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Abstract

Observational studies of treatment effects require adjustment for confounding vari-
ables. However, causal inference methods typically cannot deliver perfect adjustment
on all measured baseline variables, and there is often ambiguity about which variables
should be prioritized. Standard prioritization methods based on treatment imbalance
alone neglect variables’ relationships with the outcome. We propose the joint variable
importance plot to guide variable prioritization for observational studies. Since not
all variables are equally relevant to the outcome, the plot adds outcome associations
to quantify the potential confounding jointly with the standardized mean difference.
To enhance comparisons on the plot between variables with different confounding re-
lationships, we also derive and plot bias curves. Variable prioritization using the plot
can produce recommended values for tuning parameters in many existing matching
and weighting methods. We showcase the use of the joint variable importance plots
in the design of a balance-constrained matched study to evaluate whether taking
an antidiabetic medication, glyburide, increases the incidence of C-section delivery
among pregnant individuals with gestational diabetes.

Keywords: Graphical Methods; Inference; Variable Selection.
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1 INTRODUCTION

Researchers often seek to evaluate treatments to understand whether they are beneficial.

In observational (non-randomized) studies, treatments may be confounded, or associated

with other baseline variables so that it is unclear whether to attribute group outcome

differences to treatment or baseline dissimilarity. To reliably estimate an effect, researchers

must adjust for these variables, typically either by modeling their impact on study outcomes

or by creating new comparison groups that eliminate baseline differences or imbalances, for

example by matching or weighting.

One crucial decision is deciding which variables are most important for adjustment.

While creating comparison groups with perfect balance on the joint distribution of all

baseline variables, or conditioning appropriately on this joint distribution in an outcome

model, is sufficient to remove observed sources of confounding, this is impossible in datasets

with a large number of measured variables. Attempting to adjust for too many variables

can lead to undesirable designs, such as heavily overfitted models, matches with too few

subjects to be useful (Zubizarreta et al., 2014), or weighting designs with high-variance

weights that hurt precision (Miratrix et al., 2018). Many modern causal inference methods

are designed with variable prioritization in mind and incorporate substantive or data-driven

knowledge about which variables are likely to matter most. These include regularization

procedures for outcome regression (Athey et al., 2018), balance tolerances for weighting

(Ben-Michael et al., 2021b), and covariate distances or balancing constraints for matching

(Stuart, 2010; Pimentel et al., 2015; Bennett et al., 2020). However, there is a need for

better data-driven diagnostic tools to guide researcher choices about prioritization.

Researchers may be tempted to prioritize variables based on standard balance diag-

nostics, including tables of standardized mean differences (SMD) for each variable or Love
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plots (Ahmed et al., 2006; Stuart et al., 2011; Greifer, 2021; Hansen and Bowers, 2008;

Rosenbaum and Rubin, 1985). These diagnostics are useful for highlighting variables with

large imbalances between treated and control groups. However, prioritizing variables ac-

cording to their imbalance ignores important information about the role of each variable

in the outcome model. Variables strongly related to treatment but unrelated to outcomes

are not confounders. In contrast, if variables are strongly associated with the outcome but

with only moderate imbalance, they may be strong confounders. When choosing which

baseline variables to prioritize for adjustment, focusing solely on the treatment imbalance

can risk ignoring variables that should take precedence due to their outcome importance.

The joint importance of covariate-treatment and covariate-outcome relationships is a

general principle in observational causal inference, not specific to a particular framework or

set of identification assumptions. For example, outcome regression approaches typically do

not make assumptions about the treatment-covariate relationship, but these relationships

influence treatment effect estimation (see Section 2.2). Similarly, matching and weighting

approaches are typically motivated by models of the treatment variable in covariates, but

similarity of outcomes within matched pairs or across weighted groups affects residual

bias (Sales et al., 2018; Ben-Michael et al., 2021a). Another reason outcome-covariate

relationships matter is their influence on sensitivity to unmeasured bias. In both matching

and weighting, increasing homogeneity of the outcomes via better control for prognostic

covariates increases robustness to worst-case confounding as measured by design sensitivity

(Rosenbaum, 2005; Huang et al., 2023). Unfortunately design sensitivity is understudied

in observational study design, and diagnostic tools to improve it are badly needed.

