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Abstract—The emerging vehicular connected applications, such
as cooperative automated driving and intersection collision warn-
ing, show great potentials to improve the driving safety, where
vehicles can share the data collected by a variety of on-board
sensors with surrounding vehicles and roadside infrastructures.
Transmitting and processing this huge amount of sensory data
introduces new challenges for automotive edge computing with tra-
ditional wireless communication networks. In this work, we address
the problem of traditional asymmetrical network resource allo-
cation for uplink and downlink connections that can significantly
degrade the performance of vehicular connected applications. An
end-to-end automotive edge networking system, FAIR, is proposed
to provide fast, scalable, and impartial connected services for intel-
ligent vehicles with edge computing, which can be applied to any
traffic scenes and road topology. The core of FAIR is our proposed
symmetrical network resource allocation algorithm deployed at
edge servers and service adaptation algorithm equipped on intelli-
gent vehicles. Extensive simulations are conducted to validate our
proposed FAIR by leveraging real-world traffic dataset. Simulation
results demonstrate that FAIR outperforms existing solutions in a
variety of traffic scenes and road topology.

Index Terms—Connected and automated vehicles, edge
computing, intelli gent driving.

I. INTRODUCTION

L ESS than half a decade, the expeditious evolution of
wireless communications, Artificial Intelligence (AI), and

high performance computing (HPC), has been reinventing the
mobility concept and systems. For example, in 2019, Toyota an-
nounced a profound transformation from being an automaker to
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become a mobility company, with an emphasis on Connectivity,
Autonomous driving, Shared mobility, and Electrification of
vehicles (CASE) [1]. Meanwhile, other major automotive orig-
inal equipment manufacturers (OEMs), including Volkswagen,
Audi, BMW, etc., are investing heavily in future mobility solu-
tions to enhance their core competencies and to ingratiate them-
selves with their customers. In addition, a variety of cutting-edge
technologies and applications have been proposed to facilitate
CASE and next-generation intelligent vehicles, such as mobility
digital twins (MDT) [2], automotive edge computing [3], [4], [5],
and vehicle-to-everything (V2X) communications with 5G [6],
[7], [8], [9].

The mobility digital twin is an emerging implementation of
Digital Twins (DT) in the transportation domain and is one of
the killer applications of the CASE. The MDT aims to create a
perpetual digital replica of a human driver or a connected and
automated vehicle (CAV) in the digital world based on the data
acquired in the physical world. It has been attracting tremendous
attention from both industry and academia. According to a
market research report, the global DT market size was valued
at USD 7.48 billion in 2021 and is projected to grow at a
compound annual growth rate of 39.1% from 2022 to 2030,
where the automotive and transportation industry accounted for
the largest revenue share of more than 19.0% of the overall rev-
enue [10]. Very recently, a few MDT research have investigated
and demonstrated how the MDT can facilitate next-generation
CAVs and potential connected services, including cooperative
automated driving [11], [12], [13], [14], personalized adaptive
cruise control (P-ACC) [15], [16], driving behavior modelling
and prediction [17], [18], [19], and 3D virtual environment for
autonomous driving testing [20]. One of the shared attributes
among all these MDT-assisted connected services is the require-
ment of continuous physical sensory data collection, modelling,
and data processing. For example, 4 terabytes of sensory data
will be gathered in two hours from a CAV’s on-board camera,
LiDAR, and radar sensors [21], [22]. The volume of the data
collected by perception sensors on CAVs would be extremely
huge even in a scale of ten vehicles, which requires a large
amount of computation resource. Therefore, it is imperative to
investigate how to efficiently and fast collect and process these
sensory data.

One of the promising solutions to this challenge is au-
tomotive edge computing, which brings the computing and
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storage resources at the location where the data is generated.
Instead of processing these huge amount of sensory data on
vehicles or sending to a remote cloud server, the data can
be transmitted to and processed on an edge server that is in
close proximity to vehicles. For example, an edge server can
be deployed with a roadside unit (RSU), and vehicles can
offload their sensory data directly to the edge server in real
time through wireless communication technologies. In addition,
the edge server can provide the capability of real-time data
processing and data caching for those emerging MDT-assisted
connected services.

Motivation: Although compared to processing sensory data
locally on a vehicle or transmitting the data to a remote cloud
server, edge-assisted solutions can enhance the efficiency and
reduce the end-to-end latency (i.e., starting from the data collec-
tion to receiving the processing result), it still remains challenges
of providing reliable, scalable, and resilient edge computing
networks for vehicles with dynamics in data offloadings. Fur-
thermore, the quality of service (QoS) of vehicular connected
services in edge computing networks cannot always be guar-
anteed due to the legacy design of radio resource allocation in
existing wireless networks.

