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This paper concerns the construction of traveling wave 
solutions to the free boundary incompressible Navier-Stokes 
system. We study a single layer of viscous fluid in a strip-like 
domain that is bounded below by a flat rigid surface and above 
by a moving surface. The fluid is acted upon by a bulk force 
and a surface stress that are stationary in a coordinate system 
moving parallel to the fluid bottom. We also assume that the 
fluid is subject to a uniform gravitational force that can be 
resolved into a sum of a vertical component and a component 
lying in the direction of the traveling wave velocity. This 
configuration arises, for instance, in the modeling of fluid flow 
down an inclined plane. We also study the effect of periodicity 
by allowing the fluid cross section to be periodic in various 
directions. The horizontal component of the gravitational field 
gives rise to stationary solutions that are pure shear flows, and 
we construct our solutions as perturbations of these by means 
of an implicit function argument. An essential component 
of our analysis is the development of some new functional 
analytic properties of a scale of anisotropic Sobolev spaces, 
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including that these spaces are an algebra in the supercritical 
regime, which may be of independent interest.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

The existence of traveling wave solutions to the equations of fluid mechanics has been 

a subject of intense study for nearly two centuries (see Section 1.4 for a brief summary). 

Until recently, most of the mathematical results in this area focused on inviscid fluids, 

but work in the last few years constructed traveling wave solutions to the free bound-

ary Navier-Stokes equations with a single horizontally infinite but finite depth layer of 

incompressible fluid [15], and with multiple layers [22] in a uniform, downward-pointing 

gravitational field. The purpose of the present paper is to extend these constructions into 

more general physical configurations by considering two effects: inclination of the fluid 

domain, which results in a component of the gravitational field parallel to the fluid layer; 

and, periodicity of the fluid layer in certain directions. The key to the constructions in 

[15,22] was the identification and utilization of a new scale of anisotropic Sobolev spaces, 

which serve as the container space for the function describing the free surface of the 

fluid. The results in this paper rely crucially on some new functional analytic properties 

of these spaces, which we prove here: the development of this scale of spaces on domains 

with periodicity; and, the fact that these spaces form an algebra in the supercritical 

regime. While these results are essential for our specific PDE needs, they may be of 

independent interest to those interested in Sobolev spaces.

1.1. Kinematic and dynamic description of the fluid

In this paper we consider a single finite depth layer of viscous, incompressible fluid. 

We assume that the fluid evolves in a strip-like domain, bounded below by a flat, rigid, 

inclined surface and above by a free moving surface that can be described by the graph of 

a continuous function, in dimensions n � 2 (though, of course, only the cases n ∈ {2, 3}
are physically relevant). Furthermore, we assume that the fluid is subject to a uniform 

gravitational field G ∈ R
n.

Prior to specifying the fluid domain or the equations of motion, we fix an orthogonal 

coordinate system as follows. We choose the unit vector en to be normal to the inclined 

surface, and we choose the unit vector e1 in such a way that G lies in the e1-en hyper-

plane. In other words, we posit that the uniform gravitational field G resolves into two 

components as G = κe1 − gen, where κ ∈ R and g ∈ (0, ∞). We can then define the 

angle of incline of the domain, θ ∈ (−π/2, π/2), via tan θ = κ/g (see Fig. 1).
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Fig. 1. A sample portion of the time-dependent fluid domain under perturbation.

Next we turn to a description of the fluid cross-section, Σ, which will allow us to 

specify the free surface and rigid bottom of the fluid and to model periodicity. The 

flat rigid bottom of the fluid, which is orthogonal to the en direction, is described by 

(n − 1)-dimensional sets of the form

Σ =

{
R ×∏n−1

i=2 Σi, where Σi = R or else Σi = LiT∏n−1
i=1 LiT ,

(1.1)

where LT = R/LZ denotes the 1-torus of periodicity length L > 0. This choice of Σ

allows us to model: full periodicity in all directions, which corresponds to the second 

case; no periodicity, which corresponds to the first case with each Σi = R; or partial 

periodicity when n � 3, which corresponds to the first case with at least one Σi = LiT . 

However, for technical reasons that we will detail below, in the case of partial periodicity 

we cannot allow periodicity in the e1 direction, and so the first factor of Σ must be R. To 

be more explicit in the physically relevant cases n ∈ {2, 3}, we note that (1.1) allows for 

Σ ∈ {R, LT} when n = 2, and when n = 3 it allows for Σ ∈ {R
2, R × L2T , L1T × L2T}, 

but we exclude the possibility that Σ = L1T × R. In any dimension, we endow Σ with 

the usual topological and smooth structure.

With Σ in hand, we can now describe strip-like n-dimensional domains with cross 

section Σ. Given any function ζ : Σ → (0, ∞), we define the set Ωζ ⊂ Σ × R via 

Ωζ = {x = (x′, xn) ∈ Σ × R | 0 < xn < ζ(x′)} and the ζ-graph surface Σζ ⊂ Σ × R

via Σζ = {x = (x′, xn) ∈ Σ × R | xn = ζ(x′) for some x′ ∈ Σ}. We note that if ζ is 
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continuous, then the upper boundary of Ωζ is Σζ and its lower boundary is given by 

Σ0 = {x = (x′, xn) ∈ Σ × R | xn = 0}.

We assume that at equilibrium, with all external forces and stresses absent, the fluid 

occupies the flat equilibrium domain Ωb = {x = (x′, xn) ∈ Σ × R | 0 < xn < b} for some 

equilibrium depth parameter b > 0. Furthermore, we assume that under perturbation, the 

fluid occupies the time-dependent fluid domain Ωb+ζ(·,t), where ζ : Σ × [0, ∞) → (−b, ∞)

is an unknown free surface function. The fluid is then bounded above by the (b +ζ)-graph 

surface Σb+ζ(·,t) and below by the flat boundary Σ0.

In addition to the aforementioned gravitational force, we posit that there are four 

other distinct forces acting upon the fluid: one in the bulk and three on the free surface. 

The first bulk force is a generic force described by the vector field ̃f(·, t) : Ωb+ζ(·,t) → R
n. 

The first surface force is a constant external pressure Pext ∈ R applied by the fluid above 

the free surface. The second surface force is generated by an externally applied stress 

tensor, which is described by a map T̃ : Σb+ζ(·,t) → R
n×n
sym , where Rn×n

sym = {M ∈ R
n×n |

M = MT } is the set of symmetric n × n matrices. The symmetry condition is imposed 

to be consistent with the fact that stress tensors are typically symmetric in continuum 

mechanics, but this condition is not essential and could be dropped in our analysis. The 

third surface force is the surface tension generated by the surface itself, which we model 

in the standard way as −σH(ζ), where σ � 0 is the coefficient of the surface tension, 

and

H(ζ) = div′

(
∇′ζ√

1 + |∇′ζ|2

)
(1.2)

is the mean-curvature operator.

We assume that the evolution of the fluid is described for time t � 0 by its velocity 

field w(·, t) : Ωb+ζ(·,t) → R
n and its pressure P (·, t) : Ωb+ζ(·,t) → R. For each t > 0, we 

require that the fluid velocity w, the pressure P , and the free surface ζ satisfy the free 

boundary incompressible Navier Stokes equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ(∂tw + w · ∇w) − μΔw + ∇P = −ρgen + ρκe1 + f̃, in Ωb+ζ(·,t)

div w = 0, in Ωb+ζ(·,t)

∂tζ = w · ν
√

1 + |∇′ζ|2, on Σb+ζ(·,t)

(PI − μDw)ν = [−σH(ζ)I + PextI + T̃ ]ν, on Σb+ζ(·,t)

w = 0, on Σ0.

(1.3)

Here ρ > 0 is the fluid density, μ > 0 is the fluid viscosity, Dw = (∇w) + (∇w)T ∈ R
n×n
sym

is the symmetrized gradient of w, and ν(·, t) = (−∇′ζ(·, t), 1)/
√

1 + |∇′ζ(·, t)|2 ∈ R
n

is the outward pointing unit normal to the surface Σb+ζ(·,t). The first two equations in 

(1.3) are the standard incompressible Navier-Stokes equations; the first equation asserts 

the Newtonian balance of forces, the second enforces the conservation of mass. The 
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third equation is the kinematic boundary condition describing the evolution of the free 

surface with the fluid. We note in particular that the third equation may be written as 

a transport equation in the form of ∂tζ + ∇′ζ · w′|Σb+ζ(·,t)
= wn|Σb+ζ(·,t)

, which shows 

that the free surface ζ is transported by the horizontal component of the velocity w′ and 

driven by the vertical component of the velocity wn. The fourth equation encodes the 

dynamic boundary conditions asserting the balance of forces on the free surface. The 

fifth equation is the typical no-slip condition enforced on flat rigid surfaces.

For the sake of convenience, we shall assume without loss of generality that ρ = μ =

g = 1. This can be achieved by dividing both sides of the first equation in (1.3) by ρ, 

rescaling the space-time variables, and renaming b, σ, κ, f̃, Pext, T̃ , and (in the periodic 

settings) the periodicity length scales Li, accordingly. This yields the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tw + w · ∇w − Δw + ∇P = −en + κe1 + f̃, in Ωb+ζ(·,t)

div w = 0, in Ωb+ζ(·,t)

∂tζ = w · ν
√

1 + |∇′ζ|2, on Σb+ζ(·,t)

(PI − Dw)ν = [−σH(ζ)I + PextI + T̃ ]ν, on Σb+ζ(·,t)

w = 0, on Σ0.

