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Abstract

In 1989, Rota conjectured that, given n bases B1, . . . , Bn of the vector space Fn
over some field F, one can

always decompose the multi-set B1 [ · · · [Bn into transversal bases. This conjecture remains wide open

despite of a lot of attention. In this paper, we consider the setting of random bases B1, . . . , Bn. More

specifically, our first result shows that Rota’s basis conjecture holds with probability 1�o(1) as n ! 1 if

the bases B1, . . . , Bn are chosen independently uniformly at random among all bases of Fn
q for some finite

field Fq (the analogous result is trivially true for an infinite field F). In other words, the conjecture is true

for almost all choices of bases B1, . . . , Bn ✓ Fn
q . Our second, more general, result concerns random bases

B1, . . . , Bn ✓ Sn
for some given finite subset S ✓ F (in other words, bases B1, . . . , Bn where all vectors

have entries in S). We show that when choosing bases B1, . . . , Bn ✓ Sn
independently uniformly at

random among all bases that are subsets of Sn
, then again Rota’s basis conjecture holds with probability

1� o(1) as n ! 1.

1 Introduction

Rota’s basis conjecture (see [11, Conjecture 4]) is a famous conjecture from 1989 concerning bases in vector
spaces. Given n bases B1, . . . , Bn of an n-dimensional vector space, the conjecture asserts that one can
decompose the multi-set B1 [ · · ·[Bn into bases of the vector space that are transversal with respect to the
original bases B1, . . . , Bn. Here, a basis B ✓ B1 [ · · · [ Bn is called transversal with respect to B1, . . . , Bn

if it contains exactly one vector from each of B1, . . . , Bn (where B1, . . . , Bn are interpreted as subsets of the
multi-set B1 [ · · ·[Bn in the natural way, and if a vector v appears in two or more of the bases B1, . . . , Bn,
then the multiple copies of v in the multi-set B1 [ · · · [ Bn are distinguished by which set Bi they came
from). Note that, as each basis B1, . . . , Bn consists of n vectors, the union B1 [ · · · [ Bn has size n2. Each
transversal basis consists again of n vectors, so a decomposition of B1 [ · · ·[Bn into transversal bases must
have exactly n transversal bases. Since every n-dimensional vector space over any field F is isomorphic to
Fn, the conjecture can be restated as follows.

Conjecture 1.1 (Rota’s basis conjecture). Let F be a field and let B1, . . . , Bn ✓ Fn be bases of the vector
space Fn. Then the multi-set B1 [ · · · [Bn can be partitioned into n bases of Fn, which are transversal with
respect to the original bases B1, . . . , Bn.

Rota’s basis conjecture is also often considered in the more general setting of matroids rather than vector
spaces. Despite of a lot of attention (including a “Polymath” project dedicated to the conjecture, see [4]),
the conjecture remains wide open, even in the setting of vector spaces.
Drisko [6] and Glynn [10] proved that Conjecture 1.1 is true over fields F of characteristic zero if n � 1 or
n + 1, respectively, is a prime number (more, precisely Drisko and Glynn proved the Alon-Tarsi conjecture
concerning enumerations of certain types of Latin squares for such n, and via earlier work of Huang and
Rota [11], this implies Conjecture 1.1 in these cases). Furthermore, the matroid version of Conjecture 1.1 has
been proved for certain special classes of matroids (specifically, for paving matroids [8] and for strongly base
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orderable matroids [13]). Aharoni and Berger [1, Theorem 10.4] showed that the natural fractional relaxation
of the conjecture holds, even in the matroid setting.
There have also been many works concerning partial decomposition or covering versions of the conjecture.
Specifically, Bucić, Kwan, Pokrovskiy, and Sudakov [3] (improving earlier results in [5, 9]) proved that one
can find n/2 � o(n) disjoint transversal bases in B1 [ · · · [ Bn, Pokrovskiy [12] proved that one can find
n � o(n) disjoint linearly independent transversal sets of size n � o(n) in B1 [ · · · [ Bn, and Aharoni and
Berger [1, Assertion 8.11] proved that B1 [ · · ·[Bn can be decomposed into 2n disjoint linearly independent
transversal sets (and the bound 2n has been slightly improved to 2n� 2 by Polymath, see [4]).
In this paper, we consider the setting of random bases B1, . . . , Bn. If the field F is infinite, then generically
any n of the n2 vectors appearing in B1, . . . , Bn will be linearly independent, in which case Conjecture 1.1 is
trivially true (as any decomposition of B1 [ · · · [Bn into n transversal sets will give the desired transversal
bases). For example, if F = R, then for any continuous probability distribution on the set of all bases of Rn

this happens with probability 1. However, considering (uniformly) random bases is much more interesting
over finite fields, especially if n is large with respect to the field size.
In our first result, we consider a finite field F and assume that the bases B1, . . . , Bn are chosen independently
uniformly at random among all bases of Fn. The problem of proving Rota’s basis conjecture for random
bases over some fixed finite field has been suggested by Ferber [7]. Resolving this problem, we prove that the
conjecture indeed holds asymptotically almost surely for independent uniformly random bases B1, . . . , Bn ✓
Fn

q
for any (finite) field size q.

Theorem 1.2. Fix a prime power q � 2. Let B1, . . . , Bn ✓ Fn

q
be independent uniformly random bases of the

vector space Fn

q
(each chosen uniformly at random among all bases of Fn

q
). Then, with probability 1� o(1) as

n ! 1, the multi-set B1 [ · · · [Bn can be partitioned into n bases of Fn

q
, which are transversal with respect

to the original bases B1, . . . , Bn.

We remark that in fact, the o(1)-term here can be taken independently of q (so Theorem 1.2 also holds if q
is allowed to depend on n). Note that Theorem 1.2 can be interpreted as saying that Rota’s basis conjecture
holds for “almost all” choices of bases B1, . . . , Bn ✓ Fn

q
.

We note that Theorem 1.2 cannot simply be proved by considering a random partition of B1[ · · ·[Bn into n
transversal sets. Indeed, for independent uniformly random bases B1, . . . , Bn ✓ Fn

q
and a random partition

of B1 [ · · ·[Bn into n transversal sets, the probability of obtaining n transversal bases as desired is o(1) (in
fact, this probability exponentially small in n). Hence we must be more careful in how to obtain the desired
partition into n transversal bases.
For various problems concerning vectors in Rn, or more generally in Fn, it is of interest to restrict one’s
attention to vectors with entries in some particular fixed set, most notably {0, 1}-vectors. Our next result is
a version of Theorem 1.2, where we only consider bases of Fn consisting of vectors with entries from some
specified finite set S. In other words, we prove that Rota’s basis conjecture holds for random bases of vectors
with entries from some specified set (e.g. {0, 1}-vectors).

Theorem 1.3. Fix a field F and a finite subset S ✓ F of size |S| � 2. Let B1, . . . , Bn ✓ Sn be independent
random bases of the vector space Fn, where each Bi is chosen uniformly at random from the collection
{B ✓ Sn | B is a basis of Fn} of the bases of Fn with all vector entries in S. Then, with probability 1� o(1)
as n ! 1, the multi-set B1[ · · ·[Bn can be partitioned into n bases of Fn, which are transversal with respect
to the original bases B1, . . . , Bn.

We remark that the o(1)-term here can be taken independently of F and S.
Note that Theorem 1.2 can be viewed as a special case of Theorem 1.3 by taking F = S = Fq. The more
general setting of Theorem 1.3 introduces various challenges caused by the lack of symmetry between different
bases B ✓ Sn of Fn. Indeed, in the setting of Theorem 1.2, any two bases B ✓ Fn

q
can be transformed into

each other by an isomorphism of Fn. However, such an isomorphism does not necessarily preserve the set Sn

in the setting of Theorem 1.3. Here is another example illustrating this point: In Fn

q
, each non-zero vector is

contained in the same number of bases B of Fn

q
. However, taking S = {0, 1, 2} and a prime q � 5, not every

non-zero vector in {0, 1, 2}n is contained in the same number of bases B ✓ {0, 1, 2}n of Fn

q
(if n � 2).

One may also be interested in special sets of “allowed vectors” other than sets of the form Sn as in Theorem
1.3. For example, graphic matroids naturally corresponds to the setting of considering vectors in {1, 0,�1}n
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consisting of precisely one 1-entry and one (�1)-entry (with the remaining n � 2 entries being zero). So it
is natural to study the setting where for some subset T ✓ Fn of “allowed vectors” one considers independent
uniformly random bases B1, . . . , Bn ✓ T of Fn (i.e. independent random bases, each chosen uniformly at
random among all bases of Fn that are subsets of T ). Taking T = Sn gives precisely the setting of Theorem
1.3. Our arguments to prove Theorem 1.3 generalize to sets T ✓ Fn that are reasonably well spread out
over Fn, in the sense of being not too “clumped” on any subspace of Fn. The following definition makes this
condition precise.

