IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

5933

LEAF + AlO: Edge-Assisted Energy-Aware
Object Detection for Mobile Augmented Reality

Haoxin Wang
Jiang Xie

, Member, IEEE, BaekGyu Kim™', Member, IEEE,
, Fellow, IEEE, and Zhu Han

, Fellow, IEEE

Abstract—Today very few deep learning-based mobile augmented reality (MAR) applications are applied in mobile devices
because they are significantly energy-guzzling. In this paper, we design an edge-based energy-aware MAR system that enables
MAR devices to dynamically change their configurations, such as CPU frequency, computation model size, and image offloading
frequency based on user preferences, camera sampling rates, and available radio resources. Our proposed dynamic MAR
configuration adaptations can minimize the per frame energy consumption of multiple MAR clients without degrading their preferred
MAR performance metrics, such as latency and detection accuracy. To thoroughly analyze the interactions among MAR
configurations, user preferences, camera sampling rate, and energy consumption, we propose, to the best of our knowledge, the
first comprehensive analytical energy model for MAR devices. Based on the proposed analytical model, we design a LEAF
optimization algorithm to guide the MAR configuration adaptation and server radio resource allocation. An image offloading
frequency orchestrator, coordinating with the LEAF, is developed to adaptively regulate the edge-based object detection invocations
and to further improve the energy efficiency of MAR devices. Extensive evaluations are conducted to validate the performance of

the proposed analytical model and algorithms.

Index Terms—Augmented reality, mobile edge computing, object detection

1 INTRODUCTION

WITH the advancement in Deep Learning in the past few
years, we are able to create intelligent machine learn-
ing models to accurately detect and classify complex objects
in the physical world. This advancement has the potential
to make Mobile Augmented Reality (MAR) applications
highly intelligent and widely adaptable in various scenar-
ios, such as tourism, education, and entertainment. Thus,
implementing MAR applications on popular mobile archi-
tectures is a new trend in modern technologies.

However, only a few MAR applications are implemented
in mobile devices and are developed based on deep learning
frameworks because (i) performing deep learning algo-
rithms on mobile devices is significantly energy-guzzling;
(ii) deep learning algorithms are computation-intensive, and
executing locally in resource limited mobile devices may not
provide acceptable performance for MAR clients [1]. To
solve these issues, a promising approach is to transfer MAR

e Haoxin Wang and BaekGyu Kim are with the Toyota Motor North Amer-
ica (TMNA) R&D InfoTech Labs, Mountain View, CA 94043 USA.
E-mail: hwang50@uncc.edu, baekgyu.kim@toyota.com.

o Jiang Xie is with the University of North Carolina at Charlotte, Charlotte,
NC 28223 USA. E-mail: linda.xie@uncc.edu.

e Zhu Han is with the Department of Electrical, Computer Engineering,
University of Houston, Houston, TX 77004 USA, and also with the
Department of Computer Science, Engineering, Kyung Hee University,
Seoul 446-701, South Korea. E-mail: hanzhu22@gmail.com.

Manuscript received 29 Sept. 2021; revised 17 Mar. 2022; accepted 24 May 2022.
Date of publication 3 June 2022; date of current version 31 Aug. 2023.

This work was supported in part by the U.S. National Science Foundation (NSF)
under Grants 1718666, 1910667, 1910891, 2025284, 2107216, and 2128368,
and funds from Toyota Motor North America.

(Corresponding author: Jiang Xie.)

Digital Object Identifier no. 10.1109/TMC.2022.3179943

input image/video frames to an edge server that is suffi-
ciently powerful to execute the deep learning algorithms.

Motivations. Although compared to running a deep learn-
ing algorithm locally on a mobile device, edge-based
approaches may extend the device’s battery life to certain
extents, it is still considerably energy consuming due to con-
ducting multiple pre-processes on the mobile device, such
as camera sampling, screen rendering, image conversion,
and data transmission [2]. For instance, based on the mea-
surement from our developed MAR testbed, a 3000 mAh
smartphone battery is exhausted within approximately 2.3
hours for executing our developed MAR application which
continuously transmits the latest camera sampled image
frames to an edge server for object detection. Therefore, the
energy efficiency of MAR devices becomes a bottleneck,
which impedes MAR clients to obtain better MAR perfor-
mance. For example, decreasing the energy consumption of
an MAR device is always at the cost of reducing the object
detection accuracy. Therefore, improving the energy effi-
ciency of MAR devices and balancing the tradeoffs between
energy efficiency and other MAR performance metrics are
crucial to edge-based MAR systems.

Challenges. An accurate analytical energy model is signifi-
cantly important for understanding how energy is con-
sumed in an MAR device and for guiding the design of
energy-aware MAR systems. However, to the best of our
knowledge, there is no existing energy model developed for
MAR devices or applications. Developing a comprehensive
MAR energy model that is sufficiently general to handle
any MAR architecture and application is very challenging.
This is because (i) interactions between MAR configuration
parameters (e.g., client’s CPU frequency and computation
model size) and MAR device’s energy consumption are

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

5934

complex and lack analytic understandings; (ii) interactions
between these configurations and the device’s energy con-
sumption may also vary with different mobile architectures.

In addition, designing an energy-aware solution for
mobile devices in edge-based MAR systems is also challeng-
ing, even after we obtain an analytical energy model. This is
because: (i) complicated pre-processes on MAR devices
increase the complexity of the problem. Compared to con-
ventional computation offloading systems, besides data
transmission, there are also a variety of pre-processing tasks
(e.g., camera sampling, screen rendering, and image conver-
sion) necessarily to be performed on MAR devices, which
are also energy consuming. For example, over 60% of the
energy is consumed by camera sampling and screen render-
ing, based on observations from our developed testbed.
Therefore, we have to take into account the energy effi-
ciency of these pre-processing tasks while designing an
energy-aware approach for MAR clients. (ii) Considering
the user preference constraint of individual MAR clients
also increases the complexity of the problem. For example,
maintaining a high object detection accuracy for a client
who prefers a precise MAR while decreasing its energy con-
sumption is very challenging. As stated previously, reduc-
ing the energy consumption of the MAR device without
degrading other performance metrics is no easy task. (iii) In
practical scenarios, an edge server is shared by multiple
MAR clients. Individual client’s energy efficiency is also
coupled with the radio resource allocation at the edge
server. Such a coupling makes it computationally hard to
optimally allocate radio resources and improve each client’s
energy efficiency.

Our Contributions. In this paper ', we study these research
challenges and design a user preference based energy-
aware edge-based MAR system. The novel contributions of
this paper are summarized as follows:

1) We design and implement an edge-based object
detection for MAR systems to analyze the interactions
between MAR configurations and the client’s energy
consumption. Based on our experimental study, we
summarize several insights which can potentially
guide the design of energy-aware object detection.

2) We propose, to the best of our knowledge, the first
comprehensive energy model which identifies (i) the
tradeoffs among the energy consumption, service
latency, and detection accuracy, and (ii) the interac-
tions among MAR configuration parameters (.e.,
CPU frequency and computation model size), user
preferences, camera sampling rate, network band-
width, and per frame energy consumption for a
multi-user edge-based MAR system.

3) We propose an energy-efficient optimization algo-
rithm, LEAF, which guides MAR configuration adap-
tations and radio resource allocations at the edge
server, and minimizes the per frame energy consump-
tion while satisfying variant clients’ user preferences.

4) We develop and implement an image offloading fre-
quency orchestrator that coordinates with the LEAF

1. This work is an extension of our previous conference paper:
10.1109/INFOCOM41043.2020.9155517

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

algorithm to avoid energy-consuming continuous
repeated executions of object detections and further
improve the energy efficiency of MAR devices.

2 RELATED WORK

Energy Modeling. Energy modeling has been widely used for
investigating the factors that influence the energy consump-
tion of mobile devices. [3] and [4] propose energy models of
WiFi and LTE data transmission with respect to the network
performance metrics, such as data and retransmission rates,
respectively. [5], [6], [7], [8], [9] propose multiple power
consumption models to estimate the energy consumption of
mobile CPUs. Tail energy caused by different components,
such as disk, Wi-Fi, 3 G, and GPS in smartphones has been
investigated in [9], [10]. However, none of them can be
directly applied to estimate the energy consumed by MAR
applications. This is because MAR applications introduce a
variety of (i) energy consuming components (e.g., camera
sampling and image conversion) that are not considered in
the previous models and (ii) configuration variables (e.g.,
computation model size and camera sample rate) that also
significantly influence the energy consumption of mobile
devices.

Computation Offloading. Most existing research on com-
putation offloading focuses on how to make offloading
decisions. [11] and [12] coordinate the scheduling of off-
loading requests for multiple applications to further
reduce the wireless energy cost caused by the long tail
problem. [13] proposes an energy-efficient offloading
approach for multicore-based mobile devices. [14] dis-
cusses the energy efficiency of computation offloading for
mobile clients in cloud computing. However, these solu-
tions cannot be applied to improving the energy efficiency
of mobile devices in MAR offloading cases. This is because
(i) a variety of pre-processing tasks in MAR executions,
such as camera sampling, screen rendering, and image
conversion, are not taken into account and (ii) besides the
latency constraint that is considered in most existing com-
putation offloading approaches, object detection accuracy
is also a key performance metric, which must be consid-
ered while designing an MAR offloading solution. In addi-
tion, although some existing work proposes to study the
tradeoffs between the MAR service latency and detection
accuracy [2], [15], [16], [17], [18], [19], [20], [21], [22], none
of them considered (i) the energy consumption of the
MAR device and (ii) the whole processing pipeline of
MAR (i.e., starting from the camera sampling to obtaining
detection results).

CPU Frequency Scaling. Our work is also related to CPU
frequency scaling. For modern mobile devices, such as
smartphones, CPU frequency and the voltage provided to
the CPU can be adjusted at run-time, which is called
Dynamic Voltage and Frequency Scaling (DVES). Prior
work [11], [23], [24], [25] proposes various DVEFS strategies
to reduce the mobile device energy consumption under var-
ious applications, such as video streaming [11] and delay-
tolerant applications [24]. However, to the best of our
knowledge, there has been little effort factoring in the
energy efficiency of MAR applications in the context of
mobile device DVFS.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: LEAF + AlO: EDGE-ASSISTED ENERGY-AWARE OBJECT DETECTION FOR MOBILE AUGMENTED REALITY

5935

JWRID AVIN
4. Inferenc

BEYNEINEY o |

5. Return detection resultsy

g 2. Preview

S| Image |Sensorparameters | gunle & crap Surface

g sensor control Texture

on

o

on

g

— | Bayer Image signal Convert YUV
| filter processing 3

to RGB & crop T

[0}
o)
=]
=

T

3. Image conversion

4. Wireless communication

Fig. 1. The processing pipeline of the edge-based MAR system developed in this paper [26], [27].