(1.4)

For a differentiable vector field u and a scalar p, we define the stress tensor S(p, u) =

pI − Du ∈ R
n×n
sym , where I is the n × n identity and Du is the symmetrized gradient of 

u. By defining the divergence operator to act on tensors in the canonical way, we have 

div S(p, u) = ∇p − Δu + ∇ div u. This means that in the first equation of (1.4) we can 

rewrite

∇P − Δw = div S(P, w). (1.5)

1.2. Shear flows and perturbations

The system (1.4) admits steady shear flow solutions that reduce to hydrostatic equi-

librium when κ = 0. To see this, we suppose that ζ = 0, ̃f = 0, T̃ = 0. We then define 

the smooth functions s0, s : R → R via

s0(xn) = bxn − x2
n

2
and s(xn) = κs0(xn). (1.6)

We then define the steady shear velocity field U1 : Ωb → R
n via

W 1(x′, xn) = s(xn)e1, (1.7)

and the equilibrium hydrostatic pressure p : Ωb → R via

p(x′, xn) = Pext − xn + b. (1.8)
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See Fig. 1 for a sketch of the W 1 profile. One can readily check that w = W 1, P = p, ζ = 0

is a steady shear flow solution to (1.4) when f̃ = 0, T̃ = 0. Note that these shear flow 

solutions are special solutions induced by κ �= 0, and they exist due to the presence of 

viscosity, with no clear analogue in the Euler system. In the literature, these solutions 

are sometimes referred to as Nusselt solutions.

We will study the system (1.4) as a perturbation of this steady solution. We define 

the perturbation of the velocity field and pressure field given by

w1(x, t) = w(x, t) + W 1(x), P
1
(x, t) = P (x, t) + p(x), (1.9)

and we see that (w1, P
1
, ζ) is a solution to (1.4) if and only if (w, P, ζ) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tw + div S(P, w) + (w + W 1) · ∇(w + W 1) = f̃, in Ωb+ζ(·,t)

div w = 0, in Ωb+ζ(·,t)

∂tζ + ∇′ζ · w′ + (∂1ζ)s(ζ + b) = wn, on Σb+ζ(·,t)

S(P, w)ν = [(ζ − σH(ζ))I + T̃ − κζ(e1 ⊗ en + en ⊗ e1)]ν, on Σb+ζ(·,t)

w = 0, on Σ0.

(1.10)

Here we have utilized the identity (1.5) in the first equation of (1.10), and the tensor 

product v ⊗ w ∈ R
n×n of two vectors v, w ∈ R

n is defined in the standard way via 

(v ⊗ w)ij = viwj .

1.3. Traveling wave solutions around shear flows

In this paper our main goal is to construct traveling wave solutions to (1.10), which are 

solutions that are stationary when viewed in a coordinate system moving at a constant 

speed. For this stationary condition to hold, the moving coordinate system must travel 

at a constant velocity parallel to the flat rigid surface Σ0. In this paper we assume 

that the traveling waves move at a constant velocity in the direction of incline; in other 

words, that the moving coordinate system’s velocity relative to the Eulerian coordinates 

of (1.3) is γe1 for some γ ∈ R \ {0}. The speed of the traveling wave is then |γ|, and 

sgn(γ) indicates the direction of travel along the e1 axis.

Next we proceed to reformulate the problem in the traveling coordinates. We assume 

that the stationary free surface is given by an unknown function η : Σ → (−b, ∞), and 

it is related to ζ via ζ(x′, t) = η(x′ − γte1). The stationary velocity, pressure, force, and 

stress v, q, f, T are related to w, P, ̃f, T̃ via

w(x, t) = v(x − γte1), P (x, t) = q(x − γte1),

f̃(x, t) = f(x − γte1), T̃ (x, t) = T (x′ − γte1).
(1.11)

Then using (1.11), the system (1.10) reduces to a time-independent system for (v, q, η)

given the forcing terms f and T ,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

div S(q, v) − γe1 · ∇v + (v + W 1) · ∇(v + W 1) = f, in Ωb+η

div v = 0, in Ωb+η

−γ∂1η + ∇′η · v′ + (∂1η)s(η + b) = vn, on Σb+η

S(q, v)N = [(η − σH(η))I + T − κη(e1 ⊗ en + en ⊗ e1)]N , on Σb+η

v = 0, on Σ0,

(1.12)

where we have defined the non-unit normal vector field

N = (−∇′η, 1). (1.13)

For technical reasons to be discussed later in Section 1.7, it is convenient for us to remove 

the η terms appearing in the fourth equation of (1.12) by introducing an additional time-

independent perturbation term

W 2(x′, xn) = κxnη(x′)e1 (1.14)

and by defining the modified shear velocity and modified pressure via

v1(x, t) = v + W 2(x), q1(x) = q(x) + η(x′). (1.15)

One may readily check that (v1, q1, ζ) is a solution to (1.12) if and only if (v, q, η) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div S(q, v) − γe1 · ∇v − γκxn∂1ηe1 + (v + W 1 + W 2) · ∇(v + W 1 + W 2)

+(∇′η, 0) − κxnΔ′η(x′)e1 − κ(xn∇′∂1η, ∂1η) = f, in Ωb+η

div v + κxn∂1η(x′) = 0, in Ωb+η

(−γ + s(η + b) + κ(η + b)η)∂1η = v · N , on Σb+η

S(q, v)N = [−σH(η)I + T + κ(b + η)(e1 ⊗ (∇′η, 0) + (∇′η, 0) ⊗ e1)]N , on Σb+η

v = 0, on Σ0.

(1.16)

We note that by using the perturbations introduced in (1.15), we have replaced the η

terms in the fourth equation of (1.12) by either derivatives of η or products of η and its 

derivatives, at the price of introducing additional terms in the first equation.

1.4. Previous work

The system (1.3) and its variants have been studied extensively in the mathematical 

literature. For a brief survey of the subject, we refer to Section 1.2 of Leoni-Tice [15]

and Section 1.4 of Tice [25]. For a more thorough review of the subject, we refer the 

surveys of Toland [26], Groves [7], Strauss [23], the recent paper by Strauss et al. [12] in 
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the inviscid case, and to the surveys of Zadrzyńska [29] and Shibata-Shimizu [20] in the 

viscous case.

When κ = 0, the small data theory for the free boundary problem (1.3) over periodic 

domains is well-understood in dimension n = 3. For the problem with surface tension, 

Nishida-Teramoto-Yoshihara [17] constructed global periodic solutions and proved that 

they decay exponentially fast to equilibrium. For the problem without surface tension, 

Hataya [11] constructed global solutions decaying at a fixed algebraic rate, and later Guo-

Tice [9] constructed global solutions decaying almost exponentially. In the non-periodic 

setting, Beale [3] established the local-wellposedness of solutions without surface tension, 

and Beale [4] proved the global existence of solutions with surface tension. Beale-Nishida 

[5] later established that the aforementioned solutions decay at an algebraic rate. Tani-

Tanaka [24] proved the global existence solutions with and without surface tension under 

milder assumptions on the initial data, but did not study their decay rates. Guo-Tice 

[10] proved that for the problem without surface tension, the global solutions decay at a 

fixed algebraic rate.

The investigation of the dynamics of viscous shear flows without free boundary is 

classical and dates back to the work of Orr [18] and Sommerfeld [21], where they noted 

the so-called viscous destabilization phenomenon. This was subsequently investigated 

formally by many authors in the physics literature, including Heisenberg [13], Lin [16], 

and Tollmien [27]. However, it wasn’t until recently that a rigorous mathematical proof 

for the instability of viscous incompressible shear flows without free boundary appeared, 

in the work of Grenier-Guo-Nguyen [6].

When κ �= 0, much less is known about the dynamics of the free boundary problem 

(1.3). Ueno [28] studied the 2D problem with surface tension in the thin film regime 

and established uniform estimates of solutions with respect to the thinness parameter. 

Padula [19] studied the 3D problem with surface tension and proved sufficient conditions 

for asymptotic stability under a priori assumptions on the global existence of solutions. 

Tice [25] studied the asymptotic stability of shear flow solutions to the nonlinear problem 

with and without surface tension, and proved that solutions decay exponentially fast to 

equilibrium with surface tension and almost exponentially without surface tension.

The existence of traveling wave solutions without background shear flows to (1.3) first 

appeared in the recent work of Leoni-Tice [15], and the results therein were extended by 

Stevenson-Tice [22] to a multilayer configuration. To the best of our knowledge, there 

are no known results on the existence of traveling wave solutions around shear flows in 

the case when κ �= 0 or when the cross section Σ is periodic.

1.5. Reformulation in a fixed domain

We note that in (1.16), the fluid domain of interest Ωb+η is dependent on an unknown 

free surface η. To bypass the difficulty of working in such a domain, we proceed to 

reformulate the problem on a fixed domain Ωb = Σ × (0, b), at the cost of worsening the 

nonlinearities in the system.
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Fig. 2. The flattening map Fη and its inverse.

To do so we introduce the flattening map Fη : Ωb → Ωb+η associated to a continuous 

function η : Σ → (−b, ∞), defined via

Fη(x′, xn) = x +
xnη(x′)

b
en. (1.17)

We note that by construction, Fη|Σ0
= Σ0 and Fη(x′, b) = Ση+b (see Fig. 2). Moreover, 

Fη is bijective with its inverse F−1
η : Ωb+η → Ωb given by

F−1
η (y) =

(
y′,

byn

b + η(x′)

)
. (1.18)

Throughout the rest of the paper we will typically suppress the dependence of the 

subsequent maps and their associated domains on b and η, e.g. writing Fη as F and Ωb

as Ω, unless these dependencies need to be emphasized. We also use the following abuse 

of notation throughout the paper: since the hypersurface Σb ⊂ Σ × R is canonically 

diffeomorphic to Σ via the projection map π : Σb → Σ given by π(x′, b) = x′, we will use 

this to identify Hs(Σb; V ) with Hs(Σ; V ) (and similar spaces) for any finite dimensional 

vector space V . This allows us to sometimes write f(x′) instead of f(x′, b), and allows 

us to apply the horizontal Fourier transform on Σb in the natural way.