Definition 1.4. For 0 < c < 1, we say that a set T ✓ Fn of vectors in the vector space Fn over some field
F is c-dispersed if every (linear) subspace V ✓ Fn satisfies |V \ T |  cn�dimV · |T |.

In other words, a set T ✓ Fn is c-dispersed if every subspace V ✓ Fn contains at most a (cn�dimV )-fraction of
the vectors in T . Note that every c-dispersed set T ✓ Fn is also c0-dispersed if 0 < c < c0 < 1. Furthermore,
we have span(T ) = Fn for every c-dispersed set T ✓ Fn (for any 0 < c < 1).
Our arguments for proving Theorem 1.3 give an analogous result with Sn replaced by a c-dispersed set T ✓ Fn

for some fixed 0 < c < 1. This is stated in the following theorem.

Theorem 1.5. Fix a field F and 0 < c < 1. Let T ✓ Fn be c-dispersed and let B1, . . . , Bn ✓ T be
independent random bases of the vector space Fn, where each Bi is chosen uniformly at random from the
collection {B ✓ T | B is a basis of Fn}. Then, with probability 1�o(1) as n ! 1, the multi-set B1[ · · ·[Bn

can be partitioned into n bases of Fn, which are transversal with respect to the original bases B1, . . . , Bn.

The o(1)-term here can actually be taken independently of F (but it is required for c to be fixed).
Organization. This paper is organized as follows. In Section 2, we deduce Theorems 1.2 and 1.3 from
Theorem 1.5, and state some auxiliary lemmas for the proof of Theorem 1.5. Section 3 explains the approach
for proving Theorem 1.5, but the main part of the proof is (encapsulated in a certain proposition) postponed
to Section 5. Section 4 contains some preparations for the proof in Section 5, while Section 6 contains the
proofs of some lemmas in Section 5. At the end of the paper, we make some concluding remarks in Section 7.
Acknowledgements. The author is grateful for helpful discussions with Asaf Ferber and Matthew Kwan. The
author would also like the two anonymous referees for their careful reading of the paper, and their helpful
comments.

2 Auxiliary lemmas and preparations

Lemma 2.1. For any field F and any finite subset S ✓ F of size |S| � 2, the set Sn ✓ Fn is (1/|S|)-dispersed.

Proof. Let V ✓ Fn be a subspace of dimension k. We need to show that |V \ Sn|  (1/|S|)n�k · |Sn|, i.e.
that |V \Sn|  |S|k. The k-dimensional subspace V ✓ Fn is given by a system of n� k linearly independent
linear equations. When writing this system in row echelon form, we obtain k free variables (whereas the
other n� k variables are determined by linear expressions in the k free variables). For a vector in V \Sn, all
free variables need to take values in S, so there are at most |S|k choices for the free variables (which then, in
turn, determine the remaining variables). Thus, |V \ Sn|  |S|k as desired.

Using Lemma 2.1, we can easily deduce Theorem 1.3 from Theorem 1.5.

Proof of Theorem 1.3 assuming Theorem 1.5. Let S ✓ F be a subset of size |S| � 2. By Lemma 2.1, the set
T = Sn ✓ Fn is (1/|S|)-dispersed, and in particular (1/2)-dispersed. We can now apply Theorem 1.5 with
c = 1/2 to obtain the desired conclusion.

Recalling that Theorem 1.3 immediately implies Theorem 1.2 as a special case (by taking F = S = Fq), it
only remains to prove Theorem 1.5. This will be our goal for the rest of this paper.
So let us from now on fix a field F and 0 < c < 1. All of our asymptotic o-notation in the rest of this paper
may depend on the fixed value of c.
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We define

c0 = (1� c) · (1� c2) · (1� c3) · · · =
1Y

i=1

(1� ci). (2.1)

It is clear that this infinite product is well-defined, since the sequence of partial products
Q

m

i=1(1 � ci) for
m ! 1 is a monotone decreasing sequence of non-negative numbers and must therefore be convergent. Note
that c0 only depends on our fixed value of c.

Lemma 2.2. We have 0 < c0 < 1.

Proof. Since c > 0, it is easy to see that c0 < 1. In order to show c0 > 0, observe that

c0 =
1Y

i=1

(1� ci) =
1Y

i=1

(1� ci�1 · c) �
1Y

i=1

(1� c)c
i�1

= (1� c)
P1

i=1 c
i

= (1� c)1/(1�c) > 0,

where the inequality in the third step follows from Bernoulli’s inequality.

Finally, we will use the following auxiliary lemma in the proof of Theorem 1.5. We postpone the proof of
this lemma to Section 6 (the proof is not difficult, but involves a somewhat lengthy computation).

Lemma 2.3. Let Z1, . . . , ZK be a sequence of random variables. For some finite set H, consider events E(`)
h

for h 2 H and ` = 1, . . . ,K, where each event E(`)
h

depends only on the outcomes of Z1, . . . , Z`. Suppose
that �1, . . . ,�K with 0  �`  1 for ` = 1, . . . ,K are chosen such that the following condition holds: For any
subset H 0 ✓ H, any ` = 1, . . . ,K and any outcomes of Z1, . . . , Z`�1, we have (subject to the randomness of
Z` when conditioning on the given outcomes of Z1, . . . , Z`�1) that

Pr
h
E(`)
h

holds for all h 2 H 0
���Z1, . . . , Z`�1

i
 (�`)

|H0|.

Then we can conclude that

Pr
h
for each h 2 H there is ` 2 {1, . . . ,K} such that E(`)

h
holds

i
 (1� (1� �1) · · · (1� �K))|H| .

3 Proof strategy for Theorem 1.5

Recall that in the previous section we fixed a field F and 0 < c < 1. As in Theorem 1.5, let T ✓ Fn be a
c-dispersed subset.
We now need to consider independent random bases B1, . . . , Bn ✓ T of the vector space Fn, where each
Bi is chosen independently uniformly at random among all bases of Fn that are subsets of T . For each
basis B1, . . . , Bn, we can imagine that it is equipped with an ordering of its n vectors (take such an ordering
uniformly randomly among all n! orderings). In other words, we can write Bi = {bi,1, . . . , bi,n} for i = 1, . . . , n
where bi,1, . . . , bi,n 2 T . Now, for each i = 1, . . . , n the n-tuple (bi,1, . . . , bi,n) 2 Tn is uniformly random among
all n-tuples in Tn that are bases of Fn (and these n-tuples are independent for different i).
In other words, let us from now on consider independent random n-tuples (bi,1, . . . , bi,n) 2 Tn for i = 1, . . . , n,
where each (bi,1, . . . , bi,n) 2 Tn is chosen uniformly random among all n-tuples in Tn that are bases of Fn,
and let Bi = {bi,1, . . . , bi,n} for i = 1, . . . , n.
In order to prove Theorem 1.5, we need to prove that with probability 1� o(1), the multi-set B1 [ · · · [Bn

can be partitioned into n bases of Fn, which are transversal with respect to the original bases B1, . . . , Bn

(i.e. which are each of the form {b1,j1 , b2,j2 , . . . , bn,jn} for some j1, . . . , jn 2 {1, . . . , n}).
In order to construct the desired transversal bases (with high probability), let us consider multi-sets Xj and Yj

for j = 1, . . . , n defined as follows: First fix some choice of n0 2 {bn/2c, dn/2e} throughout the rest of the pa-
per. Now, for every j = 1, . . . , n, define Xj = {b1,j , b2,j , . . . , bn0,j} and Yj = {bn0+1,j , bn0+2,j , . . . , bn,j} (taken
as a multi-set in case there are repetitions among the vectors b1,j , b2,j , . . . , bn0,j and bn0+1,j , bn0+2,j , . . . , bn,j ,
respectively). Note that X1, . . . , Xn form a partition of the multi-set B1 [ · · · [ Bn0 , and Y1, . . . , Yn form a
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partition of the multi-set Bn0+1 [ · · · [ Bn. Thus, X1, . . . , Xn and Y1, . . . , Yn together form a partition of
B1 [ · · · [Bn.
Note that for any h, j 2 {1, . . . , n}, the multi-set Xh [ Yj = {b1,h, . . . , bn0,h, bn0+1,j , . . . , bn,j} is transversal
with respect to the bases B1, . . . , Bn. Hence, if the n vectors in Xh[Yj are linearly independent, then Xh[Yj

is a transversal basis. Let us define a bipartite graph, with n vertices on the left and n vertices on the right,
where for all h, j 2 {1, . . . , n} we draw an edge between vertex j on the left and vertex h on the right if and
only if the n vectors in Xh [ Yj are linearly independent. Then each edge in this graph corresponds to a
transversal basis of the form Xh [ Yj .
Hence, in order to find a partition of B1 [ · · · [ Bn into n transversal bases, it suffices to find a perfect
matching in this bipartite graph. Indeed, each edge of such a perfect matching would give a transversal basis
Xh[Yj and together they would form a partition of the multi-set X1[ · · ·[Xn[Y1[ · · ·[Yn = B1[ · · ·[Bn.
Thus, in order to prove Theorem 1.5, it suffices to show that the bipartite graph defined above has a perfect
matching with probability 1 � o(1). This follows from the following proposition, which assert that in any
“half” of our bipartite graph (taking half the vertices on the left and half the vertices in the right), with
probability 1� o(1) one can find a perfect matching.

