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Abstract The CMS detector is a general-purpose appara-
tus that detects high-energy collisions produced at the LHC.
Online data quality monitoring of the CMS electromagnetic
calorimeter is a vital operational tool that allows detector
experts to quickly identify, localize, and diagnose a broad
range of detector issues that could affect the quality of physics
data. A real-time autoencoder-based anomaly detection sys-
tem using semi-supervised machine learning is presented
enabling the detection of anomalies in the CMS electromag-
netic calorimeter data. A novel method is introduced which
maximizes the anomaly detection performance by exploiting
the time-dependent evolution of anomalies as well as spatial
variations in the detector response. The autoencoder-based
system is able to efficiently detect anomalies, while main-
taining a very low false discovery rate. The performance of
the system is validated with anomalies found in 2018 and
2022 LHC collision data. In addition, the first results from
deploying the autoencoder-based system in the CMS online
data quality monitoring workflow during the beginning of
Run 3 of the LHC are presented, showing its ability to detect
issues missed by the existing system.

Keywords Anomaly detection · Machine learning ·
Autoencoders · Data quality monitoring · Calorimeter

1 Introduction

The CMS experiment has been taking high-quality proton–
proton (pp) collision data produced by the LHC at CERN
for over a decade. Figure 1 shows a schematic view of the
CMS detector. The central feature of the CMS apparatus is a
superconducting solenoid of 6 m internal diameter, providing
a magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal elec-
tromagnetic calorimeter (ECAL), and a brass and scintillator
hadron calorimeter, each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapidity
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coverage provided by the barrel and endcap detectors. Muons
are measured in gas-ionization detectors embedded in the
steel flux-return yoke outside the solenoid. A more detailed
description of the CMS detector, together with a definition of
the coordinate system used and the relevant kinematic vari-
ables, can be found in Ref. [1].

The energy of photons and electrons reconstructed in CMS
events is obtained from the ECAL, the detector element most
relevant for this paper. In the barrel section of the CMS
ECAL, an energy resolution of about 1% is achieved for
unconverted or late-converting photons in the tens of GeV
energy range [2]. An excellent ECAL detector resolution is
the basis for precision physics measurements and the detec-
tion of new particles, as was the case for the discovery of
the Higgs boson H [3,4]. For example, the diphoton mass
resolution measured in the Higgs boson decays, H→ γ γ , is
typically in the 1–2% range, depending on the measurement
of the photon energies in the ECAL and the topology of the
photons in the event [5]. Precision measurements of particle
decays such as H→ γ γ do not only rely on excellent detector
calibrations but start with the recording of high-quality raw
data.

The CMS data quality monitoring (DQM) system [6] is a
crucial operational tool to record high-quality physics data.
Presently, the DQM consists of a software system that pro-
duces a set of histograms that are based on a preliminary
analysis of a subset of data collected by the CMS detector.
Conventional cut-based thresholds are used to define quality
flags on these histograms which are monitored continuously
by a DQM shifter in the CMS control room who reports on
any apparent irregularities observed. While this system has
proven to be dependable, the changing running conditions
and increasing collision rates, together with aging electron-
ics, bring forth failure modes that are newer and harder to pre-
dict. Machine learning (ML) techniques are nowadays widely
used in high-energy physics [7] and provide an excellent tool
for anomaly detection in particle physics searches (see, e.g.,
Ref. [8]). Thus, ML is a natural choice for an automated
system monitoring the data quality of an experiment. Previ-
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Fig. 1 Schematic view of the CMS detector and its various subdetec-
tors

ous efforts in ML for DQM within the CMS collaboration
have explored such techniques [9,10]. In this paper, a semi-
supervised method of anomaly detection for the online DQM
of the CMS ECAL is presented, exploiting an autoencoder
(AE) [11] on ECAL data processed as two-dimensional (2D)
images. In a novel approach, correction strategies are imple-
mented to account for spatial variations in the ECAL response
as well as the time-dependent nature of anomalies in the
detector.

While preliminary studies performed for the ECAL bar-
rel [10] showed the potential of detecting anomalies using
AE for DQM, significant improvements in AE reconstruc-
tion and resolution are presented in this work together with
novel post-processing strategies based on physics insights
that enable the detection and localization of various anoma-
lies with a very low false detection rate. The ML-based sys-
tem is deployed in the online DQM for the ECAL during LHC
Run 3 collisions, complementing the existing DQM plots.
The first results indicate that the AE-based anomaly detec-
tion system is a highly valuable diagnostic tool for ECAL
experts involved in real-time data taking operations.

This paper is organized as follows: “Experimental Envi-
ronment” section introduces the CMS ECAL and its cur-
rent DQM system, and “Machine Learning-Based Anomaly
Detection Strategy” section presents the AE network and the
AE-based anomaly detection strategy, including the data sets
used and their pre-processing. “Training, Evaluation, and
Post-processing” section discusses the strategy of training
and validation of the network, as well as the corrections
that are applied to account for the deviations of the ECAL
response as a function of position and time. A metric to assess
the performance of the AE-based anomaly detection method
is also described, and a comparison to a baseline scenario
similar to the existing ECAL DQM system is explained.
“Results” section presents the AE performance on validation
and test data sets with anomalies. “Deployment during LHC
Run 3” section discusses the deployment of the real-time AE-
based anomaly detection system in the Run 3 online ECAL

DQM operation, followed by a summary in “Summary” sec-
tion.