Traditionally, wireless networks allocate more radio resources
to downlink, since downlink traffic volume is usually much
higher than uplink. For example, downloading an entertainment
video from the YouTube server consumes much more bandwidth
than uploading a vehicle’s GPS information for the navigation
purpose. Therefore, downlink acquires higher throughput, peak
data rate, and spectral efficiency than uplink. However, MDT-
assisted connected services may require a higher throughput
than the vehicular downlink traffic. For instance, a CAV with
cooperative automated driving needs to continuously offload its
on-board camera captured image frames to an edge server for
further processing in real time, while the edge server will send
back the processing results (downlink traffic) to the CAV. The
uplink traffic will be massive and latency-sensitive compared
to the downlink traffic, and thus requires much more network
resource than the downlink traffic. Such new traffic distribution
creates unique challenges for MDT-assisted connected services
in automotive edge computing and requires the radio resource
allocation issue in wireless networks to be revisited and re-
designed.

Our contributions: In this paper, we study these research
challenges in automotive edge computing networks and de-
sign impartial resource allocation algorithms for MDT-assisted
connected services. The novel contributions of this work are
summarized as follows:

1) This work is, to the best of our knowledge, the first to
systematically address the asymmetrical network resource
allocation for uplink and downlink connections in automo-
tive edge computing networks.

2) We implement a physical network testbed to conduct
preliminary experimental study and to demonstrate the
resource allocation issues in traditional wireless commu-
nication networks.

3) We propose and design an end-to-end automotive edge
networking system, FAIR, which provides fast, scalable,

and impartial connected services for intelligent vehicles
with edge computing in any traffic scenes.

4) We conduct extensive data-driven simulations to validate
our proposed method based on the real world traffic data
with different road topology and traffic scenes.

The remainder of this paper is organized as follows. Section II
introduces our preliminary study and the observations from
the experiments. Section III presents the analytical factors in
edge-assisted intelligent vehicle systems and the details of the
proposed FAIR that consists of a symmetrical resource allocation
algorithm and a service adaption algorithm. Section IV eval-
uates the performance of FAIR through extensive simulations
with real-world traffic data. Finally, the conclusion is drawn in
Section V.

II. PRELIMINARY EXPERIMENTS

Conventional wireless communication networks, for exam-
ple, the downlink in Wi-Fi and Long-Term Evolution (LTE)
networks acquire a higher bandwidth, peak data rate, throughput,
and spectral efficiency than their uplink [23], [24]. However,
most current edge-assisted applications and services, such as
high definition (HD) map generation [25] and mobile aug-
mented reality [26] are no longer downlink traffic dominant
only. Future MDT-assisted connected services are prone to
have more uplink traffic. Therefore, traditional network re-
source allocation designs that favor the downlink traffic are
no longer suitable for supporting QoS/QoE in automotive edge
computing networks. In this section, we conduct experimental
measurement studies to explore the wireless network perfor-
mance changes while heavy uplink and downlink traffic co-
exist, and demonstrate the unfairness in traditional IEEE 802.11
wireless networks.

Experimental study: In this paper, we mainly focus on IEEE
802.11 wireless technology, since compared with LTE, IEEE
802.11 is a better communication approach for data transmis-
sion between connected vehicles and edge servers, due to its
higher data rate and lower monetary cost. In addition, since both
heavy uplink traffic (e.g., offloaded sensing data) and downlink
traffic (e.g., downloaded entertainment videos) may co-exist
in connected vehicle networks, we conduct an experimental
measurement study to explore the network performance changes
while heavy uplink and downlink traffic co-existing. Our testbed
is deployed as shown in Fig. 1. There are one edge server and
two emulated connected vehicles in our testbed. The edge server
consists of a computation unit and a communication unit. The
computation unit is implemented on a HP Z820 workstation
that is equipped with a NVIDIA QUADRO P2000 GPU. The
communication unit is a LINKSYS EA4500 access point (AP),
which is directly connected to the computation unit through
a Ethernet cable. In order to eliminate the impact of different
wireless network cards on the experiment results, two emu-
lated connected vehicles are equipped with the same TPLINK-
WN781ND wireless network cards. In our experiments, con-
nected vehicle A downloads entertainment videos from the
edge server, while connected vehicle B offloads its real-time
camera captured image frames to the edge server for conducting
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Fig. 1. Overview of the testbed implementation for our preliminary experiments. It consists of three components: an edge server and two connected vehicles. The
edge server is built upon an HP Z820 workstation equipped with a NVIDIA QUADRO P2000 GPU and a LINKSYS EA4500 AP which is directly connected to
the workstation through an Ethernet cable. To eliminate the impact of different wireless network cards on the experiment results, two emulated connected vehicles
are deployed with the same TPLINK-WN781ND wireless network cards. Connected vehicle A downloads entertainment video frames from the edge server, while
connected vehicle B offloads its camera image frames to the edge server for conducting object detection.

Fig. 2. Experimental measurement results. (a) Average offloading latency per frame; (b) Average downloading latency per frame; (c) The number of downlink
packets; and (d) The number of uplink packets.

object detection, which is one of the most important steps
of edge-assisted intelligent driving [27]. The object analytics
module in the edge server is designed based on the YOLOv3
framework [28].