Proposition 3.1. Let M ✓ {1, . . . , n} be a subset of size |M | 2 {bn/2c, dn/2e}. Let us consider the induced
subgraph of the bipartite graph defined above, where we only take the vertices with labels in M on the left and
the vertices with labels in M on the right. Then this induced subgraph has a perfect matching with probability
1� o(1).

In order to find the desired perfect matching in our bipartite graph, we apply Proposition 3.1 to the set
M1 = {1, . . . , bn/2c} and to the set M2 = {bn/2c + 1, . . . , n}. These two sets have size |M1| = bn/2c and
|M2| = dn/2e, so with probability 1� o(1) for both of the sets M1 and M2 there is a perfect matching in the
induced subgraph described in the proposition. Note that the sets of vertices considered in the proposition for
M1 and for M2 form a partition of the vertex set of the original bipartite graph. Hence, if we can find perfect
matchings in the two resulting induced subgraphs for M1 and for M2, then we obtain a perfect matching in
the original bipartite graph. Thus, Proposition 3.1 implies Theorem 1.5.
So it suffices to prove Proposition 3.1, and the rest of this paper is devoted to proving this proposition. Upon
changing the order of the vectors bi,1, . . . , bi,n in each basis Bi, we may assume for the proof of Proposition
3.1 that M = {1, . . . ,m} with m 2 {bn/2c, dn/2e}. Indeed, note that changing the order of the vectors
bi,1, . . . , bi,n in each basis Bi, changes the order of the list of sets X1, . . . , Xn and of the list of sets Y1, . . . , Yn

accordingly. So let us from now on assume that M = {1, . . . ,m} with m 2 {bn/2c, dn/2e}.
The reason for considering the induced subgraph in Proposition 3.1 rather than the entire original bipartite
graph is as follows. We will imagine that for each i = 1, . . . , n we expose the vectors bi,1, . . . , bi,m one vector
at a time in this order. The choices for the vectors bi,1, . . . , bi,m are clearly not independent of each other
(for example, the vectors bi,1, . . . , bi,m must always be linearly independent for each i = 1, . . . , n). However,
the fact that m is significantly smaller than n makes the dependence of each of the vectors bi,1, . . . , bi,m on
the previously exposed vectors easier to handle (in particular, because the span of the previously exposed
vectors is not too large).
In the next section, we will analyze the probability distribution for each new vector when choosing the vectors
bi,1, . . . , bi,m one at a time for each i = 1, . . . , n (note that the choices for different i are actually independent
of each other since the bases B1, . . . , Bn are independent). The result of this section will then be used in our
proof of Proposition 3.1 in Section 5.

4 Lemmas for the probability distribution for new basis vectors

Let us imagine that each random basis Bi = {bi,1, . . . , bi,n} ✓ T is exposed one vector at a time in this order.
Then each vector bi,j for 1  j  n is some random vector in T whose distribution depends on the previously
exposed vectors bi,1, . . . , bi,j�1 of the basis Bi (recall that the different bases B1, . . . , Bn are independent).
Given bi,1, . . . , bi,j�1, the new vector bi,j 2 T must be linearly independent from bi,1, . . . , bi,j�1. Note,
however, that the distribution of bi,j is not necessarily uniform among all vectors in T \ span(bi,1, . . . , bi,j�1).
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Instead, the different possibilities of bi,j 2 T \ span(bi,1, . . . , bi,j�1) have probabilities proportional to the
number of possibilities for extending bi,1, . . . , bi,j�1, bi,j further to a basis of Fn with vectors in T .
The next two lemmas show useful properties of this probability distribution. Recall that in (2.1) we defined
c0 > 0 (depending only on 0 < c < 1, which we fixed).

Lemma 4.1. For some i, j 2 {1, . . . , n}, assume that the vectors bi,1, . . . , bi,j�1 2 T have already been
exposed, and fix any outcomes of these vectors. Now, consider the probability distribution for bi,j in the set
T \ span(bi,1, . . . , bi,j�1). Then for any two vectors in T \ span(bi,1, . . . , bi,j�1) the corresponding probabilities
differ by a factor of at most 1/c0.

Proof. For any x, y 2 T \ span(bi,1, . . . , bi,j�1), we need to show Pr[bi,j = x] � c0 · Pr[bi,j = y], conditioned
on the given outcomes of bi,1, . . . , bi,j�1 (which are linearly independent). Recall that the probability for bi,j
to attain a certain vector is proportional to the number of possibilities for extending the resulting sequence
of vectors bi,1, . . . , bi,j�1, bi,j to a basis of Fn with vectors in T . Hence the desired inequality is equivalent to

|{(zj+1, . . . , zn) 2 Tn�j | bi,1, . . . , bi,j�1, x, zj+1, . . . , zn is a basis of Fn}|
� c0 · |{(zj+1, . . . , zn) 2 Tn�j | bi,1, . . . , bi,j�1, y, zj+1, . . . , zn is a basis of Fn}|

The right-hand side can is clearly at most c0 · |T |n�j . Let us now show that the left-hand side is at least
c0 · |T |n�j .
In order to show this, consider independent uniformly random vectors zj+1, . . . , zn 2 Tn�j . We wish to show
that with probability at least c0 the vectors bi,1, . . . , bi,j�1, x, zj+1, . . . , zn form a basis of Fn. This happens if
and only if the vectors bi,1, . . . , bi,j�1, x, zj+1, . . . , zn are linearly independent. Note that bi,1, . . . , bi,j�1, x are
linearly independent (since bi,1, . . . , bi,j�1 must be linearly independent and x 2 T \ span(bi,1, . . . , bi,j�1)).
Now, the probability that the (uniformly random) vector zj+1 2 T lies in span(bi,1, . . . , bi,j�1, x) is at most

|T \ span(bi,1, . . . , bi,j�1, x)|
|T |  cn�dim span(bi,1,...,bi,j�1,x) = cn�j ,

where the inequality holds since T is c-dispersed (see Definition 1.4). Hence the vectors bi,1, . . . , bi,j�1, x, zj+1

are linearly independent with probability at least 1� cn�j . Whenever this happens, we can repeat the same
argument for zj+2, obtaining that zj+2 lies in span(bi,1, . . . , bi,j�1, x, zj+1) with probability at most cn�j�1.
So with probability at least (1 � cn�j) · (1 � cn�j�1), the vectors bi,1, . . . , bi,j�1, x, zj+1, zj+2 are linearly
independent. Repeating this argument, we can show inductively that for every h = j + 1, . . . , n, the vectors
bi,1, . . . , bi,j�1, x, zj+1, . . . , zh are linearly independent with probability at least (1 � cn�j) · · · (1 � cn+1�h).
Thus, taking h = n, we see that the vectors bi,1, . . . , bi,j�1, x, zj+1, . . . , zn are linearly independent with
probability at least

(1� cn�j) · (1� cn�j�1) · · · (1� c) =
n�jY

`=1

(1� c`) �
1Y

`=1

(1� c`) = c0.

Thus, we proved that

|{(zj+1, . . . , zn) 2 Tn�j | bi,1, . . . , bi,j�1, x, zj+1, . . . , zn is a basis of Fn}|
� c0 · |T |n�j � c0 · |{(zj+1, . . . , zn) 2 Tn�j | bi,1, . . . , bi,j�1, y, zj+1, . . . , zn is a basis of Fn}|,

as desired.

The next lemma only applies to bi,j with j  dn/2e (and only with sufficiently large n in terms of c), but
note that in order to prove Proposition 3.1 we only need to consider the vectors bi,j with j  m  dn/2e
(since these are the only vectors appearing in the sets X1, . . . , Xm, Y1, . . . , Ym).