3 EXPERIMENTAL RESULTS ON FACTORS
AFFECTING MAR CLIENT ENERGY EFFICIENCY

In this section, we describe our preliminary experiments to
evaluate the impact of various factors on the energy effi-
ciency of an MAR client, service latency, and detection accu-
racy in an edge-based MAR system. Specifically, these
experimental results provide (i) observations on interactions
between energy consumption and MAR configuration
parameters, such as MAR client’s CPU frequency, computa-
tion model size, camera sampling rate, and user preference,
(ii) bases of modeling the energy consumption of an MAR cli-
ent, and (iii) insights on designing an energy-efficient opti-
mization algorithm.

3.1 Testbed Setup

Our testbed consists of three major components: MAR cli-
ent, edge server, and power monitor. Note that this paper
focuses on the MAR application in which an MAR client
captures physical environmental information through the
camera and sends the information to an edge server for
object detection. The detailed processing pipeline is shown
in Fig. 1.

Processing Pipeline” Image generation (phase 1): The input to
this phase is continuous light signal and the output is an
image frame. In this phase, the image sensor first senses the
intensity of light and converts it into an electronic signal. A
Bayer filter is responsible for determining the color informa-
tion. Then, an image signal processor (ISP) takes the raw data
from the image sensor and converts it into a high-quality
image frame. The ISP performs a series of image signal proc-
essing operations to deliver a high-quality image, such as
noise reduction, color correction, and edge enhancement. In
addition, the ISP conducts automated selection of key camera
control values according to the environment (e.g., auto-focus
(AF), auto-exposure (AE), and auto-white-balance (AWB)).
The whole image generation pipeline in our implemented
application is constructed based on android.hardware.
camera?2 which is a package that provides an interface to
individual camera devices connected to an Android device.
CaptureRequest is a class in android.hardware.cam-
era? that constructs the configurations for the capture hard-
ware (sensor, lens, and flash), the processing pipeline,
and the control algorithms. Therefore, in our implemented

2. GitHub: https:/ / github.com /WINSAC/Mobile-AR-in-Edge-
Computing-Client

application, we use CaptureRequest to set up image gen-
eration configurations. For example, CaptureRequest.
CONTROIL_AE_MODE_OFF disables AE and CaptureRe-
guest .CONTROL_AE_TARGET_FPS_RANGE sets the camera
FPS (i.e., the number of frames that the camera samples per
second).

Preview (phase 2): The input to this phase is a latest gener-
ated image frame with YUV_420_888 format® (i.e., the out-
put of Phase 1) and the output is a camera preview
rendered on a smartphone’s screen with a pre-defined pre-
view resolution. In this phase, the latest generated image
frame is first resized to the desired preview resolution and
then buffered in a SurfaceTexture which is a class cap-
turing frames from an image stream (e.g., camera preview
or video decode) as an OpenGL ES texture. Finally, the cam-
era preview frame in SurfaceTexture is copied and sent
to a dedicated drawing surface, SurfacevView, and ren-
dered on the screen. In our implemented application, the
preview resolution is set via method SurfaceTexture.
setDefaultBufferSize().

Image conversion (phase 3): The input to this phase is a latest
generated image frame with YUV_420_888 format (i.e., the
output of Phase 1) and the output is a cropped RGB image
frame. In this phase, in order to further process camera cap-
tured images (i.e., object detection), an ImageReader class is
implemented to acquire the latest generated image frame,
where ImageReader .OnImageAvailableListener pro-
vides a callback interface for being notified that a new gener-
ated image frame is available and method ImageReader.
acquireLatestImage () acquires the latest image frame
from the ImageReader’s queue while dropping an older
image. Additionally, the desired size and format of acquired
image frames are configured once an ImageReader is cre-
ated. In our implemented application, the desired size
and the preview resolution are the same and the image
format in ImageReader is set to YUV_420_888. Fur-
thermore, an image converter is implemented to convert
the YUV_420_888 image to an RGB image, because the
input to a CNN-based object detection model must be an
RGB image. Finally, the converted RGB image is cropped
to the size of the CNN model for object detections.

Wireless communication & inference (phase 4): The input to
this phase is a converted and cropped image frame (i.e., the
output of Phase 3) and the output is an object detection

3.For android.hardware.camera2, YUV_420_888 format is
recommended for YUV output [28].

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

5936

result. In our implemented application, the object detection
result contains one or multiple bounding boxes with labels
that identify the locations and classifications of the objects in
an image frame. Each bounding box consists of 5 predictions:
(x, v, w, h) and a confidence score [29]. The (x, y) coordinates
represent the center of the box relative to the bounds of the
grid cell. The (h, w) coordinates represent the height and
width of the bounding box relative to (X, y). The confidence
score reflects how confident the CNN-based object detection
model is on the box containing an object and also how accu-
rate it thinks the box is what it predicts. Our implemented
application transmits the converted and cropped image
frame to the edge server through a wireless TCP socket con-
nection in real time. To avoid having the server process stale
frames, the application always sends the latest generated
frame to the server and waits to receive the detection result
before sending the next frame for processing.

Detection result rendering (phase 5): The input to this phase
is the object detection result of an image frame (i.e., the out-
put of Phase 4) and the output is a view with overlaid aug-
mented objects (specifically, overlaid bounding boxes and
labels in this paper) on top of the physical objects (e.g., a cup).

Edge Server. The edge server is developed to process
received image frames and to send the detection results back
to the MAR client. We implement an edge server on an Nvi-
dia Jetson AGX Xavier, which connects to a WiFi access point
(AP) through a 1 Gbps Ethernet cable. The transmission
latency between the server and AP can be ignored. Two
major modules are implemented on the edge server * (i) the
communication handler which establishes a TCP socket con-
nection with the MAR device and (ii) the analytics handler
which performs object detection for the MAR client. In this
paper, the analytics handler is designed based on a custom
framework called Darknet [30] with GPU acceleration and
runs YOLOV3 [29], a large Convolutional Neural Networks
(CNN) model. The YOLOv3 model used in our experiments
is trained on COCO dataset [31] and can detect 80 classes.

MAR Client. We implement an MAR client on a rooted
Android smartphone, Nexus 6, which is equipped with
Qualcomm Snapdragon 805 SoC (System-on-Chip). The
CPU frequency ranges from 0.3 GHz to 2.649 GHz.

Power Monitor. The power monitor is responsible for
measuring the power consumption of the MAR client. We
use Monsoon Power Monitor [32], which can sample at
5,000 Hz, to provide power supply for the MAR device. The
power measurements are taken with the screen on, with the
Bluetooth/LTE radios disabled, and with minimal back-
ground application activity, ensuring that the smartphone’s
base power is low and does not vary unpredictably over
time. The base power is defined as the power consumed
when the smartphone is connected to the AP without any
data transmission activity. The detailed energy measure-
ment methodology is presented in our previous paper [27].

Key Performance Metrics. We define three performance
metrics to evaluate the MAR system:

e Per frame energy consumption: The per frame energy
consumption is the total amount of energy consumed

4. GitHub: https:/ / github.com /WINSAC/Mobile-AR-in-Edge-
Computing-Server

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

1@7 - "
o4 !

=

2

Service latency (s)
i
Power (W)

0.3 0.72 1.03 1.49 1.72 2.26 2.64
CPU frequency (GHz)

(@) (b)

Fig. 2. CPU frequency versus service latency and power (computation
model size: 320? pixels).

0.3 0.72 1.03 1.49 1.72 2.26 2.64
CPU frequency (GHz)

in an MAR client by successfully performing the
object detection on one image frame. It includes the
energy consumed by camera sampling (i.e., image
generation), screen rendering (i.e., preview), image
conversion, communication, and operating system.

e Service latency: The service latency is the total time
needed to derive the detection result on one image
frame. It includes the latency of image conversion,
transmission, and inference.

e Accuracy: The mean average precision (mAP) is a
commonly used performance metric to evaluate the
detection accuracy of a visual object detection algo-
rithm [33], where a greater accuracy is indicated by a
higher mAP.

3.2 The Impact of CPU Frequency on Power
Consumption and Service Latency

In this experiment, we seek to investigate how the CPU fre-
quency impacts the power consumption of the MAR device
and the service latency. We set the test device to the Userspace
Governor and change its CPU frequency manually by writ-
ing files in the /sys/devices/system/cpu/[cpu#]/
cpufreq virtual file system with root privilege. The camera
FPSis set to 15 and the computation model size is 320% pixels.
The results are shown in Fig. 2. The lower the CPU fre-
quency, the longer service latency the MAR client derives
and the less power it consumes. However, the reduction of
the service latency and the increase of the power consump-
tion is disproportional. For example, as compared to
1.03 GHz, 1.72 GHz reduces about 2% service latency but
increases about 15% power consumption. As compared to
0.3 GHz, 0.72 GHz reduces about 60% service latency, but
only increases about 20% power consumption.

Insight. This result advocates adapting the client’s CPU fre-
quency for the service latency reduction by trading as little
increase of the power consumption as possible.

3.3 The Impact of Computation Model Size on
Energy Consumption and Service Latency
In this experiment, we implement object detection based on
the YOLOvV3 framework with six different CNN model
sizes. The test device works on the default CPU governor,
Interactive and its camera FPS is set to 15. Increasing the
model size always results in a gain of mAP. However, the
gain on mAP becomes smaller as the increase of the model
sizes [16]. In addition, the per frame energy consumption
and the service latency boost 85% and 130%, respectively,
when the model size increases from 1282 to 608> pixels, as
shown in Figs. 3a and 3b.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: LEAF + AlO: EDGE-ASSISTED ENERGY-AWARE OBJECT DETECTION FOR MOBILE AUGMENTED REALITY

Il Image generation & preview
[Communication
I Conversion

[IBase

0.7 i
0.6} mAP = 51.5—» +
i
|

X ;

o <
=

1287 224 320° 416% 5122 608° 1282 2242 320 416> 512° 608’
Computation model size (pixels) Computation model size (pixels)

(@ (b)

Fig. 3. Computation model size versus energy consumption and service
latency.

o

Hm:m

=

Energy consumption (J)

==
L

Insight. This result inspires us to trade mAP for the per frame
energy consumption and service latency reduction when the model
size is large.

