrees extracted from
each program is dynamically determined for each dataset and clas-
sification task. To know the effectiveness of this approach, we can
consider another variant of SANN where the optimized subtree ex-
traction process is replaced with a static subtree extraction process
where all the possible subtrees of an AST are extracted. Extract-
ing all possible subtrees from ASTs poses threats to the model’s
generalizability and the effectiveness of capturing syntactic and se-
mantic information. Static subtree extraction is not adaptive to the
assigned task and ends up with the same extracted subtrees every
time. It also includes repetitive information as the subtrees overlap.
It fails to generalize over larger and deeper ASTs, as the number of
extracted subtrees increases with the number of nodes in the tree.
Thus, It may lead to information loss by discarding a large number
of subtrees during subtree-based embedding and also by discarding
nodes during node-based embedding. These problems are solved by
the optimized subtree extraction process using GA. To verify this
claim, we train a variant of SANN with an all-possible subtree ex-
traction process for both datasets. From Table 4, we can see that, for
the CodeWorkout dataset, the accuracy values are not that different,
as the programs in this data set are relatively smaller with shorter
ASTs. Therefore, the performance does not vary significantly. For
the OJ dataset, we can see that SANN with the all-possible subtree
extraction process has an accuracy of 0.87, whereas the optimized
SANN has the highest accuracy of 0.96. Since the programs in this
dataset are relatively bigger with larger and deeper ASTs, we can
see the effectiveness of the optimized subtree extraction process
more clearly.

RQ4: Does the integration of subtree-based and node-based em-
bedding (the two-way embedding approach) help to improve the per-
formance of SANN?

We use a two-way embedding approach in SANN, integrating a
subtree-based embedding to embed each subtree of a source code
and a node-based embedding to embed each subtree node. We

789

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Muntasir Hoq, Sushanth Reddy Chilla, Melika Ahmadi Ranjbar, Peter Brusilovsky, & Bita Akram

Design alternatives CodeWorkout OJ
SANN+random subtree extraction 0.84 0.90
SANN+node-based embedding 0.75 0.89
SANN+subtree-based embedding 0.80 0.84
SANN+all-possible subtree 0.86 0.87
SANN 0.87 0.96

Table 4: Accuracy comparison of different SANN design al-
ternatives

hypothesize that each embedding provides a unique source of infor-
mation to our model. To verify this claim, we train our model with
both of the datasets in three different ways: i) using a node-based
embedding, ii) using a subtree-based embedding, and iii) using
the two-way embedding approach. From Table 4, we can see that
SANN with only node-based embedding surpasses SANN with only
subtree-based embedding with an accuracy of 0.89 for the OJ dataset
(Task 2), where the program algorithm is detected. This implies
that the node-based embedding captures more information from
the programs of the OJ dataset than the subtree-based embedding
for this particular task. Since we are detecting algorithms from the
code, node-based information such as name and type of variables,
data structures, methods, etc., can convey more information to the
model. However, SANN, with the two-way embedding approach,
combines both node and subtree structural information and tries
to capture more task-specific syntactic and semantic information
effectively. Therefore, it has the highest accuracy among all three
embedding design choices. We further verify this hypothesis on the
CodeWorkout dataset (Task 1), where program correctness is pre-
dicted. For this dataset, SANN with the node-based embedding has
an accuracy of 0.75, whereas the SANN with the subtree-based em-
bedding has an accuracy of 0.80. This is justifiable since the subtree
structures can provide more information about a correct program.
For the CodeWorkout data, the two-way embedding approach out-
performs the individual ones with an accuracy of 0.87. Therefore,
even if node-based embedding is more important than subtree-
based embedding or vice versa for a specific task, the two-way
embedding approach is effective in different tasks by incorporating
both.

RQ5: Does the sequential subtree extraction process help in retain-
ing semantic information?

In the optimized subtree extraction process using GA, we se-
quentially extract the non-overlapping subtrees with a breadth-first
traversal. We hypothesize that sequentiality helps us capture more
semantic information about ASTs along with syntactic informa-
tion. To test this hypothesis, we train our model following two
approaches: with subtrees extracted i) randomly and ii) sequen-
tially, as done in the original model. We compare the results using
CodeWorkout (Task 1) and the OJ dataset (Task 2). From Table 4,
we can see that the randomized subtree extraction process yields
an accuracy of 0.84 for the CodeWorkout dataset and 0.90 for the
OJ dataset, while, with the sequential subtree extraction process,
SANN achieves the highest accuracy of 0.87 for the CodeWorkout
dataset and 0.96 for the OJ dataset. Therefore, the sequential extrac-
tion of subtrees helps SANN to retain semantic information more
efficiently.