Lemma 4.2. Suppose that n is sufficiently large with respect to c such that cn/2  (1 � c)/2. For some
i, j 2 {1, . . . , n} with j  dn/2e, assume that the vectors bi,1, . . . , bi,j�1 2 T have already been exposed. For
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some 1  k  n, let V ✓ Fn be a subspace of dimension n � k. Then, conditional on any fixed outcomes of
bi,1, . . . , bi,j�1, the random vector bi,j satisfies bi,j 2 V with probability

Pr [bi,j 2 V | bi,1, . . . , bi,j�1] 
✓
1 + (c0/2) · 1� ck

ck

◆�1

.

Proof. As in the lemma statement, let us fix any outcomes bi,1, . . . , bi,j�1, and let W = span(bi,1, . . . , bi,j�1).
Since j  dn/2e, we have dimW  n/2 and Definition 1.4 yields |W \ T |  cn�dimW · |T |  cn/2 · |T |.
Since the vectors bi,1, . . . , bi,j must always be linearly independent, we have bi,j 2 T \W for any outcome of
bi,j (conditioned on the fixed outcomes of bi,1, . . . , bi,j�1). By Lemma 4.1, for any two vectors in x, y 2 T \W ,
we have

Pr[bi,j = x | bi,1, . . . , bi,j�1] � c0 · Pr[bi,j = y | bi,1, . . . , bi,j�1].

Let ⇢ be the maximum value of Pr[bi,j = y | bi,1, . . . , bi,j�1] among all y 2 T \W . Then for every x 2 T \W ,
we have

c0 · ⇢  Pr[bi,j = x | bi,1, . . . , bi,j�1]  ⇢.

Hence
Pr[bi,j 2 V | bi,1, . . . , bi,j�1] =

X

x2V \(T\W )

Pr[bi,j = x | bi,1, . . . , bi,j�1]  |V \ T | · ⇢,

On the other hand,

Pr[bi,j 62 V | bi,1, . . . , bi,j�1] =
X

x2T\(V [W )

Pr[bi,j = x | bi,1, . . . , bi,j�1] � |T \ (V [W )| · c0 · ⇢.

Using that

|T \ (V [W )| � |T |� |V \ T |� |W \ T | � |T |� |V \ T |� cn/2 · |T | = (1� cn/2)|T |� |V \ T |,

this implies
Pr[bi,j 62 V | bi,1, . . . , bi,j�1] �

⇣
(1� cn/2)|T |� |V \ T |

⌘
· c0 · ⇢.

Now, using that |V \ T |  ck · |T | (by Definition 1.4 for the (n� k)-dimensional space V ), we can conclude

1

Pr[bi,j 2 V | bi,1, . . . , bi,j�1]
=

Pr[bi,j 2 V | bi,1, . . . , bi,j�1] + Pr[bi,j 62 V | bi,1, . . . , bi,j�1]

Pr[bi,j 2 V | bi,1, . . . , bi,j�1]

= 1 +
Pr[bi,j 62 V | bi,1, . . . , bi,j�1]

Pr[bi,j 2 V | bi,1, . . . , bi,j�1]

� 1 +

�
(1� cn/2)|T |� |V \ T |

�
· c0 · ⇢

|V \ T | · ⇢

= 1 + c0 ·
✓
(1� cn/2)|T |

|V \ T | � 1

◆

� 1 + c0 ·
✓
(1� cn/2)|T |

ck|T | � 1

◆

= 1 + c0 · 1� cn/2 � ck

ck
.

By our assumption k � 1, we have cn/2  (1� c)/2  (1� ck)/2 and obtain

1

Pr[bi,j 2 V | bi,1, . . . , bi,j�1]
� 1 + c0 · 1� cn/2 � ck

ck
� 1 + c0 · (1� ck)/2

ck
= 1 + (c0/2) · 1� ck

ck
.

This gives the desired inequality.
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The term on the right-hand side of the inequality in Lemma 4.2 will occur repeatedly (for different values of
k) in our proof. To simplify notation, let us write

↵k =

✓
1 + (c0/2) · 1� ck

ck

◆�1

(4.1)

for any positive integer k. Note that 0 < ↵k < 1 (recalling that 0 < c < 1 and 0 < c0 < 1) and that ↵k depends
only on c and k. Now, the bound in Lemma 4.2 reads Pr [bi,j 2 V | bi,1, . . . , bi,j�1]  ↵k. Furthermore, note
that for every positive integer k we have

↵k =

✓
1 + (c0/2) · 1� ck

ck

◆�1

=

✓
1� (c0/2) +

c0/2

ck

◆�1

<

✓
c0/2

ck

◆�1

=
2

c0
· ck, (4.2)

and also note that ↵1 � ↵2 � ↵3 � . . . is a monotone decreasing sequence.

Lemma 4.3. For any positive integers k and `, we have ↵k`  (↵k)`.

Proof. Note that

�
ck + (c0/2) · (1� ck)

�`
= ck` +

`X

i=1

✓
`

i

◆
(c0/2)i · (1� ck)i · (ck)`�i

 ck` + (c0/2) ·
`X

i=1

✓
`

i

◆
(1� ck)i · (ck)`�i = ck` + (c0/2) · (1� ck`),

where we used that c0/2 < 1. Dividing by ck` yields

✓
1 + (c0/2) · 1� ck

ck

◆`

 1 + (c0/2) · 1� ck`

ck`
,

which upon taking inverses gives the desired inequality (↵k)` � ↵k`.

Let us now define

� =
1

3
· (1� ↵1) · (1� ↵2) · (1� ↵3) · · · =

1

3
·

1Y

k=1

(1� ↵k). (4.3)

This infinite product is well-defined, since the corresponding sequence of partial products is a monotone
decreasing sequence of non-negative numbers and therefore converges. Note that � only depends on c.
Before starting the proof of Proposition 3.1 in the following section, we first establish that � > 0.

Lemma 4.4. We have 0 < � < 1/3.

Proof. Since 0 < ↵k < 1 for all positive integers k, it is easy to see that 0  � < 1/3. In order to establish
that � > 0, choose a sufficiently large positive integer ` such that c` < (c0/2) · (1� c). Then by (4.2) we have

� =
1

3
·
`�1Y

k=1

(1� ↵k) ·
1Y

i=k

(1� ↵k) �
1

3
·
`�1Y

k=1

(1� ↵k) · (1� ↵` � ↵`+1 � . . . )

� 1

3
·
`�1Y

k=1

(1� ↵k) ·
✓
1� 2

c0
· (c` + c`+1 + . . . )

◆
=

1

3
·
`�1Y

k=1

(1� ↵k) ·
✓
1� 2

c0
· c`

1� c

◆
> 0,

noting that the last term is a finite product of positive factors.
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5 Finding the perfect matching: proof of Proposition 3.1

As discussed in Section 3, for the proof of Proposition 3.1 we may assume that M = {1, . . . ,m} with
m 2 {bn/2c, dn/2e}. Let G be the induced subgraph appearing in Proposition 3.1, i.e. G is the bipartite
graph with vertices 1, . . . ,m on the left and vertices 1, . . . ,m on the right, where for all h, j 2 {1, . . . ,m} we
draw an edge between vertex h on the left and vertex j on the right if and only if the n vectors in Xh [ Yj

are linearly independent. We need to prove that with probability 1 � o(1) (as n ! 1) this graph G has a
perfect matching.
Recall that 0 < c < 1 is fixed. Let us assume that n is sufficiently large with respect to c, such that in
particular cn/2  (1� c)/2 (note that then we can apply Lemma 4.2 whenever j  m).
Our first lemma states that with high probability each of the multi-sets X1, . . . , Xm individually is linearly
independent in Fn (and is hence in particular just an ordinary set of vectors with no repetitions).

Lemma 5.1. With probability 1� o(1), each of the multi-sets X1, . . . , Xm is linearly independent.

Proof. It suffices to prove that for each j 2 {1, . . . ,m}, the probability that Xj is not linearly independent
is at most o(1/n). Indeed, then a union bound over all j 2 {1, . . . ,m} shows that with probability at least
1�m · o(1/n) = 1� o(1), each of X1, . . . , Xm is linearly independent.
So let j 2 {1, . . . ,m}. We prove that the probability that Xj is not linearly independent is at most o(1/n),
even when conditioning on any outcomes of the sets X1, . . . , Xj�1, i.e. of the vectors bi,1, . . . , bi,j�1 for
i = 1, . . . , n0. So let us fix any outcomes of bi,1, . . . , bi,j�1 for i = 1, . . . , n0.
Let us now expose the vectors of Xj = {b1,j , . . . , bn0,j} one vector at a time in this order. If Xj is not linearly
independent, then one of the vectors bi,j for some i 2 {1, . . . , n0} must be in the span of the previously
exposed vectors b1,j , . . . , bi�1,j . For each i 2 {1, . . . , n0}, this span has dimension at most i � 1  n0 � 1,
so by Lemma 4.2 and (4.1) the probability that bi,j is inside span(b1,j , . . . , bi�1,j) is at most ↵n�n0+1 
(2/c0) ·cn�n

0+1  (2/c0) ·cn/2 (here, we used (4.2) and n0  dn/2e). Thus, the total probability that Xj is not
linearly independent is indeed at most n0 ·(2/c0)·cn/2  n·(2/c0)·cn/2 = o(1/n) (recalling that 0 < c < 1).