3.4 The Impact of Camera FPS on Power
Consumption

In this experiment, we vary the MAR client’s camera FPS to
explore how it impacts the device’s power consumption,
where the camera FPS is defined as the number of frames
that the camera samples per second. The computation
model size is 320% pixels and the default CPU frequency is
1.49 GHz. Fig. 4a shows that a large camera FPS leads to a
high power consumption. However, as shown in Fig. 1, not
every camera captured image frame is sent to the edge
server for detection. Because of the need (i) to avoid the
processing of stale frames and (ii) to decrease the transmis-
sion energy consumption, only the latest camera sampled
image frame is transmitted to the server. This may result in
the MAR client expending significant reactive power for
sampling non-detectable image frames. In Fig. 4b, we quan-
tify the sampling efficiency with the variation of the camera
FPS. As we expected, a large camera FPS leads to a lower
sampling efficiency (e.g., less than 2% of the power is con-
sumed for sampling the detectable image frames when the
camera FPS is set to 30). However, in most MAR applica-
tions, users usually request a high camera FPS for a
smoother preview experience, which is critical for tracking
targets in physical environments. Interestingly, increasing
CPU frequency can reduce the reactive power for sampling,
as shown in Fig. 4b.

Insight. This result demonstrates that when a high camera FPS
is requested, increasing CPU frequency can promote the sampling
efficiency but may also boost the power consumption. Therefore,
finding a CPU frequency that can balance this tradeoff is critical.

3.5 User Preference
An MAR client may have variant preferences in different
implementation cases, including:

7 SHTF s s
4 2 |-=-FPs=10
=, 5 60 FPS =20 ek
=3 B FPS =30, K
5 = 40 ek
E20f ¥ s omE
1 = -
0 S0 S S
1 5 10 15 20 25 30 0 0.5 1 1.5 2 2.5 3
Camera FPS (frames/second) CPU frequency (GHz)
(a) (b)

Fig. 4. Camera FPS versus power and sampling efficiency (computation
model size: 320% pixels).

5937

1 Camera FPS,] 1. Service Request
User Preference

— N CPU Frequency
MAR Configurations

2. Configurations I_

1

CPU Frequency

Frame Resolution

Q0BJIOJU] SSO[AIIAN
Wireless Interface
10AI0S 25pa

MAR Client

Model Size
e

Fig. 5. Overview of the proposed edge-based MAR system.

3. Image Frames

4. Detection Results

Pipeline

o Latency-preferred. The MAR application of cognitive
assistance [34], where a wearable device helps visu-
ally impaired people navigate on a street, may
require a low service latency but can tolerate a rela-
tively high number of false positives (i.e., false
alarms are fine but missing any potential threats on
the street is costly).

e Accuracy-preferred. An MAR application for recom-
mending products in shopping malls or supermar-
kets may tolerate a long latency but requires a high
detection accuracy and preview smoothness.

e Preview-preferred. The MAR drawing assistant appli-
cation [35], where a user is instructed to trace virtual
drawings from the phone, may tolerate a long
latency (i.e., only needs to periodically detect the
position of the paper where the user is drawing on)
but requires a smooth preview to track the lines that
the user is drawing.

Insight. This observation infers that the user preference’s diver-
sity may significantly affect the tradeoffs presented above. For
instance, for the accuracy-preferred case, trading detection accu-
racy for the per frame energy consumption or service latency
reduction works against the requirement of the user.

4 PROPOSED SYSTEM ARCHITECTURE

Based on the above insights, we propose an edge-based
MAR system for object detection to reduce the per frame
energy consumption of MAR clients by dynamically select-
ing the optimal combination of MAR configurations. To
derive the optimal MAR configurations, we propose an
optimization algorithm (LEAF) that supports low-energy,
accurate, and fast MAR applications.

Fig. 5 shows the overview of our proposed system. In the
first step, MAR clients send their service requests and
selected camera FPS and user preferences to an edge server.
In the second step, according to the received camera FPS
and user preferences, the edge server determines the opti-
mal CPU frequency, computation model size, and allocated
radio resource for each MAR client using our proposed
LEAF algorithm. The determined CPU frequency and com-
putation model size are then sent back to corresponding
MAR clients as MAR configuration messages. In the third
step, MAR clients set their CPU frequency to the optimal
value and resize their latest camera sampled image frames
based on the received optimal computation model size.
After the CPU frequency adaptation and image frame resiz-
ing, MAR clients transmit their image frames to the edge
server for object detection. In the final step, the edge server
returns detection results to corresponding MAR clients. The
LEAF will be executed when (i) a new MAR client joins the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

5938

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

f=03GHz c f =0.652 GHz c f =0.883 GHz ¢ f =1.267GHz N f =1.574 GHz N f =1.958 GHz N f =2.457 GHz N f =2.649 GHz
- . Image generation . Image gengration
Image Image Image i \
aoe ag < l€— ocners
6 6 Image 6 Imdg 6 [i generation 6 | i generation 6) Lw'ﬂwu L 6 m \“ 6 ”‘}‘ M “L
< Image = generation = generation < T ~ — f — .
g | fma g | e = s m oA B M B b EL G H
<, |gonertiion Skl S = I Y Y A R 1 2 Salli W Sk W
5) 54 (VA 5 4 W 541 (™ 5 4| ;N.} u“ 54 f B4y (il i 54 IR I
5| il 5 | | ERN ISR = [V z [N z ‘ / = | PRy = 18P
S (2| Y ‘ (M, WV AT [5 [« 5 <" S el ‘ 5 LU |
I YA | = | e b a | | ~ Wy A4 ~ \J ‘ = | 4 ~ M) [‘\
2 AN 2§ o 2 2 - 2 ——H 2 1 2 - 2 |
Preview Preview Preview Preview Preview Preview Preview
Preview
0 0 0 0 0 0 0 0
0 0.02 0.04 006 0 0.02 0.04 006 0 0.02 004 006 0 0.02 0.04 0.06 0 0.02 0.04 0.06 0 0.02 0.04 006 0 0.02 0.04 006 0 0.02 0.04 0.06
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

Fig. 6. The impact of CPU frequency on the power consumption of image generation and preview.

system; (ii) an MAR client leaves the system; or (iii) an
MAR client re-sends the service request with a new user
preference.

However, designing such a system is challenging. From
the presented insights in the previous section, the interac-
tions among the MAR system configuration variables, user
preference, camera FPS, and the per frame energy consump-
tion are complicated. (i) Some configuration variables
improve one performance metric but impair another one.
For example, a lower computation model size reduces the
service latency but decreases the detection accuracy. (ii)
Some configuration variables may affect the same metric in
multiple ways. For example, selecting a higher CPU fre-
quency can decrease the per frame energy consumption by
increasing the sampling efficiency, but it increases the CPU
power, which conversely increases the per frame energy
consumption. Unfortunately, there is no analytical model
for characterizing these interactions in the MAR system and
it is not possible to design a prominent optimization algo-
rithm without thoroughly analyzing these interactions.

5 PROPOSED ANALYTICAL MODEL AND PROBLEM
FORMULATION

In this section, we thoroughly investigate the complicated
interactions among the MAR configuration parameters,
user preference, camera FPS, and the key performance met-
rics presented in Section 3. We first propose a comprehen-
sive analytical model to theoretically dissect the per frame
energy consumption and service latency. The proposed
model is general enough to handle any MAR device and
application. Then, using the proposed model, we further
model multiple fine-grained interactions, whose theoretical
properties are complex and hard to understand, via a data-
driven methodology. Finally, based on the above proposed
models, we formulate the MAR reconfiguration as an opti-
mization problem.

5.1 Analytics-Based Modeling Methodology

We consider an edge-based MAR system with K MAR cli-
ents and one edge server, where clients are connected to the
edge server via a single-hop wireless network. Denote K as
the set of MAR clients. The per frame service latency of the
kth MAR client can be defined as

LF=rF + L} + Lk M

infr
where L* is the image conversion latency caused by con-
verting a buffered camera captured image frame from YUV

to RGB; Lf’r is the transmission latency incurred by sendin:
Authorized licensed use limited to: University of

’ .
orth Carolina at Charlotte. Downloaded on June 20,282,4 a{)7119:13:39

the converted RGB image frame from the kth client to its
connected edge server; and L}, + is the inference latency of
the object detection on the server. According to the MAR
pipeline depicted in Fig. 1, the per frame energy consump-
tion of the kth MAR client can be defined as

Ek

com

where E} is the image generation and preview energy
consumption incurred by image sampling, processing, and
preview rendering; E* is the image conversion energy
consumption; E¥ is the wireless communication energy
consumption, which includes four phases: promotion, data
transmission, tail, and idle; and E{fs is the MAR device base
energy consumption.

The Model of Image Generation and Preview. Image genera-
tion is the process that an MAR client transfers its camera
sensed continuous light signal to a displayable image frame.
Preview is the process of rendering the latest generated
image frame on the client’s screen. As these two processes
are executed in parallel with the main thread, their execu-
tion delays are not counted in the per frame service latency.

As depicted in Fig. 3a, the energy consumption of image
generation and preview is the largest portion of the per
frame energy consumption. To understand how energy is
consumed in image generation and preview and what con-
figuration variables impact it, we conduct a set of experi-
ments. We find that the power consumption of image generation
and preview highly depends on the CPU frequency. Fig. 6 shows
the power consumption of image generation and preview
under different CPU frequencies, where the camera FPS is
set to 15. A higher CPU frequency results in a higher aver-
age power consumption. In addition, the image generation
delay is also closely related to the CPU frequency, where a
higher CPU frequency always leads to a shorter delay.
However, the delay of rendering a preview is only related
to the GPU frequency, which is out of the scope of this
paper. Thus, we consider the preview delay as a fixed value
with any CPU frequencies. We model the energy consump-
tion of the kth MAR client’s image generation and preview
within a service latency as

tkt (fk) tpr'v
ki g k k k
Eimg = A Rgt(fk') dt + A Ppr'u(fk) dt . fpsk,’ . L 5
(3)
where Py, Py, t%, 1, are the power consumption of image

generation, preview, the delay of image generation, and
preview, respectively. fi. is the CPU frequency. fpsy, is the

camera FPS. P, P and t¥, are functions of f;.
C from IEEE Xplore. Restrictions apply.

