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Abstract—Artificial intelligence (AI) has enabled a new
paradigm of smart applications — changing our way of living
entirely. Many of these Al-enabled applications have very stringent
latency requirements, especially for applications on mobile devices
(e.g., smartphones, wearable devices, and vehicles). Hence, smaller
and quantized deep neural network (DNN) models are developed
for mobile devices, which provide faster and more energy-efficient
computation for mobile AI applications. However, how AI models
consume energy in a mobile device is still unexplored. Predicting
the energy consumption of these models, along with their different
applications, such as vision and non-vision, requires a thorough
investigation of their behavior using various processing sources.
In this paper, we introduce a comprehensive study of mobile Al
applications considering different DNN models and processing
sources, focusing on computational resource utilization, delay, and
energy consumption. We measure the latency, energy consumption,
and memory usage of all the models using four processing sources
through extensive experiments. We explain the challenges in such
investigations and how we propose to overcome them. Our study
highlights important insights, such as how mobile AI behaves in
different applications (vision and non-vision) using CPU, GPU, and
NNAPI. Finally, we propose a novel Gaussian process regression-
based general predictive energy model based on DNN structures,
computation resources, and processors, which can predict the
energy for each complete application cycle irrespective of device
configuration and application. This study provides crucial facts
and an energy prediction mechanism to the AI research commu-
nity to help bring energy efficiency to mobile AI applications.

Index Terms—mobile Al, predictive energy model, energy im-
provement, latency reduction, DNN

I. INTRODUCTION

Artificial intelligence (Al) is shaping every aspect of human
lives nowadays. Furthermore, mobile devices, i.e., smartphones,
tablets, wearable devices, and autonomous and unmanned aerial
vehicles, are heavily invested in Al applications, having cellular
networks, edge, and cloud computing in the backbone. Al
applications consume considerably high energy and memory of
these devices. How Al uses these resources defines a device’s
potential to interact with wireless networks. Therefore, it is
crucial to understand the characteristics of Al applications
running on a mobile device, which pushes back to the question
— how can we accurately predict the energy consumption of
mobile Al irrespective of device configurations to ensure better
service and user experience?

Al applications’ energy consumption may depend on various
properties of a system. First, the Al models that are crafted in
specific ways to fit mobile devices due to the models’ high
computation and energy requirements, impact the applications’
behaviors. Research works suggest accelerating the processing
time of deep neural networks (DNNs) by quantizing [1], which
is a compression technique run on DNN models that can reduce

This work was supported by funds from Toyota Motor North America and by
the US National Science Foundation (NSF) under Grant No. 1910667, 1910891,
and 2025284.

978-1-5386-7462-8/23/$31.00 ©2023 IEEE

the model size by converting some tensor operations to integers
from floating points or reducing the weights or parameters in
a model, but at the cost of degraded accuracy. Quantized DNN
(Q-DNN) models are generally investigated for vision-based
applications, the most thriving areas of Al. Second, mobile Al
is not limited to vision applications only. Modern-day mobile
devices are rigged with non-vision applications as well, such
as intelligent recommendations, natural language processing
(NLP), smart reply, speech recognition, and speech-to-text
conversion. While most of the research focuses on applications
based on computer vision, acquiring a thorough knowledge of
mobile Al is only possible by including non-vision applications.
Third, the processing source used to run the Al models affects
their performance. Besides central processing units (CPUs) with
high processing speeds, some devices are now equipped with
graphics processing units (GPUs), which enables DNN models
to run faster than ever, especially for vision applications [2].
In addition, neural network application programming interfaces
(NNAPI) are also developed to make the processing of DNN
models faster using CPUs, GPUs, or neural processing units
(NPUs) [3]. These state-of-the-art technologies are researched
for mobile Al only to improve inference latency. Lastly, the
hardware configuration of mobile devices is distinctive and
contributes to energy consumption with a unique signature.
The system-on-chip (SoC), CPU/GPU parameters, and memory

dictate how an Al application runs on a specific device.
In this paper, we argue that a predictive energy model