Recall that we need to prove that the bipartite graph G has a perfect matching with probability 1� o(1). In
order to do so, we will show that that with probability 1� o(1) the graph G satisfies the condition in Hall’s
marriage theorem. To establish this, we first show that with probability 1� o(1) all vertices in G have high
degree (see Lemmas 5.3 and 5.4 below). And second, we show for some L (depending only on c), that with
probability 1� o(1), for any L distinct vertices on the left side the union of their neighborhoods is large (see
Lemma 5.9 below).
Recall that we defined � (depending only on c) in (4.3) and we established in Lemma 4.4 that � > 0. The
following lemma is a key step towards our our first goal of showing that with probability 1� o(1) all vertices
in G have high degree. The lemma states, roughly speaking, that for every vertex h on the left, each vertex
j on the right has an edge to h on the left with probability at least 3� (in other words, Xh [ Yj is linearly
independent with probability at least 3�). More precisely, the lemma states that this is true even when
conditioning on the outcomes of the sets Y1, . . . , Yj�1.

Lemma 5.2. Let h, j 2 {1, . . . ,m}, and fix any outcome of Xh = {b1,h, . . . , bn0,h} such that b1,h, . . . , bn0,h

are linearly independent. Furthermore, consider any fixed outcomes of the vectors in the sets Y1, . . . , Yj�1,
i.e. of the vectors bi,1, . . . , bi,j�1 for all i = n0 + 1, . . . , n. Then, conditional on the outcomes of the vectors
in Y1, . . . , Yj�1, subject to the randomness of Yj = {bn0+1,j , . . . , bn,j}, the multi-set Xh [ Yj is linearly
independent with probability at least 3�.

Proof. Let us expose the vectors of Yj = {bn0+1,j , . . . , bn,j} one vector at a time. Note that these random
vectors are actually probabilistically independent of each other (since the different bases Bi are independent).
By assumption, Xh = {b1,h, . . . , bn0,h} is linearly independent. Hence span(Xh) is a subspace of dimension
n0, and by Lemma 4.2 and (4.1) with probability at least 1 � ↵n�n0 the vector bn0+1,j (when conditioning
on the given outcomes of bn0+1,1, . . . , bn0+1,j�1) is outside this subspace and hence linearly independent from
Xh. Assuming that this hold, span(Xh [ {bn0+1,j}) is a subspace of dimension n0 +1. Then with probability
at least 1 � ↵n�n0�1 the vector bn0+2,j (when conditioning on the given outcomes of bn0+2,1, . . . , bn0+2,j�1)
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is outside span(Xh [ {bn0+1,j}) and hence linearly independent from Xh [ {bn0+1,j}. Continuing like this,
we can show that for every ` = n0 + 1, . . . , n, the multi-set Xh [ {bn0+1,j , . . . , b`,j} (when conditioning on
the given outcomes of bi,1, . . . , bi,j�1 for all i = n0 + 1, . . . , `) is linearly independent with probability at
least (1 � ↵n�n0)(1 � ↵n�n0�1) · · · (1 � ↵n�`+1). In particular, for ` = n we obtain that Xh [ Yj is linearly
independent with probability at least

(1� ↵n�n0)(1� ↵n�n0�1) · · · (1� ↵1) =
n�n

0Y

k=1

(1� ↵k) �
1Y

k=1

(1� ↵k) = 3�,

when conditioning on the given outcomes of bi,1, . . . , bi,j�1 for all i = n0 + 1, . . . , n.

As an easy corollary of Lemma 5.2 and Lemma 5.1, we obtain the following lemma.

Lemma 5.3. With probability 1� o(1), in the graph G every vertex on the left has degree at least 2�m.

Proof. Let us first expose the bases B1, . . . , Bn0 , which determine the sets X1, . . . , Xm. By Lemma 5.1, with
probability 1 � o(1) each of the multi-sets X1, . . . , Xm is linearly independent. So let us fix an outcome of
X1, . . . , Xm, where each of these sets is linearly independent.
It now suffices to prove that, subject to the randomness of Y1, . . . , Ym, for each h 2 {1, . . . ,m} with probability
at most o(1/n) vertex h on the left has degree less than 2�m. Indeed, then by a union bound, with probability
at most m · o(1/n) = o(1), there is a vertex on the left with degree less than 2�m.
So consider some h 2 {1, . . . ,m}. By Lemma 5.2, subject to the randomness of Y1, there is an edge between
vertex h on the left and vertex 1 on the right with probability at least 3�. After exposing Y1 and conditioning
on its outcome, subject to the randomness of Y2, by Lemma 5.2 there is an edge between vertex h on the left
and vertex 2 on the right with probability at least 3�. Continuing this, we see that for every j 2 {1, . . . ,m},
when conditioning on any outcomes of Y1, . . . , Yj�1, subject to the randomness of Yj , there is an edge between
vertex h on the left and vertex j on the right with probability at least 3�. Thus, subject to the randomness of
Y1, . . . , Ym, the degree of vertex h on the left is a random variable that stochastically dominates a binomial
random variable Z ⇠ Bin(m, 3�). Hence the probability that vertex h on the left has degree less than 2�m is
at most

Pr[Z < 2�m]  exp

✓
�2 · (3�m� 2�m)2

m

◆
= e�2�2m  e��

2·(n�1) = o(1/n),

as desired. Here, in the first step we used the Chernoff bound (see e.g. [2, Theorem A.1.4]) and in the third
step we used that m 2 {bn/2c, dn/2e}.

Analogously to Lemma 5.3, we can also show that with high probability, every vertex on the right has degree
at least 2�m.

Lemma 5.4. With probability 1� o(1), in the graph G every vertex on the right has degree at least 2�m.

Proof. Note that our setup is completely symmetric in the left and the right side. So Lemma 5.4 follows in a
completely analogous way to Lemma 5.3 (by first stating and proving the analogous versions of Lemmas 5.1
and 5.2 with left and right side interchanged).

Let us now fix a sufficiently large positive integer L depending only on c such that

(1� 3�)L  �/2 (5.1)

(recall that 0 < � < 1/3 only depends on c). Furthermore, let us fix a sufficiently large positive integer K
depending only on c such that

L · 2
c0

· cK

1� c
 �

2
.

Recall that we are assuming that n is sufficiently large with respect to c, so we can in particular assume that
n � 2K (and therefore bn/2c � K). Note that by (4.2), we have

↵K + ↵K+1 + ↵K+2 + · · · < 2

c0
· (cK + cK+1 + cK+2 + . . . ) =

2

c0
· cK

1� c
 �

2L
. (5.2)
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Our second goal is now to show that with probability 1 � o(1), for any L distinct vertices on the left side
of G, the union of their neighborhoods is large. When showing this, we have to take care of the possibility
that certain subspaces that appear in the argument might have unusually large intersections. The following
definition captures these “bad” situations that would be problematic for our argument.
For j 2 {1, . . . ,m} and k 2 {1, . . . ,K}, let us define Y (k)

j
= {bn0+1,j , . . . , bn�k,j}. In other words, Y (k)

j
is

obtained from Yj = {bn0+1,j , . . . , bn,j} by omitting the last k vectors.

Definition 5.5. For a subset H ✓ {1, . . . ,m} of size 1  |H|  L, as well as j 2 {1, . . . ,m} and k 2
{1, . . . ,K}, let us say that (H,Y (k)

j
) is bad if

dim

 
\

h2H

span(Xh [ Y (k)
j

)

!
> n� k · |H|.

Furthermore, let us say that (H, j) is bad if (H,Y (k)
j

) is bad for some k 2 {1, . . . ,K}.

The next lemma states that with high probability there are no bad pairs (H, j).

Lemma 5.6. With probability 1 � o(1), for every subset H ✓ {1, . . . ,m} of size 1  |H|  L and every
j 2 {1, . . . ,m} the pair (H, j) is not bad.