To meet these needs we propose selecting high-priority variables for adjustment using

the joint treatment-outcome variable importance plot (jointVIP). JointVIP represents each

variable in two dimensions: one describing treatment model importance as measured by
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the SMD, and one describing outcome-model importance, measured by outcome correlation

among controls from a pilot sample (chosen disjointly from the analysis sample to ensure

the integrity of the analysis). In addition, under a set of simple working models, the bias

incurred by ignoring each variable can be derived separately and represented on the plot

using unadjusted bias curves, enhancing opportunities for variable comparisons. We show

an example comparison between the traditional Love plot and jointVIP with a subset of

the baseline variables from the case study (absolute measures shown in Figure 1 and signed

measures shown in Supplemental Appendix A.1).

We illustrate jointVIP in detail in a case study of drug safety for diabetes medication in

pregnant individuals. Specifically, we use a matched design with refined covariate balance

constraints, which require a prioritized list of variables to be specified for balancing, and

jointVIP provides a principled way to choose this. However, we argue that jointVIP’s value

is not specific to a given estimation strategy or set of identification assumptions.

2 METHOD

2.1 Joint variable importance plot construction

The high-level purpose of the jointVIP is to illustrate two different dimensions of a variable’s

possible role as a confounder – its imbalance, or association with the treatment variable,

and its association with the outcome – on two axes, with each variable plotted as a single

point. We now discuss the specific measures of variable importance on each axis.

For treatment model importance, described by the x-axis, we use SMDs, or differences

between the treated mean and the control mean divided by an estimate of the variable’s

standard deviation. Many different standard deviation estimates have been proposed lead-
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Figure 1: Comparison between the Love plot and the joint variable importance plot
(jointVIP). Note that some variables (BMI in the obese category and OGTT for fasting
blood glucose used at GDM diagnosis) take on much more prominent positions in jointVIP
than in the Love plot, which only displays SMD values.
BMI: body mass index, C-C: Carpenter-Coustan, C-section: Cesarean section, GDM: gestational diabetes,
OGTT: oral glucose tolerance test, PI: Pacific Islander, SD: standard deviation, SMD: standardized mean
difference.

ing to slightly different SMD definitions; we focus on a version denoted as the “cross-

sample” SMD, which uses the sample standard deviation of the variable in question com-

puted in the pilot (control) sample. For more motivation and discussion of the cross-sample

SMD, see Section 2.2. The variant we propose is similar to an effect size estimator from

Glass (1976), which standardizes the mean difference by dividing by the standard deviation

from the control group (Hedges, 1981). SMDs allow intuitive comparisons across variables

with very different scales, including both binary and continuous variables. They are widely

used to assess imbalance and are commonly reported in balance tables or Love plots. Thus,

using SMD on the x-axis allows jointVIP to preserve all information typically contained in

the Love plot while adding new insights.

6



For outcome model importance, represented on the y-axis, we compute the sample Pear-

son correlation between each variable and the outcome among controls. Sample correlation

is a familiar, bounded quantity and makes sense for relationships not only between two

continuous variables but also between two binary variables (phi coefficient), and between

binary and continuous variables (point biserial correlation) (Pearson, 1895). The outcome

relationship is calculated only among controls to avoid having to model treatment effects.

It is vital that the outcome correlations be computed in a pilot sample separate from the

data used for the ultimate outcome analysis. Using controls from the analysis sample for

computing outcome correlations can bias treatment effect estimates. For example, suppose

treated and control samples exhibit imbalance on several continuous background variables

(with treated individuals taking larger values), but the study outcome is independent of

all these variables in the population. If we compute sample outcome correlations in the

analysis control sample and form matched pairs based solely on the variable with the largest

such (positive) sample correlation, we essentially match on the variable with the largest

spurious correlation (with the random outcome noise in the current sample). Because of

the imbalance, the matching algorithm will systematically select controls with large values

for the spuriously correlated variable. Hence, the result will have large positive outcome

errors that introduce positive bias into the average outcome for the matched controls. For

related examples see Hansen (2008) and Abadie et al. (2018).

To construct a pilot sample, one may select a small (10-20%) portion of the control

sample at random from the full control group. To ensure the pilot sample is drawn from

the portion of the control space most relevant for the observational study, Aikens et al.

(2020) instead suggest conducting an initial round of matching on a standard Mahalanobis

distance to pair each treated subject to two controls, then selecting one control from each

set at random to construct the pilot sample. Alternatively, external data separate from the
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analysis of interest may be used as a pilot sample.

2.2 Addition of unadjusted bias curves for variable comparison

Comparing the relative importance of two distant points on the jointVIP, one with a high

outcome correlation and low SMD, and the other with a high SMD and low outcome corre-

lation, can be difficult. A natural answer lies in the relative sizes of the biases contributed

by ignoring each variable, since our ultimate goal is to avoid biases in treatment effect esti-

mation. We consider each baseline variable and evaluate the bias incurred by omitting this

potential confounder under a simple one-variable model. Inspired by Cinelli and Hazlett

(2020) and Soriano et al. (2021), we plot these bias estimates as curves on the jointVIP.