for a mobile Al application requires considering all of the
parameters mentioned above. Without collecting accurate and
precise latency, energy, and memory consumption data, it is not
possible to design a predictive energy model which is applicable
to all AI applications with different model sizes and device
configurations. This paper presents the measurement data of
Al applications collected through experiments and proposes a
novel model of Energy Prediction for Al in Mobile devices
(EPAM), which can provide a highly accurate prediction of
the energy consumption of a mobile Al application irrespective
of device configuration and Al models, and thus contribute to

improving the overall performance.
Motivations: While mobile Al is often concluded as “no

one-size-fits-all solution” [4], it is the responsibility of the
research community to provide the developers with precise
measurement data and a way to predict energy consumption.
Our research shows that the power varies for the same de-
vice with the change in processing sources (Fig. 1(a)). The
granularity of power consumption over a unit period of time
needs to be measured to develop a predictive energy model,
which is not provided by the current works. Battery profilers
provided by third-party applications do not support precise
energy data collection [5]. Hence, the use of an external power
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Fig. 1. (a) Powgrl) consumption by different prOCGSS(()Eg for the same time
interval for MobileNet Float and (b) mean inference latency, energy, and
memory usage for float and quantized DNN models on Huawei Mate40Pro.
measurement tool becomes necessary [6]. Moreover, DNN
models with different sizes and layers do not have a similar
impact on the latency, energy, and memory usage, which is
presented in Fig. 1(b), where it is evident that the correlation
among latency, energy, and memory is not linear at all. An
interesting observation here is that the Quantized EfficientNet
model causes high latency and energy despite using the lowest
memory, due to its compatibility issues with NNAPI, which is
described in detail in section V-A. This motivates us to collect
data from a physical testbed to validate this correlation before
proposing a predictive energy model.

Challenges: Designing a predictive energy consumption
model for mobile Al is not straightforward. First, a general
energy prediction model is challenging to develop due fo
different categorical and numerical variables involved in the
non-parametric behavior of the energy consumption of Al
applications. The regression model cannot be linear since all
the parameters do not have the same weight in all applications
and configurations. Second, measuring mobile Al parameters
is challenging due to complicated power terminal design in the
latest mobile devices. Synchronizing the timestamps of latency
and energy data brings further difficulties as the retrieved log
files have different formats. However, these parameters must
be measured since they are required for training the regression
model. Finally, the experiments should be controllable and
repeatable for enthusiastic researchers. Therefore, the environ-
ment must be chosen wisely so that all the experiments can be
carried out in a similar condition.

Our contributions: Our contributions in this paper are
summarized as follows:

« Experimental research and analysis of different mobile
Al applications: We set up an experimental testbed with
four different smartphones (Table I) and use a vision
application (image classification) and two non-vision ap-
plications (NLP and speech recognition) with seven dif-
ferent DNN models (Table II). The testbed is described
in detail in Section IV. We investigate different mobile Al
parameters through an extensive experimental study. The
latency, power consumption, and memory usage of indi-
vidual segments of the pipelines of three Al applications
are measured for different applications using single- and
multi-threads CPU, GPU, and NNAPI and for different
DNN models. Our experiment shows that the total energy

consumption of a mobile Al application is related to the
device configuration, Al model, latency, and memory.

o Predictive energy model for mobile AI: We propose
a novel Gaussian process regression-based general pre-
dictive energy model for mobile AI (EPAM) based on
DNN structure, memory usage, and processing sources to
predict the energy consumption of mobile Al applications
irrespective of device configurations (Section III). EPAM
requires offline training with past datasets. The trained
model can be used to predict the overall energy con-
sumption which reduces the necessity for further energy
measurement and helps the developers design energy-
efficient mobile AI applications. Finally, we evaluate the
performance of our proposed predictive energy model
EPAM with our experimental data (Section V-D). The
evaluation shows that EPAM provides highly accurate
energy prediction of vision and non-vision Al applications

for different DNN models on unique mobile devices.
II. RELATED WORK
Vision and non-vision mobile AI with float and quantized

models: Floating point and quantized models are investigated
for vision applications, e.g., image classification, segmentation,
super-resolution, and object detection, to create benchmarks
using inference latency for mobile devices [7]. Quantized
models are introduced in [8] to lower the energy consumption as
well. In addition, non-vision Al applications are also researched
to achieve high accuracy and low latency [9]. Nevertheless,
a predictive energy model for mobile Al requires analysis
of complete behaviors of vision and non-vision mobile Al
applications using floating point and quantized models, which
are not yet explored.