Following this convention, we note that F is a homeomorphism inheriting the regularity 

of η, in the sense that if η ∈ Ck(Σ; R) then F is a Ck diffeomorphism. When η is 

differentiable we may compute

∇F(x) =

(
I(n−1)×(n−1) 0(n−1)×1

xn∇′η(x′)T

b 1 + η(x′)
b

)
. (1.19)

Thus, the Jacobian J and the inverse Jacobian K of F are

J = det ∇F = 1 +
η

b
, K =

1

J
=

b

b + η
. (1.20)

We then introduce the matrix A : Ωb → R
n×n defined via
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A(x) = (∇F)−ᵀ =

(
I(n−1)×(n−1)

−xn∇′η(x′)
b+η(x′)

01×(n−1)
b

b+η(x′)

)
=

(
I(n−1)×(n−1) −xnK ∇′η(x′)

b
01×(n−1) K

)
,

(1.21)

the A-dependent differential operators

(∇Af)i =
n∑

j=1

Aij∂jf, (X · ∇Au)i =
n∑

j,k=1

XjAjk∂kui, divA X =
n∑

i,j=1

Aij∂jXi,

(1.22)

and also

(DAu)ij =
n∑

k=1

Aik∂kuj + Ajk∂kui, SA(p, u) = pI − DAu,

divA SA(p, u) = ∇Ap − ΔAu − ∇A divA u, (ΔAu)i =

n∑

j,k,m=1

Aj,k∂k(Ajm∂mui).

(1.23)

Now writing u, U1, U2 : Ω → R
n, p : Ω → R, f : Ω → R

n via u = v◦F, U1 = W 1 ◦F, U2 =

W 2 ◦F, p = q ◦F, where v, q satisfies (1.10), (1.16) can be reformulated as the quasilinear 

system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divA SA(p, u) − γe1 · ∇Au − γκ(xn + η xn

b )∂1ηe1

+
(
u + U1 + U2

)
· ∇A

(
u + U1 + U2

)

+(∇′η, 0) − κ
(
xn + η xn

b

)
Δ′ηe1 − κ((xn + η xn

b )∇′∂1η, ∂1η) = f ◦ Fη, in Ω

divA u + κ
(
xn + η(x′)xn

b

)
∂1η = 0, in Ω

u · N = (−γ + s(η + b) + κ(η + b)η) ∂1η, on Σb

SA(p, u)N = [−σH(η)I + T ◦ Fη + κ(η + b)(e1 ⊗ (∇′η, 0) + (∇′η, 0) ⊗ e1)] N , on Σb

u = 0, on Σ0.

(1.24)

1.6. Statement of main results

We now state the main results obtained in this paper, though we delay a thorough 

discussion of them to the next subsection. To state these results in full generality we first 

introduce some notation related to Cartesian products of groups.

Definition 1.1. Suppose that d � 1 and

Γ =

d∏

i=1

Γi, Γi = R or LiT , Li > 0, d � 1. (1.25)
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(1) Suppose that E ⊆ {1, . . . , d} and x ∈ X for X ∈ {Γ, ̂Γ}, where Γ̂ is the dual group 

of Γ. We define xE ∈ X via

(xE)j =

{
xj if j ∈ E

0j if j /∈ E.
(1.26)

The utility of this notation is seen in the formula x = xE + xEc , valid for any set 

E ⊆ {1, . . . , d}.

(2) We define the sets RΓ, RΓ̂, TΓ, TΓ̂ ⊆ {1, . . . , d} via

RΓ = RΓ̂ = {i ∈ {1, . . . , d} : Γi = R} =: {r1, . . . , r|RΓ|}, (1.27)

TΓ = TΓ̂ = {i ∈ {1, . . . , d} : Γi = LiT} = {1, . . . , d}\RΓ

= {1, . . . , d}\RΓ̂ =: {t1, . . . , t|TΓ|}, (1.28)

where we order these such that r1 < · · · < r|RΓ| and t1 < · · · < t|TΓ|. This allows us 

to write Γ � x = xRΓ
+ xTΓ

and Γ̂ � ξ = ξRΓ̂
+ ξTΓ̂

.

With this notation in hand, we are ready to state the main results. The first result 

concerns a key property of the anisotropic Sobolev space Xs(Σ; F), which serves as the 

container space for the free surface function η when F = R. We refer the reader to 

Appendix A for the definition of S ′(Σ; C).

Theorem 1.2 (Proven later in Section 2.2). Suppose R � s > d/2, where d = dim Σ and 

Σ is defined via (1.1). Then the anisotropic space Xs(Σ; F) defined via

Xs(Σ; F) =

{
{f ∈ S ′(Σ; C) | f̂ ∈ L1

loc(Σ̂; C), f = f, ‖f‖Xs < ∞}, F = R

{f ∈ S ′(Σ; C) | f̂ ∈ L1
loc(Σ̂; C), ‖f‖Xs < ∞}, F = C,

(1.29)

where

‖f‖Xs = ‖μ〈·〉s−1f̂‖L2 , for μ(ξ) =

{
|ξ1|
|ξ| + |ξ| for ξ �= 0

1 for ξ = 0,
(1.30)

is an algebra.

The proof of this theorem utilizes anisotropic Littlewood-Paley techniques heavily 

inspired by [8]. We note that this theorem is only non-trivial in the case when 1 ∈
RΣ, |RΣ| � 2, where the set RΣ is defined via (1.27). It turns out that in all the remaining 

possibilities of Σ, the anisotropic Sobolev Xs(Σ; F) coincides with the standard Sobolev 

space Hs(Σ; F), so the result follows directly from standard Sobolev theory. In Lemma 2.1

we give the precise characterization of product domains Γ for which Hs(Γ; F) = Xs(Γ; F)
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and Hs(Γ; F) � Xs(Γ; F). Moreover, we show in Proposition 2.2 that if Γ = L1T × R, 

then the space Xs(Γ; F) is not complete, which is an initial indication of why we cannot 

allow for Σ = L1T × R in our analysis.

With Theorem 1.2 in hand, we are able to prove the solvability of flattened system 

(1.24), and by extension the solvability of the original system (1.16). Before stating the 

solvability results we make a quick comment on the forcing terms in (1.16) and (1.24). 

We first note that the bulk force f in (1.16) needs to be defined in the domain Ωb+η, 

which depends on the unknown free surface function η. In order to work with f without 

the implicit need to know η first, we will assume a priori that f is defined in all of 

Σ × R. We will also need the map (f, η) �→ f ◦ Fη to be C1, since we need to invoke the 

implicit function theorem in our analysis in Section 4. It is known that this is possible, 

for example, if the domain of f is Hs+1 and its codomain is Hs. Due to the strip-like 

structure of the fluid domain and the flattening map defined in (1.17), we can in fact allow 

for another type of bulk force which preserves the regularity of its domain. A detailed 

discussion of this can be found in Section 1.4 of [15]. Moving forward, we consider the 

generalized bulk forces f + LΩb+η
f and the generalized surface forces T |Σb+η

+ Sb+ηT in 

(1.16), where LΩη+b
f(x′, xn) = f(x′) and Sb+ηT (x′, xn) = T (x′).

With this in mind, we are able to prove the solvability of (1.24). The spaces 

Ck
b , Ck

0 , 0Hs(Ω; Rn) referred to in the following results are defined in Section 1.8, and the 

space X s is defined in Definition 3.10. We also write Σ � x′ = x′
RΣ

+ x′
TΣ

in accordance 

with the notation introduced in (1.26).

Theorem 1.3 (Proved later in Section 4.2). Let Σ be given by (1.1) and suppose that 

N � s > n
2 . Further suppose that either σ > 0 and n � 2 or else σ = 0 and n = 2. Then 

there exist open sets

Us ⊂ (R \ {0}) × R × Hs+2(Σ × R; R
n×n
sym ) × Hs+ 1

2 (Σ; R
n×n
sym )

× Hs+1(Σ × R; R
n) × Hs(Σ; R

n) (1.31)

and Os ⊂ X s such that the following hold.

(1) (0, 0, 0) ∈ Os, and for every (u, p, η) ∈ Os we have that

u ∈ C
2+
⌊
s− n

2

⌋

b (Ω; R
n), p ∈ C

1+
⌊
s− n

2

⌋

b (Ω; R), η ∈ C
3+
⌊
s− n

2

⌋

0 (Σ; R) (1.32)

and

lim
|x′

RΣ
|→∞

∂αu(x) = 0 for all α ∈ N
n such that |α| � 2 +

⌊
s − n

2

⌋
(1.33)

lim
|x′

RΣ
|→∞

∂αp(x) = 0 for all α ∈ N
n such that |α| � 1 +

⌊
s − n

2

⌋
, (1.34)
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maxΣ |η| � b
2 , and the flattening map Fη is a bi-Lipschitz homeomorphism and a 

C3+
⌊
s− n

2

⌋
diffeomorphism.

(2) We have (R \ {0}) × {0} × {0} × {0} × {0} × {0} ⊂ Us.

(3) For each (γ, κ, T , T, f, f) ∈ Us, there exists a unique (u, p, η) ∈ Os classically solving

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divA SA(p, u) − γe1 · ∇Au − γκ(xn + η xn

b )∂1ηe1

+
(
u + U1 + U2

)
· ∇A

(
u + U1 + U2

)
+ (∇′η, 0)

−κ
(
xn + η xn

b

)
Δ′ηe1 − κ((xn + η xn

b )∇′∂1η, ∂1η)

= f ◦ Fη + LΩb
f, in Ω

divA u + κ
(
xn + η(x′)xn

b

)
∂1η = 0, in Ω

u · N = (−γ + s(η + b) + κ(η + b)η) ∂1η, on Σb

SA(p, u)N = [−σH(η)I + T ◦ Fη|Σb
+ SbT

+κ(η + b)(e1 ⊗ (∇′η, 0) + (∇′η, 0) ⊗ e1)] N , on Σb

u = 0, on Σ0.

(1.35)

(4) The map Us � (γ, κ, T , T, f, f) �→ (u, p, η) ∈ Os is C1 and locally Lipschitz.