For any baseline variable Xj with j ∈ 1, ..., J), consider the sample least-squares fit of

outcome Y on baseline variable Xj and binary treatment Z:

Y = Zτ0 +Xjβj + ε̂ (1)

Here ε̂ is a residual. In addition, consider two related sample regressions:

Y = Zτ + ê (2)

Xj = Z∆j + û (3)

Following Cochran’s formula (Cox, 2007), we may use (3) to rewrite (1) and obtain a new

representation for (2):

Y = Xjβj + Zτ0 + ε̂ = (Z∆j + û)βj + Zτ0 + ε̂ = Z(∆jβj + τ0) + (ûβj + ε̂) (4)

Since the new error term (ûβj + ε̂) is orthogonal to Z by the construction of residuals û
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and ε̂, we have τ = (∆jβj + τ0) and ê = ûβj + ε̂. Note that until now we have made

no model assumptions, merely fit regressions using sample quantities; however, if we add

a working assumption that triples (X, Y, Z) are sampled independently from an infinite

population, with model (1) correctly specified (i.e. that E(Y |Xj, Z) = βpopj Xj + τ popZ for

some parameters βpopj and τ pop), then the difference

τ − τ0 = ∆jβj (5)

is an estimate of the large-sample omitted variable bias (OVB) incurred by estimating

treatment effects via regression on Z alone, ignoring Xj.

Importantly for our purposes, the OVB can be rewritten in terms of sample correlation

between Xj and Y and a SMD with normalization by the control standard deviation. The

key is that when equation (1) is fit on controls alone (as it will be in our pilot-sample

approach), both (1) and (3) are simple regressions. We rewrite the corresponding simple

regression equations using familiar simple regression formulae. SYpilot and SXj,pilot
denote

the standard deviation of the pilot sample for outcome and the standard deviation of the

confounder in question respectively. We include the pilot and analysis notations for clarity.

βj = rXj,pilot,Ypilot

SYpilot
SXj,pilot

(6)

∆j = X̄j1,analysis − X̄j0,analysis (7)

Using (3), we obtain (7), where X̄j1,analysis and X̄j0,analysis denote variable j’s sample means

among treated subjects and controls, respectively, in the analysis sample. Substituting into
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expression (5) and rearranging, we obtain:

∆jβj
SYpilot

= rXj,pilot,Ypilot

(X̄j1,analysis − X̄j0,analysis)

SXj,pilot

(8)

The left-hand side is a conveniently normalized version of the OVB that is invariant to

rescalings of the outcome, and the right-hand side is a product between a sample correlation

computed in the pilot sample and a standardized difference defined as follows:

cross-sample SMD =
X̄j1,analysis − X̄j0,analysis

SXj,pilot

(9)

The SMD calculates the difference between treated and control groups from the analysis

sample and is standardized by the standard deviation from the pilot sample. Hence, we

define this SMD as “cross-sample SMD”.

Since the standardized OVB is a product of two terms, level sets for bias take the form

of hyperbolic curves on the jointVIP to demarcate equivalent levels of confounding under

the crude one-confounder models. In addition, a measure of bias may be computed for any

individual variable using its respective SMD and outcome correlation, and color-coding

based on these quantities is used for plotting points. We refer to the marginal bias measure

as “unadjusted bias” to distinguish from the typical multivariate OVB models.

2.3 Bias in a finite population framework

The bias analysis of Section 2.2 assumes covariates, treatments, and outcomes are sampled

jointly from an infinite population. Although the case study in Section 3 instead uses a

finite population framework, this analysis still turns out be relevant. Given K matched

pairs (with the treated unit indexed k1 in each pair k and the control unit indexed k2),

10



that unobserved confounding is absent, and that Yki(1) − Yki(0) = τ for all k, i. The bias

of a matched difference-in-means estimator for τ , viewing only Z as a random variable and

holding potential outcomes Y (1), Y (0) and covariates X fixed, can be written as follows:

1

K

K∑
k=1

[Yk1(0)− Yk2(0)](pk1 − pk2) (10)

where pki = λki/(1−λki)
λk1/(1−λk1)+λk2/(1−λk2)

with λki representing the propensity score for unit ki; for

derivations see Sales et al. (2018, §4) and Huang and Pimentel (2022). This formula suggests

that attention to covariate-outcome relationships can improve estimation and inference via

reduction in the magnitude of the Yk1(1) − Yk2(0) terms. In principle it would vanish if

matching were exact on the propensity score, but in practice this is implausible (Guo and

