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Abstract

In 1989, Rota conjectured that, given n bases Bi, ..., B, of the vector space F" over some field F, one can
always decompose the multi-set B1 U---U B, into transversal bases. This conjecture remains wide open
despite of a lot of attention. In this paper, we consider the setting of random bases Bi,..., B,. More
specifically, our first result shows that Rota’s basis conjecture holds with probability 1 —o(1) as n — oo if
the bases By, ..., B, are chosen independently uniformly at random among all bases of IF; for some finite
field Fq (the analogous result is trivially true for an infinite field F). In other words, the conjecture is true
for almost all choices of bases Bi, ..., B, C Fy. Our second, more general, result concerns random bases
Bi,...,B, C S™ for some given finite subset S C F (in other words, bases B, ..., B, where all vectors
have entries in S). We show that when choosing bases Bi,...,B, C S™ independently uniformly at
random among all bases that are subsets of S™, then again Rota’s basis conjecture holds with probability
1—o0(1) as n — oco.

1 Introduction

Rota’s basis conjecture (see |11, Conjecture 4]) is a famous conjecture from 1989 concerning bases in vector
spaces. Given n bases Bi,..., B, of an n-dimensional vector space, the conjecture asserts that one can
decompose the multi-set By U---U B,, into bases of the vector space that are transversal with respect to the
original bases Bi,...,B,. Here, a basis B C B; U---U B,, is called transversal with respect to By,..., B,
if it contains exactly one vector from each of By, ..., B, (where By, ..., B, are interpreted as subsets of the
multi-set By U---U B, in the natural way, and if a vector v appears in two or more of the bases By, ..., By,
then the multiple copies of v in the multi-set B; U --- U B,, are distinguished by which set B; they came
from). Note that, as each basis Bj, ..., B, consists of n vectors, the union By U---U B, has size n?. Each
transversal basis consists again of n vectors, so a decomposition of B; U---U B,, into transversal bases must
have exactly n transversal bases. Since every n-dimensional vector space over any field F is isomorphic to
F”, the conjecture can be restated as follows.

Conjecture 1.1 (Rota’s basis conjecture). Let F be a field and let By,..., B, C F" be bases of the vector
space F"™. Then the multi-set By U ---U B,, can be partitioned into n bases of F™, which are transversal with
respect to the original bases By, ..., B,.

Rota’s basis conjecture is also often considered in the more general setting of matroids rather than vector
spaces. Despite of a lot of attention (including a “Polymath” project dedicated to the conjecture, see [4]),
the conjecture remains wide open, even in the setting of vector spaces.

Drisko [6] and Glynn [10] proved that Conjecture is true over fields I of characteristic zero if n — 1 or
n + 1, respectively, is a prime number (more, precisely Drisko and Glynn proved the Alon-Tarsi conjecture
concerning enumerations of certain types of Latin squares for such n, and via earlier work of Huang and
Rota [11], this implies Conjecture in these cases). Furthermore, the matroid version of Conjecturehas
been proved for certain special classes of matroids (specifically, for paving matroids [8] and for strongly base
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orderable matroids [13]). Aharoni and Berger [1, Theorem 10.4] showed that the natural fractional relaxation
of the conjecture holds, even in the matroid setting.

There have also been many works concerning partial decomposition or covering versions of the conjecture.
Specifically, Buci¢, Kwan, Pokrovskiy, and Sudakov [3] (improving earlier results in [5] [9]) proved that one
can find n/2 — o(n) disjoint transversal bases in By U --- U By, Pokrovskiy [12] proved that one can find
n — o(n) disjoint linearly independent transversal sets of size n —o(n) in By U --- U B, and Aharoni and
Berger [1l, Assertion 8.11] proved that By U---U B,, can be decomposed into 2n disjoint linearly independent
transversal sets (and the bound 2n has been slightly improved to 2n — 2 by Polymath, see [4]).

In this paper, we consider the setting of random bases By, ..., B,. If the field F is infinite, then generically
any n of the n? vectors appearing in By, ..., B,, will be linearly independent, in which case Conjecture is
trivially true (as any decomposition of By U---U B,, into n transversal sets will give the desired transversal
bases). For example, if F = R, then for any continuous probability distribution on the set of all bases of R™
this happens with probability 1. However, considering (uniformly) random bases is much more interesting
over finite fields, especially if n is large with respect to the field size.

In our first result, we consider a finite field F and assume that the bases By, ..., B, are chosen independently
uniformly at random among all bases of F". The problem of proving Rota’s basis conjecture for random
bases over some fixed finite field has been suggested by Ferber [7]. Resolving this problem, we prove that the
conjecture indeed holds asymptotically almost surely for independent uniformly random bases By,..., B, C
[y for any (finite) field size g.

Theorem 1.2. Fiz a prime power q > 2. Let By, ..., B, CFy be independent uniformly random bases of the
vector space Fy (each chosen uniformly at random among all bases of IFZ) Then, with probability 1 —o(1) as
n — 00, the multi-set By U---U B,, can be partitioned into n bases of ¥y, which are transversal with respect
to the original bases By, ..., B,.

We remark that in fact, the o(1)-term here can be taken independently of ¢ (so Theorem also holds if ¢
is allowed to depend on n). Note that Theorem can be interpreted as saying that Rota’s basis conjecture
holds for “almost all” choices of bases Bi,..., B, C IFZ

We note that Theorem cannot simply be proved by considering a random partition of By U---UB,, into n
transversal sets. Indeed, for independent uniformly random bases By, ..., B, C Fy and a random partition
of By U---U B, into n transversal sets, the probability of obtaining n transversal bases as desired is o(1) (in
fact, this probability exponentially small in n). Hence we must be more careful in how to obtain the desired
partition into n transversal bases.

For various problems concerning vectors in R™, or more generally in F", it is of interest to restrict one’s
attention to vectors with entries in some particular fixed set, most notably {0, 1}-vectors. Our next result is
a version of Theorem where we only consider bases of F” consisting of vectors with entries from some
specified finite set S. In other words, we prove that Rota’s basis conjecture holds for random bases of vectors
with entries from some specified set (e.g. {0, 1}-vectors).

Theorem 1.3. Fiz a field F and a finite subset S CF of size |S| > 2. Let By,...,B, C S™ be independent
random bases of the vector space F", where each B; is chosen uniformly at random from the collection
{B C S™| B is a basis of F"} of the bases of F™ with all vector entries in S. Then, with probability 1 — o(1)
as n — 0o, the multi-set B U---UB,, can be partitioned into n bases of F™, which are transversal with respect
to the original bases By, ..., B,.

We remark that the o(1)-term here can be taken independently of F and S.

Note that Theorem can be viewed as a special case of Theorem by taking F = S = F,. The more
general setting of Theorem [1.3|introduces various challenges caused by the lack of symmetry between different
bases B C S™ of F”. Indeed, in the setting of Theorem any two bases B C IFZL can be transformed into
each other by an isomorphism of F". However, such an isomorphism does not necessarily preserve the set S™
in the setting of Theorem Here is another example illustrating this point: In Fj, each non-zero vector is
contained in the same number of bases B of ;. However, taking S = {0,1,2} and a prime ¢ > 5, not every

non-zero vector in {0, 1,2}" is contained in the same number of bases B C {0, 1,2}" of Fy (if n > 2).