Latency and energy in different processors: Mobile Al
applications behave differently in terms of latency and accuracy
based on the processing sources [4], [7]. Research works are
done on maximizing CPU threads [10] and hardware accel-
eration for DNN models. The use of GPU is also studied
for improving the training and inference time for mobile Al
[2]. NPU architectures are explored as well to expedite neural
network operations [3], [11]. However, there is no fundamental
framework to describe the impact of individual processing
sources on energy consumption for different mobile Al appli-
cations with disparate DNN models.

Energy modeling for mobile AI and prediction: Energy
measurement is necessary to describe mobile Al applications’
detailed behaviors. Eprof [12] and E-Tester [13] are proposed to
measure and test the battery drain of mobile devices, which use
a finite state machine to measure the energy. However, these
methods lack in providing granular and precise energy data
since they only act on system call traces. Researchers have
proposed different energy models for vision [14] and non-vision
[15] applications. Furthermore, predictive energy models are
developed for devices, and sensors [16]. Nonetheless, devel-
oping accurate predictive energy models general to all mobile
Al applications requires knowledge of all the environmental
parameters such as network and model size, memory usage,
and the hardware accessed to run the Al application.
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ITII. EPAM: OVERVIEW OF THE PREDICTIVE MODEL
The energy prediction of mobile Al involves a high dimen-
sion of influencing variables, making it a non-parametric model.
Let us assume that the set of input data points is X'P, where
D is the total number of dimensions. If we consider this a noisy
observation, then we find the posterior distribution as
P(E(X) o P(E(X)|A"?)/P(A"P|E(X)), M
where F(X) is the observed energy at data points X P and
AP = [XUDP B} is observation points. Using Gaussian
process [17], E(X) can be described as E(X) ~ N(u, K),
where 1 = [mean(X?'),...,mean(XP)] is the mean and
K;; = k(x;,z;) is the covariance or Kernel function, where
x; and x; are distinct data points.
As new data points X, are provided, the posterior distribu-
tion of predicted energy E(X.) can be modeled as
P(E(X.)IAYP) ~ N (p(X.), K (X)) ()

The kernel must be chosen carefully as there exists a clear
link between kernel functions and predictions [18], which
contribute to the hyper-parameter optimization. From our ex-
perimental data, we observe the influencing parameters on total
energy consumption are sparse and vary over a broad range
including both numerical and categorical variables. Hence, we
choose the automatic relevance determination (ARD) exponen-
tial squared kernel for our predictive model, which automati-
cally puts different weights on the parameters with differential
scales assessing their significance to the model. Hence, our

kernel equation becomes:
D

) N 2 _1 (mim - wjm)Q
K(i,z;) = oF exp[(—35) mZ:l S )
where O'J% is the hyper-parameter to be optimized and o2, is the
covariance of the m*" dimension. Finally, the log-likelihood of
the trained model can be expressed as

log P(E(X)|X1P) = —%E(X)T(K + 03D E(X)
—3 log det(K + U%I) -3 log 2,

where [ is an identity matrix. EPAM is first trained offline with
the observation data points, then is run with an application
alongside. The prediction is done either simultaneously or at
the end of an application. In this research, we train the model
with a dataset containing 85,500 data, validate with 19,496,
and test with 10,000 data.

IV. EXPERIMENTAL SETUP
a) Al applications: Three mobile Al applications are used in

this research: image classification, NLP, and speech recognition.
In image classification, as shown in Fig. 2(a), first, the image
is captured by the camera sensor, which then goes through a
Bayer filter and image signal processor, and, then is stored
in an image buffer. The image frame is then scaled and
cropped to be previewed while simultaneously going to an
image reader, converted from YUV color format to RGB, and
cropped according to the input size of the DNN model. Then
the converted and cropped frame is taken as the DNN input,
generating the classification results to display.

The NLP question-answer application takes both the para-
graph input and the question input from the keyboard (Fig.
2(b). The paragraph is then represented with token, segment,
and position embeddings. The keyboard input goes through
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Fig. 2. Pipelines of the mobile Al applications studied in this research.
character, basic, and word piece tokenizer. These embeddings

and tokens are passed to a feature converter providing input to
the DNN model. The model finds the answer to the question
input and highlights it in the paragraph.