Rothenhäusler, 2023; Pimentel and Huang, 2023). Additionally, if we consider the expected

behavior of this bias when potential outcomes are drawn from a model and covariate X

is ignored, we arrive at an approximate bound that is a rescaled version of unadjusted

bias (see the Supplemental Appendix A.2 for full derivation). Under similar assumptions,

Rosenbaum (2005) shows that reducing the variance of the Yk1(0) − Yk2(0) terms reduces

sensitivity to unmeasured bias, even when propensity score matching is exact. In summary,

although in Section 2.2 we did not explicitly motivate the unadjusted bias curves in the

context of biases incurred under matched designs nor explicitly invoke the finite-sample

framework typically used to analyze such designs, the tools developed in Section 2.2 retain

useful interpretations from the perspective of matched analysis. We anticipate similar

benefits for other causal inference strategies.
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2.4 Using jointVIP to guide study design

Once the jointVIP has been created, researchers can select variables with large potential

bias contributions (as measured by the unadjusted bias curves) for adjustment or otherwise

leverage its information to choose tuning parameters. In a matched study, selected variables

might be used to create a Mahalanobis distance (Hansen, 2004), or their marginal imbalance

could be restricted via fine or refined balance constraints (Yang et al., 2012; Pimentel

et al., 2015) as in our case study in Section 3. In a study using stable balancing weights

inverse values of the outcome correlations plotted on the y-axis of the jointVIP could

be used as balance tolerances (Zubizarreta, 2015). In outcome regression settings where

the data is too high-dimensional to allow inclusion of all covariates, variables highlighted

by jointVIP could be chosen as regressors. For matched and weighted studies, a post-

design version of the jointVIP can also be created using new SMDs computed on the

matched or weighted data. This can suggest further refinements of the original matching

or weighting specification, or whether residual bias is large enough to require additional

regression adjustment after matching and weighting and which variables should be included

in such an adjustment model (Rosenbaum, 2002). Table 1 summarizes the process of

creating and applying jointVIP for practitioners, and a simulation study in Supplemental

Appendix A.3 empirically demonstrates the value of this process for bias reduction.

A natural question is how or whether to combine the process just described with the bal-

ance testing approach to study design proposed by Hansen and Bowers (2008) for matched

or stratified observational studies. Here the design is improved iteratively until an omnibus

test using all measured covariates fails to reject the hypothesis that treatment is distributed

uniformly within strata. While the jointVIP framework offers important new information

by leveraging outcome-covariate relationships ignored by balance tests, balance tests offer a

clearer ideal benchmark for success in the form of a hypothetical study randomized within
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strata, and a single condition to check incorporating all covariates. A researcher might

proceed by requiring the final stratified design both to pass a balance test and to minimize

potential bias as computed under jointVIP to enjoy the benefits of both frameworks. If

this proves impossible, a researcher might instead use jointVIP to select a priority subset

of covariates with highest outcome correlation, and search for a design for which the tests

of Hansen and Bowers (2008) fail to detect differences with respect to these variables. For

an interesting related proposal to use prognostic information to construct a test statistic

for balance testing, see Bicalho et al. (2022).

1. choose pilot sample define pilot sample either as hold-out set from
main analysis sample or from external historical data

2. create the jointVIP fit outcome correlations from the pilot sample
and compute SMD from the analysis sample

3. identify potential confounders prioritize variables in top right region
of the plot and use bias curves to make fine distinctions

4. adjust for confounders create balance constraints (matching or weighting),
a covariate distance (matching), a regressor
matrix (outcome regression), etc. using chosen variables.

5. (optional) plot post-jointVIP for matching and weighting re-plot with post-design SMD
repeat steps 3-5 repeat as desired

Table 1: Suggested procedure for use of the joint variable importance plot. As discussed in
Section 2.1, the pilot sample typically consists of controls only. See Section 2.4 for further
details on practical use of jointVIP.

JointVIP can also draw attention to variables with high treatment-model importance

but negligible outcome-model importance, sometimes referred to as instrumental variables

or prods (Pimentel et al., 2016). Even when all variables could be used for adjustment,

it is wise to exclude to such variables since they can inflate unmeasured confounding bias

(Brooks and Ohsfeldt, 2013; Ding et al., 2017). JointVIP enables either excluding such
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variables or (if it is not entirely clear whether a variable should be excluded) constructing

multiple control groups that adjust for these variables differently (Pimentel et al., 2016).