One may also be interested in special sets of “allowed vectors” other than sets of the form S™ as in Theorem
For example, graphic matroids naturally corresponds to the setting of considering vectors in {1,0, —1}"



consisting of precisely one l-entry and one (—1)-entry (with the remaining n — 2 entries being zero). So it
is natural to study the setting where for some subset T' C F” of “allowed vectors” one considers independent
uniformly random bases Bi,...,B, C T of F" (i.e. independent random bases, each chosen uniformly at
random among all bases of F™ that are subsets of T'). Taking T' = S™ gives precisely the setting of Theorem
Our arguments to prove Theorem generalize to sets T C F™ that are reasonably well spread out
over F™, in the sense of being not too “clumped” on any subspace of F”. The following definition makes this
condition precise.

Definition 1.4. For 0 < ¢ < 1, we say that a set T' C F" of vectors in the vector space F" over some field
F is c-dispersed if every (linear) subspace V. C F™ satisfies |V NT| < cn=dimV .||,

In other words, a set T C F" is c-dispersed if every subspace V' C F” contains at most a (c"~4™V)-fraction of
the vectors in T'. Note that every c-dispersed set T' C F™ is also ¢/-dispersed if 0 < ¢ < ¢/ < 1. Furthermore,
we have span(7") = F™ for every c-dispersed set T C F™ (for any 0 < ¢ < 1).

Our arguments for proving Theorem[I.3]|give an analogous result with S™ replaced by a c-dispersed set T C F™
for some fixed 0 < ¢ < 1. This is stated in the following theorem.

Theorem 1.5. Fiz a field F and 0 < ¢ < 1. Let T C F™ be c-dispersed and let By,...,B, C T be
independent random bases of the vector space F™, where each B; is chosen uniformly at random from the
collection {B C T | B is a basis of F™}. Then, with probability 1 —o(1) as n — oo, the multi-set ByU---UB,,
can be partitioned into n bases of F™, which are transversal with respect to the original bases By, ..., By,.

The o(1)-term here can actually be taken independently of F (but it is required for ¢ to be fixed).

Organization. This paper is organized as follows. In Section [2] we deduce Theorems and from
Theorem and state some auxiliary lemmas for the proof of Theorem Section [3]explains the approach
for proving Theorem but the main part of the proof is (encapsulated in a certain proposition) postponed
to Section Section [4] contains some preparations for the proof in Section [5] while Section [6] contains the
proofs of some lemmas in Section[5] At the end of the paper, we make some concluding remarks in Section
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2 Auxiliary lemmas and preparations

Lemma 2.1. For any field F and any finite subset S C T of size |S| > 2, the set S™ C F™ is (1/|S])-dispersed.

Proof. Let V C F" be a subspace of dimension k. We need to show that [V N .S™| < (1/[S])"~* - |97, i.e.
that [V N S™| < |S|*. The k-dimensional subspace V' C F" is given by a system of n — k linearly independent
linear equations. When writing this system in row echelon form, we obtain k free variables (whereas the
other n — k variables are determined by linear expressions in the k free variables). For a vector in V' N S™, all
free variables need to take values in S, so there are at most |S|¥ choices for the free variables (which then, in
turn, determine the remaining variables). Thus, |V N S™| < |S|* as desired. O

Using Lemma we can easily deduce Theorem [1.3] from Theorem

Proof of Theorem[1.3 assuming Theorem[1.5 Let S C F be a subset of size |S| > 2. By Lemma [2.1] the set
T = S" C F" is (1/|5])-dispersed, and in particular (1/2)-dispersed. We can now apply Theorem with
¢ = 1/2 to obtain the desired conclusion. O

Recalling that Theorem immediately implies Theorem as a special case (by taking F = S =TF,), it
only remains to prove Theorem This will be our goal for the rest of this paper.

So let us from now on fix a field F and 0 < ¢ < 1. All of our asymptotic o-notation in the rest of this paper
may depend on the fixed value of c.



We define

o0

d=(1-c)-(1-¢) (1= =JJa-¢). (2.1)

i=1

It is clear that this infinite product is well-defined, since the sequence of partial products []/",(1 — ¢*) for
m — 00 is a monotone decreasing sequence of non-negative numbers and must therefore be convergent. Note
that ¢’ only depends on our fixed value of c.

Lemma 2.2. We have 0 < ¢’ < 1.

Proof. Since ¢ > 0, it is easy to see that ¢/ < 1. In order to show ¢’ > 0, observe that

=Jla-eh=][a-c"o=][0-0" =1 -5 =1 -Vt >0,
i=1 i=1 i=1
where the inequality in the third step follows from Bernoulli’s inequality. O

Finally, we will use the following auxiliary lemma in the proof of Theorem We postpone the proof of
this lemma to Section |§| (the proof is not difficult, but involves a somewhat lengthy computation).

Lemma 2.3. Let Zy,...,Zk be a sequence of random variables. For some finite set H, consider events E,SZ)

forh e H and ¢ = 1,..., K, where each event El(f) depends only on the outcomes of Zi,...,Z;. Suppose
that B1,...,08x with0 < By, <1 for{=1,...,K are chosen such that the following condition holds: For any
subset H C H, any £ =1,..., K and any outcomes of Z1,...,Zy_1, we have (subject to the randomness of
Zy when conditioning on the given outcomes of Z1,...,Z¢—1) that

Pr (6" holds for all he H'| Zu,..., Zes| < (80)/.

Then we can conclude that

Pr |for each h € H there is £ € {1,..., K} such that E,(f) holds] <A-01-=p)---(1- BK))‘H‘ .

3 Proof strategy for Theorem [1.5

Recall that in the previous section we fixed a field F and 0 < ¢ < 1. As in Theorem let T C F™ be a
c-dispersed subset.

We now need to consider independent random bases Bi,...,B, C T of the vector space F", where each
B; is chosen independently uniformly at random among all bases of F” that are subsets of T. For each
basis By, ..., B,, we can imagine that it is equipped with an ordering of its n vectors (take such an ordering
uniformly randomly among all n! orderings). In other words, we can write B; = {b; 1,...,b;n} fori=1,...,n
where b; 1,...,b;, € T. Now, foreachi = 1,...,n the n-tuple (b; 1,...,b;,) € T™ is uniformly random among
all n-tuples in 7™ that are bases of F™ (and these n-tuples are independent for different ).

In other words, let us from now on consider independent random n-tuples (b; 1,...,0;,) € T" fori=1,...,n,
where each (b;1,...,0;,) € T™ is chosen uniformly random among all n-tuples in T that are bases of F”,
and let Bz = {bi,17~ . ~7bi,n} for ¢ = 1,. .o, n.

In order to prove Theorem we need to prove that with probability 1 — o(1), the multi-set By U---U B,
can be partitioned into n bases of F", which are transversal with respect to the original bases B, ..., B,
(i.e. which are each of the form {b1 j,,b2,,...,bn j, } for some ji,...,j, € {1,...,n}).

In order to construct the desired transversal bases (with high probability), let us consider multi-sets X; and Y;
for j =1,...,n defined as follows: First fix some choice of n’ € {|n/2], [n/2]} throughout the rest of the pa-
per. Now, for every j =1,...,n, define X; = {b1 ,b2,...,bp;} and Y; = {by41,5,bn/42,5, ..., by ;} (taken
as a multi-set in case there are repetitions among the vectors by ;,b2 j,...,bn ; and bpry1 5, bprgo 4,0, by g,
respectively). Note that Xi,..., X, form a partition of the multi-set By U---U B,,, and Y7,...,Y,, form a



partition of the multi-set B,/y1 U---U B,. Thus, Xi,..., X, and Y7,...,Y, together form a partition of
By U---UB,.