Speech recognition application records, converts, and de-
codes the audio input. The decoded audio signal is converted
to a spectrogram by running a short-time Fourier transform
(STFT) along with the calculation of the Mel frequency cepstral
coefficients (MFCCs). The spectrogram and MFCC are passed
to the DNN model. The predicted word is then displayed on
the phone as depicted in Fig. 2(c).

b) Testbed: We implement the applications mentioned above
on four Android OS-based smartphones from different manu-
facturers with distinct configurations to make the measurement
study robust with a wide range of parameters. Table I shows
the specifications of the smartphones used in the experiment.
However, the intended thorough investigation of mobile Al
brings several challenges during the experiment.

Android Studio, along with other third-party contributors,
provides developers with memory and battery profilers, which
cannot generate the data necessary to measure memory usage
and power consumption precisely. In this experiment, we collect
latency timestamp data of each segment of a mobile Al pipeline
along with their corresponding memory usage. To measure the
energy consumption, we use an external power measurement
tool “Monsoon Power Monitor” that provides data sampled at
every 0.2 ms interval. However, due to the delicate design of
power input terminals, the latest smartphones need to be heated
and opened to remove the battery, and then are connected to
the power monitor. After careful measurement of power data,
they are matched with the corresponding latency timestamps.
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TABLE I
BRIEF SPECIFICATIONS OF THE DEVICES USED IN THE EXPERIMENTS
Denotation Model SoC CPU GPU Dedicated Al RAM 0S NNAPI  Release
accelerator support Date
Device-1 Huawei Kirin 9000  8-core (1x3.13GHz A77  Mali G78 Ascend Lite+ 8GB Android 10 Yes October,
Mate (5 nm) 3x2.54GHz A77 Tiny NPU LPDDRS5 2020
40 Pro 4x2.05GHz A55) Da Vinci 2.0
Device-2 OnePlus Snapdragon 8-core (1x2.84GHz Adreno 650 Hexagon 8GB Android 10 Yes April,
8 Pro 865 (7 nm) 3x2.42GHz 698 DSP LPDDR5 2020
4x1.8GHz Kryo 585)
Device-3 Motorola Helio P70 8-core (4x2.0GHz A73 Mali G72 MediaTek 4GB Android 9 Yes October,
One Macro (12 nm) 4x2.0GHz A53) APU LPDDR4X 2019
Device-4 Xiaomi Snapdragon 8-core (4x2GHz Gold ~ Adreno 610 Hexagon 4GB Android 10 Yes August,
Redmi 665 (11 nm) 4x1.8GHz Silver 686 DSP LPDDR4X 2020
Note8 Kryo260)
TABLE 11
DNN MODELS USED IN THIS RESEARCH
Denotation Model Name Application Input size No. of layers Model Size
Model 1 MobileNetV1 (Float) Image classification 224x224x3 31 16.9 MB
Model 2 MobileNetV1 (Quantized) Image classification 224x224x3 31 4.3 MB
Model 3 EfficientNet-lite (Float) Image classification 224x224x3 62 18.6 MB
Model 4 EfficientNet-lite (Quantized) Image classification 224x224x3 65 5.4 MB
Model 5 NASNet Mobile (Float) Image classification 224x224x3 663 21.4 MB
Model 6 Mobile BERT QA Natural language processing int32 [1, 384] 2541 100.7 MB
Model 7 Tensorflow ASR Speech recognition [20 Hz, 4 kHz] 8 3.8 MB

To make the experiment environment controllable, we carry
out all the experiments in a similar condition, e.g., brightness,
camera focus, image resolution, background applications, pro-
cessing sources, and test dataset. We use 640 x 480 pixels as
the image resolution, and TensorFlow Lite Delegate
to control the processing sources. The 2017 COCO test dataset,
WH-questions, and fixed single words are used for testing
the classification, NLP, and speech recognition, respectively.
In addition, even without any applications running in the
background, there is always a minimal power consumption —
which we call the base power. To distinguish the mobile Al
power from the base power, an additional layer is used before
the actual Al application.