Our observations: We measure the latency of download-
ing/offloading each video frames, and calculate the average
latency. Our observations are described as follows:
� As shown in Fig. 2(a), the average offloading latency per

frame is dramatically increased, approximately 1600%,
after connected vehicle A with downloading traffic joining
the network.

� As shown in Fig. 2(b), the average downloading latency
per frame is only increased to approximately 125% after
connected vehicle B with offloading traffic joining the
network, which is much less than the increase of the average
offloading latency.

� As shown in Fig. 2(a), when the downloading video frame
resolution increases (i.e., increasing the total downloading
data size), the increment of the average offloading latency
per frame does not change much. The same observation is
obtained in the downlink scenario, as shown in Fig. 2(b).

Then, we conduct another test to explore the reasons of the
aforementioned observations. We measure the traffic of down-
link and uplink, as depicted in Fig. 2(c) and (d), respectively. In
Fig. 2(d), we find that a big uplink throughput drop occurs from
5 sec to 43 sec, when connected vehicle A with downloading
traffic joins the network. However, there is no obvious downlink
throughput degrade in Fig. 2(c), when connected vehicle B with

uplink traffic joins the network. This is because usually, AP
is set up with a shorter Arbitration Inter-Frame Space Number
(AIFSN) value for voice and video traffic (e.g., AIFSN= 1) than
its associated stations (e.g., AIFSN = 2) [29], [30], [31]. Thus,
an AP obtains a higher priority for channel contention than
its associated stations (i.e., the downlink traffic has a higher
priority than the uplink traffic during contention), which signif-
icantly impacts the transmission efficiency of connected vehicle
B offloading its camera captured video frames. Although, we
may set the same AIFS value for both AP and stations in order
to eliminate above unfairness, the more complicated and fierce
channel contention may still badly influence on the throughput
of both downlink and uplink.

Summary: MDT-assisted connected services with edge com-
puting will suffer from a significant performance degradation
due to the network resource allocation unfairness between down-
link and uplink in traditional wireless communication networks.
It is imperative to systematically investigate the impartial net-
work resource allocation in automotive edge computing net-
works towards fast and reliable MDT-assisted connected ser-
vices.

III. PROPOSED FAIR AUTOMOTIVE EDGE NETWORKING

SYSTEM

Based on the above observations, in this section, we propose
FAIR, an end-to-end automotive edge networking system, which
can provide fast, scalable, and impartial connected services for
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Fig. 3. Overview of the proposed FAIR. The core of FAIR is our proposed
symmetrical network resource allocation algorithm deployed at the edge server
and proposed service adaptation algorithm equipped on intelligent vehicles.
The symmetrical network resource allocation algorithm can mitigate the service
performance degradation incurred by the asymmetrical radio resource allocation
for uplink and downlink connections. The service adaptation algorithm can dy-
namically adjust configurations of environmental sensing and frame resolution
according to the reserved service period and user preference.

TABLE I
TABLE OF NOTATION

intelligent vehicles in a variety of traffic scenes. Fig. 3 illustrates
the overview of the proposed FAIR. To mitigate the service
performance degradation incurred by the asymmetrical radio
resource allocation for uplink and downlink connections, we
design a new symmetrical network resource allocation algorithm
deployed at edge servers to proactively and impartially reserve
service periods for individual intelligent vehicles that request
dissimilar connected services. In addition, a service adaptation
algorithm deployed on intelligent vehicles is proposed to dy-
namically adjust configurations of environmental sensing and
frame resolution according to the reserved service period and
user preference.

A. Key Factors in Edge-Assisted Intelligent Vehicle

We consider an end-to-end automotive edge computing sys-
tem consists of a roadside edge server a and N intelligent
vehicles that request connected services. Denote Nd as the

Fig. 4. The area change of camera captured image frames while moving.

number of intelligent vehicles requesting connected services
that downloading traffic are dominant, e.g., streaming enter-
tainment videos. While Nu denotes the number of intelligent
vehicles requesting connected services that uploading traffic are
dominant, e.g., offloading on-board camera captured images
to the edge server for further processing). In this paper, the
intelligent vehicles with downloading and uploading traffic are
named as DCVs and UCVs, respectively. Furthermore, to make
our system practical, vehicles are capable of requesting both
downloading traffic dominant and uploading traffic dominant
services concurrently. Thus,Nd +Nu ≥ N . DenoteN ,Nd, and
Nu as the set of all intelligent vehicles served by the edge server,
DCVs, and UCVs, respectively.

To thoroughly study the correlations between the performance
of connected services and the state of vehicles, such as speed and
user preference, we define four analytic factors for intelligent
vehicles with automotive edge computing.