A few remarks are in order. First, we note again that in the physically relevant case 

n = 3, we cannot solve (1.35) in the stated spaces if Σ = L1T × R. Second, Theorem 1.3

is analogous to Theorem 1.1 in [15] for the problem without incline and periodicity, 

and Theorem 1 in [22] for the multilayer problem. However, our choice of the function 

space X s is slightly different from the one used there because we have formulated the 

problem (1.35) in a slightly different manner, with the η term shifted from the dynamic 

boundary condition into the bulk. This results in the pressure belonging to a standard 

Sobolev space rather than a specialized anisotropic one, as in [15,22]. Third, we can say 

something about the set of (γ, κ) parameters for which we can produce solutions,

Ps = {(γ, κ) ∈ R\{0} × R | (γ, κ, T , T, f, f) ∈ Us for some (T , T, f, f)}. (1.36)

Indeed, an examination of our proof of Theorem 1.3 shows that for every γ ∈ R\{0}, 

there exists a κ0(γ) > 0, depending on γ and the other physical parameters in a semi-

explicit way (see Theorem 3.19), such that

(−κ0(γ), κ0(γ)) ⊆ {κ ∈ R | (γ, κ) ∈ Ps}. (1.37)

However, the estimates in Theorem 3.19 suggest that for each κ ∈ R\{0}, the set {γ ∈
R\{0} | (γ, κ) ∈ Ps} is bounded, and possibly empty for large |κ|. We conjecture that 

this is indeed the case, but we do not have a complete proof here due to the complicated 

dependence the operator norm of L0,σ, defined in (3.65), on γ. Lastly, we note that by 

(1.32) and the decay conditions (1.33), (1.34), the traveling wave solutions in the flattened 



14 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057

domain correspond to what are known as solitary waves in the inviscid traveling wave 

literature.

Using solutions constructed in the flattened domain via Theorem 1.3, we can then 

produce solutions to the unflattened system (1.16). This leads us to the final result of 

this paper.

Theorem 1.4 (Proved later in Section 4.3). Let Σ be given by (1.1), and suppose that 

N � s > n
2 . Suppose that either σ > 0 and n � 2 or else σ = 0 and n = 2. Let

Us ⊂ (R \ {0}) × R × Hs+2(Σ × R; R
n×n
sym ) × Hs+ 1

2 (Σ; R
n×n
sym )

× Hs+1(Σ × R; R
n) × Hs(Σ; R

n) (1.38)

and Os ⊂ X s be the same open sets as in Theorem 1.3. Then for each (γ, κ, T , T, f, f) ∈
Us, there exist

• a free surface function η ∈ Xs+5/2(Σ; R) ∩ C
�s−n/2�+2
0 (Σ; R) such that maxΣ |η| �

b/2, and Fη as defined in (1.17) a bi-Lipschitz homeomorphism and a C�s−n/2�+3

diffeomorphism,

• a velocity field v ∈ 0Hs+2(Ωb+η; Rn) ∩ C�s−n/2�+2(Ωb+η; Rn),

• a pressure q ∈ Hs+1(Ωb+η; R) ∩ C
�s−n/2�+1
b (Ωb+η; R),

• and constants C, R > 0,

such that the following hold:

(1) (v, q, η) are classical solutions to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div S(q, v) − γe1 · ∇v − γκxn∂1ηe1 + (v + W 1 + W 2) · ∇(v + W 1 + W 2)

+(∇′η, 0) − κxnΔ′η(x′)e1 − κ(xn∇′∂1η, ∂1η) = f + LΩb+η
f, in Ωb+η

div v + κxn∂1η(x′) = 0, in Ωb+η

(−γ + s(η + b) + κ(η + b)η)∂1η = v · N , on Σb+η

S(q, v)N = [−σH(η)I + T |Σb+η
+ Sb+ηT + κ(b + η)(e1 ⊗ (∇′η, 0)

+(∇′η, 0) ⊗ e1)]N , on Σb+η

v = 0, on Σ0.

(1.39)

(2) (v ◦ Fη, q ◦ Fη, η) ∈ Os ⊂ X s.

(3) If (γ∗, κ∗, T∗, T∗, f∗, f∗) ∈ Us satisfy

|γ − γ∗| + |κ − κ∗| + ‖T − T∗‖Hs+2 + ‖T − T∗‖Hs+1/2

+ ‖f − f∗‖Hs+1 + ‖f − f∗‖Hs < R, (1.40)
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then the corresponding solution triple (v∗, q∗, η∗) satisfies

‖(v ◦ Fη, q ◦ Fη, η) − (v∗ ◦ Fη∗
, q∗ ◦ Fη∗

, η∗)‖X s

� C(|γ−γ∗|+|κ−κ∗|+‖T − T∗‖Hs+2 +‖T − T∗‖Hs+1/2 +‖f − f∗‖Hs+1 +‖f − f∗‖Hs).

(1.41)

1.7. Discussion of techniques and plan of attack

As in [15], our strategy for producing solutions to (1.24) is to employ an implicit 

function theorem argument built on the linearization of (1.24),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div S(p, u) − γ∂1u − γκxn∂1ηe1 + (∇′η, 0) + s(xn)∂1u

+s′(xn)une1 + κxns(xn)∂1ηe1 − κxnΔ′ηe1 − κ(xn∇′∂1η, ∂1η) = f, in Ω

div u + κxn∂1η = g, in Ω

un + (γ − κb2

2 )∂1η = h, on Σb

S(p, u)en + σΔ′ηen = k, on Σb

u = 0, on Σ0.

(1.42)

When κ = 0 and Σ = R
n−1, the strategy for producing solutions to (1.16) is discussed 

extensively in Section 1.5 of [15]. To succinctly summarize their approach, a viable strat-

egy for producing solutions to (1.4) is to use the implicit function theorem after first 

proving that (1.42) induces an isomorphism (u, p, η) �→ (f, g, h, k) between a pair of 

identified function spaces. Since (1.42) is not a standard elliptic system in the sense con-

sidered in Agmon-Douglis-Nirenberg [1], as the unknown free surface η only appears in 

the equations imposed on the boundary, we follow the decoupling strategy in [15] and 

first study the overdetermined system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

div S(p, u) − γ∂1u = f in Ω

div u = g, in Ω

S(p, u)en = k, on Σb

un = h, on Σb

u = 0, on Σ0

(1.43)

and its associated compatibility conditions. By the adjoint compatibility condition (3.25), 

the free surface function η can be constructed from the data tuple (f, g, h, k) by means 

of the pseudodifferential equation ργ(ξ)η̂(ξ) = ψ(ξ) for ξ ∈ Σ̂, where Σ̂ is the dual group 

of Σ defined via (1.54), and ψ, ργ are defined in (3.35), (3.19) as
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ψ(ξ) =

b∫

0

(
f̂(ξ, xn) · V (ξ, xn, −γ) − ĝ(ξ, xn)Q(ξ, xn, −γ)

)
dxn

− k̂(ξ) · V (ξ, b, −γ) + ĥ(ξ),

ργ(ξ) = 2πiγξ1 + (1 + 4π2|ξ|2σ)m(ξ, −γ). (1.44)

Here V, Q, m defined via (3.9) are symbols of special pseudodifferential operators. In 

order to solve the pseudodifferential equation for η, we need the precise asymptotics of 

V, Q, m on Σ̂. In particular, we note that when γ �= 0 and Σ is defined via (1.1), the 

asymptotics of m completely determine the asymptotics of ργ on Σ̂, which for γ �= 0 are 

given in Lemma 3.6 as

{
|ργ(ξ)|2 � (ξ2

1 + |ξ|4)1B(0,1)(ξ) + (1 + |ξ|2)1B(0,1)c(ξ), σ > 0

|ργ(ξ)|2 � |ξ|21B(0,1)(ξ) + (1 + |ξ|2)1B(0,1)c(ξ), σ = 0, n = 2.
(1.45)

With the asymptotics of ργ in hand, we define η̂ via η̂(ξ) = ψ(ξ)/ρ(ξ) for ξ �= 0, which 

by (1.45) would imply

∫

Σ̂

ξ2
1 + |ξ|4

|ξ|2 |η̂(ξ)|21B(0,1) + (1 + |ξ|2)s+5/2|η̂(ξ)|21B(0,1)c dξ

�
∫

Σ̂

|ψ(ξ)|2
|ξ|2 1B(0,1) + (1 + |ξ|2)s+3/2|ψ(ξ)|21B(0,1) dξ. (1.46)

Using the asymptotics of V, Q in Theorem 3.5, and the functional framework built on 

the specialized anisotropic space Xs(Σ; R) that serves as the container space for the free 

surface function η in Section 2.1, we can then utilize the equivalence (1.46) to recover η via 

Fourier reconstruction. We note that by the first items of Lemma 2.1 and Theorem 2.5, 

the free surface function η recovered through this process will be regular enough to be 

a classical function as opposed just being a tempered distribution, which is a crucial 

requirement for η to be utilized in the subsequent nonlinear analysis.

It is also worth mentioning that in the physically relevant dimension n = 3, we de-

liberately chose to ignore the configuration Σ = (L1T ) × R, as in this case we would 

have ξ ∈ BΣ̂(0, r) ⇐⇒ ξ = (0, ξ2), |ξ2| � r for r = min(1, L−1
1 ). By (1.44), this implies 

that |ργ(ξ)|21BΣ̂(0,r) � |ξ|4 =⇒ |ξ|2|η̂(ξ)|21BΣ̂(0,r) � |ψ(ξ)|2

|ξ|2 1BΣ̂(0,r). Unfortunately, in 

this scenario we only have Ḣ1 control over the low frequency modes of η, and by Propo-

sition 2.2 the corresponding anisotropic space Xs((L1T × R); R) fails to be complete. 

If one were to consider the completion of this space, elements of the completion would 

be equivalence classes of tempered distributions modulo polynomials. Since we mandate 

elements of the container space for the free surface function η to be classical functions, 

neither the space Xs((L1T × R); R) nor its completion are suitable for the purposes of 
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this paper. Practically speaking, this means that we cannot employ our techniques as-

suming a priori periodicity in the direction of incline. For the same reason, our framework 

also cannot produce stationary solutions in the case when γ = 0.