2 Experimental Environment

2.1 Proton–Proton Collisions at the LHC

The LHC has provided pp collisions at center-of-mass ener-
gies of 7 and 8 TeV (2009–2012), rising to 13 TeV (2015–
2018), and further to 13.6 TeV for the ongoing Run 3 that
started in 2022. Each LHC beam consists of about 2500
tightly packed bunches of ∼ 1011 protons with 25 ns bunch
spacing. The beams travel in opposite directions in the beam
pipe and collide at four intersection points, one of them being
the center of the CMS detector. LHC operations involve
“fills”, where a fill is defined as a period during which the
same proton beams are circulating in the LHC, and it typ-
ically consists of ten or more hours of collisions. The col-
lision rate expressed through the instantaneous luminosity
varies during each fill, and it decreases with time as the num-
ber of particles in the proton bunches and the beam inten-
sity decay. Additional pp interactions within the same bunch
crossing, referred to as “pileup” (PU), can contribute to addi-
tional tracks and calorimetric energy depositions, increasing
the event activity in the detector. The PU is correlated with the
instantaneous luminosity and is thus higher at the beginning
of a fill than at the end.

An LHC fill is often divided into CMS “runs” that corre-
spond to a start and stop of the CMS data acquisition system.
Each run is further divided into time intervals called “lumi-
sections” (LS) of an approximate time duration of 23 s cor-
responding to 218 LHC orbits, over which the instantaneous
luminosity is considered to remain approximately constant.

2.2 The CMS Electromagnetic Calorimeter

The CMS electromagnetic calorimeter provides homoge-
neous coverage in pseudorapidity |η| < 1.48 in a barrel
region (EB) and 1.48 < |η| < 3.0 in two endcap regions
(EE+ and EE−), as shown in Fig. 2. Preshower detectors
consisting of two planes of silicon sensors interleaved with
three radiation lengths of lead are located in front of each
endcap detector. The ECAL consists of 75 848 lead tungstate
(PbWO4) crystals. The barrel granularity is 360-fold in φ

and (2×85)-fold in η provided by a total of 61 200 crystals,
with each crystal having a dimension of 0.0174×0.0174 in
%η×%φ space, while each endcap is divided into two halves,
with each comprising 3662 crystals.

Light signal from the ECAL crystals is detected, ampli-
fied, and digitized every 25 ns. The collected data is stored
in on-detector buffers awaiting an Accept/Reject signal from
the first stage of the global CMS trigger system [12,13]. Upon
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Fig. 2 Schematic view of the ECAL showing the cylindrical barrel
closed by the two endcap regions with one half endcap displayed

receiving the Accept signal, a series of ten consecutive dig-
itized samples are read out for each channel (or crystal) to
measure the signal pulse amplitude and timing, after apply-
ing certain predetermined thresholds, to get an optimal pulse
reconstruction as described in [14]. These ten samples for
each channel are referred to as digitized hits or “digis”. When
a digi is registered for a given crystal, an occupancy value of
1 is counted for the crystal in any given DQM histogram. A
“readout tower” (henceforth referred to as a tower) is defined
as a set of 5×5 crystals (“supercrystals”), and 68 of these
towers form a “supermodule” in the barrel (see Fig. 2). An
unrolled projection of the ECAL barrel as well as one endcap
is displayed in Fig. 3. Each single square in Fig. 3a, b repre-
sents a tower. The numbered rectangular regions in Fig. 3a
represent the supermodules in the barrel, while the numbered
regions in Fig. 3b indicate sectors in the endcaps.

The transverse energy of a trigger tower is computed by the
front-end electronics and trigger concentrator cards (TCC)
within the off-detector electronics in the ECAL. A classi-
fication flag is assigned by the TCC based on the thresh-
old level that has been passed by the energy in each trig-
ger tower. A dedicated hardware device, called the Selective
Read-out Processor [15], receives from the TCCs the trig-
ger tower energy maps and the corresponding flags, and it
executes a selection algorithm [16] that classifies the trig-
ger tower as one of the following: “suppressed” (energy is
below a low threshold), “single” (energy is in-between the
low and high thresholds), and “central” (energy is above the
high threshold). For a “central” trigger tower, 3×3 or 5×5
regions around it are classified as “neighbors”. The Selective
Read-out Processor transmits the selective read-out flag for
each tower to the Data Concentrator Cards, which read out the
crystals as follows: for crystals that form “central”, “neigh-
bor”, or “single” trigger towers, all energy samples are kept,
while crystals belonging to “suppressed” trigger towers are
ignored or read out with a high zero suppression threshold.

2.3 Data Quality Monitoring in ECAL

During data taking, monitoring the data quality is a crucial,
time-sensitive task to ensure optimal detector performance
and the recording of high quality data suitable for physics
analyses. The CMS DQM [6] has two main modes of opera-
tion: offline and online. The offline DQM gives a retrospec-
tive view of data processed with the full statistics, passing
various offline processing chains. It is mainly used in CMS
for data quality certification [17]. The data are manually cer-
tified as good or not-good by comparing against several refer-
ence distributions, expert knowledge of running conditions,
and known issues.