WANG ETAL.: LEAF + AlO: EDGE-ASSISTED ENERGY-AWARE OBJECT DETECTION FOR MOBILE AUGMENTED REALITY

The Model of Image Conversion. Image conversion is proc-
essed through the MAR client’s CPU; and hence, the conver-
sion latency and power consumption highly depend on the
CPU frequency. We define L* and E* a function of f;.
Therefore, the major source of the power consumption of
the image conversion is the CPU computation. The power
consumption of mobile CPUs can be divided into two com-
ponents, P(fj, = Prear —|—P§ynamic [7], where P, is indepen-
dent and P(Zmamic is dependent upon the CPU frequency. (i)
Py, is the power originating from leakage effects and is in
essence not useful for the CPU’s purpose. In this paper, we
consider P, a constant value e. (i) Py, is the power
consumed by the logic gate switching at f and is propor-
tional to V}f;, where V}, is the supply voltage for the CPU.
Due to the DVFS for the power saving purpose, e.g., a
higher f; will be supplied by a larger V}, each f; matches
with a specific V;, where V;, o (a1 fi, + 2). @1 and o, are two
positive coefficients. Thus, the energy consumption of con-
verting a single image frame of the kth MAR client can be
modeled as

EF = PELE = (&l f} + 20100 f7 + o fi +€) - LE (fr).

cvTTcv

(4)

The Model of Wireless Communication and Inference. Intuitively,
the wireless communication latency is related to the data size
of the transmitted image frame (determined by the frame res-
olution) and wireless data rate. As the data size of detection
results is usually small, we do not consider the latency caused
by returning the detection results [16]. In this paper, we use s}
(pixels) to represent the computation model size of the kth
MAR client. The client must send image frames whose resolu-
tions are not smaller than s? to the edge server to obtain the
corresponding detection accuracy. Thus, the most efficient
way is to transmit the image frame with the resolution of s} to
the server. Denote o as the number of bits required to repre-
sent the information carried by one pixel. The data size of an
image frame is calculated as os7 bits. Let By, be the wireless
bandwidth derived by the kth MAR client. We model the
transmission latency of the kth client as
ost

Ly =R (5)

where Ry, is the average wireless data rate of the kth client,
which is a function of By.

In addition to the computation model size and wireless
bandwidth, the transmission latency is also determined by
the MAR client’s CPU frequency. This is because the image
transmission uses TCP as the transport layer protocol, and
TCP utilizes substantial CPU capacity to handle congestion
avoidance, buffer, and retransmission requests. For exam-
ple, when the CPU frequency is low, the remaining CPU
capacity may not be adequate to process the TCP task; and
thus, the TCP throughput is decreased. Therefore, R, is also
a function of f, i.e., Ry(By, fr). In this paper, Ry(B, fx) is
defined as

Ri(Br, fi) = i (By) - r3.(fi),)

where 7% (B},) is the network throughput, which is not
affected by the variation of the MAR client’s CPU frequency,

5939
7 1
0 55 Mbps 08
—98 Mbps i
E L, 0.6 faf e 1 Mbps
3 a if 7 Mbps
H “ 04 i/ ——32 Mbps
55 Mbps
f 0.2 98 Mbps
Promotion ~ »___} —100 Mbps
04—
0
0 02 04 06 08 1 12 0 2 4 6 8

Time (s)
(a) (b)

Fig. 7. MAR client’s wireless interface power consumption.

Power of data transmission (W)

and is only determined by the bandwidth (more comprehen-
sive model of this part can be found in [3], which is out of the
scope of this paper); r}(f;) represents the impact of the CPU
frequency on the TCP throughput.

In WiFi networks, when transmitting a single image
frame, the MAR client’s wireless interface experiences four
phases: promotion, data transmission, tail, and idle. When
an image transmission request comes, the wireless interface
enters the promotion phase. Then, it enters the data trans-
mission phase to send the image frame to the edge server.
After completing the transmission, the wireless interface is
forced to stay in the tail phase for a fixed duration and waits
for other data transmission requests and the detection
results. If the MAR client does not receive the detection
result in the tail phase, it enters the idle phase and waits for
the feedback from its associated edge server. Fig. 7 depicts
the measured power consumption of the MAR client that
transmits a 3,840 x 2,160 pixel image with different
throughput. We find that the average power consumption
of the data transmission phase increases as the throughput
grows. However, the average power consumption and the
duration of promotion and tail phases are almost constant.
Therefore, we model the energy consumption of the kth
MAR client in the duration that starts from the promotion
phase to obtaining the object detection result as

Erlzcom = Pfkr(Rk(Bkv fk))Lfr + Pizletfdlg + Pprotpm + pta,ilttaila
)

where P¥, PF, , P,,, and P, are the average power con-
sumption of the data transmission, idle, promotion, and tail
phases, respectively; tfdle, tpro, and ;4 are the durations of
the idle, promotion, and tail phases, respectively

k
i 0, Ly, 1(87) < tait,
idle“idle Pbk9 . (Lfnf(sz) - ttail)7 Li”nf(éz) > tiail,
®

where P} is the MAR device’s base power consumption;
Lk #(s1) is the inference latency on the edge server, which is
determined by the computation model size [16]. Note that
our proposed wireless communication model can also be
used in other wireless networks (e.g., LTE).

The Model of Base Energy. In this paper, the base energy
consumption is defined as the energy consumed by the
MAR clients” CPU without any workloads, except running
its operating system, and the energy consumed by the
screen without any rendering. Because the screen’s bright-
ness is not a critical factor that affects the object detection

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

5940

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

0.08 ¥ 0.08 = 3 0.8 80
: \| Image generation O Preview energy ,q? % Conversion power ;0‘ Conversion latency — < Max. throughput
| * enerey - cEnl) g Z-P()) F: ool AL zat) Eoll-rim) 3
S0.07 ’°§\ - - -Eu(f) S0.07 09,0 £2 J = \ s
& : & . 5 2 Soaf £40
3 » 5] jofe) S % S Y <=
=] w0 * =] 2 ’] A o
= 0.06 . L% 3 0.06 o 21 - = N z
w g x% o8 ® 0.2 \ 20
\ % < o M =
‘\ X ‘ L £ TWmAAA - =}
- S o X
0.05 Zote 0.05 0 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 50 100
CPU frequency (GHz) CPU frequency (GHz) CPU frequency (GHz) CPU frequency (GHz) Bandwidth (Mbps)
(@) (®) © (@ ©
E_ 1 7 *; 3 Data transmission 0.4 B Tnference latency 13
) power 9
209 w"** 25|- - -pu(R) . - - = Ling(s%) ’ﬁOSX
=] ol ~ Ll w 203 P
= G =203 %
. il Z 2 o z 5124
S038 5 W 2 A
£ x o e 8 >r4lex
3 e 15 v S02b 320x -
EXY Throughput/max. ~ L2 = >
eh throughput 1 b 404 128x -
2 * * ol P 224x
= r(f) w 0.1 kg
[f 0.6 0.5 N 5 . 0.6
0 1 2 3 0 20 40 60 80 0 1 2 3 4 0 1 2 3
CPU frequency (GHz) Throughput (Mbps) Frame resolution (10’ pixels) CPU frequency (GHz)
) (€3] () ®

Fig. 8. The proposed data-driven analytic models for MAR devices, where each function, presented correspondingly in Table I, is trained offline via

empirical measurements and regression analyses.

performance, it is considered as a constant value in our pro-
posed power model. Thus, the base power consumption is
only a function of the CPU frequency. We model the base
energy consumption of the kth MAR client within a service
latency as

Lfnf() < tt(ula

bs me(s%) > tail-

O B - (B8 = L (57) + train)s

9)

5.2 Regression-Based Modeling Methodology
As shown in Subsection 5.1, some interactions or functions
in our proposed analytical models still cannot be expressed
clearly in an analytic form. This is because of (i) the lack of
analytic understandings of some interactions and (ii) spe-
cific coefficients/functions that may vary with different
MAR device models. For example, in (4), the specific coeffi-
cients in P (f;) are unknown due to the lack of theoretical
knowledge and vary with different MAR device models.
Therefore, we propose a data-driven methodology to
address the above challenge, where those interactions with
inadequate analytic understandings can be modeled and
trained offline via empirical measurements and regression
analyses. Note that regression-based modeling methodol-
ogy is one of the most widely used approaches in develop-
ing mobile CPU’s property models (e.g., CPU power and
temperature variation modeling) and has shown to be effec-
tive in estimating CPU properties [5], [6], [11]. We use our
testbed to collect measurements. The test MAR device is
selected to work at 18 different CPU frequencies ranging
from 0.3 to 2.649 GHz. In addition, in order to obtain fine-
grained regression models and eliminate the interference
among different workloads on the device power consump-
tion, we develop three Android applications; each is applied
with a specific function of the MAR client, which includes
image generation and preview, image conversion, and
image transmission applications. The developed regression
models are shown in Fig. 8 and Table 1. Note that to obtain
a statistical confidence in the experimental results, each

data point in Fig. 8 is derived by generating, transmitting,
and detecting 1,000 image frames and calculating the aver-
age values. The root mean square error (RMSE) is applied
for calculating the average model-prediction error in the
units of the variable of interest [36].

5.3 Problem Formulation

Based on the above proposed models, we formulate the MAR
reconfiguration as a multi-objective optimization prob-
lem [37]. We aim to minimize the per frame energy consumption
of multiple MAR clients in the system while satisfying the user pref-
erence (as stated in Section 3.5) of each. We introduce two posi-
tive weight parameters A\¥ and A5 to characterize the user
preference of the kth MAR client, where A} and A} can be spec-
ified by the client. We adopt the weighted sum method [38] to
express the multi-object optimization problem as

Py min =) (BM+ M\LF - XA,
0% ey @ %;(! 248)
st. Cp: ZBk < Bz
kel
Cy: LM< LF VEkeK;
C3: Fyin < fk < Foaz, VE € K;
C—i 1S € {smiru DR} 5ma1¢}7Vk S IC: (10)
TABLE 1
The Proposed Regression-Based Models
Proposed models RMSE
() —0.010713 4 0.06055 % — 0.1028 f + 0.107 0.002
wro(f) 0.01094 f + 0.04816 0.002
m,(f) 0.1124f3t +0.01f2 +0.2175f + 0.04295 0.041
(f) —0.145f% + 0.8f% — 1.467f + 0.996 0.025
mar(B) - 0.677B 2403
r*(£ 0.07651 % — 0.4264f% + 0.7916 f 4- 0.4489 0.013
P, (R) 0.01821R + 0.7368 0.052
Lins(s?) 0.07816s% 4 0.08892 0.838
Py (f) 0.07873 f + 0.5918 0.015

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: LEAF + AlO: EDGE-ASSISTED ENERGY-AWARE OBJECT DETECTION FOR MOBILE AUGMENTED REALITY

where A, is an object detection accuracy function in terms of
the kth MAR client selected computation model size s? (e.g.,
A(s2) = 1 — 1.578¢-65107 % [16]); L is the maximum tol-
erable service latency of the kth client; B,,,, is the maximum
wireless bandwidth that an edge server can provide for its
associated MAR clients. In practical scenarios, an edge
server may simultaneously offer multiple different services
for its associated users, e.g., video streaming, voice analysis,
and content caching. Hence, the edge server may reallocate
its bandwidth resource based on the user distribution. In
this paper, we assume that B,,,, varies with time randomly.
The constraint C) represents that MAR clients’ derived
bandwidth cannot exceed the total bandwidth allocated for
the MAR service on the edge server; the constraint C; guar-
antees that the service latency of MAR clients are no larger
than their maximum tolerable latency; the constraints C3
and C, are the constraints of the MAR device’s CPU fre-
quency and computation model size configurations, where
si, is a discrete variable and its values depend on the avail-
able computation models in the MAR system.