By solving for η through the aforementioned approach, we can then solve for (u, p)

by means of (1.42) and the linear isomorphism associated to (1.43). Fortunately, this is 

possible as the results from the linear analysis in [15] continue to hold over Σ defined in 

(1.1). This is mainly due to the fact that many results in [15] are proved by analyzing the 

low frequency behavior of functions in Hs(Rd; R) and Xs(Rd; R). By utilizing the natural 

isometric and measure-preserving identification between BΓ̂(0, r) and B
R

|R
Γ̂

|(0, r), the 

analogous results for Hs(Σ; R) and Xs(Σ; R) can all be deduced from reducing a similar 

set of calculations over Σ and Σ̂ to the calculations in [15] over Rd. As such, the results 

from [15] can be directly ported over with minimal modification of the proofs contained 

therein.

However, in the case Σ = L1T × R, the generalized space Xs(Γ; R) can fail to be 

complete depending on the set Γ over which it is defined. This is an initial indication 

that some care needs to be taken in generalizing the space Xs(Rd; R) introduced in [15]

over general sets Γ defined via (1.25). For the sake of simplicity, in Section 2.1 we will 

assume that for d � 1, the set Γ falls into one of the following four categories:

Γ = R
d, (purely real)

(1.47)

Γ =
d∏

i=1

LiT , (purely toroidal)

(1.48)

Γ = R × R
d1 ×

d2∏

i=1

LiT , d1 � 0, d2 > 1, 1 + d1 + d2 = d, (mixed with first factor real)

(1.49)

Γ = L1T × R
1+d1 ×

d2∏

i=2

LiT , d1, d2 � 0, 1 + d1 + d2 = d,

(mixed with first factor toroidal)

(1.50)

with the understanding that if d1 = 0 then there are no additional real factors in the 

Cartesian product and similarly if d2 = 0 (d2 = 0, 1 in (1.50)) then there are no additional 

toroidal factors in the Cartesian product. We note that these are specialized rearranged 

cases of general sets Γ defined via (1.25), with all toroidal moved to the end in the 

reordered product with the real factors preceding. For general product domains Γ, the 

relevant analysis can be reduced to the analysis over the four categories listed above 
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Table 1

Xs(Γ) in general dimensions d � 1.

General Γ in terms of RΓ, TΓ Corresponding case Xs(Γ) is Relation to Hs(Γ)

TΓ = ∅ (purely real) (1.47) Complete Xs(Γ) ⊇ Hs(Γ), equal if d = 1

RΓ = ∅ (purely toroidal) (1.48) Complete Xs(Γ) = Hs(Γ) for all d � 1

1 ∈ RΓ, TΓ �= ∅ (mixed) Rearranged to (1.49) Complete Xs(Γ) ⊇ Hs(Γ), equal if d1 = 0

1 �= RΓ and RΓ �= ∅ (mixed) Rearranged to (1.50) Complete iff
d1 � 2

Hs(Γ; F) � Xs(Γ; F)

via a reordering map that fixes the first factor of Γ. Therefore for the sake of simplicity 

in this paper we chose to state the relevant results in Section 2.1 for Xs(Γ; R) over the 

specialized rearranged domains (1.47)-(1.50), even though they can be stated and proven 

in greater generality. These results led us to identifying the “good sets” Σ for which the 

spaces Xs(Σ; R) are compatible with our analysis, which is the motivation for the sets 

Σ considered in (1.1). A summary the completeness of Xs(Γ; F) proved in Section 2.1 is 

given in Table 1.

We note to the reader that in the last case (1.50), Xs(Γ; R) can only be complete 

if d � 4 which is not physically relevant. For this reason we chose not to study the 

functional analytical properties of these spaces in this case even if they are complete, 

though we believe that the main results in Section 2.1 and Section 2.2 can be proven 

with appropriate modifications since we have Ḣ1 type control over the low frequencies. 

We also emphasize that while our functional framework cannot produce solutions in the 

case Γ = L1T × R, it is possible that solutions exist in other functional settings.

Next, we discuss the role of the perturbations (1.9), (1.15), and in particular the role 

of (1.14). First, by renormalizing the pressure via (1.8), the vertical gravitational force 

−en shifts from the bulk to the dynamic boundary conditions, appearing as the term ζν

on the right hand side of the fourth equation in (1.10); this term later appears as ηN in 

the fourth equation of (1.12). By further modifying the pressure via (1.15), we eliminate 

the term ηN from (1.12), at the price of introducing (∇′η, 0) to the bulk in (1.16) and 

(1.24). The advantage of this formulation is that the pressure q in Theorem 1.4 lives in a 

standard Sobolev space Hs(Ω; R), as opposed to the alternative formulation in [15], for 

which q belongs to a specialized Sobolev space built on the anisotropic space Xs(Σ; R).

A key difference between the system (1.10) and the analogous system in [15] is that 

upon removing the background shear flow (1.7), we are left with the term κη(e1 ⊗ en +

en ⊗ e1)N appearing in the fourth equation of (1.12). Since η is expected to belong to 

a specialized Sobolev space Xs(Σ; R) that does not coincide with the standard Sobolev 

space Hs(Σ; R) in general, attacking the problem at this level would require one to build 

specialized spaces for the data tuple (f, g, h, k), and also prove that the associated linear 

maps remain to be isomorphisms in this modified functional framework. By introducing 

an additional perturbation (1.14), we were able to replace this term with terms that are 

all standard Sobolev in the regime s > n/2 thanks to the second item of Theorem 2.5, 

as the non-trivial terms are either derivatives of functions in Xs(Σ; R) or products of 

functions in Xs(Σ; R) and derivatives of functions in Xs(Σ; R). This approach allows us 
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to directly employ the functional framework from [15] at the price of introducing worse 

nonlinearities in (1.16) and (1.24).

To construct solutions to (1.16), we use the associated linear isomorphism in conjunc-

tion with the implicit function theorem around the trivial solution. In order to invoke 

the implicit function theorem, the nonlinear maps associated to (1.24) first need to be 

well-defined on the same spaces used in the linear analysis. This requires some analysis in 

Section 4.1 to understand the mapping properties of functions in the specialized Sobolev 

space Xs(Σ; R), and also of the mean-curvature operator H defined in (1.2).

In addition, we also need a divergence-trace type compatibility condition (3.22) built 

into the container space Ys defined in (3.23) to hold; in Theorem 4.2, we show that the 

compatibility condition requires

⎡
⎣−s(η + b)∂1η − κ(η + b)η∂1η −

b∫

0

J(·, xn)κ
(

xn + η
xn

b

)
∂1η dxn

⎤
⎦

Ḣ−1

=

[
−κ(b2∂1η + b∂1η2 +

1

3
∂1η3)

]

Ḣ−1

< ∞, (1.51)

where the Ḣ−1 seminorm is defined in (3.2).

A major obstacle in proving (1.51) is that low-frequency control of powers of η is not 

immediately evident from the inclusion η ∈ Xs(Σ; R). One could in principle attempt 

to obtain control of powers of η by way of Young’s convolution inequality applied on 

the Fourier side. However, in the model case Σ = R
d with s > d/2, this only leads to 

the inclusion ηk ∈ Hs(Rd; R) for k � 2 + �4/(2d − 2)�, d � 2. Unfortunately, this means 

that in the physically relevant case n = 3 (so that d = n − 1 = 2), this elementary 

argument only provides control over quartic or higher powers of η. However, by the 

fourth item of Theorem 2.5, we know that if ζ ∈ Xs(Σ; R), then ∂1ζ ∈ Ḣ−1(Σ; R). 

Thus, a viable strategy for proving (1.51) is to show that Xs(Σ; R) is an algebra. By 

Lemma 2.1, there are configurations of Σ for which Xs(Σ; R) = Hs(Σ; R), in which case 

we know Xs(Σ; R) is an algebra for s > dim Σ/2. In general, though, we only know 

that Hs(Σ; R) ↪→ Xs(Σ; R), so further analysis is required to show that Xs(Σ; R) is an 

algebra. Fortunately, we are able to establish this in Theorem 1.2, which is proved later 

in Section 2.2.

As the linearization of (1.24) depends on κ, we also need to identify a parameter 

regime for κ for which the associated linear map remains an isomorphism. To that end, 

in Section 3.6 we study the map

Lκ,σ(u, p, η) = (div S(p, u) − γκxn∂1ηe1 − γ∂1u + (∇′η, 0)

+ s(xn)∂1u + s′(xn)une1 + κxns(xn)∂1ηe1 − κxnΔ′ηe1 − κ(xn∂1∇′η, ∂1η), div u

+ κxn∂1η, un|Σb
+ (γ − κb2

2
)∂1η, S(p, u)en|Σb

+ σΔ′ηen) (1.52)
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induced by the linearization associated to (1.24), and in Theorem 3.19 we show that via 

a perturbative argument around κ = 0 that for fixed γ and other physical parameters, 

there exists a κ0 > 0 for which Lκ,σ is an isomorphism over appropriate spaces for all 

κ ∈ (−κ0, κ0). Synthesizing the aforementioned results and employing our strategy of 

invoking the implicit function theorem leads us to the solvability of (1.24) and (1.16).

Finally, we discuss the strategy for producing solutions to the unflattened system 

(1.16) using solutions constructed in the flattened domain via Theorem 1.3. To that end, 

we use the free surface function η to build the flattening map and its inverse defined in 

(1.17) and (1.18) to undo the reformulation outlined in Section 1.5. This requires some 

results on the regularity of these maps, which is recorded in Section 4.1. Fortunately, the 

same analysis can be adapted from [15] with minimal modification.

1.8. Notational conventions and outline of article

In this subsection we discuss the notational conventions adopted throughout this 

paper. In this paper, N denotes the natural numbers including 0. We always use n � 1

to denote the dimension of the flattened fluid domain Ω = Σ × R. For d � 1, we will 

consider spaces defined over domains Γ defined via (1.47)-(1.50), where Γ is endowed 

with the natural group, topological, and smooth structures. In fact, the topology on Γ

is metrizable, and in this paper we equip Γ with the metric

dΓ(x, y) =

(
d∑

i=1

di(xi, yi)
2

)1/2

for di(xi, yi) =

{
di(xi, yi) = |xi − yi|, if Γi = R

di(xi, yi) = inf{|r − s| | r ∈ [xi], s ∈ [yi]}, if Γi = LiT .
(1.53)

We write Γ̂ to denote the dual group associated to Γ, defined via

Γ̂ =
d̂∏

i=1

Γi =
d∏

i=1

Γ̂i, Γ̂i =

{
R, if Γi = R

L−1
i Z, if Γi = LiT ,

(1.54)

where Γ̂ is also endowed with the obvious group, topological, and smooth structures. We 

also endow Γ̂ with the metric induced by inclusion in Rd:

dΓ̂(x, y) =

d∑

i=1

(
|xi − yi|2

)1/2
. (1.55)

If X is a metric space, we write BX(x, r) = {y ∈ X | dX(x, y) < r} for the open ball.