The online DQM offers a real-time snapshot of a subset of
the raw data by populating a set of histograms after a prelimi-
nary analysis of the data, followed by a data quality interpre-
tation step. These histograms are updated every LS and are
accumulated over a run. They are monitored continuously
by a DQM shifter who reports on any apparent irregularities
observed and informs detector experts to identify and act in
real-time on any related issues with the detector. The current
online DQM has many built-in alarms based on the set of
histograms and indicates the presence of errors in a way that
makes it easy to spot any ECAL issues at a glance.

There are two kinds of histograms present in the ECAL
DQM: “Occupancy-style” histograms shown in Fig. 3a, b
filled with critical quantities from the real-time detector
data and “Quality-style” histograms displayed in Fig. 3c, d.
Quality-style histograms are obtained by applying prede-
fined thresholds and requirements to the Occupancy-style
histograms, where the thresholds are derived from typical
detector response. In the examples shown in Fig. 3, the
Occupancy-style histograms are plotted at a tower-level gran-
ularity while the Quality-style histograms are plotted at a
channel-level granularity. The quality histograms are drawn
in easily identifiable colored maps, and the color code scheme
used is as follows: green for “good”, red for “bad”, brown
for “known problems”, and yellow for “no data” (that may
or may not be problematic depending on the context). Infor-
mation about known bad channels and towers is displayed
in a channel status map with an example given in Fig. 4.
Here, the different colors correspond to the status values as:
0—channel OK, 1—channel with pedestal not in range, 2—
channel with no laser, 3–7—various types of noisy channels,
8–9—channels in fixed gain, 10–14—various types of dead
channels, and status > 14—channels with issues in low volt-
age or high voltage. Depending on the severity of the prob-
lem, these channels are either masked in the Data Acquisition
system of the detector or in the offline reconstruction, and the
data from them are ignored and may or may not show up in
the DQM. This information is stored and regularly updated
in a database and is used to mark the towers in the DQM
quality plots in dark colors, e.g., dark brown.
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Fig. 3 Example histograms from the ECAL DQM with a and b show-
ing the distribution of RMS of the pedestal values in the barrel and
EE+, respectively, drawn at a tower-level granularity. Diagrams c and

d show the corresponding quality map for the two regions, drawn at
a channel-level granularity, after a set of cuts is applied on the noise
values shown in a and b
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(c)

Fig. 4 Channel status maps used in the ECAL DQM indicating the known problematic channels color coded for various types of errors for a EB,
b EE+, and c EE−

As an example of existing DQM plots, Fig. 3a, b shows
the distribution of the pedestal Root Mean Square (RMS) in
EB and EE+, respectively. Regions with high noise could
indicate, for instance, a potential problem with the high volt-
age in the detector. Figure 3c, d indicates the corresponding
quality maps. Here, the crystals are shown in red if their RMS
values are greater than the set thresholds.

Anomalies can come in different shapes and sizes, as illus-
trated in Fig. 5, attributed to various sources such as under-
lying hardware components. Furthermore, the ever-changing

LHC and CMS running conditions can often result in failure
modes that are hard to predict. Although continuous improve-
ments of the DQM have allowed the existing system to be
updated and respond to new problems, e.g., issues with elec-
tronic components, it can become challenging to define hard-
coded rules and thresholds manually for every failure mode.
To overcome such challenges, an automated anomaly detec-
tion system using machine learning is developed to comple-
ment the existing DQM.
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Fig. 5 DQM quality plots with different anomalies shown in red, while the towers with known issues show up as dark brown or dark yellow. a
EB−03 turned off due to a voltage failure and seen in red. b Anomaly in EE+04 (marked in red) originating from an electronics failure affecting
200 channels

3 Machine Learning-Based Anomaly Detection Strategy

Unsupervised or semi-supervised ML methods used for
anomaly detection are an excellent choice to supplement the
ECAL DQM system. With the existing manual data certifica-
tion procedure in CMS and ECAL, the recorded offline data
is certified to be good or bad for physics analyses and/or for
detector calibration based on various defined markers. Using
a semi-supervised approach, the network is trained exclu-
sively on the certified good physics data set, so that it learns
the patterns of good data and is able to detect anything that
differs from the nominal patterns it has learned. The network
is able to detect anomalies without the need to explicitly
see the anomalous data during training. A semi-supervised
anomaly detection and localization method for the online
ECAL DQM is developed using an AE network based on
a computer vision technique. The AE is built with a convo-
lutional neural network (CNN) architecture [18] exploiting
ECAL data processed as 2D images. Corrections that take
into account the spatial variations in the ECAL response
and the time-dependent nature of anomalies in the detec-
tor are implemented in order to effectively maximize the
anomaly detection efficiency while minimizing the false pos-
itive detection probability.