¢) AI models: In this research, we use seven DNN models
for three different applications. In Table II, the details of each
model, including the input size, number of layers, and the
trained model size (occupied storage space) are shown.

d) Performance metric: We evaluate all the Al applications’
performances in terms of their latency, energy consumption,
and memory usage. The total energy consumption is controlled
by latency and memory usage, as well as the category of
Al applications, processing sources, model types (float and
quantized), and DNN structure and model size.

V. RESULTS AND DISCUSSION

We conduct experiments with all the devices listed in Table
I and models listed in Table II by switching to different
processing sources, such as CPU thread 1 and thread 4, GPU,
and NNAPI. Models 1 to 5 are for vision-based Al, and models
6 and 7 are for non-vision-based Al applications. It is to be
noted that models 2, 4, 6, and 7 do not support GPU processing
due to a lack of TensorFlow Lite optimization. In general,
the applications have input data processing (combining image
generation and conversion in classification) and inference tasks.
In this paper, we show some of the interesting findings due to
space constraints.

A. Latency and energy consumption of mobile Al
The end-to-end latency and energy consumption per cycle

for all the models with different processing sources are shown
in Fig. 3. First, we can see that quantized models decrease the
inference latency (13%) and energy consumption (25%) from
their respective float models. Additionally, there is a reduction
in the overall latency of 4% when switching to a 4-thread
from a single-thread CPU. However, in quantized models, the
multi-thread CPU processing slightly increases the total energy
consumption (3% on average). The use of GPU even lowers
the end-to-end latency and energy consumption compared to the
use of single-thread CPU (8% and 27% respectively on average)
and 4-thread CPU (7% and 25% respectively on average). On
the contrary, NNAPI behaves differently than the other three
processing sources on different devices. For models 4 and 5,
NNAPI increases latency and energy considerably. Our insight
here is that NNAPI can perform better with sufficient hardware
support from the manufacturers.

An interesting fact about the NLP application is that the text
processing step shows an entirely different latency pattern. This
segment takes user input which does not take uniform time, i.e.,
it varies with user habits of typing and thinking of the question.
Hence, the processing stage here is completely unpredictable
for different users. In NLP, each input consumes around 5.7
J, whereas, another non-vision application, speech recognition
takes around 161.85 mJ to process one speech input sampled at
a rate of 16 kHz using a single-thread CPU. NNAPI consumes
the least latency and energy for speech recognition.

In addition, we examine the power consumption charts of dif-
ferent applications and processing sources (Fig. 4). We observe
a slight initiation delay for every application (marked with red
arrows in Fig. 4), which varies with using different processors
and applications. This delay occurs during the time when the
application interface initiates till the activity-start point, which
is mainly originated by different hardware components being
accessed at the beginning of an Al application, such as the
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Fig. 3. End—to—el(id) mean latency and energy consumption per cycle of vision-
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NNAPI, and non-vision-based (e) model 6 and (f) model 7.

camera, keyboard, speaker, and microphone. Besides, different
processor delegations (e.g., GPU and NNAPI) are also done
during this period.

Highlights: Non-vision applications cannot be generalized
for latency and energy like vision-based ones. GPU processing
is not supported by non-vision applications, which should be
explored widely. The initiation delay (i.e., the delay between the
activity trigger and start point) varies along Al models, pro-
cessing sources, and applications, which is caused by accessing
different hardware components by mobile Al applications.

B. DNN structures and their inference latency and energy

DNN structures define the way inference activities work
in a mobile AI application. The behavior of DNN structures
varies across different kinds of applications as well, e.g., vision
and non-vision Al. For instance, a smaller DNN structure for
vision applications can incur higher latency and energy than a
larger non-vision DNN structure. Inference latency and energy
consumption per cycle are shown in Fig. 5 for DNN models
with single-thread CPU processing. We observe that model 5

e W ol
Conversion sart —-— Inference end

| = roie comeroncd RMNWWM ALY &Iww

Lo — —Initiation xlnla\— — i

Power (w)

‘% MV J"&«w A M

L —

F an:vwnmml!mn Inference end Initiation " ©etivity

h L. e A J(tm i

Time )

(b)

ywer comsurnpiion —v—Infbresce cad 2 Tl ]
_. —_— g 2 '.‘“il WM» J‘M uw‘ui,“:“!“metpudrl“dm Ut MY

13s

Power (w)

Power (w)

©

Fig. 4. Power consumption pattern for (a) classification, (b) NLP, and (c)
speech recognition.

takes longer inference time and energy due to its larger structure
than the other vision-based Al models. The longest latency and
highest energy are evident in model 6 (a complex structure
comprising 2541 layers).
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DNN models
Fig. 5. Inference latency and energy consumption per cycle by DNN models.
Highlights: DNN structures influence inference latency and
energy significantly, but the relationship is not linear at all.
Generally, larger DNN structures are responsible for higher
latency and energy for a mobile Al application.