6 PROPOSED LEAF OPTIMIZATION ALGORITHM

As shown in the previous section, problem & is a mixed-
integer non-linear programming problem (MINLP) which is
difficult to solve [39]. In order to solve this problem, we pro-
pose the LEAF algorithm based on the block coordinate
descent (BCD) method [40].

To solve problem &), we relax the discrete variable s,
into continuous variable sj.. The problem is relaxed as

P i =) (EF 4 MLF - XA
! {/Lnskr,rfi’?-,\lka’C} @ ;C(A 244)
st. Cp,05, Cs

Cy : Smin < Sk < Smazs Yk € K. (11)

According to the BCD method, we propose the LEAF
algorithm which solves Problem 2, by sequentially fixing
two of three variables and updating the remaining one. We
iterate the process until the value of each variable converges.

Vy(z) is denoted as the partial derivative of function y
corresponding to variable z. Denote Projy(z) as the Euchd—
ean projection of = onto X; Projy(z) £ argmin,cy ||z — ||

The procedure of our proposed solution is summarized
as:

e Given s and By, we can derive a new fj, according to

1 =Proj, (17 = vivQe (1)) ke ka2
where y;, > 0 is a constant step size and Ay is the
bounded domain constrained by Cj3. Based on the
BCD method, we repeat (12) until the derived f; is
converged and then update f;.

e Given f; and By, we can derive a new s according to

13)

s = Projy, (49— n.vQu(5:9)) vk € K,

where 1, > 0 is a constant step size and X is the
bounded domain constrained b C4 Based on the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 1

5941

BCD method, we repeat (13) until the derived s, is
converged and then update s.
e Given f; and sy, the problem is simplified to

min

Q=> (B +NIF—)A)

{ By, VkeK} =
s.t. Cl : ZBk < Bmaaf,§
kel
Cy: LF < LE VkeK; (14)

max?

where constraints (3 and C4 are irrelevant to this
problem.
The Lagrangian dual decomposition method is utilized to
solve the above problem, where the Lagrangian function is

kek kek
+ Z ﬂk maz) (15)

kek

where 1 and B are the Lagrange multipliers, (i.e., B is a
Lagrange multiplier vector), corresponding to constraints
Cy and Oy, respectively. The Lagrangian dual problem can
therefore be expressed as

) £ B)
ma 9(u, B) = {anlffé;c} (B, it B)
st. nw>0,8>0. (16)
Here, g(u, B) is concave with respect to By,
Lemma 1. The problem 27, is convex with respect to By,.
Proof. For any feasible B;, B;, Vi, j € K, we have
& 0, i # 7,
Q = 32(1/T7n,a:n) . (17)
0B;0B; v “TamaB, 0 LT
where W, = [fpsi(Egt(fi)+Eprv(f;)2(Jrfiz (0)+Py(f;) 4N Jos? which is
positive, and dg;zw) = ﬁ > 0. Thus, the Hessian

2

_/ ¥Q . ' . e .
matrix H = (aB,;aBj) Kkxx 18 symmetric and positive defi-

nite. Constraint C} is linear and Cs is convex with respect
to B;. Constraints C3 and C} are irrelevant to Bj. There-
fore, &, is strictly convex with respect to B;.. 0

Therefore, based on the Karush-Kuhn-Tucker (KKT) con-
dition [41], the sufficient and necessary condition of the opti-
mal allocated bandwidth for the kth MU can be expressed as

q)(fk’a Sk, :Bk)

Bf =
k 0.677u

(18)

[fPg (gt(fi)+Eprv(fz))+Pl (U)+Pbs(fz)+/\1 +ﬂk]‘7g
ri (fi)
Next, the sub-gradient method [41] is used to solve the
dual problem. Based on the sub-gradient method, the dual
variables of the k&th MAR clients in the (j + 1)th iteration are

where &,

uiﬁl) = max{0, [/L“ + 9 Vg(u]} Vk e K;

ﬂklﬂ = max{) [ﬁk + ﬂgvf](ﬂk)} },Vk € kK; 19

where ¥} > 0and ¥P > 0 are the constant step sizes.
:13:39 UTC from IEEE Xplore. Restrictions apply.

5942

Based on the above mathematical analysis, we propose an
MAR optimization algorithm, LEAF, which can dynamically
determines the CPU frequency of multiple MAR devices,
selects the computation model sizes, and allocates the wire-
less bandwidth resources. The pseudo code of the proposed
LEAF MAR algorithm is presented in Algorithm 6. First, the
LEAF is initialized with the lowest CPU frequency, the
smallest computation model size, and evenly allocated band-
width resources among MAR devices. We then iteratively
update f;, s, and Bj, until the LEAF converges (i.e., line 7-
8 in Algorithm 6). In addition, s} is a relaxed value of
the computation model size. Thus, it may not match any
pre-installed computation model in a real system. In this
case, the LEAF selects the computation model size s
that is the closest to the relaxed one s, (i.e., line 10 in
Algorithm 6). Since the LEAF MAR algorithm is devel-
oped based on the BCD method and follows the conver-
gence results in [40], we claim that the LEAF converges
to a local optimal solution.

Algorithm 1. The LEAF MAR Algorithm
Input: \f, M\, LE Bos, fosy, and 7, VE € K.

Output: f, si, and By, Vk € K.
1: By < Bmu,.’x;/l’C|/ Sk Smin, Yk € K, 1+ 1;
2: while True do

fr < solving & with fixed s} and B;

3
4: s, — solving &, with fixed f; and By;
5. Bj <« solving &, with fixed f; and sj;
6 Qi Yy (BF+ MIH - MiAy)
8 break;
9. i+—1i+1;

10: s = argminggg, o 4|5 —
11: return f, s, and By, Vk € K.

>Converges

$il, Yk € K;

7 IMAGE OFFLOADING FREQUENCY
ORCHESTRATOR

In this section, an offloading frequency orchestrator with
local object tracking is proposed to further reduce the energy
consumption and latency of MAR devices by leveraging the
model we developed for significant scene change estimation,
based on our proposed LEAF algorithm.

7.1 Edge-Based Object Detection Versus Local
Object Tracking

As presented in Section 6, our proposed LEAF is able to
guide MAR configuration adaptations and radio resource
allocations at the edge server to improve the energy efficiency
of executing continuous image offloading and object detec-
tion. However, continuous repeated executions of offloading
camera image frames to the edge server for object detection
are unnecessary. This is because, although the positions of
detected objects may slightly change in continuous camera
captured frames due to the camera movement or detected
object motions, the probability of significant changes to the
scene or a new object appearing is low within a very short
period. For example, as shown in Fig. 9, three image frames
are extracted in a video stream. From Frame 1 to Frame 10,

only the position of the detected dog in the scene changes.
Authorized licensed use limited to: University of

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Fig. 9. Continuous repeated executions of object detection are unnecessary.

Thus, sending every captured frame to the edge server for
detecting objects (i.e., locating and recognizing objects in a
frame) is extremely inefficient and will cause unnecessary
energy expenditure even with our proposed LEAF.

To reduce the execution of continuous image offloading
and object detection, one naive approach is to implement a
local lightweight object tracker on the MAR device and
invoke the tracker for updating the locations of the objects of
interest that are achieved by performing a successful object
detection, as is done in several prior works [1], [15], [20].
However, three essential questions are brought up here:

RQ 1. How much energy can the local object tracker save
for an MAR device compared to performing edge-assisted
object detection? It is intuitive that local lightweight object
tracker consumes less battery than local CNN-based object
detector due to the nature of CNNs, which contains tens to
hundreds of computation-intensive layers. But how does it
compare to the edge-based detectors, where the MAR
device’s on-board resource is not consumed by running
CNNs?

RQ 2. How does the MAR device’s hardware capacity
(e.g., CPU frequency) impact the tracking performance and
overhead (e.g., tracking delay and energy consumption)? It
is critical to have the knowledge that whether the object
tracker can help to improve the energy efficiency of MAR
devices within the full or only a partial range of CPU
frequencies.

RQ 3. How does the MAR device determine the fre-
quency of the image offloading and object detection? The
frequency of executing edge-based object detector is the
most essential and challenging parameter of the MAR sys-
tem. If the edge-based object detector (i.e., image offloading)
is executed as often as possible, the MAR device may
achieve a high object detection and tracking accuracy but a
high energy expenditure. However, if the edge-based object
detector is executed with a low frequency, for instance, exe-
cuting an object detection only once at the beginning of
tracking, the MAR device may achieve a high energy effi-
ciency but unacceptable tracking accuracy (e.g., in our
experiment, we observe that the tracking accuracy decreases
or even the tracker loses objects of interest as the time inter-
val between the current frame and reference frame per-
formed object detection increases).

To the best of our knowledge, these questions lack perti-
nent investigations and sophisticated solutions in both aca-
demia and industry, such as ARCore [42] and ARKit [43].
To explore these questions, we implement a real-time light-
weight object tracker on a Nexus 6 using JavaCV librar-
ies® [45]. The implemented lightweight object tracker in this
paper is developed based on Kernelized Correlation Filter
(KCF) [46] which is a tracking framework that utilizes

5.JavaCV is a collection of wrappers in Java for commonly used
libraries in the field of computer vision such as OpenCV [44].

orth Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: LEAF + AlO: EDGE-ASSISTED ENERGY-AWARE OBJECT DETECTION FOR MOBILE AUGMENTED REALITY

5943

0.3 3 " ;
YUV to MAT = BIR Object detection @M
-v--Color to gray scale z [ITracking (KCF)
=02 *-KCF tracker update 52 3 176 =] Orchestrator
2 Total latency per frame | § 159 156 153 2 “
5] |} Num. of Object
3 0.1 g &1 3:‘ Tracking
. - = s.
¥, = 5D
N2 & Local Object
mr“‘“’”*-u*mﬂvmw Trackejr Lo

0
3 0.3 0.72 1.03 1.49 1.72 2.26 2.64
CPU frequency (GHz)

0 1 2
CPU frequency (GHz)

(@ (b)

Fig. 10. CPU frequency versus latency and per frame energy consump-
tion of local object tracking.

properties of circulant matrix to enhance the processing
speed. KCF tracker has achieved impressive tracking delay
and accuracy on Visual Tracker Benchmarks [47]. The
latency of performing an object tracking on a single video
frame contains (i) the latency of converting a camera cap-
tured raw YUV video frame produced by ImaceReaper to an
Mat® object, (ii) the latency of converting a frame from color
to gray scale (i.e., COLOR_BGR2GRAY), and (iii) the latency
of executing the KCF object tracker.