Figure 4: Most important subtree of an incorrect solution

Interpretability Case-Study Can we meaningfully interpret the
results obtained from SANN?

The attention mechanism allows us to interpret the predictions
done by SANN. We can understand which subtrees are the most
important for a prediction by extracting their attention weights. We
extract the subtree attention weights for an incorrect solution to a
problem, named caughtspeeding, from the CodeWorkout dataset
to verify this. Figure 4 shows an incorrect solution where speed =
5 should be speed -= 5 for the program to be correct. We extract
the attention weights of the subtrees and see that the subtree with
the incorrect statement has almost all the attention (92%) in pre-
dicting this program as incorrect. The interpretability of SANN
offers numerous potential applications in the analysis of educa-
tional programming, including modeling students’ programming
competencies, bug detection, misconception detection, and adaptive
feedback generation to support students. SANN can be a valuable
tool in computer science (CS) education as it can help analyze stu-
dent code and provide insights into students’ understanding of the
material. The interpretability of SANN paves the way for different
educational programming analyses and applications, which can-
not be afforded using models that are difficult to interpret. The
SANN model can be used to provide more personalized and tai-
lored instruction and adaptive feedback to students to support their
learning.

The experimental results show that our SANN model effectively
captures syntactic and semantic information from student programs
using sequential subtree extraction, the two-way embedding ap-
proach, and the optimized subtree extraction process dynamically
optimized through GA with regard to the specific prediction task at
hand. Trained on relatively small amounts of data, our model can
compete with large models pre-trained on excessively large datasets
while maintaining interpretability. Coupled with its interpretable
structure, our model can be used to build accurate models of stu-
dents’ programming competencies that provide us with insight into
students’ mastery of programming competencies.

6 CONCLUSION
This study explored a novel approach for programming code repre-
sentation: a Subtree-based Attention Neural Network (SANN) with
optimized subtree extraction using the Genetic Algorithm (GA). In
the subtree extraction phase, SANN extracts subtrees of optimal
size with regard to the specific prediction task from the program

790

SANN: Programming Code Representation Using Attention Neural Network with Optimized Subtree Extraction CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

AST sequentially, which get embedded following a two-way em-
bedding approach. This helps SANN to capture more task-specific
structural information dynamically. The two-way embedding ap-
proach incorporates subtree-based and node-based embedding to
gain insight into the subtree structure-level and node-level infor-
mation of ASTs. Additionally, an attention mechanism is used to
generate the code vector for each program based on the impor-
tance of each subtree in the sequence. The effectiveness of SANN
is investigated on two tasks: program correctness prediction and
algorithm detection using two educational datasets in different pro-
gramming languages, Java and C. Task 1 assesses how well our
model extracts useful information and understands student ability
to solve a problem correctly, as the dataset contains correct and
incorrect solutions for different problems. Task 2 investigates the
ability of our model to capture long-term dependencies and extract
useful information from larger and deeper ASTs of student code.
Our results demonstrate the effectiveness of our model in capturing
important information from student programs. In addition, these
results demonstrate our model’s generalizing capability for large
ASTs, identifying different algorithms from student code.

The experimental results suggest that SANN outperforms tradi-
tional ML models and other competitive baseline models from the
literature, including code2vec, TBCNN, GPT-2, and MVG. SANN
also outperforms ASTNN in Task 1 based on the CodeWorkout
dataset containing Java programs but fails to outperform in Task 2
using the OJ dataset containing C programs. We hypothesize that
this is due to the overfitting of the SANN model, given the higher
number of parameters of SANN with regard to a low number of
data points per class (about 500) in Task 2. We support our hy-
pothesis by showing that SANN outperforms the ASTNN model
when trained on a dataset where four superclasses are made by
merging the six most similar classes from the OJ dataset into each
superclass (3000 code per superclass). It is worth mentioning that
SANN utilizes a two-way embedding approach, incorporating node-
based and subtree-based embeddings, while ASTNN only employs
node-based embedding. Results show that in Task 1, subtree-based
embedding offers more valuable information than node-based em-
bedding (Table 4). Consequently, SANN excels in tasks like Task 1,
prioritizing structural AST information for code correctness pre-
diction, giving it an edge over ASTNN. Similarly, in Task 2, where
node information is crucial for algorithm detection (Table 4), SANN
outperforms code2vec (using only path-based embedding similar
to subtree-based) and even surpasses CodeBERT (pre-trained on
6.4 million code). In Task 1, there are no significant differences
between SANN and CodeBert’s performance despite CodeBERT’s
pre-training advantage.