Note that for any h,j € {1,...,n}, the multi-set X, UY; = {b1 p,..., 00/ h,bng1,5,..,bpn ;} is transversal
with respect to the bases By, ..., B,. Hence, if the n vectors in X, UY} are linearly independent, then X, UY
is a transversal basis. Let us define a bipartite graph, with n vertices on the left and n vertices on the right,
where for all h,j € {1,...,n} we draw an edge between vertex j on the left and vertex h on the right if and
only if the n vectors in X} UY} are linearly independent. Then each edge in this graph corresponds to a
transversal basis of the form X5 UY;.

Hence, in order to find a partition of By U --- U B,, into n transversal bases, it suffices to find a perfect
matching in this bipartite graph. Indeed, each edge of such a perfect matching would give a transversal basis
X, UY; and together they would form a partition of the multi-set X, U---UX,UY;U---UY,, = B1U---UDB,.

Thus, in order to prove Theorem it suffices to show that the bipartite graph defined above has a perfect
matching with probability 1 — o(1). This follows from the following proposition, which assert that in any
“half” of our bipartite graph (taking half the vertices on the left and half the vertices in the right), with
probability 1 — o(1) one can find a perfect matching.

Proposition 3.1. Let M C {1,...,n} be a subset of size |M| € {|n/2],[n/2]}. Let us consider the induced
subgraph of the bipartite graph defined above, where we only take the vertices with labels in M on the left and

the vertices with labels in M on the right. Then this induced subgraph has a perfect matching with probability
1—o0(1).

In order to find the desired perfect matching in our bipartite graph, we apply Proposition to the set
M; ={1,...,|n/2]} and to the set My = {[n/2] +1,...,n}. These two sets have size |M;| = |n/2]| and
|Ms| = [n/2], so with probability 1 — o(1) for both of the sets M; and Mj there is a perfect matching in the
induced subgraph described in the proposition. Note that the sets of vertices considered in the proposition for
M and for My form a partition of the vertex set of the original bipartite graph. Hence, if we can find perfect
matchings in the two resulting induced subgraphs for M; and for M, then we obtain a perfect matching in
the original bipartite graph. Thus, Proposition implies Theorem

So it suffices to prove Proposition and the rest of this paper is devoted to proving this proposition. Upon
changing the order of the vectors b; 1,...,b;, in each basis B;, we may assume for the proof of Proposition
that M = {1,...,m} with m € {|n/2],[n/2]}. Indeed, note that changing the order of the vectors
bi1,...,b;n in each basis B;, changes the order of the list of sets X3,..., X,, and of the list of sets ¥7,...,Y,
accordingly. So let us from now on assume that M = {1,...,m} with m € {|n/2], [n/2]}.

The reason for considering the induced subgraph in Proposition rather than the entire original bipartite
graph is as follows. We will imagine that for each i = 1,...,n we expose the vectors b; 1, ..., b; , one vector
at a time in this order. The choices for the vectors b; 1,...,b; , are clearly not independent of each other
(for example, the vectors b; 1, ..., b; ,, must always be linearly independent for each i = 1,...,n). However,
the fact that m is significantly smaller than n makes the dependence of each of the vectors b; 1,...,b;», on
the previously exposed vectors easier to handle (in particular, because the span of the previously exposed
vectors is not too large).

In the next section, we will analyze the probability distribution for each new vector when choosing the vectors
bi1,-..,bim one at a time for each ¢ = 1,...,n (note that the choices for different i are actually independent
of each other since the bases By, ..., B,, are independent). The result of this section will then be used in our
proof of Proposition in Section

4 Lemmas for the probability distribution for new basis vectors

Let us imagine that each random basis B; = {b; 1,...,b;»n} C T is exposed one vector at a time in this order.
Then each vector b; j for 1 < j < n is some random vector in 7" whose distribution depends on the previously
exposed vectors b;1,...,b; 1 of the basis B; (recall that the different bases By,..., B, are independent).
Given b;1,...,b; j—1, the new vector b; ; € T must be linearly independent from b;1,...,0; ;1. Note,
however, that the distribution of b; ; is not necessarily uniform among all vectors in T'\ span(b; 1,...,b; j_1).



Instead, the different possibilities of b, ; € T \ span(b;1,...,b;;—1) have probabilities proportional to the
number of possibilities for extending b; 1,...,b; j—1,b; ; further to a basis of F" with vectors in 7.

The next two lemmas show useful properties of this probability distribution. Recall that in (2.1) we defined
¢’ > 0 (depending only on 0 < ¢ < 1, which we fixed).

Lemma 4.1. For some i,j € {1,...,n}, assume that the vectors b;1,...,b; ;1 € T have already been
exposed, and fiz any outcomes of these vectors. Now, consider the probability distribution for b; j in the set
T \span(b; 1,...,b;j—1). Then for any two vectors in T \ span(b; 1,...,b; j—1) the corresponding probabilities
differ by a factor of at most 1/c’.

Proof. For any z,y € T \ span(b; 1,...,b; 1), we need to show Pr[b; ; = z] > ¢ - Pr[b; ; = yJ, conditioned
on the given outcomes of b; 1,...,b; j—1 (which are linearly independent). Recall that the probability for b; ;
to attain a certain vector is proportional to the number of possibilities for extending the resulting sequence

of vectors b;1,...,b; j—1,b;; to a basis of " with vectors in 7. Hence the desired inequality is equivalent to
H(zjs1,-02n) €T | bia,.. . bijo1,2, 2541, ..., 2n 18 a basis of "}
> H{(zj41y -5 20) ET" 7 | ity oo bijo1,Ys Zj41, - - -, 2n 1S & basis of F"}|

The right-hand side can is clearly at most ¢ - |T|"77. Let us now show that the left-hand side is at least
¢TI,

In order to show this, consider independent uniformly random vectors zj41, ..., 2, € T"7J. We wish to show
that with probability at least ¢’ the vectors b; 1,...,b; j—1,, 2j+1,. .., 2, form a basis of F”. This happens if
and only if the vectors b; 1,...,b; j—1,%,2j+1,..., 2, are linearly independent. Note that b; 1,...,b; j_1, 2 are
linearly independent (since b;1,...,b; ;—1 must be linearly independent and « € T\ span(b;1,...,b; j—1)).
Now, the probability that the (uniformly random) vector zj;1 € T lies in span(b; 1,...,b; j—1,x) is at most

|T N span(bm, ceey bi,j—h 1‘)|
T

Cn—dimspan(b,;yl,...,bi,j_l,a:) n—j

= C s

IN

where the inequality holds since T is c-dispersed (see Definition [1.4). Hence the vectors b; 1,...,b; j—1,2, 241
are linearly independent with probability at least 1 — ¢ 7. Whenever this happens, we can repeat the same
argument for z;;o, obtaining that z; o lies in span(b; 1, ..., bij—1,, Zj+1) with probability at most ¢ 771,
So with probability at least (1 —¢"77) - (1 — ¢"=771) the vectors b;1,...,b; j—1,%,2j+1,2j+2 are linearly
independent. Repeating this argument, we can show inductively that for every h = j + 1,...,n, the vectors
bity---ybij—1,%,2j11,...,2, are linearly independent with probability at least (1 —c¢"7) .- (1 — ¢"H1=h).
Thus, taking h = n, we see that the vectors b;1,...,b;;-1,%,2j41,...,2n are linearly independent with
probability at least

Q=)= )=o) =JJa-) = JJa-) ="

=1 =1
Thus, we proved that
{(2j41s s 20) €T | bin, .oy bij1,%,2j41, .-, 2y 18 a basis of F"}|
Z C/ . |T|n7j Z C/ . |{(Zj+1, ey Zn) S Tnij ‘ bi71, ey bi,j—17y7 Zj4lye-9%n is a basis of FnH,
as desired. O

The next lemma only applies to b; ; with j < [n/2] (and only with sufficiently large n in terms of ¢), but
note that in order to prove Proposition we only need to consider the vectors b; ; with j < m < [n/2]
(since these are the only vectors appearing in the sets X1,..., X, Y1,...,Y5,).