Fig. 10 illustrates the average object tracking latency and
per frame energy consumption when the MAR device runs
on different CPU frequencies. In Fig. 10a, we observe that
the average total latency of performing an object tracking is
significantly reduced compared to the latency of edge-based
object detection, as presented in Section 3. For instance,
when the CPU frequency of Nexus 6 is 1.728 GHz, the aver-
age latency of object detection and tracking are 500 ms and
40 ms, respectively (RQ 1). Fig. 10b compares the per frame
energy consumption of the edge-based object detection and
the local object tracking, where we find that the lightweight
local object tracker, KCF, can help to improve the energy
efficiency of the Nexus 6 within the full range of CPU fre-
quencies (RQ 2). The per frame energy consumption is
decreased by over 80% comparing to the object detection
(s> = 320%) when the device’s CPU frequency is not less
than 1.032 GHz. Therefore, implementing a lightweight local
object tracker will not only help MAR devices to further mitigate
the quick battery depletion, but also drop the latency substantially.

The above experimental result and discussion advocate
adding a local lightweight object tracker in our developed
edge-based MAR system, as depicted in Fig. 5, for further
improving the energy efficiency of MAR devices and reduc-
ing the latency. However, given the discussion on RQ 3, we
argue that naively implementing an object tracker in such a
system is inadequate, where an image offloading frequency
orchestrator that balances the trade-off between MAR
device’s energy efficiency and tracking accuracy is essential
and nonignorable. We design and implement such an
orchestrator, which coordinates with the proposed LEAF to
adaptively and intelligently adjust the image offloading fre-
quency (i.e., execution of edge-based object detection) based
on real-time scene change estimations.

7.2 Image Offloading Frequency Orchestrator

Fig. 11 provides an overview of how our proposed image
offloading frequency orchestrator coordinates with the
LEAF illustrated in Fig. 5. The proposed orchestrator is

6. Mar is a basic image container used in OpenCV.

Camera FPS, % 1. Service Request

User Preference

Offloading Frequency 5. Configurations| MAR Configurations 2. Configurations

CPU Frequency

Q0BJIOJU] SSI[RIIAN

Frame Resolution

3. Image Frames

4. Detection Results

6. Tracking Results Pipeline

Fig. 11. Overview of the MAR client deployed with our proposed image
offloading frequency orchestrator and how it coordinates with the rest of
the edge-based MAR system with LEAF.

implemented in MAR devices. The MAR device invokes the
orchestrator after it has successfully received the object
detection results from the edge server. The inputs of the
orchestrator are the optimal MAR configurations (i.e., CPU
frequency and frame resolution) obtained from the pro-
posed LEAF. The output is the estimated number of next
successive image frames that will perform local object track-
ing, denoted by p. For instance, if the output of the orches-
trator is 11, the next 11 continuous frames will not be
eligible for offloading and will be transited to the local
object tracker to perform tracking.

However, designing such an image offloading frequency
orchestrator is challenging. Prior work [20] set a single
threshold to determine whether the current image frame
should be offloaded to the edge. However, (i) the value of
the threshold is significantly experience-driven, which is
unrealistic to handle all environment conditions with one
single threshold; (ii) it lacks exploration of what is the opti-
mal offloading solution for the MAR device in a time
period. To tackle these, our orchestrator is designed based
on two principles: (i) the detection/tracking decision will be
made via a context-aware optimization algorithm, which is
developed based on our proposed analytical model and
LEAF; (ii) in order to achieve real-time results, considering
the restricted computation capability of MAR devices, the
designed algorithm should be as lightweight as possible.

To fulfill the first principle, it is necessary to predict how p
will impact the object tracking accuracy within various sce-
narios, as tracking is not always accurate with respect to
changes in object locations. The larger p the orchestrator pro-
vides, the less similarity between the current tracked image
frame and the frame executed object detection, which raises
the probability of tracking accuracy degradation. In addition,
the attribute of the scenario (e.g., objects of interest being
blurred) also heavily impacts the similarity among continu-
ous tracked frames. To assess the tracking accuracy in terms
of p, we choose to measure the similarity between two
images using the peak signal-to-noise ratio (PSNR). PSNR
provide a measure of the similarity between two images, I;

and I, and is given by PSNR(I}, I;) = 20log 10(%),
MoL\1y,12

where MAX; is the maximum possible pixel value of the
image. MSE(I, I,) is the mean squared error of two images
and is calculated by MSE(I}, I) = v0v M, Z;v:l(li] — 17y,
where M x N is the image size; and ¢, j are the pixel locations
within the images. Furthermore, the average intersection
over union (IOU) is used for estimating the tr%ckilr)lg accu-
racy. The IOU of object o in frame I is IOU! = %, where
RY is the groundtruth region of object o, and R’ is the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

5944

10U

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

0 5 10 15 20 25 30 0 5
PSNR

(a)

Fig. 12. Study on how the PSNR impacts the IOU degradation in videos with motion blurred attribute.

predicted region of object o. Therefore, to develop the con-
text-aware optimization algorithm, we need to explore the
interactions among p, PSNR, and IOU.

To explore such interactions, we leverage an open data-
set [48] which contains 100 videos with nine different scene
attributes, such as illumination variation (i.e., the illumination
in the target region is significantly changed) and motion blur
(i.e., the target region is blurred due to the motion of the target
or camera). We measure how IOU varies in terms of PSNR
using videos with the same scene attribute, where we gradu-
ally increase the frame interval of two measured images, such
as Frame 1 to Frame 3, Frame 1 to Frame 4, etc. Figs. 12a to 12c
depict the measurement of three videos with motion blur. We
observe that different videos that have the same major attri-
bute obtain similar shape of IOU(PSNR) (due to the page
limit, we only show the results of three videos with motion
blur). If we integrate all the samples into one figure, as illus-
trated in Fig. 12, we can achieve a regression-based model
which describes an object tracking accuracy function in terms
of PSNR for a specific scenario (e.g., for motion blur,
IOU(PSNR) = —0.004335 PSNR* 4 0.2411PSNR — 2.328).

Given the above discussion and analysis, we formulate
the image offloading frequency decision as an optimization
problem &5, which aims to achieve an optimal p to balance
the MAR device’s energy consumption and tracking accu-
racy loss. E,;; and Ey,, are estimated per frame energy con-
sumption of edge-based object detection and local object
tracking based on current MAR system configurations
determined by LEAF, respectively. Two positive weight
parameters 0; and 6, are introduced to characterize the off-
loading preference of an MAR client. For example, given a
larger 0; and a smaller 65, the decision made by the offload-
ing frequency orchestrator will be more aggressive on sav-
ing MAR device’s battery life, and vice versa. Current scene
attribute is denoted by @

. Eub" + Etrkp
Py J =06, """ _0,JOUZ (PSNR
2 : i T, 210U ((p))
st. pef0,1,2,...}. (20)

Based on &7, we develop an adaptive image offloading
(AIO) algorithm implemented in the offloading frequency
orchestrator, where the pseudo code of it is presented in Algo-
rithm 7.2. The proposed AIO will be triggered after the MAR
device executes a successful object detection and receives the
corresponding detection results from the edge server. First,
the AIO calculates the PSNR of the current image frame and
v; (i.e., transient gradient of PSNR) and updates them in sets
P and V, respectively (i.e., line 2-3 in Algorithm 7.2). We then

estimate the current scene change rate denoted by v. To avoid
a transient outlier that impacts the precision of estimation, v is
achieved by calculating the weighted mean of elements of V
that are the latest updated in a short range of time (e.g., in the
past 2 seconds). In this paper, we use exponential function to
calculate the weights, where the element that is updated later
will be allocated with a larger weight. The scene attribute esti-
mation is out of the scope of this paper, where we assume that
the AIO knows the current JOUZ, () when solving &%. In
addition, to fulfill the second principle (i.e., reducing the
workload on MAR devices), the per frame energy consump-
tion of object detection E,; is estimated by the edge server
via our proposed analytical model, presented in Section 5,
based on the LEAF guided configurations, while the per
frame energy consumption of object tracking FE, is esti-
mated locally via a preset table. Thus, the AIO can efficiently
achieve the value of E},;, through the table in terms of its cur-
rent CPU frequency. Finally, the AIO outputs an optimal p
and the MAR device will keep performing local object track-
ing until p decreases to 0.

Algorithm 2. The AIO Algorithm

Input: P, Eabj/ Etrk/ 61, 6o, P, and V.
Output: p, P, and V.
1: if Object detection = True and p = 0 then
2: P—PuU {PSNR(IL'_l,IL')};
3 Ve VU {Ui _ PSNR(I,;,l,Ii)—fSNR(Ii,Z,I,;,l) }

& po i
>

5: IOUu() <+ IOUZ,.(); >>Scene attribute estimation
6: p <« solving &, with Ey;, Eyy, 61, 02, 0, and IOUZ, ();

7: if p =0 then
8

9

0

0 €V

Object detection « False;
: else if p # 0 then
: P<-PU{PSNR(L,1,L)},
11: V- VU {U, _ PSNR(/L,I,1,»)—2PSNR(17,,2,11,1) };
122 p—p—1;
13: if p = 0 then
14: Object detection « False;
15: return p, P, and V.

TABLE 2
Power and Duration of Promotion and Tail Phases
Pp'm (W) tprr) (S) -Ptuil (W) ttu,il (S)
1.97 £ 0.08 0.034 4+ 0.004 1.61 £0.15 0.21 £ 0.02

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: LEAF + AlO: EDGE-ASSISTED ENERGY-AWARE OBJECT DETECTION FOR MOBILE AUGMENTED REALITY

—v— Measured [Modeled

—v— Measured _[__] Modeled

5945

[Modeled

—v— Measured
R

—¥— Measured _[__] Modeled 4

Image gen. & prev.

[Image conversion = Image gen. & prev.

- Image conversion
[Communication

Per frame energy (J)
Per frame energy (J)

1282 2242 320% 416% 512% 608°
Computation model size (pixels)

(@) (b)

0.30 0.72 1.03 1.49 1.72 2.26 2.64
CPU frequency (GHz)

Fig.

8 PERFORMANCE EVALUATION OF THE PROPOSED
ANALYTICAL MODEL AND MAR SYSTEM

In this section, we evaluate both the proposed MAR analyti-
cal energy model as well as the proposed LEAF and AIO
algorithms. We first validate our analytical model by com-
paring the estimated energy consumption with the real
energy measurement (obtained from our developed testbed
described in Section 3). The Mean Absolute Percentage Error
(MAPE) is used for quantifying the estimation error. Then,
we evaluate the per frame energy consumption, service
latency, and detection accuracy of the proposed LEAF and
AIO algorithms under variant bandwidth and user preferen-
ces through data-driven simulations.