We also performed a deeper study of our model to isolate the
effectiveness of i) the optimized subtree extraction process using
GA, ii) the two-way embedding approach, and iii) the sequential
subtree extraction in capturing information from larger and deeper
ASTs, capturing the similarities of local AST structures, capturing
more semantic information. Our investigation indicates that various
aspects of our model contribute to capturing important syntactic
and semantic information from different sizes of ASTs in vast and
sparse state spaces. Moreover, we explore a case study to show the
interpretability of our model using an incorrect student program.
Using the interpretability of the model enabled by the attention

mechanism, the most influential subtrees can be extracted from
the student code. This approach highlights specific parts of student
programs where students may be struggling. Compared to other
state-of-the-art models, SANN offers an easy-to-use interpretability
feature without compromising the model’s accuracy while being
trained on relatively small datasets. These characteristics make
SANN a great candidate for incorporation into CS education, as it
can help analyze student code and provide insights into their under-
standing of the material. It can be used to provide more personalized
and tailored instruction and adaptive feedback to students and to
support their learning. Our main contributions are as follows:

• Proposing a novel SANN model with an optimized subtree
extraction process for program representation that can rep-
resent deep and highly diverse ASTs.

• Validating our proposedmodel in two different program anal-
ysis tasks on learners’ data to gain insight into their mastery
of algorithms and ability to solve a problem correctly.

• Verifying the effectiveness of different aspects of the SANN
model, including the GA algorithm for optimizing the subtree
extraction process, the sequential extraction of subtrees, and
the two-way embedding approach in capturing syntactic and
semantic information from ASTs.

• Exploring the interpretability of the SANN model through a
case study.

7 LIMITATIONS AND FUTURE WORK
One limitation of the proposed SANN incorporating GA is the in-
creased training time. Specifically, the SANN+GA model requires
approximately four times longer training time than the SANN that
utilizes all possible subtrees. However, it should be noted that one
of the primary applications of this model is to provide adaptive
educational support for students. Once trained in an offline set-
ting, the model can be utilized to predict various aspects of student
learning in real time. As such, the increased training overhead of
the SANN+GA will not impede its practical application. Further-
more, the trained model can be reused for new datasets in similar
introductory programming classrooms, as the scope and scale of
assignments tend to be consistent across different semesters or
classrooms. In the future, we intend to evaluate a multi-task clas-
sifier that is built based on the SANN architecture and is trained
on a combination of different datasets, optimizing a standard set
of parameter values that can be used for every task and dataset.
We hypothesize that this might lead to a reasonable trade-off be-
tween accuracy and training time for unseen tasks and datasets.
Currently, our model uses fixed sizes for the embedding vectors.
In the future, we intend to investigate the dynamic adaptation of
vector sizes based on optimized subtree sizes to capture information
from ASTs more efficiently. Finally, an interesting future direction
is to build a pre-trained SANN model to ensure the highest accu-
racy and interpretability simultaneously. Through the attention
mechanism, SANN paves the way to interpret student programs by
understanding which part of a student program is more informative
in analyzing a given task. We intend to explore the affordances of
the attention mechanism to understand student programs and their
learning and mistakes at a more granular level.

791

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Muntasir Hoq, Sushanth Reddy Chilla, Melika Ahmadi Ranjbar, Peter Brusilovsky, & Bita Akram

REFERENCES
[1] IbrahimAbdelaziz, Julian Dolby, JamieMcCusker, and Kavitha Srinivas. 2022. Can

machines read coding manuals yet?–A benchmark for building better language
models for code understanding. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 4415–4423.

[2] Bita Akram, Hamoon Azizolsoltani, Wookhee Min, Eric Wiebe, Anam Navied,
Bradford Mott, Kristy Elizabeth Boyer, and James Lester. 2020. Automated assess-
ment of computer science competencies from student programs with gaussian
process regression. In Proceedings of the 13th International Conference on EDM.
555–560.