For X ∈ {Γ, ̂Γ}, we write S (X; C) to denote the Schwartz class of complex valued 

functions over X and S ′(X; C) to denote the space of complex valued tempered dis-

tributions over X; a detailed treatment of how to define these spaces can be found in 
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Appendix A. For f ∈ S (X; C) or f ∈ S ′(X; C), we denote its unitary Fourier and 

inverse Fourier transforms by

f̂(ξ) = F
+
X {f}(ξ), f̌(ξ) = F

−
X {f}(ξ), (1.56)

where F ±
X is defined in (A.5). Sometimes we will also write

F [f ](ξ) = F
+
X {f}(ξ), F

−1[f ](ξ) = F
−
X {f}(ξ). (1.57)

We use the Parseval and Tonelli-Fubini Theorems to extend (A.5) in the natural way 

to functions defined over Ω, via

f̂(ξ, xn) =

∫

Σ

f(x′, xn)e−2πix′·ξ dx′, f̌(x′, xn) =

∫

Σ̂

f(ξ, xn)e2πix′·ξ dξ. (1.58)

For k ∈ N, a non-empty open set U ⊆ Γ for Γ defined via (1.25), and a finite-dimensional 

inner product space V , we define the L2-based Sobolev space

Hk(U ; V ) = {f : U → V | ∂αf ∈ L2(U ; V ) for α ∈ N
d, |α| � k}. (1.59)

For R � s � 0 we use Hs(U ; V ) to denote the fractional Sobolev spaces obtained via 

interpolation. If U = Γ, we equip Hs(Γ; V ) with the norm

‖f‖Hs(Γ;V ) =

⎛
⎝
∫

Γ

(1 + |ξ|2)s|f̂(ξ)|2 dξ

⎞
⎠

1/2

, (1.60)

and we may also use (1.60) to define Sobolev spaces of negative order s ∈ (−∞, 0) over 

Γ in the standard way. For R � s > 1/2 and a Lipschitz ζ : Σ → R satisfying inf ζ > 0, 

we define

0Hs(Ωζ; R
n) = {u ∈ Hs(Ωζ; R

n) | u = 0 on Σ0}, (1.61)

where the equality is taken in the trace sense. In the case when s = 1 and ζ = b, we 

endow 0H1(Ωb; Rn) with the inner product

(u, v)
0H1 =

1

2

∫

Ωb

Du : Dv dx, (1.62)

which generates the same topology as the standard H1-norm by Korn’s inequality (see 

Lemma 2.7 of [3]). For k ∈ N, a real Banach space V , and a nonempty open set U ⊆ Γ

we define the space
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Ck(U ; V ) = {f : U → V | Lf ∈ Ck(Rd; V ), Lf(x) = f([x])}. (1.63)

We define

Ck
b (U ; V ) = {f : U → V | f ∈ Ck(U ; V ) and ‖f‖Ck

b
< ∞}, (1.64)

where

‖f‖Ck
b

=
∑

α∈Nd,|α|�k

sup
x∈U

‖∂αf(x)‖V . (1.65)

We also define the space Ck
0 (Γ; V ) ⊂ Ck

b (Γ; V ) to be the closed subspace

Ck
0 (Γ; V ) = {f ∈ Ck

b (Γ; V ) | lim
|xRΓ

|→∞
∂αf(x) = 0 for all α ∈ N

d such that |α| � k},

(1.66)

where xRΓ
∈ Γ is defined via (1.27). Lastly, we use L0(Γ; [0, ∞]) to denote the set of 

non-negative measurable functions over Γ.

We conclude this section by giving outline of the article. In Section 2, we introduce the 

anisotropic Sobolev space Xs(Γ; R) and characterize the space based on the underlying 

product structure of the domain Γ. We then state its essential properties, and in Sec-

tion 2.2 we prove that for Σ defined via (1.1), Xs(Σ; R) is an algebra in the supercritical 

regime s > dim Σ/2.

In Section 3, we first record the isomorphism associated to the overdetermined system 

(1.43) and the asymptotics of the special pseudodifferential symbols used in the construc-

tion of the free surface function η. This allows us to prove the isomorphism associated 

to the linear system (1.42). We then establish the parameter regime for κ for which the 

flattened system (1.24) induces an isomorphism.

In Section 4, we first record some key mapping properties of the anisotropic space 

Xs(Σ; R) and various nonlinear maps used in the subsequent analysis. Using these pre-

liminary results, we show that the maps induced by (1.24) are well-defined and smooth, 

and we use this in conjunction with the implicit function theorem to produce solutions 

to (1.24). We conclude the paper by using the solutions from (1.24) to produce solutions 

to (1.16).

2. The anisotropic space Xs(Γ; F)

In this section we aim to generalize the anisotropic Sobolev space Xs(Rd; R) intro-

duced in Section 5 of [15].
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2.1. Definition of Xs(Γ; F) and its general properties

In this subsection we let R � s � 0, N � d � 1, and we consider the domain Γ

defined via (1.47)-(1.50). Recall that the Japanese bracket 〈·〉 : R
d → [0, ∞) is defined 

via 〈ξ〉 = (1 + |ξ|2)1/2. In [15], the anisotropic space Xs(Rd; R) is defined in terms of the 

Fourier multiplier ωs : R
d \ {0} → R given by

ωs(ξ) = 1BΓ̂(0,r)(ξ)

( |ξ1|2
|ξ|2 + |ξ|2

)
+ 1Rd\BΓ̂(0,r)(ξ) 〈ξ〉2s

. (2.1)

In this paper, we use the same formula in (2.1) to define ωs on Γ̂; in the purely toroidal 

case when Γ̂ =
∏d

i=1 L−1
i Z, we also define ωs(0) = 1 so that ωs takes on the same value 

as the standard Sobolev multiplier 〈·〉2s at ξ = 0. The function ωs is introduced due to 

its close relation to the symbol ργ from (1.44). To see this, we first introduce the low 

frequency cutoff 0 < r � 1 via

r =

{
1, Γ = R

d

min{1, mini∈TΓ
L−1

i }, otherwise,
(2.2)

and we note that ξ ∈ BΓ̂(0, r) =⇒ ξTΓ
= 0. Then

{
1 �r 〈ξ〉s �r 〈ξ〉s−1

for ξ ∈ BΓ̂(0, r)

〈ξ〉 �r |ξ| �r
|ξ1|
|ξ| + |ξ| for ξ ∈ Γ̂ \ BΓ̂(0, r),

(2.3)

and so this and (1.45) show that for ξ �= 0 we have the equivalences

|ργ(ξ)|2
|ξ|2 〈ξ〉2s � 1BΓ̂(0,r)(ξ)

( |ξ1|2
|ξ|2 + |ξ|2

)
+ 1Γ̂\BΓ̂(0,r)(ξ) 〈ξ〉2s

= ωs(ξ)

� 1BΓ̂(0,r)(ξ)

( |ξ1|
|ξ| + |ξ|

)2

〈ξ〉2(s−1)
+ 1Γ̂\BΓ̂(0,r)(ξ) 〈ξ〉2 〈ξ〉2(s−1)

�
( |ξ1|

|ξ| + |ξ|
)2

〈ξ〉2(s−1)
, (2.4)

where the implicit constants depend only on r, n, γ, σ, b.

The equivalence (2.4) suggests that we can give equivalent definitions of the space by 

either using ωs or the multiplier μ : Γ̂ → R defined by

μ(ξ) =

{
|ξ1|
|ξ| + |ξ| for ξ �= 0

1 for ξ = 0.
(2.5)

We note that defining μ(0) = 1 is only relevant in the purely toroidal case when Γ̂ =∏d
i=1 L−1

i Z, and we do so that the restriction of μ over Γ̂ is well-defined and it takes on 
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the same value as 〈·〉 at ξ = 0. We then define the specialized Sobolev space Xs(Γ; F) of 

order s � 0 in terms of μ, to be the function space

Xs(Γ; F) =

{
{f ∈ S ′(Γ; C) | f̂ ∈ L1

loc(Γ̂; C), f = f, ‖μ〈·〉s−1f̂‖L2 < ∞}, F = R

{f ∈ S ′(Γ; C) | f̂ ∈ L1
loc(Γ̂; C), ‖μ〈·〉s−1f̂‖L2 < ∞}, F = C,

(2.6)

with the norm associated to Xs(Γ; F) defined by

‖f‖Xs = ‖μ〈·〉s−1f̂‖L2 . (2.7)

The definitions of the class of tempered distributions S ′(Γ; C) on Γ and the Fourier 

transform on S ′(Γ; C) are contained in Appendix A.

First, we characterize the anisotropic space Xs(Γ; F) in relation to the number of 

R-factors appearing in Γ.

Lemma 2.1. Let Γ be defined as in (1.47)-(1.50) with dim Γ = d � 1. Then the following 

hold.

(1) If Γ is defined via Γ =
∏d

i=1 LiT or Γ = R ×∏d2

i=1 LiT with d2 � 0, 1 + d2 = d, then 

Xs(Γ; F) = Hs(Γ; F) and ‖·‖Xs and ‖·‖Hs are equivalent norms. In particular, this 

implies that if s > d/2, then Xs(Γ; F) is an algebra.