Lemma 4.2. Suppose that n is sufficiently large with respect to ¢ such that ¢/? < (1 —¢)/2. For some
i,j € {1,...,n} with j < [n/2], assume that the vectors b;1,...,b; j—1 € T have already been exposed. For



some 1 <k <mn,let VCF" be a subspace of dimension n — k. Then, conditional on any fixed outcomes of
bi1,...,bij—1, the random vector b; ; satisfies b; ; € V' with probability

1—ch\ 7"
Pr [b@j eV | bi71, .. -7bi,j—1] < <1 + (C//Q) . ) .

ok
Proof. As in the lemma statement, let us fix any outcomes b; 1, ...,b; j—1, and let W = span(b; 1,...,b; j—1)-
Since j < [n/2], we have dim W < n/2 and Deﬁnitionyields WAT| <cr=dmW 7| < /2.7
Since the vectors b; 1, ..., b; ; must always be linearly independent, we have b; ; € T\ W for any outcome of

bi,j (conditioned on the fixed outcomes of b; 1, ..., b; ;—1). By Lemmad.1] for any two vectors in z,y € T\W,
we have
Pr[bi,j =T | bi,la ceey bi,j—l] Z Cl . Pl‘[bid =Y | bi,la ey bi,j—1]~

Let p be the maximum value of Pr[b; ; =y | b;1,...,b; j—1] among all y € T\ W. Then for every z € T\ W,
we have
- p<Pribj=a|bi1,...,bi;-1] < p.

Hence
Pl‘[bi’j eV | biyl,...,bi’jfl] = Z Pf[bi’j =T | bi717...,bi’j,1] S |VOT| * P,
zeVN(T\W)

On the other hand,

Pr[bm %V | bi,17~-~;bi,j—1] = Z Pr[bid =T | bi71,...,bi7j_1] Z |T\(VUW)| 'Cl'p.
z€T\(VUW)

Using that
T\ (VUW)[Z|T| = |[VNT| = |WNT| > |T| = [VNT| =2 |T| = (1= "/?)|T| = |V AT,
this implies
Prlbig @V [ bins.osbiga] = (1= /I =V 0 T]) - - p.
Now, using that |V NT| < c* - |T| (by Definition for the (n — k)-dimensional space V'), we can conclude

1 _ Prfbig € V[bin, s bigal + Pribi @V | big, ..o bijoal
Pribj € V | bi1,...,bij-1] Pribig €V I1bis,- o biy]
Prlbi; & V | bia, ..., bi 1]

Pr bi7j eV | bi,l, ey bi7j_1}

>14 (=)= |VAT]) - p
- VAT[-p
:1—|—c’.1_cnc/;—ck

By our assumption k > 1, we have ¢*/2 < (1 —¢)/2 < (1 — ¢¥)/2 and obtain

1 1—cV/2—ck (1—c*)/2 1—cF
>14+cd —k——"—>1+ - — =1 '/2) - .
Pr[bm' eV ‘ bi,la-”abi,j—l] zlte Ck zlte Ck + (C/ ) Ck
This gives the desired inequality. O



The term on the right-hand side of the inequality in Lemma will occur repeatedly (for different values of
k) in our proof. To simplify notation, let us write

o= (147 1‘0)_1 (1)

for any positive integer k. Note that 0 < ag < 1 (recalling that 0 < ¢ < 1 and 0 < ¢/ < 1) and that o depends
only on ¢ and k. Now, the bound in Lemma reads Prb; ; € V | bi1,...,b; j—1] < ay. Furthermore, note
that for every positive integer k we have

o= (14 (ﬂ)lc)l (1w ) < (B =2 (4.2

and also note that a; > as > a3 > ... is a monotone decreasing sequence.

Lemma 4.3. For any positive integers k and £, we have age < (o).

Proof. Note that
(ck +(c/2)- (1 — ck))e =M+ Z (f) (c/2)"- (1 =P ()

<c i:() 1= ()t = 4 (d)2) - (1 = M,

i=1
where we used that ¢//2 < 1. Dividing by ¢*¢ yields

PENE ke

) §1+(c’/2)~1

1-c
<1 +(¢/2) - —;
which upon taking inverses gives the desired inequality (ax)? > . O

Let us now define

f=2(1—ar) (1—as) (1-ag) =~

. (1 ap). (4.3)

C,o\»—t
::]8

k=1

This infinite product is well-defined, since the corresponding sequence of partial products is a monotone
decreasing sequence of non-negative numbers and therefore converges. Note that ¢ only depends on c.

Before starting the proof of Proposition in the following section, we first establish that § > 0.

Lemma 4.4. We have 0 < § < 1/3.

Proof. Since 0 < ay < 1 for all positive integers k, it is easy to see that 0 < § < 1/3. In order to establish
that § > 0, choose a sufficiently large positive integer £ such that ¢’ < (¢//2) - (1 —c¢). Then by (4.2) we have

{—1 [eS) -1

1 1
6:5-H(l—ak)-Hu—ak)z5.]‘[(1_%).(1_@@_%“_...)
k=1 i=k k=1
-1 -1
1 2 L, e 1 2
>3 H(1_ak).(1_c,.(c+c +..) —§~H(1—ozk)~ -2 >0
k=1 k=1
noting that the last term is a finite product of positive factors. O



5 Finding the perfect matching: proof of Proposition [3.1

As discussed in Section [3] for the proof of Proposition we may assume that M = {1,...,m} with
m € {|n/2],[n/2]}. Let G be the induced subgraph appearing in Proposition i.e. G is the bipartite
graph with vertices 1,...,m on the left and vertices 1,...,m on the right, where for all h,j € {1,...,m} we
draw an edge between vertex h on the left and vertex j on the right if and only if the n vectors in X} UYj
are linearly independent. We need to prove that with probability 1 — o(1) (as n — oo) this graph G has a
perfect matching.

Recall that 0 < ¢ < 1 is fixed. Let us assume that n is sufficiently large with respect to ¢, such that in
particular ¢/2 < (1 — ¢)/2 (note that then we can apply Lemma 4.2{ whenever j < m).

Our first lemma states that with high probability each of the multi-sets X7, ..., X,, individually is linearly
independent in F™ (and is hence in particular just an ordinary set of vectors with no repetitions).

Lemma 5.1. With probability 1 — o(1), each of the multi-sets X1, ..., Xm s linearly independent.

Proof. It suffices to prove that for each j € {1,...,m}, the probability that X is not linearly independent
is at most o(1/n). Indeed, then a union bound over all j € {1,...,m} shows that with probability at least
1—m-o(1/n) =1—o0(1), each of X1,...,X,, is linearly independent.