1) Velocity of Intelligent Vehicles: DenoteV t
n as the real-time

velocity of a UCV at time t, where n ∈ Nu. Assume each
intelligent vehicle is equipped with cameras with l meter 3-D
measurement range and θ◦ horizontal field of view. The area
of the surrounding environment that the UCV’s camera can
capture will change while the UCV is moving a time period
τ . As illustrated in Fig. 4, we model the area of the changed
surrounding at time t as ΔSt

n = (2l − θ · dtn) · V t
n , which also

describes the area of new captured surroundings by the on-board
camera is determined by the real-time velocity of the vehicle.
Therefore, based on the above analysis, we define that

σt
(n,m) =

ΔSt
n

ΔSt
m

=
(2l − θ · dtn) · V t

n

(2l − θ · dtm) · V t
m

, n,m ∈ Nu, (1)

where, dtn = V t
n · τ , dtm = V t

m · τ .
2) Frame Rate: In this paper, the frame rate, fps, is defined

as the number of image frames that a DCV downloads for
in-vehicle entertainment or a UCV offloads for further pro-
cessing such as object detection per second. For UCVs. When
the velocity of a UCV is high, the UCV has to offload more
camera captured frames to the edge server for a reliable and
safe driving assistance since it has a larger ΔSt

n. Assume the
minimum acceptable offloading frame rates for UCVs n andm,
n,m ∈ Nu, are fpstn and fpstm, respectively, we can define the
correlation between fpstn and fpstm as

fpstm =
1

σt
(n,m)

· fpstn. (2)
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For DCVs: A more smooth entertainment video experience re-
quires a higher downloading frame rate, which may also requires
a higher data rate.

3) Frame Resolution: Frame resolution is crucial for the
performance of both entertainment service and edge-assisted
driving assistance. For UCVs. In this paper, we use kfun · sfun
(pixels) to represent the frame resolution of the futh image
captured by the vehicle’s on-board camera. Denote γ as the color
depth of a frame, i.e., the number of bits required to represent
the information carried by one pixel. The data size of the camera
captured image fu at time t is calculated as kfun · sfun · γ bits. We
model the offloading latency of the frame fu as

LUfu
n =

kfun · sfun · γ
Rt

n

, (3)

where Rt
n is the average transmission data rate of UCV n at

time t. Thus, the image offloading latency is a function of
wireless data rate and image resolution. The image resolution
can be adapted to meet the latency requirement under wireless
network dynamics. For example, the UCV may proactively
degrade its camera image resolution when the wireless data rate
is low. However, the connected service performance, e.g., object
detection accuracy, may be affected by the image resolution as
well. A lower image resolution usually leads to a worse mean
average precision of an object detection [32]. Therefore, it is
critical for UCVs with high velocity to keep a high camera image
resolution for a better service performance and a safer driving.
Furthermore, as the data size of object detection results is usually
small, we do not consider the latency caused by returning the
results in this work.

For DCVs: Consider a DCV g ∈ Nd that request downloading
entertainment videos while moving. Let the frame resolution of
the requested video at time t is kfdg · sfdg pixels. We model the
downloading latency as

LDfd
g =

kfdg · sfdg · γ
Rt

g

, (4)

where Rt
g is the wireless data rate of DCV g at time t.

4) Energy Consumption of Connected Vehicles: For UCVs:
To estimate the energy efficiency of performing the edge-assisted
intelligent driving, in particular, camera sensing and image
offloading, we propose per frame energy consumption, a new
performance metric that appraises the total amount of energy
consumed in a connected vehicle by performing the edge-
assisted intelligent driving on one image frame. In this work,
the per frame energy consumption of image frame fu in UCV
n ∈ Nu can be defined as

EUfu
n = EU (fu,n)

cam + EU
(fu,n)
tr , (5)

where EUcam and EUtr denote the energy consumed by sam-
pling an image and transmitting the image frame to a edge server,
respectively. Image sampling is the process of transferring the
vehicle’s camera sensed continuous light signal to a processable
digital image frame. EUcam is a function of image resolution
k · s, e.g., a larger k · s will result in a higher EUcam. Further-
more, since the energy consumed by image sampling contributes

Fig. 5. Power consumption of promotion, transmission, tail, and idle phases.

the largest portion of the per frame energy consumption [33], the
camera sampling frequency should be adaptable to improve the
energy efficiency. Therefore, we propose to co-adapt the image
sampling and offloading frequency.

During the transmission of a single image frame in wireless
communication networks, e.g., Wi-Fi, the vehicle’s wireless
interface undergoes four phases: promotion, data transmission,
tail, and idle. As depicted in Fig. 5 (power consumption mea-
sured in our testbed), the wireless interface first steps into
the promotion phase once a transmission request is initiated.
Then, the image data is sent to the edge server when the data
transmission phase is invoked. The completion of transmission
triggers the tail phase, where the wireless interface is compelled
to stay active for a fixed duration and to wait for either a new
transmission request or service feedback from the edge server.
The wireless interface finally enters the idle phase to save energy
if there is no new request initiated or feedback received. We
model the energy consumption of transmitting image frame fu
in UCV n ∈ Nu as

EU
(fu,n)
tr = epro + P

(n,fu)
tr · LUfu

n + etail, (6)

where P (n,fu)
tr is the average power consumption of the data

transmission phase; epro and etail are the energy consumed
in promotion and tail phases, respectively. epro and etail are
constant.