3.1 Autoencoder Network

An AE is used with a Residual Neural Network (ResNet) [19]
CNN architecture implemented with a PyTorch [20] back-
end. The encoder part of the AE takes the input data and
compresses it into a lower dimensional representation, called
the latent space, which contains a meaningful internal rep-
resentation of the input data. The decoder part then decom-
presses the encoded data back to the original image of the

same dimensions, or reconstructs the image. To measure how
well the output matches the input, or the goodness of the
AE reconstruction, a reconstruction loss (L) 1 is computed
using Mean Squared Error between the input (x) and the
AE-reconstructed output (x ′) as defined in Eq. (1):

L(x, x ′) = ||(x − x ′)||2 (1)

A network trained on good images will learn to reconstruct
them well by minimizing this loss function. When fed with
anomalous data, the AE returns higher loss in the anomalous
region, forming the basis of the anomaly detection strategy
discussed in “Anomaly Detection Strategy” section.

Figure 6 shows the architecture used for the AE. Each
“ResBlock” consists of two convolutional layers, with a Rec-
tified Linear activation function (ReLU) [21] in between and
a residual mapping. The input image (shape of 36×72 for
EB and 22×22 for EE) is passed through the encoder net-
work that consists of a CNN, followed by a maxpool layer
that aggregates the maximum values of the feature maps. It
is then sent through sequential layers of ResBlocks, where
the feature maps are up-sampled progressively. This is fol-
lowed by a global maxpool that creates a compressed dense
layer of the encoded space. The encoded layer is then passed
to the decoder network as the input, which reverses these
operations and gives out a reconstructed image. Three sep-
arate models are trained with this architecture: one for the
barrel and one for each of the two endcaps. The choice of
training the separate models for the barrel and the endcaps is
attributed to the differences in their shape, granularity, and
response.

1 Note that the reconstruction loss in this paper always refers to the AE
reconstruction loss and has no relation to CMS particle reconstruction.
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Fig. 6 AE architecture showing the encoder and decoder networks, with the ResBlock structure displayed

3.2 Data Set and Event Selection

The data set used for training and validation of the AE net-
work is taken from CMS runs collected in 2018 during LHC
Run 2. It contains runs that are manually certified as good
by the data certification procedure in CMS and ECAL. Each
input image for the AE is the digi occupancy map from a
single LS that can be seen from Fig. 7. It is to be noted
that the current DQM checks a much larger phase space of
detector quantities. Digi occupancy maps are chosen for the
ML-based DQM as they are a good indicator of most detec-
tor problems. The occupancy maps are processed offline to
include 500 events per LS, which is approximately the num-
ber of data received per LS in the online DQM. Although
the actual number of events varies per LS in real-time data
taking, this approximation is used to ensure that the network
is sensitive to variations in the occupancy due to anomalies
and not due to differences in the collected statistics. It is
demonstrated in “Deployment during LHC Run 3” section
that the AE-based system performs very well in the online
DQM deployment on real-time data with varying numbers
of events per LS.

3.3 Detector Images

Occupancy histograms using digis from the ECAL barrel and
endcap sections are fed to the network as 2D images for each
LS. The occupancy images are drawn at a tower-level gran-
ularity with the image shapes of 34×72 for the barrel and
20×20 for the endcaps. Typical occupancy images for a sin-
gle LS are shown in Fig. 7. Different from the usual crystal-

level indexing used in most ECAL DQM plots, the occupancy
maps displayed here have a modified tower-level indexing for
convenience, iηtow-iφtow for the barrel and i xtow-iytow for
the endcaps. For the empty regions in the endcap images,
e.g., (i xtow,iytow)=(0,0), their occupancy values are set to
zero during training and the loss values of these regions are
not taken into account during inference.

The input images to the network are padded at the edges
to mitigate edge effects, since learning at the boundaries
becomes sub-optimal due to under-representation of the edge
values during convolution. After padding by duplicating the
first and last rows of the image for the barrel, the input image
shape is 36×72. For the endcaps, padding both the first and
last rows and columns gives a 22×22 input image shape. Dur-
ing the inference, however, the original shape of the images
without the padding is used.

3.4 Pre-processing

To ensure consistent data quality interpretation across differ-
ent LHC running conditions, it is important to find a coherent
way of normalizing the occupancy to make it independent of
factors such as the LHC instantaneous luminosity, which is
correlated with PU. As shown in Fig. 8a, the data set used
for training indicates a linear relation between occupancy
and PU at first order. A linear fit is performed to the distribu-
tion and a correction factor is derived from the fit parameters.
After the correction is applied to each occupancy map per LS
as pre-processing, an almost flat relation between occupancy
and PU is obtained, as shown in Fig. 8b. After removing
the PU dependence across the data set with the correction,
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(a) (b) (c)

Fig. 7 Typical occupancy maps for a single LS from the training data set for a EB, b EE+, and c EE−. During training, the edges of these maps
are padded

each occupancy map is then re-scaled such that the average
occupancy across the towers is around one, giving typical
occupancy maps as in Fig. 7.