We postpone the proof of Lemma 5.6 to Section 6, since it is somewhat technical.
Our next lemma is similar to Lemma 5.2, but instead of a single set Xh we consider an L-tuple of such sets.
We would like to show that for each j with probability at least 1� � at least one of the L corresponding sets
Xh [ Yj is linearly independent. This is roughly true, but we also have to take into account the possibility
of having bad configurations as in Definition 5.5.

Lemma 5.7. Let H ✓ {1, . . . ,m} be a subset of size |H| = L, and let j 2 {1, . . . ,m}. Let us fix any
outcomes of Xh = {b1,h, . . . , bn0,h} for all h 2 H, such that for each h 2 H the multi-set Xh is linearly inde-
pendent. Furthermore, consider any fixed outcomes of the vectors in the sets Y1, . . . , Yj�1, i.e. of the vectors
bi,1, . . . , bi,j�1 for all i = n0 + 1, . . . , n. Then, conditional on the outcomes of the vectors in Y1, . . . , Yj�1,
subject to the randomness of Yj = {bn0+1,j , . . . , bn,j}, with probability at least 1�� at least one of the following
properties is satisfied:

(a) Xh [ Yj is linearly independent for at least one h 2 H.

(b) (H 0, j) is bad for some non-empty subset H 0 ✓ H.

We also postpone the proof of Lemma 5.7 to Section 6. Similarly to the deduction of Lemma 5.3 from Lemma
5.2, Lemma 5.7 and the Chernoff bound imply the following.

Lemma 5.8. With probability 1�o(1), the following holds: For every subset H ✓ {1, . . . ,m} of size |H| = L,
there are at least (1� 2�)m different j 2 {1, . . . ,m} which satisfy property (a) or property (b) in Lemma 5.7.

Proof. First, expose the outcomes of X1, . . . , Xm (i.e. the outcomes of the bases B1, . . . , Bn0). By Lemma
5.1, with probability 1� o(1), each of the multi-sets X1, . . . , Xm is linearly independent. So let us condition
on any such outcome for X1, . . . , Xm.
Now it suffices to prove that (subject to the randomness of Y1, . . . , Ym) for every subset H ✓ {1, . . . ,m} of
size |H| = L, the probability that there are fewer than (1� 2�)m different j 2 {1, . . . ,m} satisfying property
(a) or (b) in Lemma 5.7 is at most o(1/nL). Indeed, then by the union bound the probability that for some
subset H ✓ {1, . . . ,m} of size |H| = L there are fewer than (1� 2�)m such j is at most mL · o(1/nL) = o(1).
So let us now consider some H ✓ {1, . . . ,m} of size |H| = L. By Lemma 5.7, for each j 2 {1, . . . ,m} with
probability at least 1 � � the outcome of Yj is such that (a) or (b) is satisfied, even when conditioning on
any outcomes of Y1, . . . , Yj�1. This means that the number of different j 2 {1, . . . ,m} satisfying (a) or (b)
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is a random variable which stochastically dominates a binomial random variable Z ⇠ Bin(m, 1 � �). Thus,
the probability that there are fewer than (1� 2�)m different j satisfying (a) or (b) is at most

Pr[Z < (1� 2�)m]  exp

✓
�2 · ((1� �)m� (1� 2�)m)2

m

◆
= e�2�2m  e��

2·(n�1) = o(1/nL),

as desired. Here, we again used the Chernoff bound (see e.g. [2, Theorem A.1.4]) and m 2 {bn/2c, dn/2e}.

Now, using Lemmas 5.6 and 5.8, we can show that with high probability, for any L distinct vertices on the
left side of G, the union of their neighborhoods is large.

Lemma 5.9. With probability 1 � o(1), the graph G satisfies the following condition: For any L distinct
vertices on the left, the union of their neighborhoods has size at least (1� 2�)m.

Proof. By Lemma 5.6, with probability 1 � o(1) none of the pairs (H 0, j) for any subset H 0 ✓ {1, . . . ,m}
of size |H 0|  L and any j 2 {1, . . . ,m} are bad. Furthermore, with probability 1 � o(1) the statement in
Lemma 5.8 holds. But if there are no bad pairs (H 0, j), then there cannot be any subset H ✓ {1, . . . ,m} of
size |H| = L and any j 2 {1, . . . ,m} satisfying property (b) in Lemma 5.7. Thus, with probability 1� o(1),
for every subset H ✓ {1, . . . ,m} of size |H| = L there are at least (1�2�)m different j 2 {1, . . . ,m} satisfying
property (a) in Lemma 5.7. But this precisely means that with probability 1 � o(1) for every set H of L
distinct vertices on the left of G there are at least (1� 2�)m different vertices j on the right that are in the
union of the neighborhoods of the vertices in H on the left.

Combining Lemmas 5.3, 5.4 and 5.9, it is now not hard to show that G satisfies the condition in Halls’
marriage theorem with high probability.

Lemma 5.10. With probability 1 � o(1), the graph G satisfies the following condition: For any set H of
vertices on the left, the union of their neighborhoods has size at least |H|.

Proof. Since we are proving an asymptotic statement, we may assume that n (and hence m) is sufficiently
large with respect to the fixed value of c, and in particular that 2�m � L (recall that � and L only depend
on c).
With probability 1�o(1), the graph G satisfies the properties in Lemmas 5.3, 5.4 and 5.9. We will show that
whenever these properties are satisfied, the graph also satisfies the condition in Lemma 5.10.
So consider some subset H of the m vertices on the left of G. We need to show that the union of the
neighborhoods of these vertices has size at least |H|, assuming that G satisfies the properties in Lemmas 5.3,
5.4 and 5.9.
If |H| = 0, this is trivially true. If 1  |H|  2�m, then the union of the neighborhoods of the vertices in
H has size at least 2�m � |H|, since by the property in Lemma 5.3 each of these neighborhoods already has
size at least 2�m individually. If 2�m < |H|  (1 � 2�)m, then in particular |H| > 2�m � L and so by the
property in Lemma 5.9 the union of the neighborhoods of the vertices in H has size at least (1�2�)m � |H|.
Finally, if (1�2�)m < |H|  m, then we claim that all m � |H| vertices on the right of G must be in the union
of the neighborhoods of the vertices in H. Indeed, by the property in Lemma 5.3 each vertex on the right of
G has degree at least 2�m and so it must be adjacent to at least one vertex in H since |H| > (1� 2�)m.

Whenever the bipartite graph G satisfies the condition in Lemma 5.10, then by Hall’s marriage theorem it
has a perfect matching. Thus, by Lemma 5.10, G has a perfect matching with probability 1 � o(1). This
proves Proposition 3.1.

6 Proof of Lemmas 5.6, 5.7 and 2.3

In this section, we prove the lemmas whose proofs we previously postponed. First, we prove Lemma 5.6
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Proof of Lemma 5.6. We need to prove that with probability 1 � o(1) none of the pairs (H,Y (k)
j

) for H ✓
{1, . . . ,m} of size 1  |H|  L, and j 2 {1, . . . ,m} and k 2 {1, . . . ,K} is bad. Let us say that a bad pair
(H,Y (k)

j
) is a minimal, if there is no bad pair (H 0, Y (k)

j
) with ? ( H 0 ( H. Note that whenever (H,Y (k)

j
) is

a bad pair, there is some non-empty subset H 0 ✓ H such that (H 0, Y (k)
j

) is a minimal bad pair.

Thus, it suffices to prove that with probability 1 � o(1) none of the pairs (H,Y (k)
j

) for H ✓ {1, . . . ,m}
of size 1  |H|  L, and j 2 {1, . . . ,m} and k 2 {1, . . . ,K} is a minimal bad pair. There are at most
mL ·m ·K  K ·nL+1 = O(nL+1) choices for H, j and k. Hence it suffices to prove that for any given choice
of H ✓ {1, . . . ,m} (of size 1  |H|  L) and j 2 {1, . . . ,m} and k 2 {1, . . . ,K}, the pair (H,Y (k)

j
) is a

minimal bad pair with probability at most o(1/nL+1).
So consider a subset H ✓ {1, . . . ,m} of size 1  |H|  L, and j 2 {1, . . . ,m} and k 2 {1, . . . ,K}. Let h 2 H
be the largest element of H. First, consider the case that |H| = 1, i.e. H = {h}. We claim that in this case
the pair (H,Y (k)

j
) is never bad (and so in particular never a minimal bad pair). Indeed, we always have

dim
⇣
span(Xh [ Y (k)

j
)
⌘
 n� k = n� k · |{h}|,

since Xh [ Y (k)
j

only consists of n0 + (n � n0 � k) = n � k vectors. Hence the pair (H,Y (k)
j

) is never bad if
|H| = 1. So let us from now on assume that |H| � 2.