For DCVs: The per frame energy consumption of download-
ing video frame fd in DCV g ∈ Nd can be modeled as

EDfd
g = P (g,fd)

rev · LDfd
g , (7)

where P (g,fd)
rev is the average power consumption of receiving

data.
In addition to the per frame energy consumption, we propose

a new performance metric, life-time energy consumption, to
estimate the total amount of energy consumed by performing
uploading and downloading connected services for a certain
amount of time ΔT , which is defined as

EL(ΔT ) =

fu∑
EU +

fd∑
ED. (8)
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B. Symmetrical Resource Allocation Algorithm

As discussed in Section III-A, to assure a reliable and safe
edge-assisted driving assistance, the amount of offloading cam-
era image data should be proportional to the velocity of the
UCV. In this work, the core of our proposed end-to-end auto-
motive edge networking system, FAIR, is that the edge server
proactively and periodically reserves a dedicated offloading
period (DOP) for each served UCV based on its real-time
velocity. In particular, the value of the reserved DOP at time
t for UCV n is with respect to the real-time velocity V t

n . Thus,
we define DOP as DOPn = ψ(V t

n), where a larger DOP will
be assigned to the UCV with a higher velocity for supporting
an edge-assisted driving assistance with high frame rate and
resolution. Furthermore, to make the reserved DOPs can be
adapted to the environment dynamics, including the varying
velocity and position of intelligent vehicles, the edge server will
update the DOP reservation once every T s. After completing
the DOP reservation for all UCVs, the edge server will allocate a
dedicated downloading period (DDP) for each DCVs. Since the
required data volume of the in-vehicle entertainment is usually
irrelevant to vehicle’s velocity, we design that the length of the
DDP assigned for each DCV is the same, where

DDPg =
T −∑

n∈Nu
(DOPn)

Nd
, g ∈ Nd. (9)

We assume the velocity of each intelligent vehicle is con-
stant in T s, and define the velocity vector of UCVs as �v =
{vx1 , . . . , vyNu

}, a Nu-tuple containing the real-time velocity of
each UCV within T s. UCVs in the velocity vector are sorted
in descending order in terms of the value of velocity. Denote−−−→
DOP as the vector of edge reserved DOP s for UCVs in Nu

within T s. The edge server will reserve the DOP for each
UCV every T s by leveraging the updated �v. In our proposed
symmetrical wireless resource allocation algorithm, the UCV
with the highest velocity will be always reserved with the highest
priority. In particular, the UCV with the highest velocity in T
obtains the best edge networking resource including the largest
reserved DOP , where DOP = DOPmax; the highest camera
frame resolution, where k · s = kmax · smax, with an acceptable
frame rate fps0. The DOPmax is defined as

DOPmax = DOPx =
kmax · smax · γ

Rt
n

· fps0 · T. (10)

Furthermore, DOP of the rest of UCVs will be assigned in
sequence according to �v. The reserved DOP of UCV n is
defined as

DOPn = ψ(Vn) =
1

σt
(x,n)

·DOPmax, n ∈ Nu. (11)

Based on the designed principle of service allocation in edge
networking systems, we can see that a UCV with a higher real-
time velocity can always be assured of a more reliable connected
service by reserving a largerDOP . In addition, we classify three
cases to describe special traffic scenarios, defined as follows.

1) Highway. We set Vhighway as the trigger to determine if
the traffic scene is driving on a highway. For example, in
the United States of America, the value of Vhighway is

Algorithm 1: FAIR Symmetrical Resource Allocation
Algorithm.

usually over 60 miles per hour or 26.8 m/s. To ensure
the reliability of the service connection and the safety
of driving, our proposed symmetrical service allocation
algorithm assigns a DOPmax for every UCV n that is
classified as driving on highway (i.e., n ∈ K1). In this
case, DOPmax is defined as

DOPn∈K1
max =

kmax · smax · γ
Rt

n

· fps0 · T. (12)

The assigned DOPmax aims to assure each UCV is capa-
ble of offloading camera captured images with the highest
frame resolutionkmax · smax and the acceptable frame rate
fps0.

2) Continuous unallocated. UCVs that are not assigned for a
DOP in the lastβ · T s.κ2 andK2 represent the number of
UCVs and the set of UCVs in case 2, respectively. UCVs
in this case are provided with the highestDOP allocation
priority except the UCVs in case 1.

3) Temporary stop. This case includes UCVs with a tempo-
rary stop incurred by a red traffic light, traffic congestion,
or temporary parking. κ3 and K3 represent the number of
UCVs and the set of UCVs in case 3, respectively. UCVs
with a temporary stop only need to opportunistically sense
and transmit a camera image to substantiate whether the
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preceding car’s status has changed or not, or if the traffic
signal light turns green. Therefore, the lowest priority is
assigned to the UCVs in this case, where

DOPn∈K2
=
kmin · smin · γ

Rt
n

. (13)

In addition, DDP reserved for each DCV is defined by (9).
Denote

−−−→
DDP as the vector of edge reservedDDP s for DCVs in

Nd within T s. Algorithm 1 presents the proposed symmetrical
resource allocation algorithm in detail.