C. DNN model size, memory usage, and inference energy

DNN model size (i.e., the storage space occupied by the
model) impacts memory usage and energy consumption during
inference. From our experiment, we observe that model 7 has
the lowest model size, hence causing the lowest memory and
energy consumption, whereas model 6 has the highest size,
memory, and energy consumption. This is more evident from
Fig. 6, which shows a comparison among all the models’ sizes,
inference memory, and energy consumption for single-thread
CPU processing.
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Fig. 6. Comparison of DNN model size, inference memory usage, and

inference energy consumption.

Highlights: Lower memory used by mobile Al applications
ensures computation resources and energy for other mobile
device activities. From this perspective, quantized and smaller
DNN models are best suited for mobile Al. The larger the
storage occupied by a DNN model, the higher the memory and
energy consumption.
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D. Performance evaluation of EPAM

We develop and train the Gaussian process regression-based
predictive energy model, EPAM, with each device’s SoC, CPU
frequency, no. of cores, memory size, processing sources, no. of
threads, application type, DNN model, DNN structure, memory
usage, processing latency, and inference latency from the large
experimental dataset from this research to predict the total
energy consumption per application cycle (data processing and
inference for each input). We use an empty basis function,
and ARD squared exponential kernel function for the hyper-
parameter optimization. We use device-1, 2, and 4 for training
and validation, and device-3 for 1-step ahead prediction testing.
Due to page limitation, we show only a few prediction results
in Fig. 7. We observe that EPAM’s energy prediction per cycle
is highly accurate for all the models. The overall root mean
squared error (RMSE) is 0.075 (3.06%), and the marginal log-
likelihood value is —1.449 x 102, which show that the trained
model is a good fit for the prediction. The prediction latency
depends on the machine used in running the model.
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Fig. 7. Evaluatgtc)zl of EPAM for (a) model 1 and 2 (b(;j)model 3 and 4, (¢)
model 5, and (d) model 6 and 7 with different processing sources.

Highlights: EPAM further helps developers and users to
perceive the performance of individual Al applications in terms
of energy with high accuracy — which is the primary motivation
of this research work. The larger and more diverse the training
dataset, the higher the prediction accuracy.

VI. CONCLUSION
In this paper, we presented a comprehensive study of mo-

bile AI applications with different processing sources and Al
models. Overcoming the challenges with measurement, we
conducted experiments to assess the performance of different
Al models, processing sources, and devices. Our measurement
work shows that the latency, energy consumption, and memory
usage vary based on DNN models and processing sources. Mo-
bile Al systems’ performance is substantially improved using
quantized models than floating-point models in terms of latency
and energy. Another important finding is that the storage space
occupied by DNN models influences the memory and energy
consumed during inference almost linearly. Additionally, non-
vision applications follow a different trend of latency and
energy consumption than vision-based Al since their input
processing techniques differ from vision applications. Every
Al application has an initiation delay caused by accessing

various hardware components of mobile devices, which varies
for different models and configurations. Moreover, the latency,
memory, Al model, and device configuration impact the total
energy consumption for a complete application cycle, albeit
at different correlations. This non-linear correlation in a non-
parametric model led to our proposed predictive energy model,
EPAM, based on Gaussian process regression. Finally, we
trained and validated EPAM with the vast dataset obtained
from our experiment. The evaluation of EPAM shows high
accuracy with an overall RMSE of 0.075 (3.06%). Developers
can use EPAM to predict the energy consumption of their
mobile Al applications without measuring the energy externally
to improve the comprehensive user experience. To summarize,
this novel predictive energy model, EPAM, will help the mobile
Al research community design energy-improved applications
considering all the control factors and parameters that can
reduce energy requirements to enable better service for smart-
phones, wearable devices, and autonomous vehicles.
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