8.1 Analytical Model Validation

The measured power and duration of promotion and tail
phases in WiFi are shown in Table 2 (note that LTE has dif-
ferent values [49]). As shown in Fig. 13, we validate the pro-
posed analytical model with respect to MAR client's CPU
frequency, computation model size, allocated bandwidth,
and camera FPS. Each measured data is the average of the
per frame energy consumption of 1,000 image frames. The
calculated MAPE of these four cases are 6.1% =+ 3.4%,
7.6% +4.9%, 6.9% £+ 3.9%, and 3.7% £ 2.6%, respectively.
Therefore, our proposed energy model can estimate the
MAR per frame energy consumption very well.

8.2 Performance Evaluation of LEAF

We simulate an edge-based MAR system with an edge server
and multiple MAR clients. Each MAR client may select a dif-
ferent camera FPS, which is obtained randomly in the range
of [1,30] frames.” The default user preference is A\; = 0.3 and
A2 = 1.8. We compare our proposed LEAF algorithm with
two other algorithms summarized as follows:

o FACT + Interactive: It uses the FACT algorithm [16] to
select the computation model size, which is opti-
mized for the tradeoff between the service latency
and the detection accuracy. As FACT does not con-
sider the MAR client's CPU frequency scaling and
radio resource allocation at the edge server, we use
Interactive to conduct CPU frequency scaling and the
radio resource is allocated evenly. Note that FACT

7. Ten MAR devices are implemented in our simulation, where their
camera FPS are 9, 30, 16, 23, 14,17,13, 2,19, 5.

=N

[} Image gen. & prev.
Image conversion
Communicatios

I 1mage gen. & prev.
I image conversion
[Communication

|:| Base

IS

[}

Per frame energy (J)
Per frame energy (J)

0

5 25 45 65 85 5 100 15 20 25 30
Bandwidth (Mbps) Camera FPS (frames)
(© (@

13. Measured data versus estimated data from our proposed analytical model.

does not consider the energy efficiency of MAR cli-
ents either.

e Energy-optimized only solution: It selects the optimal
CPU frequency, computation model size, and band-
width allocation by minimizing the per frame energy
consumption of MAR clients in the system without
considering user preferences, which is named as
MINE.

Optimality. We first validate the optimality of our pro-
posed LEAF algorithm. As shown in Fig. 14, LEAF always
obtains the minimal ¢ compared to the other two algo-
rithms under variant maximum available bandwidth and
user preference.

Comparison Under Variant Max. Bandwidth. We then eval-
uate the impact of the maximum available bandwidth on
the performance of the proposed LEAF. As presented in

50

= Proposed LEAF of e
ol -#-FACT

a0 :
\ ——MINE -50
sf Y, -100
< Y S 150

.) v Proposed LEAF 3

2001 -e-FACT Y

s L aspl T MINE 5
P I e e g 50

10 50 100 150 200 250 300 350 400 450 500 I 2 4 6 8 10 15 20 25 30 50 100

Max. Bandwidth (Mbps)

(a) @ vs. Max. bandwidth

User preference (Ag/A;)

(b) @ vs. user preference

Fig. 14. Optimality.

~v-Proposed LEAF DR ST ol Al S S S AR SR A

=5 -9 -FACT X SR A et
=5 o v
= —+—MINE z ' v 0.
&% > 1
54 2 7 z
5 . 2 RS 06 =
H] » Tt 3
£3 See 3 AR S EE S S 2
£ R 205
c L S SN 5 g gy () 4
22 d

1 0 0.2

10 50 100 150 200 250 300 350 400 450 500 10 50 100 150 200 250 300 350 400 450 500

Max. Bandwidth (Mbps) Max. Bandwidth (Mbps)
(a) (b)

Fig. 15. System performance versus Max. bandwidth.

PERDSRIR SER S T T TEE AT Y
L T e SR T o 7 ¥
e — - g
e Z08 T Slas 21
e g T.- z
. w-Proposed LEAF b5 K v 2
& - ¢-FACT E S06f ¥ . 06 3
o —*—MINE R 8 ¢ T Z
T 504 Y 0.4
. A -
5 g vl 7
1 02 0.2
1 2 4 6 8 10 15 20 25 30 50 100 1 2 4 6 8 10 15 20 25 30 50 100
User preference (Az/A1) User preference (As/A;)
(@) (b)

Fig. 16. System performance versus user preference.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

5946 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023
0.8 0.6 3
----- LEAF only (FPS30) =
--4--LEAF + Frugal (FPS30, NCC threshold 0.5) -
0.6 | ~7~LEAF +AIO (FP$30) —_ &
LEAF only (FPS19) Z04 =2
=) ——LEAF +AIO (FPS19) & =E & o
2 0.4 frre g o v o g 03 .)
Vi e, 202 0,06} = LEAF+Frigaly=" v ik e LEAFFiialy =
\/!/__\ 3: = | —v-LEAFAIO %[| ~v-LEAF:AI0 <
[<3)
0 0 g
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Offloading preference (6, /6,) Offloading preference (0, /62) Offloading preference (6;/6>) Offloading preference (6;/6-)

(@ (b)

Fig. 17. System performance versus offloading preference.

Section 5.3, in practical environments, the maximum band-
width at an edge server for serving its associated MAR cli-
ents may vary with the user distribution. For each MAR
client, the value of the allocated bandwidth directly impacts
not only the service latency and the per frame energy con-
sumption but also the detection accuracy. The evaluation
results are depicted in Fig. 15. (i) Compared to FACT, the
proposed LEAF decreases up to 40% per frame energy con-
sumption and 35% service latency with less than 9% loss of
object detection accuracy when the max. bandwidth is
300 Mbps. The performance gap between LEAF and FACT
is due to the gain derived through optimizing the clients’
CPU frequency and the server radio resource allocation. (ii)
Compared to MINE, the proposed LEAF significantly
improves the detection accuracy at the cost of a slightly
increase of the service latency and per frame energy. The
performance gap between LEAF and MINE reflects the gain
derived through considering the user preference.

Comparison Under Variant User Preferences. Finally, we eval-
uate the impact of the user preference on the performance of
the proposed LEAF by varying the value of \y/\;, as shown
in Fig. 16. User preference impacts the tradeoffs among the
per frame energy consumption, service latency, and detection
accuracy. When o/ grows, the MAR client emphasizes on
the detection accuracy by trading the service latency and per
frame energy. Since MINE does not consider the user prefer-
ence, the variation of X2/, does not change its performance.
(i) Compared to FACT, the proposed LEAF reduces over 20%
per frame energy consumption while maintaining the same
detection accuracy (A2/A; = 100). (ii) Compared to MINE, the
proposed LEAF is able to enhance over 50% accuracy while
ensuring similar per frame energy and service latency
(A2/A = 2). Fig. 16 also shows that, as compared to FACT,
the proposed LEAF offers more fine-grained and diverse
user preference options for MAR clients.

8.3 Performance Evaluation of LEAF + AlO

We implement our proposed image offloading orchestrator
with the AIO in a device-to-device testbed that consists of
an MAR device and an edge server. The MAR device works
with the configurations achieved from the edge server and
optimized by the proposed LEAF. In the experiment, we
choose two MAR clients with camera FPS 30 and 19 for the
evaluation. To make the experiment repeatable, we leverage
the video frames from the open dataset [48] as the source of
data ingestion. In addition, we compare our proposed AIO
algorithm integrated with the LEAF with two other base-
lines summarized as follows:

e LEAF + Frugal [20]: It uses a preset normalized cross-

correlation (NCC) threshold to trigger object detection

Authorized licensed use limited to: University of North

() ()]

invocations. The value of NCC threshold is set to 0.5
which is experience-driven.

LEAF Only: The MAR device offloads its camera cap-
tured image frames as many as possible and no local
object tracker is deployed.

Comparison Under Variant Offloading Preferences. We evalu-
ate the impact of the offloading preference on the performance
of the proposed AIO by varying the value of 6, /65, as illus-
trated in Fig. 17. Offloading preference influences the tradeoffs
between the perception accuracy and energy efficiency of
MAR devices. When 6, /6, increases, the image offloading
orchestrator emphasizes on the energy efficiency by trading
the perception accuracy. As Frugal sets the same trigger value
for all scenarios and LEAF only does not consider the adaptive
image offloading decision, the variation of 6;/6, does not
change their performance. (i) Compared to Frugal, our pro-
posed AIO improves the average IOU by 43% while decreas-
ing the average service latency and per frame energy
consumption by 12.3% and 13.9%, respectively (61 /6, = 7). (ii)
Compared to the LEAF only, our integration system not only
significantly drops the latency and offloaded data size but also
further improves IOU and energy efficiency of MAR devices.

9 CONCLUSION

In this paper, we proposed a user preference based energy-
aware edge-based MAR system for object detection that can
reduce the per frame energy consumption of MAR clients
without compromising their user preferences by dynamically
selecting the optimal combination of MAR configurations and
radio resource allocations according to user preferences, cam-
era FPS, and available radio resources at the edge server. To
the best of our knowledge, we built the first analytical energy
model for thoroughly investigating the interactions among
MAR configuration parameters, user preferences, camera
sampling rate, and per frame energy consumption in edge-
based MAR systems. Based on the proposed analytical model,
we proposed the LEAF optimization algorithm to guide the
optimal MAR configurations and resource allocations. The
performance of the proposed analytical model is validated
against real energy measurements from our testbed and the
LEAF algorithm is evaluated through extensive data-driven
simulations. Additionally, we studied and implemented
object tracking to further improve the energy efficiency of our
proposed edge-based MAR system.

REFERENCES

[11 L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile
GPU-based deep learning framework for continuous vision
applications,” in Proc. ACM 15th Annu. Int. Conf. Mobile Syst.,
Appl. Serv., 2017, pp. 82-95.

arolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: LEAF + AlO: EDGE-ASSISTED ENERGY-AWARE OBJECT DETECTION FOR MOBILE AUGMENTED REALITY

[2]

[3]

[4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

H. Wang, B. Kim, J. Xie, and Z. Han, “How is energy consumed in
smartphone deep learning apps? executing locally vs. remotely,”
in Proc. IEEE Glob. Commun. Conf., 2019, pp. 1-6.

Y. Xiao et al., “Modeling energy consumption of data transmission
over Wi-Fi,” IEEE Trans. Mobile Comput., vol. 13, no. 8, pp. 1760-
1773, Aug. 2013.

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spat-
scheck, “A close examination of performance and power charac-
teristics of 4 G LTE networks,” in Proc. ACM 10th Int. Conf. Mobile
Syst., Appl., Serv., 2012, pp. 225-238.

A. Shye, B. Scholbrock, and G. Memik, “Into the wild: Studying
real user activity patterns to guide power optimizations for
mobile architectures,” in Proc. IEEE/ACM Int. Symp. Microarchitec-
ture, 2009, pp. 168-178.