C. Service Adaptation Algorithm

Our proposed symmetrical network resource allocation algo-
rithm proactively and impartially allocates a DOP or a DDP
for each connected vehicle that initiates either uploading or
downloading traffic. Then, connected vehicles will perform their
request connected services through exploiting these allocated
DOP s and DDP s. Therefore, it is imperative to deploy a
mechanism on connected vehicles that can dynamically adapt
image sensing and offloading (e.g., image frame resolution)
for UCVs or downloaded video quality for DCVs (e.g., video
frame resolution). To achieve effective adaptations, we propose a
service adaptation algorithm to coordinate with the symmetrical
resource allocation algorithm.

As we proposed in the symmetrical resource allocation algo-
rithm, FAIR ensures that the UCV with the highest instantaneous
speed or UCVs with instantaneous speed over Vhighway are
reserved with DOP s that allow the camera image sampling
and transmission with the highest frame resolution kmax · smax.
While the image frame resolution of other UCVs are selected in
the range ofkmin · smin tokmax · smax based on the optimization
problem P0, which aims to achieve an optimal image frame res-
olution kfu · sfu to balance the offloading energy consumption
and the utilization of the assigned DOP . P0 is formulated as
follows.

P0 : min
{kfu ,sfu}

Qu = ω1 · EUfu − ω2 · UUfu

s.t. C1 : kfu ·sfu ∈{kmin ·smin, . . ., kmax ·smax};
C2 : UUfu ≤ 1; (14)

where UUfu = kfu ·sfu ·γ
DOP ·Rt describes the utilization of the as-

signedDOP ; and ω1 and ω2 are two positive weight parameters
that are introduced to customize the user preference or to dis-
criminate the configuration of different connected services. For
example, given a largerω1 and a smallerω2, the frame resolution
selection strategy will tend to be energy saving, and vice versa.
ω1 andω2 can be specified by either the user or connected service
provider. Similarly, frame resolution determination in DCVs is
formulated and resolved by

P1 : min
{kfd ,sfd}

Qd = ω̄1 · EDfd − ω̄2 · UDfd

s.t. C1 : kfd ·sfd ∈{ ¯kmin · ¯smin, . . ., ¯kmax · ¯smax};
C2 : UDfd ≤ 1; (15)

Algorithm 2: FAIR Service Adaptation Algorithm.

Fig. 6. Comparison of channel access. (a) EDCA channel access. (b) FAIR
channel access.

where UDfd = kfd ·sfd ·γ
DDP ·Rt describes the utilization of the as-

signed DDP . Given the above discussion and the formulated
problems P0 and P1, we design the service adaptation algo-
rithm, where the pseudo code is delineated in Algorithm 2.

In summary, our proposed FAIR automotive networking sys-
tem not only assures the impartial and proactive resource allo-
cation for both UCVs and DCVs within variant environmental
conditions, but also enhances both the energy efficiency of
performing connected services and network resource utilization
compared to traditional wireless networks, IEEE 802.11 En-
hanced Distributed Channel Access (EDCA), as illustrated in
Fig. 6.

IV. PERFORMANCE EVALUATION

This section presents the performance evaluation of our pro-
posed FAIR scheme through vehicle trajectory datasets collected
in multiple real-world traffic scenarios and road topology. We
first introduce the real-world dataset we used in the simula-
tion. Then, we evaluate the average FPS, per frame energy
consumption, channel utilization, and average obtained frame
resolution of the proposed FAIR under variant configurations
through data-driven simulations.

A. Trajectory Dataset

To validate our proposed FAIR can achieve network perfor-
mance improvement for connected vehicles, we conduct exten-
sive end-to-end simulations with real-world vehicle traces col-
lected by drones [34], [35]. The datasets include multiple traffic
scenes and road topology, e.g., roundabout, intersection, and
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Fig. 7. Performance comparison between FAIR and baseline in the roundabout scenario. (a) Road topology and example vehicle trajectories at the roundabout;
(b) Comparison of channel utilization with variant number of UCVs and DCVs; (c) and (d) Comparison of average frame rate with variant number of UCVs and
DCVs; (e) and (f) Comparison of optimality with variant number of UCVs and DCVs; (g) and (h) Comparison of optimality with variant user preference.

straight road. The datasets consist of trajectories of over 20,000
road users, including cars, trucks, vans, buses, pedestrians, bicy-
cles and motorcycles, where the trajectories are generated from
the videos recorded by drones in 25 Hz at different locations.
Since our work is designed for connected vehicles, we filter out
pedestrians, bicycles, and motorcycles in the datasets.