[3] Bita Akram, Hamoon Azizolsoltani, Wookhee Min, Eric N Wiebe, Anam Navied,
BradfordWMott, Kristy Elizabeth Boyer, and James C Lester. 2020. A data-driven
approach to automatically assessing concept-level CS competencies based on
student programs.. In Proceedings of the Educational Data Mining in Computer
Science Education (CSEDM) Workshop @ EDM.

[4] Abdullah Al Mamun, Muntasir Hoq, Eklas Hossain, and Ramazan Bayindir. 2019.
A hybrid deep learning model with evolutionary algorithm for short-term load
forecasting. In Proceedings of the 8th ICRERA. 886–891.

[5] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
sequences from structured representations of code. In Proceedings of the 7th ICLR.

[6] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. ACM on Programming Languages 3, POPL
(2019), 1–29.

[7] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural
code comprehension: A learnable representation of code semantics. Advances in
Neural Information Processing Systems 31 (2018).

[8] Robert Bodily, Judy Kay, Vincent Aleven, Ioana Jivet, Dan Davis, Franceska
Xhakaj, and Katrien Verbert. 2018. Open learner models and learning analytics
dashboards: a systematic review. In Proceedings of the 8th International Conference
on LAK. 41–50.

[9] Nghi DQ Bui, Lingxiao Jiang, and Yijun Yu. 2018. Cross-language learning for pro-
gram classification using bilateral tree-based convolutional neural networks. In
Proceedings of the Workshop at the 32nd AAAI Conference on Artificial Intelligence.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[11] Stephen H Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: short
programming exercises with built-in data collection. In Proceedings of the ACM
Conference on ITiCSE. 188–193.

[12] Amir Elmishali, Roni Stern, and Meir Kalech. 2019. Debguer: A tool for bug
prediction and diagnosis. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 9446–9451.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A pre-
Trained model for programming and natural languages. In Proceedings of the
EMNLP. 1536–1547.

[14] Anna Filighera, Tim Steuer, and Christoph Rensing. 2019. Automatic text difficulty
estimation using embeddings and neural networks. In Proceedings of the European
Conference on Technology Enhanced Learning. Springer, 335–348.

[15] Georgia Frantzeskou, Stephen MacDonell, Efstathios Stamatatos, and Stefanos
Gritzalis. 2008. Examining the significance of high-level programming features
in source code author classification. Journal of Systems and Software 81, 3 (2008),
447–460.

[16] Josh Gardner and Christopher Brooks. 2018. Student success prediction in
MOOCs. User Modeling and User-Adapted Interaction 28, 2 (2018), 127–203.

[17] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2021. Graphcodebert:
Pre-training code representations with data flow. In Proceedings of the 9th ICLR.

[18] John H Holland. 1992. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT Press.

[19] Muntasir Hoq, Kazi Hasan Ibn Arif, and Mohammed Nazim Uddin. 2021. Local
and Global Feature Based Hybrid Deep LearningModel for Bangla Parts of Speech
Tagging. In Proceedings of the 2nd INCET. IEEE, 1–6.

[20] Muntasir Hoq, Peter Brusilovsky, and Bita Akram. 2023. Analysis of an explain-
able student performance prediction model in an introductory programming
course. In Proceedings of the 16th International Conference on EDM.

[21] Muntasir Hoq, Promila Haque, and Mohammed Nazim Uddin. 2021. Sentiment
analysis of Bangla language using deep learning approaches. In Proceedings of
the International Conference on Computing Science, Communication and Security.
Springer, 140–151.

[22] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on ASE. IEEE, 135–146.

[23] Márk Lajkó, Dániel Horváth, Viktor Csuvik, and László Vidács. 2022. Fine-tuning
GPT-2 to patch programs, is it worth it?. In Proceedings of the Computational
Science and Its Applications–ICCSA Workshops. Springer, 79–91.

[24] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. ACM on Programming Languages 3, OOPSLA (2019), 1–30.

[25] Qing Liu, Jing Wang, Dehai Zhang, Yun Yang, and NaiYao Wang. 2018. Text
features extraction based on TF-IDF associating semantic. In Proceedings of the
IEEE 4th International Conference on Computer and Communications (ICCC). IEEE,
2338–2343.