M. J. Walker et al., “Accurate and stable run-time power modeling
for mobile and embedded CPUs,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 36, no. 1, pp. 106-119, Jan. 2017.

K. DeVogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “Modeling
the temperature bias of power consumption for nanometer-scale
CPUs in application processors,” in Proc. IEEE Int. Conf. Embedded
Comput. Syst., Architect., Model., Simul., 2014, pp. 172-180.

F. Xu, Y. Liu, Q. Li, and Y. Zhang, “V-edge: Fast self-constructive
power modeling of smartphones based on battery voltage dynam-
ics,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2013,
pp- 43-55.

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call
tracing,” in Proc. 6th Conf. Comput. Syst., 2011, pp. 153-168.

A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent
inside my app? fine grained energy accounting on smartphones with
eprof,” in Proc. 7th ACM Eur. Conf. Comput. Syst., 2012, pp. 29-42.

W. Hu and G. Cao, “Energy-aware CPU frequency scaling for
mobile video streaming,” in Proc. IEEE 37th Int. Conf. Distrib. Com-
put. Syst., 2017, pp. 2314-2321.

W. Hu and G. Cao, “Energy optimization through traffic aggrega-
tion in wireless networks,” in Proc. IEEE Conf. Comput. Commun.,
2014, pp. 916-924.

Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation off-
loading for multicore-based mobile devices,” in Proc. IEEE Conf.
Comput. Commun., 2018, pp. 46-54.

A. P. Miettinen and]. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing,” HotCloud, vol. 10, no. 4, 2010,
Art. no. 19.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A
mobile deep learning framework for edge video analytics,” in
Proc. IEEE Conf. Comput. Commun., 2018, pp. 1421-1429.

Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network
orchestrator for mobile augmented reality,” in Proc. IEEE Conf.
Comput. Commun., 2018, pp. 756-764.

J. Hanhirova, T. Kamarainen, S. Seppald, M. Siekkinen, V. Hirvi-
salo, and A. Yla-Jaaski, “Latency and throughput characterization
of convolutional neural networks for mobile computer vision,” in
Proc. 9th ACM Multimedia Syst. Conf., 2018, pp. 204-215.

L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object
detection for mobile augmented reality,” in Proc. 25th ACM Annu.
Int. Conf. Mobile Comput. Netw., 2019, pp. 1-16.

H. Wang, J. Xie, and T. Han, “A smart service rebuilding scheme
across cloudlets via mobile AR frame feature mapping,” in Proc.
IEEE Int. Conf. Commun., 2018, pp. 1-6.

K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A.
K. Roy-Chowdhury, “Frugal following: Power thrifty object detec-
tion and tracking for mobile augmented reality,” in Proc. 17th
ACM Conf. Embedded Netw. Sensor Syst., 2019, pp. 96-109.

H. Wang, B. Kim, J. Xie, and Z. Han, “E-auto: A communication
scheme for connected vehicles with edge-assisted autonomous
driving,” in Proc. IEEE Int. Conf. Commun., 2019, pp. 1-6.

A. Mallik and J. Xie, “H.264 video encoding-based edge-assisted
mobile AR systems: Network and energy issues,” in Proc. IEEE
Int. Conf. Commun. 2022, pp. 1-6.

J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and C.-S. Shih, “Energy-effi-
cient real-time task scheduling in multiprocessor DVS sys-
tems,” in Proc. IEEE Asia South Pacific Des. Automat. Conf., 2007,
pp- 342-349.

J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Dynamic speed
scaling for energy minimization in delay-tolerant smartphone
applications,” in Proc. IEEE Conf. Comput. Commun., 2014,
pp- 2292-2300.

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]

[46]

[471

[48]

[49]

5947

W. Y. Lee, “Energy-saving DVFS scheduling of multiple periodic
real-time tasks on multi-core processors,” in Proc. 13th IEEEJACM
Int. Symp. Distrib. Simul. Real Time Appl., 2009, pp. 216-223.

H. Wang and]. Xie, “User preference based energy-aware mobile
AR system with edge computing,” in Proc. Conf. Comput. Commun.,
2020, pp. 1379-1388.

H. Wang, B. Kim, J. Xie, and Z. Han, “Energy drain of the object detec-
tion processing pipeline for mobile devices: Analysis and implications,”
IEEE Trans. Green Commun. Netw., vol. 5, no. 1, pp. 41-60, Mar. 2020.
Android. ImageFormat, Oct. 2020. Accessed: Oct. 2020. [Online].
Available: https:/ /developer.android.com/reference/android /
graphics/ImageFormat

J.Redmon and A. Farhadi, “YOLOV3: An incremental improvement,”
2018, arXiv:1804.02767.

J. Redmon, Darknet: Open source neural networks in ¢, 2013-2016.
[Online]. Available: http:/ /pjreddie.com/darknet/

T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740-755.

Monsoon power monitor, [Online]. Available: https://www.
msoon.com/

M. Everingham, L. Van Gool, C. K. Williams,]. Winn, and A. Zis-
serman, “The Pascal visual object classes (VOC) challenge,” Int. |.
Comput. Vis., vol. 88, no. 2, pp. 303-338, 2010.

K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proc. 12th ACM Annu.
Int. Conf. Mobile Systems, Appl., Serv., 2014, pp. 68-81.

SketchAR, Oct. 2020. [Online]. Available: https://itunes.apple.com/
us/app/sketchar-drawing-using-augmented-reality /id 12214828227
I=ru&mt=8

C. J. Willmott and K. Matsuura, “Advantages of the mean abso-
lute error (MAE) over the root mean square error (RMSE) in
assessing average model performance,” Climate Res., vol. 30, no. 1,
pp- 79-82, 2005.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Hoboken, NJ, USA: Wiley, 2001.

R.T. Marler and J. S. Arora, “The weighted sum method for multi-
objective optimization: New insights,” Struct. Multidisciplinary
Optim., vol. 41, no. 6, pp. 853-862, 2010.

P. Belotti, C. Kirches, S. Leyffer,]J. Linderoth, J. Luedtke, and A.
Mabhajan, “Mixed-integer nonlinear optimization,” Acta Numerica,
vol. 22, pp. 1-131, 2013.

L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear gauss-seidel method under convex constraints,” Opera-
tions Res. Lett., vol. 26, no. 3, pp. 127-136, 2000.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

ARCore, Oct. 2020. [Online]. Available: https://developers.google.
com/ar/develop

ARKit, Oct. 2020. [Online]. Available: https://developer.apple.com/
augmented-reality /

G. Bradski, “The OpenCV library,” Dr Dobb’s]. Softw. Tools,
vol. 120, pp. 122-125, 2000.

JavaCV, Sep. 2020. Accessed: Sep. 10, 2020. [Online]. Available:
https://github.com/bytedeco/javacv

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 3, pp. 583-596, Mar. 2015.

Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A bench-
mark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013,
pp- 2411-2418.

Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 2411-2418.
W. Huand G. Cao, “Energy-aware video streaming on smartphones,”
in Proc. IEEE Conf. Comput. Commun., 2015, pp. 1185-1193.

Haoxin Wang (Member, IEEE) received the B.S.
degree in control science and engineering from the
Harbin Institute of Technology, China, in 2015, and
the PhD degree in electrical and computer engineer-
ing from The University of North Carolina at Char-
lotte, in 2020. He is currently a research scientist
with Toyota Motor North America, InfoTech Labs,
where he leads the “Edge Computing” project. His
research interests include edge computing for con-
nected and autonomous vehicles, applied machine
learning for intelligent systems, and energy-efficient
mobile computing systems.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

5948

BaekGyu Kim (Member, IEEE) received the BS
and MS degrees in electrical engineering and com-
puter science from Kyungpook National University,
South Korea, and the PhD degree in computer sci-
ence from the University of Pennsylvania. He is
currently a principal researcher with Toyota Motor
North America, InfoTech Labs. His research inter-
ests include software platform technologies for
connected cars and model based software devel-
opment for high-assurance systems.

Jiang Xie (Fellow, IEEE) received the BE degree
from Tsinghua University, Beijing, China, the MPhil
degree from the Hong Kong University of Science
and Technology, and the MS and PhD degrees
from the Georgia Institute of Technology, all in elec-
trical and computer engineering. She joined the
Department of Electrical and Computer Engineer-
ing, University of North Carolina, Charlotte (UNC
Charlotte) as an assistant professor, in Aug. 2004,
where she is currently a full professor. Her current
research interests include resource and mobility
management in wireless networks, mobile computing, Internet of Things,
and cloud/edge computing. She is on the editorial boards of the IEEE
Transactions on Wireless Communications, IEEE Transactions on Sus-
tainable Computing, and Journal of Network and Computer Applications
(Elsevier). She received the US National Science Foundation (NSF) Fac-
ulty Early Career Development (CAREER) Award, in 2010, a Best Paper
Award from IEEE Global Communications Conference (Globecom 2017),
a Best Paper Award from IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT 2010), and a Graduate Teaching Excel-
lence Award from the College of Engineering at UNC Charlotte, in 2007.
She is a senior member of the ACM.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Zhu Han (Fellow, IEEE) received the BS degree in
electronic engineering from Tsinghua University, in
1997, and the MS and PhD degrees in electrical
and computer engineering from the University of
Maryland, College Park, in 1999 and 2003, respec-
tively. From 2000 to 2002, he was an R&D engineer
with JDSU, Germantown, Maryland. From 2003 to
2006, he was a research associate with the Univer-
sity of Maryland. From 2006 to 2008, he was an
assistant professor with Boise State University,
Idaho. Currently, he is a John and Rebecca Moores
professor with the Electrical and Computer Engineering Department as
well as in the Computer Science Department , University of Houston,
Texas. His research interests include wireless resource allocation and
management, wireless communications and networking, game theory, Big
Data analysis, security, and smart grid. He received an NSF Career Award,
in 2010, the Fred W. Ellersick Prize of the IEEE Communication Society, in
2011, the EURASIP Best Paper Award for the Journal on Advances in
Signal Processing, in 2015, IEEE Leonard G. Abraham Prize in the field of
Communications Systems (best paper award in IEEE JSAC), in 2016, and
several best paper awards in IEEE conferences. He was an IEEE Commu-
nications Society distinguished lecturer from 2015-2018, AAAS fellow
since 2019, and ACM distinguished member since 2019. He is a 1% highly
cited researcher since 2017 according to Web of Science. He is also the
winner of the 2021 IEEE Kiyo Tomiyasu award, for outstanding early to
mid-career contributions to technologies holding the promise of innovative
applications, with the following citation: “for contributions to game theory
and distributed management of autonomous communication networks.”

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:13:39 UTC from IEEE Xplore. Restrictions apply.