B. Performance Evaluation of FAIR

We conduct simulations with one edge server and a number
of connected vehicles that have either downlink services (i.e.,
downloading entertainment videos) or uplink services (i.e., intel-
ligent driving), or both. As we present in Section III, a vehicle can
obtain uplink and downlink traffic simultaneously. Furthermore,
we utilize a path-loss model to simulate the network dynamics
caused by the mobility of vehicles:

PL = 20 log10 f + 10n log10 d− 24(dB), (16)

where d is the distance between the edge server and a vehi-
cle (UCV or DCV); PL describes the radio frequency (RF)
propagation path-loss, which is determined by d, f (i.e., carrier
frequency), and n (i.e., path-loss exponent). n and f are set to
6 and 2400 MHz in our simulation environment. In addition,

TABLE II
DATA RATE TABLE OF 802.11N (4 SPATIAL STREAMS)

the Signal-to-Noise Ratio (SNR) is introduced and calculated to
estimate the real-time data transmission rate of each vehicle-to-
server connection. The correlation between SNR and data rate is
shown in Table II. θ = 50◦, l = 55 m [36], fps0 = 10 Hz [27],
[37] are the configurations of the camera sensors equipped
on each connected vehicle. The support image frame reso-
lutions for offloading are k · s = {640 · 480, 480 · 480, 320 ·
480, 320 · 320, 224 · 320, 224 · 224, 128 · 224, 128 · 128} pix-
els. The support video frame resolution for download-
ing are k̄ · s̄ = {640 · 480, 480 · 480, 320 · 480, 320 · 320, 224 ·
320, 224 · 224, 128 · 224, 128 · 128} pixels. The number of bits
carried by one pixel is set as 8. The default user preference are
ω1 = 1, ω2 = 1, and ω̄1 = 1, ω̄2 = 1. The edge server is set to
update the DOP reservation once every T = 100 ms. The speed
threshold Vhighway in case 1 is set as 26.8 m/s. The trigger β
of case 2, continous unallocated, is set as 3. UCVs classified as
case 3 will be allowed to offload every 10 · T .
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Fig. 8. Performance comparison between FAIR and baseline in the suburb intersection scenario. (a) Road topology and example vehicle trajectories at the
intersection; (b) Comparison of channel utilization with variant number of UCVs and DCVs; (c) and (d) Comparison of average frame rate with variant number of
UCVs and DCVs; (e) and (f) Comparison of optimality with variant number of UCVs and DCVs; (g) and (h) Comparison of optimality with variant user preference.

We compare our propose FAIR with the following algorithms:
� SA + MAX: The edge server and connected vehicles ob-

tain the same AIFS. Connected vehicles adopt the highest
frame resolution for their connected services to achieve
maximum accuracy.

� SA + MIN: The vehicle adopts the lowest frame resolution
for its connected services to achieve the minimum latency.

� DA + MAX: The edge server obtains a shorter AIFS than
connected vehicles, i.e., different AIFS. The vehicle adopts
the highest frame resolution for its connected services.

� DA+MIN: The vehicle adopts the lowest frame resolution
for its connected services.

From system perspective: We evaluate the performance of
FAIR at both roundabout and intersection. We aim to study: 1)
what’s the performance of FAIR compared to other solutions; 2)
how does FAIR perform in different traffic scenes; 3) whether
FAIR can effectively scale under the different number of con-
nected vehicles. Figs. 7(a) and 8(a) illustrate the road topology
of roundabout and intersection adopted in our simulations. In
particular, the roundabout in Fig. 7(a) is four-armed and connects
a highway with Aachen in Germany, where it obtains the highest
traffic volume among all the recorded scenes in the datasets [34].
The average traffic speed is 7.41 m/s, and the speed of vehicles
is in the range of [0, 17.72]m/s. The intersection in Fig. 8(a) is

located in suburban area of Aachen and is a T-junction, where
the major arterial is straight and has the right of way, and there
is a left turn lane into the side road [35]. The average traffic
speed is 12.32 m/s, and the speed of vehicles is in the range of
[0, 25.13]m/s.

Figs. 7(b) and 8(b) show the channel utilization performance
of different algorithms under different number of UCVs and
DCVs. We can see that our proposed FAIR outperforms other
algorithms and always achieves the best channel utilization
performance, which demonstrates our analysis in Section III-C.
For example, in the roundabout scenario, FAIR improves 4.6
times channel utilization in average compared to SA-MAX
and DA-MAX, which validates FAIR can effectively utilize the
network resource and enhance the resource accessibility through
proactive scheduling and avoiding reactive channel contention
among vehicles.