Some caution should be exercised when using and interpreting jointVIP. Outcome corre-

lations can change substantially when variables are transformed; outliers may also skew the

means of either treatment or control groups and hence the standardized mean differences.

Blindly using all variables above a bias cutoff may also be suboptimal. For example, if two

variables are near-perfectly collinear, both would be highlighted as priorities in jointVIP,

but adjusting for one may be sufficient to remove bias. Finally, baseline variables that are

absent or rare in the pilot sample may not be well-represented in the plot.

3 CASE STUDY

3.1 Glyburide as a treatment for gestational diabetes

Due to improved ease of use and lower cost, oral antidiabetic medications, such as gly-

buride, are often prescribed compared to the recommended insulin therapy as treatment

for gestational diabetes (Castillo et al., 2014). The safety of glyburide, however, remains

contentious due to potential transfer to the fetus through the placenta (American College of

Obstetricians and Gynecologists, 2018). The question remains: does glyburide increase the

risk of adverse perinatal outcomes in real-world settings? We investigate glyburide’s im-

pact on C-section delivery compared to medical nutritional therapy, the universal first-line

therapy in a large, population-based cohort.

The study population consists of Kaiser Permanente Northern California (KPNC) mem-

bers. Individuals who are diagnosed with GDM receive medical nutritional therapy (MNT)

as the universal first line of therapy. Pharmacologic treatment, including oral antidiabetic
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medications (glyburide, metformin, or other) and/or insulin, is prescribed in addition to

MNT if glycemic control goals are not met. Individuals with GDM who received MNT

alone constituted our control group while those who additional received glyburide as the

only pharmacologic therapy constituted our treatment group. There are 54 common vari-

ables between the 2007-2010 data (pilot sample) and 2011-2021 data (analysis sample),

including indicators of missing data as variables. Table 2 summarizes selected baseline

variables (see Supplemental Appendix A.4 for the full data summary). Missing values were

imputed separately for each year using random forest (Stekhoven and Bühlmann, 2012).

Details about the pattern of missing values and the imputation procedure are reported in

Supplemental Appendix A.5. Our use of KPNC data for this study is approved by the

KPNC Institutional Review Board, which waived the requirement for informed consent

from participants.

3.2 Design

3.2.1 Variable selection using jointVIP

JointVIP is constructed using the jointVIP package in R; for a brief software tutorial

see Liao and Pimentel (2023). To ensure particularly stringent control of the propensity

score, we impose a caliper equal to 0.2 standard deviations of the fitted propensity score

values in the entire sample. Using a caliper on the propensity score is a natural choice

because our approach to inference relies on similar propensity scores within matched pairs

(Pimentel and Huang, 2023). We match exactly on year to address substantive concerns

about potential for temporal shifts in the standard of care in the absence of reliable outcome

correlations.

We address potential bias from additional variables by imposing a series of refined bal-
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Table 2: Summary of selected baseline variables for pregnant individuals with gestational
diabetes.
BMI: body mass index, C-C: Carpenter-Coustan, GDM: gestational diabetes, OGTT: oral glucose tolerance

test, SD: standard deviation A normal OGTT fasting blood glucose level is lower than 95 mg/dL. Abnormal

indicates a result higher than normal.

2007-2010 2011-2021 2011-2021
Control Control Treated
n = 7,526 n = 19,183 n = 10,786

Family history of
diabetes = yes (%)

198 (2.6) 1,202 (6.3) 822 (7.6)

OGTT for
fasting blood glucose = abnormal (%)

2,165 (28.8) 3,762 (19.6) 4,512 (41.8)

GDM severity = severe (%) 775 (10.3) 1,744 (9.1) 1,215 (11.3)
GDM diagnosed by the

C-C criteria = yes (%)
7,323 (97.3) 17,303 (90.2) 8,419 (78.1)

Age (%) Under 25 552 (7.3) 1,029 (5.4) 349 (3.2)
Between 25-29 1,665 (22.1) 3,762 (19.6) 1,866 (17.3)
Between 30-34 2,584 (34.3) 7,101 (37.0) 4,165 (38.6)
Over 35 2,725 (36.2) 7,291 (38.0) 4,406 (40.8)

Gestational age at
GDM diagnosis (mean (SD))

26.06 (6.10) 26.86 (6.02) 23.53 (7.12)

History of macrosomia = yes (%) 69 (0.9) 145 (0.8) 147 (1.4)
History of GDM = yes (%) 856 (11.4) 3,401 (17.7) 2,608 (24.2)
Parity (%) 0 3,121 (41.5) 7,611 (39.7) 3,873 (35.9)