3.5 Anomaly Detection Strategy

Figure 9 illustrates the anomaly detection strategy for the
ECAL DQM using endcap images as an example. The input
occupancy image (top left) is fed to the AE, which outputs
a reconstructed image (top right). Then the Mean Squared
Error on each tower is calculated and plotted as a 2D loss
map in the same coordinates (iηtow − iφtow for the barrel
and i xtow − iytow for the endcaps). As shown in the bottom-
right panel, the anomalous region is highlighted with the loss
higher than the rest of the image. After applying some post-
processing steps explained in “The ECAL Spatial Response
Correction” and “Time Correction” sections, a threshold to
flag the anomaly is calculated based on the anomalous loss
values. The threshold is applied to the post-processed loss
map to create a quality plot (bottom left), where towers with
the loss above the threshold are tagged as anomalous and are
shown in red. Towers with the loss below the threshold are
identified as good and are shown in green. The final quality
plot can be easily and quickly interpreted by a DQM shifter.

4 Training, Evaluation, and Post-processing

4.1 Training and Validation

The available data set consists of 100 000 good images pro-
cessed offline with each image corresponding to a single LS.
This data set is split into a training and a validation set with
a ratio of 9:1. In addition to the validation set with good
images, another validation set is obtained that comprise the
same good images but with “fake” anomalies introduced.
Three kinds of anomalies are explored:

• Missing supermodule/sector: Entire barrel supermodules
and endcap sectors are randomly set to have zero occu-
pancy values in each LS.

• Single zero occupancy tower: A single tower is set to
have zero occupancy at random in each LS. Such low-
occupancy single towers are usually harder to detect.

• Single hot tower: A single tower is set to be “hot”, or
having higher-than-nominal occupancy. For a tower with
25 crystals and 500 events per LS, the average occupancy
is of the order:

occupancy = 25 × 500 × f, (2)

where f is the frequency of the readout. For the barrel,
nominal f ranges from 0.01 to 0.03, while for the end-
caps it ranges from 0.02 to 0.05. For f = 1, the readout
is said to be in “full-readout”. Hot towers with f = 1
are easier to detect as their values stand out clearly from
the nominal value. Thus for the validation, a more chal-
lenging borderline scenario is targeted with f = 0.1 for
the barrel and f = 0.2 for the endcaps. The readout fre-
quency target is chosen to be higher for the endcaps, as
the nominal occupancy values for the endcaps are larger
in the higher |η| region compared to the barrel.

These fake anomalies are used to derive thresholds on the loss
maps for efficient anomaly tagging with the AE. While fake
anomalies are representative examples of real anomalies that
occur in the detector, the AE model is further tested on real
anomalous data from the 2018 and 2022 runs as discussed in
“Testing on Real Anomalies” section.

4.2 The ECAL Spatial Response Correction

Since the multiplicity of particle production in a fixed rapidity
interval is constant at a hadron collider, the number of parti-
cles per geometric interval increases for higher |η|, which is
related to rapidity. Due to this effect, it is observed that ECAL
crystals in regions of high |η| exhibit higher occupancy than
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Fig. 8 Sum of digi occupancy for each LS occupancy map versus PU (a) before and (b) after the PU correction is applied. Overlaid on the scatter
plot are the mean values with standard deviation for each PU bin

Fig. 9 Illustration of the AE-based anomaly detection strategy
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(a) (b) (c)

Fig. 10 Average occupancy map for a the barrel, b EE+, and c EE− from the 2018 data set containing runs manually certified as good by the
CMS data certification

(a) (b)

(c) (d)

Fig. 11 a Occupancy map with a missing supermodule in the barrel. b AE-reconstructed occupancy map. c Loss map showing the missing
supermodule, indicating higher loss at high |η| owing to differences in the detector response. d Loss map after the spatial correction is applied

those of low |η| in both the barrel and the endcaps, as can be
seen in Fig. 10.

This difference in detector response is also visible in
the AE loss map for specific anomalies as illustrated in
Fig. 11 with a missing supermodule. Figure 11a shows the
PU-corrected occupancy map with one supermodule having
zero occupancy, and Fig. 11b reflects the corresponding AE-
reconstructed output where the AE fails to reconstruct the
anomaly. Figure 11c shows the tower-level loss map calcu-
lated between the input and output, exhibiting high loss in
the anomalous supermodule region; the towers at the highest
|η| tend to have a higher loss than those at lower |η| due to
the higher average occupancy in these regions. To mitigate
this effect and obtain uniform loss in the anomalous region,

the loss is normalized by the average occupancy shown in
Fig. 10a. After this “spatial response correction”, flat loss
is observed in the anomalous region, as shown in Fig. 11d,
where all towers in the supermodule are interpreted as equally
anomalous.

4.3 Time Correction

Real anomalies persist with time in consecutive LSs, while
random fluctuations average out. A correction is imple-
mented to exploit the time-dependent nature of the anoma-
lies in the detector, named “time correction”, which brings
a significant improvement in the AE performance. Figure 12
shows the time correction strategy that is applied. Spatially
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Fig. 12 Time correction strategy: multiplication of loss maps from three consecutive LSs in the barrel (top) to obtain a final loss map (bottom),
where only the real anomaly of the missing supermodule is highlighted with high loss, while random towers with false positives are suppressed

corrected loss maps from three consecutive LSs (top panel)
are multiplied together at a tower level. The resulting time-
multiplied loss map at the bottom shows that the persis-
tent anomaly of the missing supermodule is enhanced and
random fluctuations visible in the loss maps from each LS
are suppressed, reducing false positives. It is observed that
multiplication rather than averaging is a better strategy for
enhancing and suppressing the resulting loss values. Multi-
plication results in the low loss of good towers being smaller
and the high loss of bad towers being larger, widening the
gap between both and thus enhancing the distinction between
both scenarios.