(2) If Γ = R × R
d1 ×∏d2

i=1 LiT with d1 � 1, d2 � 0, 1 + d1 + d2 = d, then Xs(Γ; F) is 

not closed under rotations in the sense that for any orthogonal matrix Q ∈ O(1 +d1)

such that |Qe1 · e1| < 1, there exists a function f ∈ Xs(Γ; F) \ L2(Γ; F) such that 

f((Q ⊕I)·) /∈ Xs(Γ; F), where Q ⊕I : (R ×R
d1) ⊕∏d2

i=1 LiT → (R ×R
d1) ⊕∏d2

i=1 LiT

maps (x, y) to (Qx, y). In particular, this implies that Hs(Γ; F) � Xs(Γ; F).

(3) If Γ = L1T×R
1+d1 ×∏d2

i=1 LiT , d1, d2 � 0, 1 +d1+d2 = d, then Hs(Γ; F) � Xs(Γ; F). 

Furthermore, for all f ∈ Xs(Γ; F) we have

‖f‖2
Xs �

∫

Γ̂

|ξ|2 〈ξ〉2(s−1) |f̂(ξ)|2 dξ. (2.8)

Proof. We note that since μ(ξ) � 1 + |ξ|, we always have Hs(Γ; R) ⊆ Xs(Γ; R). To 

prove the first item, we note that if Γ =
∏d

i=1 LiT , then the only low frequency mode 

ξ ∈ BΓ̂(0, r) is ξ = 0. By the definition of μ at ξ = 0 in (2.5), we have μ(0) = 1 = 〈0〉. 
So by (2.3) we find that for all ξ ∈ Γ̂, μ(ξ) � 〈ξ〉 and the desired conclusion follows. 

If Γ = R × ∏d2

i=1 LiT , d2 � 0, then ξ ∈ BΓ̂(0, r) ⇐⇒ ξ = (ξ1, 0) for |ξ1| < r. Then 

for ξ ∈ BΓ̂(0, r), we have μ(ξ) = 1 + |ξ1| and 〈ξ〉 = (1 + |ξ1|2)1/2, which implies that 

μ(ξ) �r 〈ξ〉 for all ξ ∈ Γ̂, and the desired conclusion follows.

Next we proceed to prove the second item. The case when Γ = R
d for d � 2 follows 

from the third item of Proposition 5.2 in [15], so we assume here that d2 � 1. Since 
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d1 � 1, by the third item of Proposition 5.2 in [15], for every Q ∈ O(1 + d1) such that 

|Qe1 · e1| < 1 there exists a function G ∈ (Xs(R1+d1 ; F) ∩ C∞
0 (R1+d1 ; F)) \ L2(R1+d1 ; F)

such that G(Q·) /∈ Xs(R1+d1 ; F). Let G be such a function. We note that for every ξ ∈ Γ̂, 

we may write ξ = (ξR, ξT ) ∈ R
1+d1 ×∏d2

i=1 L−1
i Z. We then define the surjective map 

π : Γ̂ → R
1+d1 via

π(ξ) = π(ξR, ξT ) = ξR, (2.9)

and we note that this is an isometric measure-preserving group isomorphism between 

Γ̂R := {ξ ∈ Γ̂ | ξ = (ξR, 0)} and R
1+d1 . We then consider the measurable function 

F : Γ̂ → C defined via

F (ξ) =

{
Ĝ ◦ π(ξ), ξ ∈ Γ̂ such that ξ = (ξR, 0) ∈ Γ̂R,

0, otherwise.
(2.10)

Then by Fubini’s theorem, it follows that

∫

Γ̂

|F (ξ)| dξ =

∫

Γ̂R

|Ĝ ◦ π(ξ)| dξ =

∫

R1+d1

|Ĝ(ω)| dω < ∞,

∫

Γ̂

|F (ξ)|2 dξ =

∫

R1+d1

|Ĝ(ω)|2 dω = ∞. (2.11)

We also have

∫

Γ̂

μ2(ξ)〈ξ〉2(s−1)|F (ξ)|2 dξ =

∫

Γ̂R

μ2(ξ)〈ξ〉2(s−1)|Ĝ ◦ π(ξ)|2 dξ

=

∫

R1+d1

μ(ω)2〈ω〉2(s−1)|Ĝ(ω)|2 dξ < ∞. (2.12)

Hence, the function f := F̌ ∈ Xs(Γ; F) \ L2(Γ; F). In particular, f /∈ Hs(Γ; F). On the 

other hand, we have

F
+
Γ [f((Q ⊕ I)·)](ξ) =

∫

Γ

f((Q ⊕ I)x)e−2πiξ·x dx =

∫

Γ

f(x)e−2πi((Q⊕I)ξ)·x dx

= F ((Q ⊕ I)ξ). (2.13)

Then by Fubini’s theorem,

‖f((Q ⊕ I)·)‖2
Xs(Γ) =

∫

Γ̂

μ(ξ)〈ξ〉2(s−1)|F ((Q ⊕ I)ξ)|2 dξ
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=

∫

Γ̂R

μ(ξ)〈ξ〉2(s−1)|Ĝ ◦ π((Q ⊕ I)ξ)|2 dξ =

∫

R1+d1

μ(ω)〈ω〉2(s−1)|Ĝ(Qω)|2 dω = ∞.

(2.14)

This proves the second item.

To prove the last item, we note that if Γ = L1T × R
1+d1 ×∏d2

i=1 LiT with d1, d2 � 0, 

then ξ ∈ BΓ̂(0, r) ⇐⇒ ξ = (0, ξR, 0) for ξR ∈ BR1+d1 (0, r) and BΓ̂(0, r) \ {0} �= ∅. 

In particular, for ξ ∈ BΓ̂(0, r) we have ξ1 = 0, which implies that μ(ξ) = |ξR| = |ξ|
for ξ ∈ BΓ̂(0, r) \ {0}, so by (2.3), we arrive at (2.8). By (2.8), it also follows that 

Hs(Γ; F) � Xs(Γ; F). �

Recall that our ultimate aim in introducing Xs(Γ; F) is to use it as the container space 

for the free surface function η in our study of the traveling wave problem. The upshot 

of Lemma 2.1 is that the precise structure of the space Xs(Γ; F) is heavily dependent 

on the form of the domain Γ, and in particular, the properties of the set RΓ. In the 

first case considered in the lemma, Xs(Γ; F) is the standard Sobolev space Hs(Γ; F), 

and therefore we may employ standard Sobolev tools in our subsequent analysis. In the 

second case, even though Xs(Γ; F) is not a standard Sobolev space, we will be able to 

prove that it enjoys many of the same properties as Hs(Γ; F). However, in the third case, 

which includes the physically relevant case when Γ = L1T × R, the space Xs(Γ; F) is 

unfortunately unusable for our subsequent analysis due to a failure of completeness. To 

justify the last claim, we prove the following proposition.

Proposition 2.2. Let N � d � 2 and Γ be defined as in (1.50): Γ = L1T × R
1+d1 ×∏d2

i=1 LiT for d1, d2 � 0, 1 + d1 + d2 = d. Then Xs(Γ; F) is complete if and only if 

d1 � 2.

Proof. The proof is a modification of Proposition 1.34 in [2], which characterizes 

when the homogeneous Sobolev space Ḣs(Rd) is complete. We define the measure 

μs := |ξ|2〈ξ〉2(s−1) dξ, and denote by L2
s(Γ̂; C) the complex valued functions in L2(Γ̂; μs).

First assume d1 � 2, and suppose {un}∞
n=1 is a Cauchy sequence in Xs(Γ; F). Then by 

(2.8), {ûn}∞
n=1 is a Cauchy sequence in L2

s(Γ̂; C), and hence there exists a function f ∈
L2

s(Γ̂; C) such that un → f in L2
s(Γ̂; C). Recall that by (2.2), we have ξ ∈ BΓ̂(0, r) ⇐⇒

ξ = (0, ξR, 0), where ξR ∈ BR1+d1 (0, r). Then by using the assumption that d1 � 2, we 

have

∫

BΓ̂(0,r)

|f(ξ)| dξ �

⎛
⎜⎝
∫

BΓ̂(0,r)

|ξ|2|f(ξ)|2 dξ

⎞
⎟⎠

1/2⎛
⎜⎝

∫

B
R

1+d1 (0,r)

|ω|−2 dω

⎞
⎟⎠

1/2

< ∞, (2.15)

where we have used the isometric measure-preserving isomorphism π : BΓ̂(0, r) →
BR1+d1 (0, r) defined via



J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057 27

π(ξ) = π(0, ξR, 0) = ξR. (2.16)

Since 1Γ̂\BΓ̂(0,r)f belongs to Hs(Γ̂; C), with (2.15) we can infer that f defines a tempered 

distribution. Then u := f̌ ∈ Xs(Γ; F) and un → u in Xs(Γ; F). This shows that Xs(Γ; F)

is complete.

Now assume d1 = 0 or d1 = 1, and suppose for the sake of contradiction that Xs(Γ; F)

is complete with respect to the Xs norm defined via (2.7). Consider a new norm on 

Xs(Γ̂; F) given by ‖u‖∗ = ‖u‖Xs + ‖û‖L1(BΓ̂(0,r)); this norm is well-defined since the 

definition of Xs(Γ; F) requires û ∈ L1
loc(Γ̂; C) for any function u ∈ Xs(Γ; F). We then 

claim that Xs(Γ; F) is also complete endowed with the ‖·‖∗ norm. Indeed, suppose 

{un}∞
n=1 is a Cauchy sequence in (Xs(Γ; F), ‖·‖∗), then {un}∞

n=1 is a Cauchy sequence in 

(Xs(Γ; F), ‖·‖Xs) and {ûn}∞
n=1 is a Cauchy sequence in L1(BΓ̂(0, r); C). By the assumed 

completeness of (Xs(Γ, F), ‖·‖Xs), there exists a function u ∈ (Xs(Γ, F), ‖·‖Xs) for which 

un → u in (Xs(Γ, F), ‖·‖Xs). Similarly, there exists a function g ∈ L1(BΓ̂(0, r); C) for 

which ûn → g in L1(BΓ̂(0, r); C). Clearly, g = û a.e. in L1(BΓ̂(0, r); C), therefore we can 

conclude that un → u in (Xs(Γ̂; F), ‖·‖∗). This completes the proof of the claim.