So let j € {1,...,m}. We prove that the probability that X is not linearly independent is at most o(1/n),
even when conditioning on any outcomes of the sets Xi,...,X;_1, i.e. of the vectors b;1,...,b; j_1 for

i=1,...,n. Solet us fix any outcomes of b; 1,...,b; j—1 fori=1,...,n'

Let us now expose the vectors of X; = {b1 ;,..., by ;} one vector at a time in this order. If X, is not linearly
independent, then one of the vectors b; ; for some i € {1,...,n'} must be in the span of the previously
exposed vectors by j,...,b;—1 ;. For each i € {1,...,n'}, this span has dimension at most i —1 < n/ — 1,
so by Lemma [4.2] and the probability that b; ; is inside span(by j,...,bi—1;) is at most a,_pq1 <
(2/¢)- e FL < (2/¢) -2 (here, we used and n’ < [n/2]). Thus, the total probability that X; is not
linearly independent is indeed at most n'-(2/¢')-¢*/? < n-(2/¢')-¢*/? = o(1/n) (recalling that 0 < ¢ < 1). O

Recall that we need to prove that the bipartite graph G has a perfect matching with probability 1 —o(1). In
order to do so, we will show that that with probability 1 — o(1) the graph G satisfies the condition in Hall’s
marriage theorem. To establish this, we first show that with probability 1 — o(1) all vertices in G have high
degree (see Lemmas and below). And second, we show for some L (depending only on ¢), that with
probability 1 — o(1), for any L distinct vertices on the left side the union of their neighborhoods is large (see

Lemma below).

Recall that we defined ¢ (depending only on ¢) in and we established in Lemma that § > 0. The
following lemma is a key step towards our our first goal of showing that with probability 1 — o(1) all vertices
in G have high degree. The lemma states, roughly speaking, that for every vertex h on the left, each vertex
j on the right has an edge to h on the left with probability at least 30 (in other words, X;, UYj is linearly
independent with probability at least 35). More precisely, the lemma states that this is true even when
conditioning on the outcomes of the sets Y7,...,Y;_;.

Lemma 5.2. Let h,j € {1,...,m}, and fix any outcome of Xy, = {bin,...,bpr n} such that by p,...,bp p
are linearly independent. Furthermore, consider any fived outcomes of the vectors in the sets Y1,...,Y;_1,
i.e. of the vectors b 1,...,b;j—1 for alli =n"+1,...,n. Then, conditional on the outcomes of the vectors
in Y1,...,Y;_1, subject to the randomness of Y; = {bpy1j,...,bn;}, the multi-set Xy UY; is linearly
independent with probability at least 36.

Proof. Let us expose the vectors of Y; = {by/41,,...,bn j} one vector at a time. Note that these random
vectors are actually probabilistically independent of each other (since the different bases B; are independent).
By assumption, X;, = {b14,...,bn 5} is linearly independent. Hence span(Xy) is a subspace of dimension
n’, and by Lemma and with probability at least 1 — a,,—, the vector b,/ 41 (when conditioning
on the given outcomes of b,/ 411, ..., bpr41,j—1) is outside this subspace and hence linearly independent from
Xp. Assuming that this hold, span(Xy U {b,/41,;}) is a subspace of dimension n’ + 1. Then with probability
at least 1 — ay,—ps—1 the vector by ; (when conditioning on the given outcomes of byr191,..., bn/+2’j,1)



is outside span(Xy U {bn/41,;}) and hence linearly independent from X U {b,/41 ;}. Continuing like this,
we can show that for every £ = n/ 4+ 1,...,n, the multi-set X U {bpr41,j,...,be;} (when conditioning on
the given outcomes of b;1,...,b;j—1 for all i = n’ 4+ 1,...,¢) is linearly independent with probability at
least (1 — ap—pn/)(1 — ap—pr—1) -+ (1 — @p—g4+1). In particular, for £ = n we obtain that X UYj is linearly
independent with probability at least

(1= pn) (I = Apepr—1) -+ (1 — ay) iTl—ak > []1 - o) =39,

k=1

when conditioning on the given outcomes of b; 1,...,b; j—1 foralli=n"+1,...,n. O

As an easy corollary of Lemma and Lemma [5.1] we obtain the following lemma.
Lemma 5.3. With probability 1 — o(1), in the graph G every vertex on the left has degree at least 26m.

Proof. Let us first expose the bases By, ..., By, which determine the sets X1,..., X,,. By Lemma[5.1] with
probability 1 — o(1) each of the multi-sets Xi,..., X,, is linearly independent. So let us fix an outcome of
X1,...,Xm, where each of these sets is linearly independent.

It now suffices to prove that, subject to the randomness of Y7, ..., Y,,, foreach h € {1, ..., m} with probability
at most o(1/n) vertex h on the left has degree less than 20m. Indeed, then by a union bound, with probability
at most m - o(1/n) = o(1), there is a vertex on the left with degree less than 2dm.

So consider some h € {1,...,m}. By Lemma subject to the randomness of Y7, there is an edge between
vertex h on the left and vertex 1 on the right with probability at least 35. After exposing Y7 and conditioning
on its outcome, subject to the randomness of Y, by Lemmal5.2 there is an edge between vertex h on the left
and vertex 2 on the right with probability at least 35. Continuing this, we see that for every j € {1,...,m},
when conditioning on any outcomes of Y7,...,Y;_1, subject to the randomness of Y;, there is an edge between
vertex h on the left and vertex j on the right with probability at least 3§. Thus, subject to the randomness of
Yi,...,Y,, the degree of vertex h on the left is a random variable that stochastically dominates a binomial
random variable Z ~ Bin(m, 35). Hence the probability that vertex h on the left has degree less than 26m is
at most )
Pr[Z < 26m] < exp <—2 . —(3(5m ;25771) ) = 728'm < e~ (=1 — o(1/n),

as desired. Here, in the first step we used the Chernoff bound (see e.g. [2, Theorem A.1.4]) and in the third
step we used that m € {|n/2], [n/2]}. O

Analogously to Lemma [5.3] we can also show that with high probability, every vertex on the right has degree
at least 20m.

Lemma 5.4. With probability 1 — o(1), in the graph G every vertex on the right has degree at least 26m.

Proof. Note that our setup is completely symmetric in the left and the right side. So Lemma [5.4] follows in a
completely analogous way to Lemma (by first stating and proving the analogous versions of Lemmas
and with left and right side interchanged). O

Let us now fix a sufficiently large positive integer L depending only on ¢ such that
(1-36)L<6/2 (5.1)

(recall that 0 < 6 < 1/3 only depends on ¢). Furthermore, let us fix a sufficiently large positive integer K
depending only on ¢ such that
2 K
< e
¢ 1- 2
Recall that we are assuming that n is sufficiently large Wlth respect to ¢, so we can in particular assume that
n > 2K (and therefore [n/2| > K). Note that by (4.2)), we have

[« 2

2 2
aK+aK+1+aK+2+-~-<g~(cK+cK+1+cK+2—|—...):C—- < —. (5.2)

10



Our second goal is now to show that with probability 1 — o(1), for any L distinct vertices on the left side
of G, the union of their neighborhoods is large. When showing this, we have to take care of the possibility
that certain subspaces that appear in the argument might have unusually large intersections. The following
definition captures these “bad” situations that would be problematic for our argument.

For j € {1,...,m} and k € {1,..., K}, let us define Yj(k) = {bp41,4,---sbn—k, - In other words, Yj(k) is
obtained from Y; = {b,/41j,...,b, ;} by omitting the last k vectors.

Definition 5.5. For a subset H C {1,...,m} of size 1 < |H| < L, as well as j € {1,...,m} and k €
{1,..., K}, let us say that (H, Yj(k)) s bad if

dim ( m span(Xj U Y}(k))> >n—k-|H|.
heH

Furthermore, let us say that (H,j) is bad if (H, Yj(k)) is bad for some k € {1,...,K}.

The next lemma states that with high probability there are no bad pairs (H, j).

Lemma 5.6. With probability 1 — o(1), for every subset H C {1,...,m} of size 1 < |H| < L and every
jeA{l,...,m} the pair (H,j) is not bad.

We postpone the proof of Lemma to Section [6] since it is somewhat technical.