1 2,347 (31.2) 6,566 (34.2) 3,994 (37.0)
more than 2 2,058 (27.3) 5,006 (26.1) 2,919 (27.1)

Pre-pregnancy BMI (%) Underweight 100 (1.3) 391 (2.0) 76 (0.7)
Normal 1,921 (25.5) 5,107 (26.6) 1,706 (15.8)
Overweight 2,847 (37.8) 6,369 (33.2) 3,361 (31.2)
Obese 2,658 (35.3) 7,316 (38.1) 5,643 (52.3)

Race/ethnicity (%) Asian or
Pacific Islander

2,919 (38.8) 8,553 (44.6) 4,560 (42.3)

Hispanic 2,322 (30.9) 5,013 (26.1) 2,923 (27.1)
White 1,602 (21.3) 4,090 (21.3) 2,381 (22.1)
Black or

African American
315 (4.2) 736 (3.8) 410 (3.8)

Other or unknown 368 (4.9) 791 (4.1) 512 (4.7)
Pre-pregnancy

pre-diabetes = yes (%)
479 (6.4) 1,802 (9.4) 1,915 (17.8)

Glucose challenge
test value (mean (SD))

169.43 (22.38) 169.71 (22.14) 173.22 (24.32)
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ance constraints tailored to the outcome. Refined covariate balance enables users to specify

top-priority variables and their interactions to be balanced as though they were the only

variables in the study, with lower-priority variables receiving further attention as possible

(Pimentel et al., 2015). While this framework offers substantial flexibility to the researcher,

it relies on strong substantive knowledge to specify the balance tiers in a reasonable man-

ner. Frequently it is not immediately clear how to organize a group of baseline variables

into balance tiers in a principled way. JointVIP offers a data-driven approach in settings

where ambiguity remains even after accounting for substantive knowledge. We specify tiers

of variables for refined covariate balance by identifying sets of variables with high impor-

tance. Since the prognostic score (fit in the pilot sample using LASSO regression) ranks

among the variables contributing the largest unadjusted bias, we include quintiles of the

prognostic score in the first balance tier. We include all variables contributing unadjusted

bias greater than or equal to 0.010 with variables in subsequent tiers, with those contribut-

ing larger amounts of bias in higher tiers. Table 3 summarizes the chosen balance tiers for

the design. Specific potential bias values can be found in Supplemental Appendix A.6 col-

umn Pre-matched bias. In addition, we discretized the continuous variable for gestational

age at GDM diagnosis for compatibility with refined covariate balance algorithm.

3.2.2 Matched Design

We conduct matching with refined covariate balance using the rcbalance package in R

and the balance tiers in Table 3. Post-matched jointVIP results, reflecting new levels of

balance after matching, are plotted in Figure 2.B. For variables that were specified, post-

matched biases are compared to pre-matched biases in Supplemental Appendix A.6, which

shows all baseline variables and summary measures to have small biases (around 0.005 or

less) post-matching. Note in particular that variables with high outcome correlation are
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Balance tier C-section delivery
1 Prognostic score quintile
2 OGTT for fasting blood glucose

Obese pre-pregnancy BMI
3 GDM diagnosed by Carpenter-Coustan criteria

Gestational age category at GDM diagnosis
Pre-pregnancy pre-diabetes
Normal pre-pregnancy BMI

Table 3: Balance tiers for refined covariate balance for each outcome, chosen using jointVIP
plots.
BMI: body mass index, C-section: Cesarean section, GDM: gestational diabetes, jointVIP: joint treatment-

outcome variable importance plot, OGTT: oral glucose tolerance test.
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Figure 2: Pre-post match results for Cesarean section delivery.
BMI: body mass index, C-section: Cesarean section, GDM: gestational diabetes, jointVIP: joint treatment-

outcome variable importance plot, OGTT: oral glucose tolerance test, SMD: standardized mean difference.
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balanced especially well, a feature of the design that traditional methods based on Love

plots are not equipped to guarantee.

2,093 treated subjects are excluded from the match due to caliper and exact matching

constraints, and 8,693 pairs are matched. Those who are excluded tend to have more signs

of severe GDM and higher probability of treatment; it is not surprising that it is difficult to

find comparable controls for matching them (Supplemental Appendix A.7). We note that

the average risk difference for C-section is best understood not as an estimate of an average

treatment effect on the treated (Stuart, 2010), but as an average effect on a “marginal”

population consisting of individuals for whom treatment by either arm is reasonably likely

(Rosenbaum, 2012; Li et al., 2019; Greifer and Stuart, 2021). This estimand, while less

common in theoretical discussions of causal inference, adheres more closely to the sub-

stantive quantity of interest for physicians who are typically more interested in guidance

for patients with equipoise, and less interested in effects on patients who would clearly be

assigned glyburide or not in the large majority of cases.