Figs. 7(c), (d), 8(c), and (d) evaluate the average frame rate
achieved by UCVs and DCVs at roundabout and intersection,
respectively. We illustrate how FAIR performs with different
number of UCVs and DCVs. We observe that FAIR always
assures both UCVs and DCVs of obtaining a high frame rate
(i.e., close to 10 Hz). In addition, compared to other algorithms,
FAIR significantly increases the frame rate of both UCVs and
DCVs. For instance, in the intersection scenario, it increases
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Fig. 9. The performance results of a connected vehicle. (a)–(d) show the selected connected vehicle’s instantaneous speed, signal-to-noise ratio, obtained data
rate, and allocated DOP over the time; (e)–(g) illustrate the comparison of two user preference settings (e.g., ω2 : ω1 = 1 and ω2 : ω1 = 20) in terms of the per
frame energy consumption, utilization of the allocated DOP, and offloaded image frame resolution over the time.

the average frame rate of UCVs by 6.7 and 11.2 times, and the
average frame rate of DCVs by 5.9 and 4.7 times, compared
to SA and DA, respectively, when the number of UCVs and
DCVs is 7 + 8. In the roundabout scenario, FAIR increases the
average frame rate of UCVs by 13.7 and 30.2 times, and the
average frame rate of DCVs by 12.6 and 8.3 times, compared to
SA and DA, respectively, when the number of UCVs and DCVs
is 10 + 10. The larger number of UCVs and DCVs, the higher
increment of frame rate FAIR can achieve. These results validate
that FAIR provides an impartial network resource allocation for

uplink and downlink traffic, and is scalable under the different
number of connected vehicles and workload.

Figs. 7(e), (f), 8(e), and (f) further validate the optimality of
our proposed FAIR with the variant number of UCVs and DCVs
at roundabout and intersection, respectively. While Figs. 7(g),
(h), 8(g), and (h) validate the optimality of FAIR with the variant
user preference (i.e, ω1, ω2) at roundabout and intersection,
respectively. We observe that FAIR always obtains the minimal
Qu and Qd compared to other algorithms at both roundabout
and intersection.
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TABLE III
POWER CONSUMPTION AND DURATION OF PROMOTION & TAIL PHASES IN

DATA TRANSMISSION

From individual connected vehicle perspective: In Fig. 9, we
illustrate how FAIR makes the DOP allocation and connected
service offloading intelligent under the environment dynamics
and varying user preference. We randomly select a UCV in
the simulation environment, where the road topology is the
roundabout and the number of UCVs and DCVs is 10 and 10,
respectively. Fig. 9(a) illustrates the instantaneous speed of the
UCV. Fig. 9(b) shows the signal-to-noise (SNR) ratio on the side
of the UCV, which also indicates the UCV is in the range of the
edge about 19 s. Fig. 9(c) shows the data rate of the UCV and
it also demonstrates the correlation between SNR and data rate.
Fig. 9(d) illustrates the allocated DOP for the UCV over the
time. We can observe that the allocated DOP increases when the
UCV’s speed is higher (the allocated DOP is also highly affected
by other connected vehicles in the environment, which cannot
be demonstrated in this figure).

Fig. 9(e), (f), and (g) show the real-time performance of
the UCV in terms of per frame energy consumption, EU
(i.e., defined in 6), utilization of the allocated DOP, UU (i.e.,
defined in 15), and the optimal frame resolution determined
by Algorithm 2, with two different user preference settings
ω2 : ω1 = 1 : 1 or 1 : 20. The red solid line depicts the real-time
performance of the UCV with ω2 : ω1 = 1 : 1; while the blue
dashed line depicts the real-time performance of the UCV with
ω2 : ω1 = 1 : 20. The energy consumption of transmitting an
image frame, EUtr, is calculated based on Table III and the
model Ptr = 0.01821 ·R+ 0.7368 [26], [38], [39]. The energy
consumption of sampling an image frame,EUcam, is calculated
byEUcam = −1.772× 10−17 · (k · s)3 + 7.491× 10−12 · (k ·
s)2 + 2.379× 10−6 · (k · s) + 0.6068 [26], [38], [39]. We can
see that if the user prefers a lower energy consumption (i.e., a
larger ω1), FAIR will be prone to select a lower frame resolution
for sampling and offloading, as shown in Fig. 9(g). By lowering
the frame resolution, the UCV can save up to 40.6% energy
consumption per frame. While if the user prefers a higher frame
resolution ((i.e., a larger ω2)), the utilization of the allocated
DOP will raise significantly, as depicted in Fig. 9(f). These
results indicate that our proposed FAIR can intelligently optimize
the frame resolution selection based on the user preference.

V. CONCLUSION

In this paper, we proposed FAIR, an end-to-end automotive
edge networking system, that can provide fast, scalable, and
impartial connected services for intelligent vehicles with
edge computing. This is the first work, to the best of our
knowledge, that systematically addresses the issue of the
asymmetrical resource allocation for uplink and downlink
connections in traditional wireless networks. We designed
a symmetrical resource allocation algorithm to proactively
and periodically reserve dedicated service resource for each

intelligent vehicle under environment dynamics. A service
adaptation algorithm was designed to dynamically adjust
configurations of environmental sensing and frame resolution
according to the reserved service period and user preference.
The extensive simulation results demonstrated FAIR can
significantly improve the fairness, scalability, and reliability
compared to existing solutions in a variety of traffic scenes.
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