[26] Ting Long, Yutong Xie, Xianyu Chen, Weinan Zhang, Qinxiang Cao, and Yong Yu.
2022. Multi-View graph representation for programming language processing: an
investigation into algorithm detection. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence, Vol. 36. 5792–5799.

[27] Ye Mao, Farzaneh Khoshnevisan, Thomas Price, Tiffany Barnes, and Min Chi.
2022. Cross-Lingual adversarial domain adaptation for novice programming. In
Proceedings of the 36th AAAI Conference on Artificial Intelligence, Vol. 36. 7682–
7690.

[28] Ye Mao, Yang Shi, Samiha Marwan, Thomas W Price, Tiffany Barnes, and Min
Chi. 2021. Knowing “When” and “Where”: temporal-ASTNN for student learning
progression in novice programming tasks. In Proceedings of the 14th International
Conference on EDM.

[29] Samiha Marwan, Bita Akram, Tiffany Barnes, and Thomas W Price. 2022. Adap-
tive immediate feedback for block-based programming: Design and evaluation.
IEEE Transactions on Learning Technologies (2022), 406–420.

[30] Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An evaluation of
the impact of automated programming hints on performance and learning. In
Proceedings of the ACM Conference on International Computing Education Research.
61–70.

[31] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. 2016. Convolutional neural net-
works over tree structures for programming language processing. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence, Vol. 30.

[32] Benjamin Paassen, Jessica McBroom, Bryn Jeffries, Irena Koprinska, Kalina Yacef,
et al. 2021. Mapping python programs to vectors using recursive neural encodings.
Journal of Educational Data Mining 13, 3 (2021), 1–35.

[33] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. 2015. Learning program embeddings to propa-
gate feedback on student code. In Proceedings of the International Conference on
Machine Learning. PMLR, 1093–1102.

[34] Michael Pradel and Koushik Sen. 2018. Deepbugs: A learning approach to name-
based bug detection. ACM on Programming Languages 2, OOPSLA (2018), 1–25.

[35] ThomasW Price, Yihuan Dong, and Tiffany Barnes. 2016. Generating data-driven
hints for open-ended programming.. In Proceedings of the International Conference
on EDM. 191–198.

[36] Md Rahman, Yutaka Watanobe, Keita Nakamura, et al. 2020. Source code as-
sessment and classification based on estimated error probability using attentive
LSTM language model and its application in programming education. Applied
Sciences 10, 8 (2020), 2973.

[37] Yafeng Ren, Yue Zhang, Meishan Zhang, and Donghong Ji. 2016. Improving
twitter sentiment classification using topic-enriched multi-prototype word em-
beddings. In Proceedings of the 30th AAAI Conference on Artificial Intelligence.

[38] Adarsh Sehgal, Hung La, Sushil Louis, and Hai Nguyen. 2019. Deep reinforcement
learning using genetic algorithm for parameter optimization. In Proceedings of
the 3rd IEEE International Conference on Robotic Computing (IRC). IEEE, 596–601.

[39] Yang Shi, T Mao, Tiffany Barnes, Min Chi, and Thomas W Price. 2021. More with
less: Exploring how to use deep learning effectively through semi-supervised
learning for automatic bug detection in student code.. In Proceedings of the 14th
International Conference on EDM.

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[41] Yu Su, Qingwen Liu, Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Chris Ding,
Si Wei, and Guoping Hu. 2018. Exercise-enhanced sequential modeling for stu-
dent performance prediction. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

[42] Ke Wang. 2019. Learning scalable and precise representation of program seman-
tics. arXiv preprint arXiv:1905.05251 (2019).

[43] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on ASE. IEEE, 87–98.

[44] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 783–794.

[45] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Advances in Neural Information Processing
Systems 32 (2019).

[46] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
2019. Neural machine translation inspired binary code similarity comparison
beyond function pairs. In Proceedings of the Network and Distributed Systems
Security (NDSS) Symposium.

792

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Optimized Sequential Subtree Extraction Using Genetic Algorithm
	3.2 Subtree Vector Generation
	3.3 Source Code Vector Generation Using Attention
	3.4 Prediction

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Task 1: Prediction of Program Correctness
	4.4 Task 2: Algorithm Detection

	5 Results & Discussion
	6 Conclusion
	7 Limitations and Future Work
	References