Given the duration of ∼23 s for each LS with 500 events,
time correction with three LSs yields a latency of approxi-
mately one minute. Including more LSs for the time correc-
tion is shown to bring no further significant reduction in the
FDR in the AE performance during offline validation. Thus,
one minute of latency is chosen to be an optimal trade-off for
the time correction. For the online deployment where the LSs
contain different number of events, however, this is changed
to six LSs as discussed in “Deployment during LHC Run 3”
section.

4.4 Anomaly Tagging Threshold and Performance Metric

The goal of the ML-based DQM system is to maximize the
anomaly detection efficiency while minimizing the number
of false positives. An anomaly is tagged using a threshold
obtained from a validation set with fake anomalies. The
threshold on the final post-processed loss map is chosen such
that the loss values of 99% of anomalous towers are above
the threshold, as illustrated in Fig. 13, which shows the loss
distribution from a zero occupancy tower scenario. The bump

Fig. 13 Loss distribution for the zero occupancy tower scenario after
spatial and time correction for EE−. The anomaly threshold is set as
the lower 1% of the zero occupancy tower loss values

in the tail of the good tower loss distribution is discussed in
“Testing on Fake Anomalies” section.

To assess the performance of the AE network, the false
discovery rate (FDR) is used as a metric and is defined as

FDR = Number of good towers above ϵ

Number of good and bad towers above ϵ

where, ϵ is the threshold for anomaly detection.
The FDR value for 99% anomaly detection represents the

fraction of false detection in all anomalies detected, when
using the threshold chosen to catch 99% of the anomalies
present in the data set. In other words, the FDR is the ratio
of good towers tagged as anomalous to all towers labeled as
anomalous by the AE. A lower FDR indicates better perfor-
mance and fewer false alarms during data taking. The FDR is
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Table 1 Summary of FDR
using 99% anomaly detection
threshold for the ECAL barrel
fake anomaly scenarios

FDR for 99% anomaly detection

Missing
Supermodule (%)

Zero Occupancy
Tower (%)

Hot
Tower (%)

Baseline (no correction) 14 90 5.2

Baseline (after time correction) 5.9 80 < 0.01

AE (no correction) 3.6 51 2.8

AE (after spatial correction) 3.1 49 2.9

AE (after spatial and time corrections) 0.13 4.1 < 0.01

Table 2 Summary of FDR using 99% anomaly detection threshold for fake anomaly scenarios in the endcaps

FDR for 99% anomaly detection

Missing Sector Zero Occupancy Tower Hot Tower

EE+ (%) EE− (%) EE+ (%) EE− (%) EE+ (%) EE− (%)

AE (no correction) 29 28 86 86 < 0.01 < 0.01

AE (after spatial correction) 1.8 2.2 11 14 0.02 0.04

AE (after spatial and time corrections) 0.06 0.18 1.4 4.4 < 0.01 < 0.01

calculated for each anomaly scenario using the correspond-
ing anomaly tagging threshold during validation.

4.5 Comparison with Baseline Anomaly Detection
Algorithm

A baseline study is carried out comparing the performance
of the AE with a traditional cut-based approach. In this
approach, baseline loss for a tower at a given (φ, η) posi-
tion is calculated for the barrel using the occupancy of the
tower (tφη) and the average occupancy of all towers within
the same η-ring (⟨tη⟩) as

Loss of towerφη = |tφη − ⟨tη⟩|. (3)

This approach is equivalent to the way most anomaly thresh-
olds are defined in the standard ECAL DQM. A threshold
is derived on this baseline loss using the same criteria as
that for the AE, of achieving 99% anomaly detection from
the fake anomaly validation. A similar baseline loss is not
attempted for the endcaps, since the gradient of occupancy
across the towers is much larger for the endcaps even within
the same η-ring, and thus such baseline loss would not be a
good method for detecting bad towers.

5 Results

5.1 Testing on Fake Anomalies

The performance of the AE-based DQM method is stud-
ied first on three distinct anomaly scenarios—missing super-

module/sector, single zero occupancy tower, and single hot
tower—where artificial (fake) anomalies are added onto good
images as outlined in “Training and Validation” section.
Tables 1 and 2 summarize the FDR values calculated with
anomaly tagging thresholds determined for each scenario for
99% anomaly detection. For the barrel where the baseline
scenario is studied for comparison, it can be seen that the
AE outperforms the baseline for all anomaly scenarios con-
sidered. For both the barrel and the endcaps, the FDRs for
the single zero occupancy tower scenario are observed to be
always higher than that for the single hot tower case. This is
because hot towers are in general easier to spot, as they stand
out with much higher occupancy compared to neighboring
towers of average occupancy.