Let us expose Y (k)
j

, as well as X1, . . . , Xh�1,. We will show that conditioned on any outcomes for Y (k)
j

and
X1, . . . , Xh�1, subject to the randomness of Xh, the pair (H,Y (k)

j
) is a minimal bad pair with probability at

most o(1/nL+1). Note that now we already exposed Xh0 for all h0 2 H \ {h} (and note that H \ {h} 6= ? by
our assumption that |H| � 2). If (H \ {h}, Y (k)

j
) is a bad pair, then (H,Y (k)

j
) cannot be a minimal bad pair.

So let us assume that the (H \ {h}, Y (k)
j

) is not bad. Then we have

dim

0

@
\

h02H\{h}

span(Xh0 [ Y (k)
j

)

1

A  n� k · (|H|� 1)

For simplicity of notation, let W be the space given by the intersection on the left-hand side. Then dimW 
n� k · (|H|� 1). It suffices to show that the probability of having

dim(W \ span(Xh [ Y (k)
j

)) > n� k · |H| (6.1)

is at most o(1/nL+1). Indeed, this would mean that the probability of (H,Y (k)
j

) being a bad pair, and hence
in particular the probability of (H,Y (k)

j
) being a minimal bad pair, is at most o(1/nL+1).

Note that in the case of dimW  n�k · |H|, we always have dim(W \span(Xh[Y (k)
j

))  dimW  n�k · |H|,
so (6.1) never holds. Hence we may from now on assume that

n� k · |H| < dimW  n� k · (|H|� 1).

Note that whenever (6.1) holds, we must have

dim(W + span(Xh [ Y (k)
j

)) = dim(W ) + dim(span(Xh [ Y (k)
j

))� dim(W \ span(Xh [ Y (k)
j

))

< (n� k · (|H|� 1)) + (n� k)� (n� k · |H|) = n

and therefore

dim(W + span(Xh)) = dim(W + span(Y (k)
j

) + span(Xh)) = dim(W + span(Xh [ Y (k)
j

)) < n.

So it suffices to show that the probability of having dim(W + span(Xh)) < n (conditioned on the outcomes
of Y (k)

j
and X1, . . . , Xh�1 and subject to the randomness of Xh) is at most o(1/nL+1).
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Recall that W is determined by the outcomes of Y (k)
j

and X1, . . . , Xh�1 that we are conditioning on. Let
us now expose Xh = {b1,h, . . . , bn0,h} one vector at a time in this order. At every step i = 1, . . . , n0,
consider the dimension dim(W + span(b1,h, . . . , bi,h)). By our assumption that dimW > n � k · |H|, this
dimension can increase for at most k · |H|  K · L steps. Let I ✓ {1, . . . , n0} be the set of indices where
the dimension at step i is larger than the dimension at step i� 1, i.e. where dim(W + span(b1,h, . . . , bi,h)) >
dim(W + span(b1,h, . . . , bi�1,h)). Then |I|  K · L and hence there are at most (n0)KL  nKL possibilities
for the set I. If dim(W + span(Xh)) < n, then for every i 2 {1, . . . , n0} \ I we must have

dim(W + span(b1,h, . . . , bi,h)) = dim(W + span(b1,h, . . . , bi�1,h))  dim(W + span(Xh)) < n.

Hence, if dim(W + span(Xh)) < n, then for every i 2 {1, . . . , n0} \ I the random vector bi,h must be in the
subspace dim(W + span(b1,h, . . . , bi�1,h)) (which only depends on the previously exposed vectors) and this
subspace must have dimension at most n�1. For each i 2 {1, . . . , n0}\I, conditioned on the previously exposed
vectors, the probability that this happens is at most ↵1 by Lemma 4.2 and (4.1). Hence the probability to
have this property for all i 2 {1, . . . , n0} \ I is at most

↵n
0�|I|

1  ↵bn/2c�KL

1 = o(1/nKL+L+1)

(here, we used that 0 < ↵1 < 1 only depends on our fixed value of c). Since there are at most nKL

possibilities for I, we can conclude that the total probability of having dim(W +span(Xh)) < n (conditioned
on the outcomes of Y (k)

j
and X1, . . . , Xh�1) is at most nKL · o(1/nKL+L+1) = o(1/nL+1), as desired.

Next, we prove Lemma 5.7.

Proof of Lemma 5.7. Recall that we fixed outcomes Xh for all h 2 H such that for each h 2 H the multi-set
Xh is linearly independent, and that we are conditioning on fixed outcomes for Y1, . . . , Yj�1. Let us expose
the vectors of Yj = {bn0+1,j , . . . , bn,j} one vector at a time (these vectors are independent on each other,
but for each vector bi,j for i 2 {n0 + 1, . . . , n} the probability distribution depends on the fixed outcomes of
bi,1, . . . , bi,j�1 that we are conditioning on). We need to prove that the probability that neither (a) nor (b)
holds is at most �.
If (a) does not hold, then for each h 2 H, the multi-set Xh [ Yj = Xh [ {bn0+1,j , . . . , bn,j} must be linearly
dependent. So, since each Xh is linearly independent, for each h 2 H there must be an index i 2 {n0+1, . . . , n}
such that bi,j 2 span(Xh [ {bn0+1,j , . . . , bi�1,j}).
First, consider the possibility that for some h 2 H we have bi,j 2 span(Xh[{bn0+1,j , . . . , bi�1,j}) for an index
i 2 {n0 +1, . . . , n�K}. For each h 2 H and i 2 {n0 +1, . . . , n�K}, after having exposed bn0+1,j , . . . , bi�1,j ,
the subspace span(Xh[{bn0+1,j , . . . , bi�1,j}) has dimension at most i�1 (since it is spanned by i�1 vectors).
Hence by Lemma 4.2 and (4.1), the probability of having bi,j 2 span(Xh [ {bn0+1,j , . . . , bi�1,j}) is at most
↵n�i+1. Thus, by a union bound, the overall probability that bi,j 2 span(Xh [ {bn0+1,j , . . . , bi�1,j}) for some
h 2 H and some i 2 {n0 + 1, . . . , n�K} is at most

|H| · (↵n�n0 + ↵n�n0+1 + · · ·+ ↵K+1) < L · (↵K + ↵K+1 + ↵K+2 + . . . )  L · �

2L
=

�

2

by (5.2).
It remains to bound the probability that for each h 2 H there is some i 2 {n � K + 1, . . . , n} such that
bi,j 2 span(Xh [ {bn0+1,j , . . . , bi�1,j}). More precisely, it suffices to show that the following event E happens
with probability at most �/2: (b) is not satisfied and for each h 2 H there is some i 2 {n �K + 1, . . . , n}
such that bi,j 2 span(Xh [ {bn0+1,j , . . . , bi�1,j}).
We will show that this event E happens with probability at most �/2, even when conditioning on any outcomes
of bn0+1,j , . . . , bn�K,j . So let us expose bn0+1,j , . . . , bn�K,j and condition on their outcomes. Now, the only
remaining random vectors are bn�K+1,j , . . . , bn,j (which we will expose one vector at a time). For every
` = 1, . . . ,K and h 2 H, let E(`)

h
denote the event that bn�K+`,j 2 span(Xh [ {bn0+1,j , . . . , bn�K+`�1,j}) and

for every non-empty subset H 0 ✓ H the pair (H 0, Y (K+1�`)
j

) is not bad. Now, whenever the event E happens,
for each h 2 H there must be some ` 2 {1, . . . ,K} such that the event E(`)

h
happens (indeed, for each h 2 H
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we can take ` = i � (n �K) for i as in the event E , noting that the pair (H 0, Y (K+1�`)
j

) is not bad for any
non-empty subset H 0 ✓ H since (b) is not satisfied).
Thus, it suffices to show that

Pr
h
for each h 2 H there is some ` 2 {1, . . . ,K} such that E(`)

h
holds

i
 �/2, (6.2)

where the probability is subject only to the randomness bn�K+1,j , . . . , bn,j and conditional on the outcomes
of all previously exposed vectors. Note that each event E(`)

h
only depends on bn�K+1,j , . . . , bn�K+`,j .