Our next lemma is similar to Lemma but instead of a single set X} we consider an L-tuple of such sets.
We would like to show that for each j with probability at least 1 — ¢ at least one of the L corresponding sets
X5 UYj is linearly independent. This is roughly true, but we also have to take into account the possibility
of having bad configurations as in Definition

Lemma 5.7. Let H C {1,...,m} be a subset of size |H| = L, and let j € {1,...,m}. Let us fir any
outcomes of Xp, = {b1,n,...,bp 1} for all h € H, such that for each h € H the multi-set X}, is linearly inde-
pendent. Furthermore, consider any fived outcomes of the vectors in the sets Yi,...,Y;_1, i.e. of the vectors
bit,....bij—1 for alli =n'+1,...,n. Then, conditional on the outcomes of the vectors in Y1,...,Y;_ 1,
subject to the randomness of Y; = {bpr41,j, ..., bn j}, with probability at least 1 —9§ at least one of the following
properties is satisfied:

(a) Xy UYj is linearly independent for at least one h € H.

(b) (H',j) is bad for some non-empty subset H' C H.

We also postpone the proof of Lemmal5.7]to Section[6] Similarly to the deduction of Lemma [5.3]from Lemma
Lemma [5.7] and the Chernoff bound imply the following.

Lemma 5.8. With probability 1 —o(1), the following holds: For every subset H C {1,...,m} of size |H| = L,
there are at least (1 —28)m different j € {1,...,m} which satisfy property (a) or property (b) in Lemmal[5.7.

Proof. First, expose the outcomes of Xi,...,X,, (i.e. the outcomes of the bases By,...,B,/). By Lemma
with probability 1 — o(1), each of the multi-sets X7, ..., X,, is linearly independent. So let us condition
on any such outcome for Xi,..., X,,.

Now it suffices to prove that (subject to the randomness of Y7,...,Y,,) for every subset H C {1,...,m} of
size |H| = L, the probability that there are fewer than (1 — 26)m different j € {1,...,m} satisfying property
(a) or (b) in Lemma is at most o(1/n’). Indeed, then by the union bound the probability that for some
subset H C {1,...,m} of size |H| = L there are fewer than (1 — 2§)m such j is at most m* - o(1/n%) = o(1).
So let us now consider some H C {1,...,m} of size |[H| = L. By Lemma 5.7} for each j € {1,...,m} with
probability at least 1 — § the outcome of Y; is such that (a) or (b) is satisfied, even when conditioning on
any outcomes of Y7,...,Y;_1. This means that the number of different j € {1,...,m} satistying (a) or (b)
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is a random variable which stochastically dominates a binomial random variable Z ~ Bin(m, 1 — §). Thus,
the probability that there are fewer than (1 — 26)m different j satisfying (a) or (b) is at most

PI“[Z < (1 . 25)m] < exp (_2_ ((1 — (5)m —Tn(l - 25)m)2) _ 6_2621_” < 6_62‘(n_1) _ O(l/nL),

as desired. Here, we again used the Chernoff bound (see e.g. [2, Theorem A.1.4]) and m € {|n/2],[n/2]}. O

Now, using Lemmas [5.6] and we can show that with high probability, for any L distinct vertices on the
left side of G, the union of their neighborhoods is large.

Lemma 5.9. With probability 1 — o(1), the graph G satisfies the following condition: For any L distinct
vertices on the left, the union of their neighborhoods has size at least (1 — 26)m.

Proof. By Lemma with probability 1 — o(1) none of the pairs (H’,j) for any subset H' C {1,...,m}
of size |H'| < L and any j € {1,...,m} are bad. Furthermore, with probability 1 — o(1) the statement in
Lemma holds. But if there are no bad pairs (H’, j), then there cannot be any subset H C {1,...,m} of
size |H| = L and any j € {1,...,m} satisfying property (b) in Lemma Thus, with probability 1 — o(1),
for every subset H C {1,...,m} of size |H| = L there are at least (1 —20)m different j € {1,...,m} satisfying
property (a) in Lemma But this precisely means that with probability 1 — o(1) for every set H of L
distinct vertices on the left of G there are at least (1 — 20)m different vertices j on the right that are in the
union of the neighborhoods of the vertices in H on the left. 0

Combining Lemmas and it is now not hard to show that G satisfies the condition in Halls’
marriage theorem with high probability.

Lemma 5.10. With probability 1 — o(1), the graph G satisfies the following condition: For any set H of
vertices on the left, the union of their neighborhoods has size at least |H]|.

Proof. Since we are proving an asymptotic statement, we may assume that n (and hence m) is sufficiently
large with respect to the fixed value of ¢, and in particular that 26m > L (recall that § and L only depend
on c¢).

With probability 1 —o(1), the graph G satisfies the properties in Lemmas and We will show that
whenever these properties are satisfied, the graph also satisfies the condition in Lemma |5.10

So consider some subset H of the m vertices on the left of G. We need to show that the union of the
neighborhoods of these vertices has size at least |H|, assuming that G satisfies the properties in Lemmas
E.4 and 5.9

If |H| = 0, this is trivially true. If 1 < |H| < 26m, then the union of the neighborhoods of the vertices in
H has size at least 20m > |H|, since by the property in Lemma each of these neighborhoods already has
size at least 20m individually. If 26m < |H| < (1 — 2§)m, then in particular |H| > 2ém > L and so by the
property in Lemma[5.9]the union of the neighborhoods of the vertices in H has size at least (1—28)m > |H|.
Finally, if (1—26)m < |H| < m, then we claim that all m > |H| vertices on the right of G must be in the union
of the neighborhoods of the vertices in H. Indeed, by the property in Lemma [5.3] each vertex on the right of
G has degree at least 20m and so it must be adjacent to at least one vertex in H since |H| > (1 —2§)m. O

Whenever the bipartite graph G satisfies the condition in Lemma [5.10}, then by Hall’s marriage theorem it
has a perfect matching. Thus, by Lemma [5.10] G has a perfect matching with probability 1 — o(1). This
proves Proposition |3.1

6 Proof of Lemmas 5.6, [5.7 and 2.3

In this section, we prove the lemmas whose proofs we previously postponed. First, we prove Lemma [5.6]
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Proof of Lemma[5.6. We need to prove that with probability 1 — o(1) none of the pairs (H, Yj(k)) for H C
{1,...,m} of size 1l < |H| < L,and j € {1,...,m} and k € {1,..., K} is bad. Let us say that a bad pair
(H, Yj(k)) is a minimal, if there is no bad pair (H’, Yj(k)) with @ C H' C H. Note that whenever (H, Yj(k)) is
a bad pair, there is some non-empty subset H' C H such that (H’, Yj(k)) is a minimal bad pair.

Thus, it suffices to prove that with probability 1 — o(1) none of the pairs (H, Yj(k)) for H C {1,...,m}
of size 1 < |H| < L, and j € {1,...,m} and k € {1,...,K} is a minimal bad pair. There are at most
ml-m-K < K-nt*t! = O(n+1) choices for H, j and k. Hence it suffices to prove that for any given choice

of H C {l,...,m} (ofsize 1 < |H| < L)and j € {1,...,m} and k € {1,..., K}, the pair (H,Yj(k)) is a

minimal bad pair with probability at most o(1/nt+1).