3.3 Outcome analysis

To perform inference, we index matched pairs by i = 1, · · · , I, and individuals in each

matched pair by k = 1, 2. For a matched pair i, one person is treated with glyburide,

Zik = 1, and the other with MNT, Zik = 0, hence Zi1 + Zi2 = 1. Let Z denote the event

that Zi1 + Zi2 = 1 for each matched pair i. Each subject ik has corresponding potential

outcomes Yik(1) and Yik(0) for treatment with and without glyburide respectively. We col-

lect quantities fixed in advance of treatment, including potential outcomes and covariates,

in the set F = {(Yik(1), Yik(0),xik), i = 1, · · · , I, k = 1, 2}. Our outcome of interest is a

binary indicator for C-section.

We test the sharp null hypothesis, H0 : Yik(1) = Yik(0) for all i, k. Assuming that paired
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subjects are equally likely to receive glyburide, we can test this hypothesis by repeatedly

permuting treatment indicators within pairs (independently across pairs) with probability

1/2; this corresponds to resampling treatment indicators conditional on Z and F . Since

under the sharp null the outcomes remain identical regardless of treatment assignment,

we can compute a test statistic under each permutation using observed outcomes and

compare the actual observed value of the test statistic to this reference distribution to

conduct inference. For binary outcomes, in particular, we may apply McNemar’s test

(McNemar, 1947). The above procedure relies on the assumption Pr(Zik = 1|F ,Z) = 1/2

with independent assignment for each pair, which is true when unobserved confounding is

absent and propensity scores are matched exactly; it is a quasi-randomization test in the

sense of Zhang and Zhao (2022). In real observational studies this assumption may fail,

and sensitivity analysis is needed to probe the robustness of the initial findings to such

failures. We perform sensitivity analysis as described in Rosenbaum (2010) Section 3.

3.3.1 Results

There are 2 × 8, 693 individuals who are matched in pairs, 6,023 (34.64%) individuals

delivered by C-section. Matched results are shown in Table 4. For control (MNT only) in-

dividuals, 33.61% delivered by C-section, and for treated (glyburide and MNT) individuals,

35.67% delivered by C-section (raw treatment-control difference of 2.06%). McNemar’s test

yields a one-sided p-value of 0.0020. Evaluating at significance level 0.05, there is evidence

to reject the null hypothesis under a no unmeasured confounding assumption. However,

the sensitivity analysis produces a threshold Γ of 1.041, which indicates that a very small

degree of unmeasured confounding (the amount needed to shift a a 0.50 probability of

treatment to a 1.041/(1 + 1.041) ≈ 0.51 probability of treatment) can explain away the

causal effect detected. As such we find no substantial evidence that glyburide is causing
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Treated with glyburide

C-section not C-section

Control C-section 1078 1844

not C-section 2023 3748

Table 4: Matched analysis for Cesarean section delivery.

the increase in cases of C-section delivery in this study.

4 DISCUSSION

JointVIP is a useful tool for selecting variables to balance during the observational study de-

sign phase. One notable advantage over traditional methods is the visual ease of comparison

for marginal relationships of each variable with both the outcome and treatment. Methods

leveraging jointVIP can offer better bias reduction and increased robustness against unmea-

sured confounders (Rosenbaum, 2005). Several other authors have discussed ideas closely

related to jointVIP. Zhao and Yang (2022) propose variable selection for fitting generalized

propensity scores using measures of outcome importance and provide supporting theory

suggesting the optimality of this approach. Aikens et al. (2020) and Aikens and Baiocchi

(2022) construct an alternative design-stage visualization based partially on a pilot sample

incorporating outcomes, the assignment-control (AC) plot. In contrast to jointVIP how-

ever, the AC plot represents subjects rather than variables on the plot, using the estimated

prognostic score and propensity score values on the axes. AC plots and jointVIP thus pro-

vide valuable complementary representations of observational data. Finally, Cinelli and

Hazlett (2020) propose a similar contour plot based on omitted-variable-bias calculations
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that consider each variable in turn as a potential omitted confounder, for use in inter-

preting parameters in sensitivity analysis. For matching and weighting, the post-match

jointVIP has potential to be used in a similar way. However, additional mathematical

work is required to establish a mapping between the ∆j and βj quantities represented on

the jointVIP and the parameters of existing sensitivity analysis approaches.