Let us apply Lemma 2.3 to the random variables Z1, . . . , ZK given by Z` = bn�K+`,j , the events E(`)
h

for
h 2 H and ` 2 {1, . . . ,K} defined above, and to �1, . . . ,�K given by �` = ↵K+1�` for ` = 1, . . . ,K. In order
to check the condition in Lemma 2.3, consider any subset H 0 ✓ H, any ` = 1, . . . ,K and any outcomes of
Z1 = bn�K+1,j , . . . , Z`�1 = bn�K+`�1,j . We need to check that

Pr
h
E(`)
h

holds for all h 2 H 0 | bn�K+1,j , . . . , bn�K+`�1,j

i
 (↵K+1�`)

|H0|. (6.3)

Indeed, first note that this inequality is trivially true if H 0 = ? (since then the left-hand side is 1). So let us
assume that H 0 ✓ H is a non-empty subset. Exposing bn�K+1,j , . . . , bn�K+`�1,j (and recalling that we are
also conditioning on outcomes of the previously exposed vectors) determines the space

\

h2H0

span(Xh [ Y (K+1�`)
j

) =
\

h2H0

span(Xh [ {bn0+1,j , . . . , bn�K+`�1,j}).

If this space has dimension strictly larger than n�(K+1�`) · |H 0|, then (H 0, Y (K+1�`)
j

) is bad (by Definition
5.5) and so the event E(`)

h
cannot happen (by definition of the event). Hence (6.3) is also trivially true in this

case. So let us assume that the space
T

h2H0 span(Xh [ {bn0+1,j , . . . , bn�K+`�1,j}) has dimension at most
n � (K + 1 � `) · |H 0|. In order for all of the events E(`)

h
for h 2 H 0 to hold, the vector bn�K+`,j must be

contained in the intersection of span(Xh [ {bn0+1,j , . . . , bn�K+`�1,j}) for all h 2 H 0 (again by definition of
the events E(`)

h
). Since this intersection is a space of dimension at most n� (K + 1� `) · |H 0|, by Lemma 4.2

and (4.1) the probability that bn�K+`,j is in this intersection is at most

↵(K+1�`)·|H0|  (↵K+1�`)
|H0|

(here, we used Lemma 4.3). Thus, we have checked the condition (6.3) in all cases.
So we can indeed apply Lemma 2.3, and conclude that

Pr
h
for each h 2 H there is some ` 2 {1, . . . ,K} such that E(`)

h
holds

i
 (1� (1� �1) · · · (1� �K))|H|

= (1� (1� ↵K) · · · (1� ↵1))
L

 (1� (1� ↵1) · (1� ↵2) · · · )L

= (1� 3�)L  �/2,

where in the second-last step we used the definition of � in (4.3) and the last step is by (5.1). This proves
(6.2), as desired.

Finally, we prove Lemma 2.3.

Proof of Lemma 2.3. We prove the lemma by induction on K. For K = 1, we have

Pr
h
for each h 2 H there is ` 2 {1} such that E(`)

h
holds

i

= Pr
h
E(1)
h

holds for all h 2 H
i
 (�1)

|H| = (1� (1� �1))
|H| ,

as desired (using the assumption in the lemma statement).
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So let us now assume that K � 2 and that the statement in the lemma holds for K � 1. Let T ✓ H be the
(random) set

T = {h 2 H | there is some ` 2 {1, . . . ,K � 1} such that E(`)
h

holds}.

Note that T depends only on the outcomes of Z1, . . . , ZK�1 (recall that each of the events E(`)
h

for h 2 H
and ` 2 {1, . . . ,K � 1} depends only on Z1, . . . , ZK�1). Furthermore, note that for every subset H 0 ✓ H,
the induction hypothesis for K � 1 applied to H 0 and the events E(`)

h
for h 2 H 0 and ` = 1, . . . ,K � 1 gives

Pr[H 0 ✓ T ] = Pr
h
for each h 2 H 0 there is ` 2 {1, . . . ,K � 1} such that E(`)

h
holds

i

 (1� (1� �1) · · · (1� �K�1))
|H0| . (6.4)

We have

Pr
h
for each h 2 H there is ` 2 {1, . . . ,K} such that E(`)

h
holds

i

=
X

J✓H

Pr[T = J ] · Pr
h
E(K)
h

holds for all h 2 H \ J
���T = J

i
. (6.5)

Note that for any J ✓ H having T = J depends only on the outcomes of Z1, . . . , ZK�1. For any fixed
outcomes of Z1, . . . , ZK�1 (and so in particular for any outcomes such that T = J holds), we know by the
assumption in the lemma that

Pr
h
E(K)
h

holds for all h 2 H \ J
���Z1, . . . , ZK�1

i
 (�K)|H\J|.

Hence the same inequality also holds when condition on T = J instead of conditioning on specific outcomes
of Z1, . . . , ZK�1. So for every subset J ✓ H, we can conclude

Pr
h
E(K)
h

holds for all h 2 H \ J
���T = J

i
 (�K)|H\J|

= (�K)|H\J| · (�K + (1� �K))|J|

= (�K)|H\J|
X

H0✓J

(�K)|J\H
0| · (1� �K)|H

0|

=
X

H0✓J

(�K)|H\H0| · (1� �K)|H
0|.

Combining this with (6.5), we obtain

Pr
h
for each h 2 H there is ` 2 {1, . . . ,K} such that E(`)

h
holds

i


X

J✓H

X

H0✓J

Pr[T = J ] · (�K)|H\H0|(1� �K)|H
0|

=
X

H0✓H

0

@
X

H0✓J✓H

Pr[T = J ]

1

A · (�K)|H\H0|(1� �K)|H
0|

=
X

H0✓H

Pr[H 0 ✓ T ] · (�K)|H\H0|(1� �K)|H
0|


X

H0✓H

(1� (1� �1) · · · (1� �K�1))
|H0| · (�K)|H\H0|(1� �K)|H

0|

=
⇣
(1� (1� �1) · · · (1� �K�1)) · (1� �K) + �K

⌘|H|

= (1� (1� �1) · · · (1� �K))|H| ,

where for the second inequality sign we used (6.4).
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7 Concluding remarks

The most obvious open question is, of course, to prove Rota’s basis conjecture (either for vector spaces as
stated in Conjecture 1.1, or more generally for matroids). But there are also still many interesting questions
concerning the conjecture for random bases in various families of matroids.
Graphic matroids are an important class of matroids, and Rota’s basis conjecture is still wide open in this
case. In the spirit of the results in this paper, one may ask whether Rota’s basis conjecture holds (with high
probability) for random maximal acyclic sets in a given graph G (more precisely, assuming that G has n
vertices and m components, then every maximal acyclic set F ✓ E(G) has size n�m, and we can consider
independent random sets F1, . . . , Fn�m ✓ E(G) each chosen uniformly at random from the collection of all
maximal acyclic set F ✓ E(G)). A particularly natural case of this problem is the case where G is the
complete graph on n vertices. This leads to the following question.

Problem 7.1. Let Kn be the complete graph on n vertices, and let F1, . . . , Fn�1 ✓ E(G) be independent
uniformly random spanning trees of Kn. Prove that with probability 1 � o(1), Rota’s basis conjecture is
satisfied for F1, . . . , Fn�1 ✓ E(G), i.e. that with probability 1 � o(1) the multi-set F1 [ · · · [ Fn�1 can be
partitioned into n � 1 spanning trees of Kn which are transversal with respect to the original spanning trees
F1, . . . , Fn�1.

Here, a spanning tree F ✓ F1 [ · · · [ Fn�1 is called transversal with respect to F1, . . . , Fn�1, if it contains
exactly one edge from each of F1, . . . , Fn�1 (where F1, . . . , Fn�1 are interpreted as subsets of the multi-set
F1[ · · ·[Fn�1 in the natural way, and if an edge e appears in two or more of the spanning trees F1, . . . , Fn�1,
then the multiple copies of e in the multi-set F1 [ · · · [ Fn�1 are distinguished by which set Fi they came
from).
It is well-known that graphic matroids are representable (i.e. they can be represented by linear independence
relations in vector spaces). Indeed, given a graph with vertex set {1, . . . , n}, for each edge ij with 1  i <
j  n, one can consider the vector ei � ej 2 Rn (where e1, . . . , en denotes the standard basis of Rn). Then a
set of edges is acyclic if and only if the corresponding set of vectors in Rn is linearly independent.
Via this connection, it is easy to see that Problem 7.1 is actually equivalent to proving Rota’s basis conjecture
for random bases in the subset

T = {ei � ej | 1  i < j  n} ✓ Rn.

More precisely, Problem 7.1 is equivalent to proving that for independent random bases B1, . . . , Bn ✓ T of
Rn (where each Bi is chosen uniformly at random from the collection of bases of Rn that are subsets of T ),
Rota’s basis conjecture holds with probability 1� o(1). In other words, Problem 7.1 is equivalent to proving
a version of Theorem 1.5 for the set T defined above.
Note that this set T is not c-dispersed for any fixed 0 < c < 1 (for large n), hence Theorem 1.5 does not apply
to this set T . It would be interesting to generalize Theorem 1.5 to a wider class of sets T , and in particular
to resolve Problem 7.1.
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