So consider a subset H C {1,...,m} ofsize 1 <|H| < L,and j € {1,...,m} and k€ {1,...,K}. Let he H
be the largest element of H. First, consider the case that |H| =1, i.e. H = {h}. We claim that in this case
the pair (H, Yj(k)) is never bad (and so in particular never a minimal bad pair). Indeed, we always have

dim (span(Xh U Yj(k))) <n—-k=n-—k-|{h},

since X, U Yj(k) only consists of n’ + (n —n’ — k) = n — k vectors. Hence the pair (H, Y,(k)) is never bad if

J
|H| = 1. So let us from now on assume that |H| > 2.
Let us expose Yj(k), as well as X1,..., X;,_1,. We will show that conditioned on any outcomes for Yj(k) and

X1,...,Xn_1, subject to the randomness of X},, the pair (H, Yj(k)) is a minimal bad pair with probability at
most o(1/nf*1). Note that now we already exposed X}, for all b’ € H \ {h} (and note that H \ {h} # @ by
our assumption that |H| > 2). If (H \ {h}, Yj(k)) is a bad pair, then (H, Yj(k)) cannot be a minimal bad pair.
So let us assume that the (H \ {h}, Yj(k)) is not bad. Then we have

dim | () span(Xw UY,") | <n—k-(|H|-1)
h'e H\{h}

For simplicity of notation, let W be the space given by the intersection on the left-hand side. Then dim W <
n—k-(|H| —1). It suffices to show that the probability of having

dim(W Nspan(X;, UY, ™)) > n — k- [H| (6.1)

is at most o(1/n’*1). Indeed, this would mean that the probability of (H, Yj(k)) being a bad pair, and hence
in particular the probability of (H, Yj(k)) being a minimal bad pair, is at most o(1/nf*1).

Note that in the case of dim W < n—k-|H|, we always have dim(Wﬂspan(XhUYj(k))) <dimW <n-—k-|H|,
so (6.1) never holds. Hence we may from now on assume that

n—k-|H <dmW <n-—-£k-(|H|-1).
Note that whenever (6.1 holds, we must have

dim(W + span(X, UY ™)) = dim(W) + dim(span(X, U Y, ™)) — dim(W N span(X; UY, "))
<(n-k-(JH-1))+n—-k)—(n—Fk-|H|)=n
and therefore
dim(W + span(X})) = dim(W + span(Yj(k)) + span(Xy)) = dim(W + span(Xj, U Yj(k))) <n.
So it suffices to show that the probability of having dim(W + span(X},)) < n (conditioned on the outcomes

of Yj(k) and Xi,..., X}, and subject to the randomness of X},) is at most o(1/n**1).
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Recall that W is determined by the outcomes of Yj(k) and Xq,..., X1 that we are conditioning on. Let
us now expose X, = {bip,...,by n} one vector at a time in this order. At every step i = 1,...,n/,
consider the dimension dim(W + span(bi p,...,b;)). By our assumption that dimW > n — k- |H|, this
dimension can increase for at most k- |H| < K - L steps. Let I C {1,...,n'} be the set of indices where
the dimension at step ¢ is larger than the dimension at step ¢ — 1, i.e. where dim(W + span(by p,...,b;ipn)) >
dim(W + span(by p,...,bi—14)). Then |I| < K - L and hence there are at most (n')%Z < nfL possibilities
for the set I. If dim(W + span(X})) < n, then for every i € {1,...,n'} \ I we must have

dim(W + span(by p, - .., b;p)) = dim(W + span(by p, - - -, bi—1,n)) < dim(W + span(Xj,)) < n.

Hence, if dim(W + span(X})) < n, then for every i € {1,...,n'} \ I the random vector b; , must be in the
subspace dim(W + span(bi s, ...,b;—1,4)) (which only depends on the previously exposed vectors) and this
subspace must have dimension at most n—1. Foreach i € {1,...,n'}\I, conditioned on the previously exposed
vectors, the probability that this happens is at most «; by Lemma and . Hence the probability to
have this property for all ¢ € {1,...,n'} \ I is at most

a? —|1I] < a|1_n/2J7KL _ o(l/nKL+L+1)
KL

(here, we used that 0 < a3 < 1 only depends on our fixed value of ¢). Since there are at most n
possibilities for I, we can conclude that the total probability of having dim(W + span(X})) < n (conditioned

on the outcomes of Yj(k) and X1,..., X, 1) is at most n®F . o(1/nKLTLFL) = o(1/nt+1), as desired. O
Next, we prove Lemma [5.7

Proof of Lemma[5.7. Recall that we fixed outcomes X}, for all h € H such that for each h € H the multi-set
X}, is linearly independent, and that we are conditioning on fixed outcomes for Y7,...,Y;_;. Let us expose
the vectors of Y; = {bp/11,,...,bn;} one vector at a time (these vectors are independent on each other,
but for each vector b; ; for i € {n’ +1,...,n} the probability distribution depends on the fixed outcomes of
bi1,...,b;j—1 that we are conditioning on). We need to prove that the probability that neither (a) nor (b)
holds is at most 9.

If (a) does not hold, then for each h € H, the multi-set X, UY; = Xj, U {bp/41,j,...,by ;} must be linearly
dependent. So, since each X}, is linearly independent, for each h € H there must be an index i € {n'+1,...,n}
such that bi,j € span(Xh U {bn/+17j, ceey bi—l,j})-

First, consider the possibility that for some h € H we have b; ; € span(Xy, U{by/41j,...,b;—1,;}) for an index
ie{n’+1,...,n—K}. Foreachhe€ H andie€ {n'+1,...,n— K}, after having exposed by/41 j,...,bi—1,;,
the subspace span(Xy U{bn/41,j,...,bi—1,;}) has dimension at most ¢ —1 (since it is spanned by i —1 vectors).
Hence by Lemma and 7 the probability of having b; ; € span(X; U {bn’+1,j7 ey bi,l,j}) is at most
Qp—i+1. Thus, by a union bound, the overall probability that b; ; € span(Xy U {bn/41,5,...,bi—1,;}) for some
h € H and some i € {n' +1,...,n— K} is at most

|H|'(anfn’+anfn’+1+"'+aK+1)<L'(aK+aK+1+aK+2+-u)SL'izf

by .

It remains to bound the probability that for each h € H there is some i € {n — K 4+ 1,...,n} such that
b; ; € span(Xp U {bp/114,...,bi—1,;}). More precisely, it suffices to show that the following event £ happens
with probability at most §/2: (b) is not satisfied and for each h € H there is some i € {n — K +1,...,n}
such that b@j € span(Xh U {bn/+1,ja ceey bi—l,j})~

We will show that this event £ happens with probability at most §/2, even when conditioning on any outcomes
of bpig1j,- -, bn_k j. So let us expose by/41j,...,bh—Kk, ; and condition on their outcomes. Now, the only
remaining random vectors are b,_g41,j,---,bn,; (which we will expose one vector at a time). For every
¢=1,...,Kand h € H, let 5,(f) denote the event that b, x1¢,; € span(Xy, U{bp/11,,...,bp—Kk4e—1,}) and

for every non-empty subset H' C H the pair (H', Y+~

for each h € H there must be some ¢ € {1,..., K} such that the event S}Ee) happens (indeed, for each h € H

is not bad. Now, whenever the event £ happens,
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we can take ¢ =i — (n — K) for i as in the event £, noting that the pair (H’,Y]»(KH_E)) is not bad for any
non-empty subset H' C H since (b) is not satisfied).