The effect of each consecutive correction on the FDRs can
be seen from the tables. The AE spatial correction reduces the
FDRs in the missing supermodule/sector and the single zero
occupancy tower scenarios, where the occupancy values are
set to zero for the barrel/endcaps. Without the correction, the
loss values for the towers with zero occupancy anomalies are
proportional to the towers’ nominal occupancy, which indi-
cates that the loss is biased to be larger in the higher |η| region
(see, e.g., Fig. 11c). The corresponding loss map exhibits an
effective gradient across the map, following that of the aver-
age occupancy map shown in Fig. 10. It can be seen that the
spatial correction has a greater effect for the endcaps than
for the barrel, as the gradient in occupancy values across the
towers is more pronounced for the endcaps.

In the case of the hot tower anomaly, the FDRs increase
after the spatial correction. This is because the hot tower
loss is biased to be higher in the opposite direction, towards
the lower |η| region. This leads to different effects of the
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Fig. 14 Precision (1-FDR) versus Recall (TPR) curve for the zero-
occupancy scenario after spatial and time corrections are applied. The
inlay plot shows a zoomed-in view. The full-range area under the curves
(AUC) are also indicated

spatial correction for different anomaly scenarios. For zero
occupancy towers, spatial correction flattens out the gradient
in the loss distribution and improves their detection. For the
hot towers, the gradient is enhanced and the AE performance
slightly drops. However, this effect is mitigated by the time
correction that greatly improves the FDRs for all anomaly
scenarios, with excellent final performance scores for both
the barrel and the endcaps.

The remaining false positives, which show up as appar-
ently “good towers” above the anomaly threshold after the
time correction, are very likely to be actual anomalous tow-
ers that have been undetected so far in the data set of good
LSs. These towers show up with the higher loss in the tail of
the good tower loss distribution (see Fig. 13) and contribute
to overestimating the FDR.

While 99% anomaly tagging efficiency is chosen as the
working point, FDR values at different working points can
be seen from Fig. 14 for the most challenging scenario of
zero-occupancy tower after the spatial and time corrections
are applied. The observed difference in the performance of
the different parts of the detector is attributed to the differ-
ent amounts of contamination of actual anomalous towers
in the validation data set. In both barrel and endcaps, high-
precision high-recall of the AE-based anomaly detection is
clearly displayed.

5.2 Testing on Real Anomalies

Following the tests on fake anomalies, the AE performance
is studied on known anomalous data from LHC runs in 2018
and 2022. The input occupancy images with anomalies and

the final quality plots from the AE loss maps are illustrated in
Figs. 15 and 16. Figure 15a shows the barrel occupancy map
with the supermodule EB−03 in error due to a data unpacking
issue from a 2018 run. The AE quality output in Fig. 15b
correctly highlights the anomalous supermodule region in
red. Figure 15c shows an occupancy map with a region of
hot towers and a zero occupancy tower in the center from a
2018 run, and Fig. 15d correctly identifies all the anomalous
towers shown in red. It is interesting to note that this error
was not detected in the online DQM global quality plots at
the time of data taking, while the AE is able to detect it.

A similar test on real anomalies for the endcaps is illus-
trated in Fig. 16. An anomaly of more than half of the EE+
turned off in a 2018 run (see Fig. 16a) is spotted by the AE
quality plot shown in Fig. 16b. Some of the green towers in
the red region come from the masked, known problematic
towers that the AE has learned during training. Figure 16c
shows a region of towers turned off in the upper left quad-
rant of EE+ from a run in 2022, and the AE quality plot in
Fig. 16d correctly identifies these towers in red.

The AE is thus able to spot various kinds of anomalies
at a tower-level granularity using a single threshold. It does
not require any set definitions or rules on the type of anoma-
lies that can be detected, which underlines the importance
of unsupervised or semi-supervised ML as a powerful and
adaptable anomaly detection tool.

6 Deployment During LHC Run3

The AE-based anomaly detection system labeled MLDQM
has been deployed in the ECAL online DQM workflow in
CMSSW for the barrel starting in LHC Run 3 in 2022 and for
the endcaps in 2023. New ML quality plots from the AE (see
Figs. 17a and 18a) have been added to the ECAL DQM. The
model inference is accomplished using the trained Pytorch
models exported to ONNX [22], which is implemented in the
CMS software framework using ONNX Runtime [23].

The MLDQM models deployed for the barrel and endcaps
have shown so far very good performance with Run 3 data.
Figure 17a illustrates the new quality plot obtained from the
inference of the trained AE model for the barrel, using the
digi occupancy histogram shown in Fig. 17b as input to the
model. Similar plots are shown for the endcaps in Fig. 18a, b,
which are obtained from the inference of the endcap models
with the digi occupancy histograms in Fig. 18c, d as inputs.
The number of events per LS in the digi occupancy map
received by the DQM in Run 3 is approximately 100 – 150,
smaller than the 500 events per LS used for training. Accord-
ingly, the occupancy maps are summed over four consecutive
LSs to collect sufficient statistics. The summed occupancy
map is then fed as an input to the AE model, after neces-
sary corrections are applied with respect to the number of
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(a) From a 2018 run: Input occupancy map with an
error in the supermodule EB−03

(b) From a 2018 run: Final AE quality plot

(c) From a 2018 run: Input occupancy plot with a group
of hot towers

(d) From a 2018 run: Final AE quality plot

Fig. 15 Input occupancy images with real anomalies and corresponding AE quality plots for the barrel

events and PU. The resulting loss map then undergoes both
the spatial and time corrections. Six consecutive loss maps
are used for the time correction during online deployment to
minimize false alarms, with the final quality plot essentially
accumulated over nine LSs.