A natural question is why the omitted variable biases for the unadjusted bias curves

should be computed under the one-covariate model in equation (1) instead of a model con-

taining all measured covariates. This relates to a larger question about whether to focus on

visualizing marginal measures of association between covariates and treatment or outcome,

or instead to focus on conditional or partial measures that account for other variables. We

focus on marginal measures rather than conditional measures (such as multiple regression

coefficients from models for treatment or outcome and OVB from excluding one variable

from a regression with many covariates), in contrast to previous works such as Cinelli and

Hazlett (2020). While previous authors focused on post-hoc sensitivity analyses in which a

single model had already been chosen for analysis, jointVIP is a pre-analysis tool aimed at

helping select covariates for which to adjust. As such, it is unclear which covariates should

be adjusted for in computing partial correlations with outcome and treatment. This is

especially true in high-dimensional settings where the number of covariates may exceed the

number of sample points in either the pilot or main analysis sample, in which case partial

measures of association may not be well-defined for some sets of adjustment covariates.

We also note that current standard heuristics emphasize reporting and minimizing SMDs

rather than regression coefficients from a propensity score, so a marginal approach gen-

eralizes existing practice more naturally (as demonstrated above). However, developing

a conditional jointVIP is an interesting topic for future work. For example, a forward-

selection method with attention to multicollinearity could be developed by selecting only
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one variable for adjustment from the original jointVIP, then creating a conditional ver-

sion of jointVIP for the remaining variables where all plotted measures adjust for the first

selected variable, and iterating until a stopping criterion is reached.

While we focused on using pilot samples consisting only of controls, if extensive treat-

ment effect heterogeneity is present this approach might underestimate the bias contributed

by individual variables. Instead, one could take a pilot sample from each study arm and fit

distinct treatment and control outcome correlations β
(1)
j and β

(0)
j . A generalized version of

our argument in Section 2.2 due to Zhao and Ding (2021) suggests plotting β
(1)
j p0 + β

(0)
j p1

on the y-axis of the jointVIP, where p1 and p0 are the anticipated proportions of treated

and control subjects in the final design. Of course, it may not be advisable to sacrifice

treated subjects to the pilot sample for such an analysis when treatment is rare.

Another area for future work is generalizing jointVIP to allow for nonlinearity. Pearson

correlation captures linear relationships but may miss strong nonlinear relationships. Non-

linear measures of importance such as the interpretable mean decrease in impurity (MDI+)

derived by Agarwal et al. (2023) for random forests, could in principle be used on the y-

axis of the jointVIP. Two primary challenges arise. First is the question of marginal versus

conditional relationships raised above, if nonlinear importance measures vary depending

on the other variables included in the model. Second is the difficulty of deriving nonlinear

versions of the unadjusted bias curves. Statistical interpretation of variable importance in

nonlinear models such as random forest is an active research area and we are not aware of

any straightforward generalization of omitted variable bias for this context.
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Stekhoven, D. J. and Bühlmann, P. (2012), “MissForest—non-parametric missing value

imputation for mixed-type data,” Bioinformatics, 28, 112–118.

28



Stuart, E. A. (2010), “Matching methods for causal inference: A review and a look for-

ward,” Statistical science: a review journal of the Institute of Mathematical Statistics,

25, 1.

Stuart, E. A., King, G., Imai, K., and Ho, D. (2011), “MatchIt: nonparametric preprocess-

ing for parametric causal inference,” Journal of statistical software.

Yang, D., Small, D. S., Silber, J. H., and Rosenbaum, P. R. (2012), “Optimal matching

with minimal deviation from fine balance in a study of obesity and surgical outcomes,”

Biometrics, 68, 628–636.

Zhang, Y. and Zhao, Q. (2022), “What is a randomization test?” arXiv preprint

arXiv:2203.10980.

Zhao, A. and Ding, P. (2021), “Covariate-adjusted Fisher randomization tests for the av-

erage treatment effect,” Journal of Econometrics, 225, 278–294.

Zhao, H. and Yang, S. (2022), “Outcome-adjusted balance measure for generalized propen-

sity score model selection,” Journal of Statistical Planning and Inference, 221, 188–200.

Zubizarreta, J. R. (2015), “Stable weights that balance covariates for estimation with in-

complete outcome data,” Journal of the American Statistical Association, 110, 910–922.

Zubizarreta, J. R., Paredes, R. D., and Rosenbaum, P. R. (2014), “Matching for balance,

pairing for heterogeneity in an observational study of the effectiveness of for-profit and

not-for-profit high schools in Chile,” The Annals of Applied Statistics, 8, 204–231.

29