Thus, it suffices to show that

Pr {for each h € H there is some ¢ € {1,..., K} such that 5}(L£) holds| < §/2, (6.2)
where the probability is subject only to the randomness b,k 11 j,...,bn ; and conditional on the outcomes
of all previously exposed vectors. Note that each event c‘,’}(f) only depends on bp,_r 11,5, .., bn_K+e,;-

Let us apply Lemma to the random variables Zi,..., Zx given by Zy = b,_x1¢;, the events Sf(f) for
h € H and ¢ € {1,..., K} defined above, and to S1,..., 8k given by 8y = ax1-¢ for £=1,..., K. In order
to check the condition in Lemma consider any subset H' C H, any £ = 1,..., K and any outcomes of
21 =bp—K41,5,--+>Zt—1 = bp_g4+0-1,;. We need to check that

Pr |:5}(f) holds for all h € Hl | bTL—K+17j’ ceey bn_K_i_g_Lj:I S (OéK_;,_l_e)'H/‘. (63)

Indeed, first note that this inequality is trivially true if H' = & (since then the left-hand side is 1). So let us
assume that H' C H is a non-empty subset. Exposing b,—xg41,j,...,0n—k+e—1,; (and recalling that we are
also conditioning on outcomes of the previously exposed vectors) determines the space

)
ﬂ span(Xj U Y]-(KJr1 )) = ﬂ span(Xp, U {bn/41,5, -, bn—ktre—1;})-
heH’ heH'

If this space has dimension strictly larger than n— (K +1—¥¢)-|H’|, then (H’, Y»(KH_(Z)) is bad (by Definition

D and so the event S,SZ) cannot happen (by definition of the event). Hence 1} is also trivially true in this
case. So let us assume that the space (¢ span(Xy U {bp/41,--,0n—K1e-1,;}) has dimension at most

n—(K+1—4¢)-|H'|. In order for all of the events 5,(16) for h € H' to hold, the vector b,_ g ¢, ; must be
contained in the intersection of span(Xj; U {by/41, ..., bn—kte—1,;}) for all h € H' (again by definition of

the events E,Se)). Since this intersection is a space of dimension at most n — (K +1 —¥¢) - |H'|, by Lemma
and (4.1) the probability that b,_ ks ; is in this intersection is at most

’

H
o 1oy < (axpi—e) !

(here, we used Lemma. Thus, we have checked the condition (6.3)) in all cases.
So we can indeed apply Lemma and conclude that

1—(1—B1)--(1—Br)™

Pr |for each h € H there is some ¢ € {1,..., K} such that Si(f) holds} <(
=(1-(l-ag)(1-a))"
<
= (

1—(1—ay) - (1—ag)---)"
1-30)F <4/2,

where in the second-last step we used the definition of § in (4.3) and the last step is by (5.1). This proves
(6.2), as desired. O

Finally, we prove Lemma [2.3

Proof of Lemma[2.3. We prove the lemma by induction on K. For K = 1, we have

Pr [for each h € H there is £ € {1} such that E,EZ) holds]

= Pr & holds for all h e H] < (8! = (1- (1 - /)",

as desired (using the assumption in the lemma statement).
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So let us now assume that K > 2 and that the statement in the lemma holds for K — 1. Let T C H be the
(random) set

T ={h € H| thereis some £ € {1,..., K — 1} such that 5,(12) holds}.

Note that T depends only on the outcomes of Z,..., Zx_1 (recall that each of the events é'}(f) for h € H
and ¢ € {1,...,K — 1} depends only on Zi,...,Zk_1). Furthermore, note that for every subset H' C H,
the induction hypothesis for K — 1 applied to H' and the events 5,50 forhe H and /=1,..., K — 1 gives

Pr[H' CT]=Pr [for cach h € H' there is € € {1,..., K — 1} such that £ holds
<(A-(1=B)- (=B (64)
We have
Pr [for each h € H thereis ¢ € {1,..., K} such that S,(f) holds}

= > PolT =] Pr £ bolds for all he H )\ J ] T=J]. (65)
JCH

Note that for any J C H having T" = J depends only on the outcomes of Zy,...,Zx 1. For any fixed
outcomes of Z1,..., Zx_1 (and so in particular for any outcomes such that 7' = .J holds), we know by the
assumption in the lemma that

Pr £ holds for all h € H \ J ] Ziyoo s Zrca| < (B,

Hence the same inequality also holds when condition on 7" = J instead of conditioning on specific outcomes
of Zy,...,ZKk—_1. So for every subset J C H, we can conclude

Pr &' holds for all e B\ J| T = J] < (8) "
= (B (Bre + (1 - ﬂK»'J'

= (Bi) TV ST (B )V (1= )1
H'CJ
- Z I (1 gy,
H'CJ

Combining this with (6.5), we obtain

Pr {for each h € H there is £ € {1,..., K} such that Sl(f) holds}
<D0 D0 BT =) () (1 - )

JCH H'CJ

Z Z Pr(T = J] | - (Br) V(1 — Bre) ]

H'CH \H'CJCH

= > Pr[H 1] (B) V(1= i)

H/'CH
< D0 A= (=B (=)™ (B - )
H'CH
|H]|
= (1= (=B (1= Br-1) - (1 = Bx) + Bc)
= (1= (=B 1=,
where for the second inequality sign we used . O

16



7 Concluding remarks

The most obvious open question is, of course, to prove Rota’s basis conjecture (either for vector spaces as
stated in Conjecture or more generally for matroids). But there are also still many interesting questions
concerning the conjecture for random bases in various families of matroids.

Graphic matroids are an important class of matroids, and Rota’s basis conjecture is still wide open in this
case. In the spirit of the results in this paper, one may ask whether Rota’s basis conjecture holds (with high
probability) for random maximal acyclic sets in a given graph G (more precisely, assuming that G has n
vertices and m components, then every maximal acyclic set F' C E(G) has size n — m, and we can consider
independent random sets Fi, ..., F,,_,, € E(G) each chosen uniformly at random from the collection of all
maximal acyclic set F C E(G)). A particularly natural case of this problem is the case where G is the
complete graph on n vertices. This leads to the following question.

Problem 7.1. Let K,, be the complete graph on n wvertices, and let Fy,...,F,_1 C E(G) be independent
uniformly random spanning trees of K,. Prove that with probability 1 — o(1), Rota’s basis conjecture is
satisfied for Fy,...,F,_1 C E(G), i.e. that with probability 1 — o(1) the multi-set Fy U --- U F,,_1 can be
partitioned into n — 1 spanning trees of K, which are transversal with respect to the original spanning trees
Fla N 7Fn71'

Here, a spanning tree F' C Fy U---U F,_ is called transversal with respect to Fi,..., F,_1, if it contains
exactly one edge from each of Fy,..., F,_1 (where Fy,..., F,_; are interpreted as subsets of the multi-set
FyU---UF, _1 in the natural way, and if an edge e appears in two or more of the spanning trees Fi, ..., Fj,_1,

then the multiple copies of e in the multi-set F; U---U F,_; are distinguished by which set F; they came
from).

It is well-known that graphic matroids are representable (i.e. they can be represented by linear independence
relations in vector spaces). Indeed, given a graph with vertex set {1,...,n}, for each edge ij with 1 < i <
J < n, one can consider the vector e; — e; € R (where ey, ..., e, denotes the standard basis of R"). Then a
set of edges is acyclic if and only if the corresponding set of vectors in R" is linearly independent.

Via this connection, it is easy to see that Problem[7.1]is actually equivalent to proving Rota’s basis conjecture
for random bases in the subset
T={e;—e;j|1<i<j<n}CR".

More precisely, Problem is equivalent to proving that for independent random bases Bi,...,B, C T of
R"™ (where each B; is chosen uniformly at random from the collection of bases of R™ that are subsets of T),
Rota’s basis conjecture holds with probability 1 — o(1). In other words, Problem is equivalent to proving
a version of Theorem [L5] for the set T defined above.

Note that this set T is not c-dispersed for any fixed 0 < ¢ < 1 (for large n), hence Theoremdoes not apply

to this set T. It would be interesting to generalize Theorem to a wider class of sets T', and in particular
to resolve Problem [7.1l
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