From the AE quality plot in Fig. 17a, two circled red tow-
ers can be seen in the supermodules EB+06 and EB−06, both
corresponding to zero occupancy towers in the input occu-
pancy map, as shown in Fig. 17b. The AE quality plot also
contains two brown towers that correspond to a zero occu-
pancy tower in EB−09 and a hot tower in EB−13. Both are
known problematic towers.

Similarly, in the AE quality plot for the endcap in Fig. 18a,
a red tower can be seen in the sector EE−02, corresponding
to a zero occupancy tower in the input digi occupancy map
in Fig. 18c. From the quality plot shown in Fig. 18b, a brown
tower in the sector EE+05 corresponds to a zero occupancy
tower in the input digi occupancy map in Fig. 18d, which
is a known problematic tower. Other zero occupancy towers
in the input occupancy maps that do not show up in the AE
quality plots correspond to other known problematic towers
that have been present since Run 2. These known bad towers
are learned by the AE during the training process.

6.1 Detecting Degrading Towers

During the MLDQM deployment, it has been observed
that the AE can catch new problematic towers with transient
anomalous behaviors, which are hard to detect and can be
missed by the existing DQM software and plots. Figure 19a
shows an AE quality plot with two towers in EB+08 marked
in red. Figure 19b shows the total digi occupancy map accu-
mulated over all LSs from the entire run in the online DQM.
Here, Tower 1 is visible with very low occupancy compared
to other towers, indicating that it is a persistent zero occu-
pancy tower. On the other hand, the faint visibility of Tower 2
reflects that it likely had zero occupancy in several LSs but
not in all, possibly corresponding to a transient anomaly. This
feature is also observed in the occupancy map averaged over
several runs in Run 3, e.g., see Fig. 19c. The low occupancy of
Tower 2 in this offline-produced plot implies that the tower
indeed had zero occupancy for many LSs in these runs. It
is not a random occurrence as in the case of single-event
upsets [24] that frequently happen in the detector and are
recovered quickly. The ability of the AE to identify degrad-
ing channels can be of immense use to detector experts when
monitoring the health of the ECAL. MLDQM can be used to
keep track of how often a particular tower is flagged as bad
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Fig. 16 Input occupancy images with real anomalies and corresponding AE quality plots for the endcaps
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Fig. 17 From a 2022 Run: a ML quality plot in the ECAL DQM from
the AE model, with the new bad towers circled. b Digi occupancy plot
of 1 LS, with the same circled towers with zero occupancy. Four such

occupancy plots from four consecutive LSs are summed to make the
input to the AE model which results in the quality plot in a
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Fig. 18 From a 2023 Run: ML quality plot in the ECAL DQM from
the AE models a for the Endcap EE−, with a new bad tower circled
and b for the Endcap EE+ with a known bad tower circled. Digi occu-
pancy plots of 1 LS c of EE− and d of EE+ with the corresponding

circled towers with zero occupancy. Four such occupancy plots from
four consecutive LSs are summed to make the input to the AE model
which results in the quality plots in a and b

by the AE, and a threshold can be defined with this frequency
to mask the transient tower proactively.

7 Summary

An Autoencoder (AE)-based anomaly detection and local-
ization system has been successfully developed, tested, and
deployed for the CMS electromagnetic calorimeter (ECAL)
barrel and endcaps using semi-supervised machine learning.

Occupancy histograms from the ECAL processed as
images are used as the input to the network after normaliz-
ing the histograms with respect to pileup. Correction strate-
gies are implemented that utilize the variations in the detec-
tor response and the time-dependent nature of anomalies. A

novel application of the spatial and time corrections yields
an order of magnitude improvement in the AE performance.
Anomaly tagging thresholds chosen at an estimated anomaly
tagging rate of 99% are obtained from validation data sets
with fake anomalies introduced. In further validations on
real anomalies from 2018 and 2022 CMS runs, the AE-based
anomaly detection system is able to spot anomalies of various
shapes, sizes, and locations in the detector at a tower-level
granularity using a single threshold for each part, e.g., the
barrel, of the ECAL. The deployment of the AE-based sys-
tem in the Data Quality Monitoring (DQM) workflow for
LHC Run 3 shows that the system performs well in detect-
ing anomalies, as well as identifying degrading channels that
are missed by the existing DQM plots. The AE-based DQM
system complements and strengthens the existing DQM by
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Fig. 19 From a 2022 Run a ML quality plot, accumulated over 9 LSs, in the ECAL DQM from the AE model, b The digi occupancy plot
accumulated over all the LSs in the full run from the online DQM, and c PU-corrected average occupancy map for several runs in 2022

helping detector experts make more accurate decisions and
reduce false alarms. The anomaly detection system using
machine learning described in this paper can be generalized
and adapted not only to other subsystems of the CMS detec-
tor but also to other particle physics experiments for anomaly
detection and data quality monitoring.
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