We now know that Xs(Γ̂; F) is complete with respect to both ‖·‖Xs and ‖·‖∗. The 

identity map I : (Xs(Γ̂; F), ‖·‖∗) → (Xs(Γ̂; F), ‖·‖Xs) is trivially continuous, thus we 

can invoke the bounded inverse theorem to deduce the existence of a universal constant 

C > 0 such that ‖u‖∗ � C ‖u‖Xs for all functions u ∈ Xs(Γ; F). In turn, this implies 

that

‖û‖L1(BΓ̂(0,r)) � C ‖u‖Xs for all u ∈ Xs(Γ; F). (2.17)

To derive a contradiction, we construct an explicit function f ∈ Xs(Γ; F) for which 

(2.17) is violated. For any ξ ∈ Γ̂, we adopt the convention in (1.26) and write ξ =

ξRΓ̂
+ ξTΓ̂

. Let C = {ξ ∈ Γ̂ | ξTΓ̂
= 0 and r/2 < |ξRΓ̂

| < r}, which in particular implies 

that 2−iC ∩ 2−jC = ∅ for any i, j ∈ N such that i �= j. Now for every n � 1 we then 

consider Gn ∈ L1(Γ̂; C) defined via

Gn(ξ) =

n∑

q=1

2q(1+(1+d1)/2)

q
12−qC(ξ). (2.18)

We note in particular that Gn(ξ) = Gn(−ξ) and supp Gn ⊆ BΓ̂(0, r) ⊂ Γ̂, and so we 

may define the smooth and bounded function gn : Γ∗ → R via gn = F −1[Gn]. Let H

denote the Hausdorff measure over Γ̂. Now we may readily calculate

‖ĝn‖L1(BΓ̂(0,r)) =

n∑

q=1

2q(1+(1+d1)/2)

q
2−q(1+d1)

H
1+d1(C)

= H
1+d1(C)

n∑

q=1

2q(1−(1+d1)/2)

q
→ ∞ as n → ∞, (2.19)
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since d1 < 2. On the other hand, for any n � 1 we have

‖gn‖2
Xs �

∫

BΓ̂(0,r)

|ξ|2|Gn(ξ)|2 dξ =
n∑

q=1

∫

2−qC

|ω|2
(

2q(1+(1+d1)/2)

q

)2

dω

� H
1+d1(C)

n∑

q=1

2−2q2−q(1+d1)

(
2q(1+(1+d1)/2)

q

)2

= H
1+d1(C)

n∑

q=1

1

q2
. (2.20)

Therefore, supn�1 ‖gn‖Xs < ∞ and by (2.17) and (2.19), we arrive at a contradiction. 

Thus, Xs(Γ; F) cannot be complete for d1 < 2. �

We now proceed to study the space Xs(Γ; F) in the second case of Lemma 2.1. We 

begin by stating a preliminary result.

Lemma 2.3. Suppose R � s � 0, N � d � 2, Γ = R × R
d1 ×∏d2

i=1 LiT with d1 � 1, d2 �

0, 1 + d1 + d2 = d and let r be defined as in (2.2). The following hold.

(1) For μ : Γ̂ → R defined in (2.5), we have

∫

BΓ̂(0,r)

1

μ2(ξ)
dξ < ∞. (2.21)

(2) For f ∈ Xs(Γ; F) we have the estimate

∫

BΓ̂(0,r)

|f̂(ξ)|dξ +

⎛
⎜⎝

∫

Γ̂\BΓ̂(0,r)

(1 + |ξ|2)s|f̂(ξ)|2dξ

⎞
⎟⎠

1/2

�d,s ‖f‖Xs . (2.22)

In particular, if s > d/2 then

‖f̂‖L1(Γ̂) �d,s ‖f‖Xs . (2.23)

Proof. For the first item, we note that ξ ∈ BΓ̂(0, r) ⇐⇒ ξ = (ξR, 0) for ξR ∈ R
1+d1 , 

therefore

∫

BΓ̂(0,r)

1

μ2(ξ)
dξ �

∫

BΓ̂(0,r)

|ξ|2
ξ2

1 + |ξ|4 dξ =

∫

BΓ̂(0,r)

|ξR|2
ξ2

1 + |ξR|4 dξ =

∫

B
R

1+d1 (0,r)

|ω|2
ω2

1 + |ω|4 dω,

(2.24)

where in the last equality we used the isometric measure-preserving group isomorphism 

π defined via (2.9) between BΓ̂(0, r) and BR1+d1 (0, r). The latter integral can readily be 

verified to be finite; see for instance, Proposition 5.2 of [15].
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For the second item, we note that by (2.3), we have

‖f‖2
Xs �

∫

BΓ̂(0,r)

μ2(ξ)|f̂(ξ)|2 dξ +

∫

Γ̂\BΓ̂(0,r)

〈ξ〉2s|f̂(ξ)|2 dξ. (2.25)

Then by Cauchy-Schwarz, (2.21), and (2.25) we have

∫

BΓ̂(0,r)

|f̂(ξ)| dξ �

⎛
⎜⎝
∫

BΓ̂(0,r)

dξ

μ2(ξ)

⎞
⎟⎠

1/2⎛
⎜⎝
∫

BΓ̂(0,r)

μ2(ξ)|f̂(ξ)|2 dξ

⎞
⎟⎠

1/2

� ‖f‖Xs . (2.26)

Then (2.22) follows immediately from (2.25) and (2.26). �

The next theorem records the fundamental completeness and embedding properties 

of the space Xs(Γ; F) in the first and second cases considered in Lemma 2.1.

Theorem 2.4. Suppose R � s � 0, N � d � 1. Let Γ be defined as in (1.47)-(1.49). Then 

the following hold.

(1) Xs(Γ; F) is a Hilbert space.

(2) The Schwartz space S (Γ; F) as defined in (A.2) is dense in Xs(Γ; F).

(3) If t ∈ R and s < t, then we have the continuous inclusion Xt(Γ; F) ↪→ Xs(Γ F).

(4) We have the continuous inclusion Hs(Γ; F) ↪→ Xs(Γ; F).

(5) If s � 1, then there exists a constant c > 0 depending on d, s, and in the toroidal 

cases on Li, such that

‖∇f‖Hs−1 � c ‖f‖Xs . (2.27)

In particular, this implies that the map ∇ : Xs(Γ; F) → Hs−1(Γ; Fd) is continuous.

Proof. The case when Γ = R
d is studied in Theorem 5.6 of [15]. In the case when 

Γ =
∏d

i=1 LiT or Γ = R ×∏d2

i=1 LiT with d2 � 0, by the first item of Lemma 2.1 all five 

items follow from standard Sobolev theory as Xs(Γ; F) is the standard Sobolev space 

Hs(Γ; F).

Next suppose that Γ = R × R
d1 ×∏d2

i=1 LiT , d1, d2 � 1. If a sequence {fn}∞
n=1 ⊂

Xs(Γ; F) is Cauchy, then there exists F ∈ L2
s(Γ; F) for which f̂n → F in L2

s(Γ; F) as 

n → ∞. The second item of Lemma 2.3 guarantees that F ⊆ L1(BΓ̂(0, r); C) + L2(Γ̂ \
BΓ̂(0, r); C); therefore f := F̌ ∈ Xs(Γ; F) is well-defined and it is easy to verify that f

is real-valued in the case when F = R, as realness is preserved in the limit. This implies 

fn → f in Xs(Γ; F) as n → ∞, and it follows then that Xs(Γ; F) is complete. This 

proves the first item. Following the arguments of Theorem 5.6 of [15], the first item in 

turn implies the other fundamental properties listed in the second to fifth items. �



30 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057

The previous theorem shows that Xs(Γ; F) for Γ defined via (1.47)-(1.49) is suitable 

for the analysis in this paper, which leads us to considering the sets in (1.1) to model 

the horizontal fluid cross section Σ. By reducing the analysis to the three possibilities 

considered above, one can see that Xs(Σ; R) also satisfies the items listed in Theorem 2.4. 

We conclude this subsection by summarizing some additional properties of the space 

Xs(Σ; R) for Σ defined via (1.1).

Theorem 2.5. Let R � s � 0 and let Σ be defined as in (1.1). Then following hold.

(1) (Low-high frequency decomposition) For every f ∈ Xs(Σ; R) and t > 0, we can 

write f = fl,t + fh,t, where fl,t = F −1[1B(0,t)F [f ]] ∈ C∞
0 (Σ; C) and fh,t =

F −1[1Γ̂\B(0,t)F [f ]] ∈ Hs(Σ; C). Furthermore, we have the estimates

‖fl,t‖Ck
b

=
∑

|α|�k

‖∂αfl,R‖L∞ � ‖fl,R‖Xs and ‖fh,t‖Hs � ‖fh,t‖Xs . (2.28)

(2) (Supercritical specialized Sobolev times standard Sobolev is standard Sobolev) If s >

d/2, then for any f ∈ Xs(Γ; F), g ∈ Hs(Σ; F) we have fg ∈ Hs(Σ; F), and there 

exists a constant c = c(d, s) > 0 for which

‖fg‖Hs � c ‖f‖Xs ‖g‖Hs for all f ∈ Xs(Σ; F) and g ∈ Hs(Σ; F). (2.29)

(3) (e1-derivatives of specialized Sobolev are Ḣ−1 bounded) If s � 1, then there exists a 

constant c = c(d, s) > 0 such that

[∂1η]Ḣ−1 � c ‖f‖Xs for all f ∈ Xs(Σ; F). (2.30)

This implies that the map ∂1 : Xs(Σ; F) → Ḣ−1(Σ; F) ∩ Hs−1(Σ; F) is continuous 

and injective.

Proof. The case when Σ = R
d is considered in [15]. If Σ =

∏d
i=1 LiT or Σ = R ×∏d2

i=1 LiT with d2 � 0, then by the first item of Lemma 2.1 Xs(Σ; R) is the standard 

Sobolev space Hs(Σ; R). All three items then follow from standard results on Hs(Σ; R). If 

Σ = R ×R
d1 ×∏d2

i=1 LiT with d1, d2 � 1, we note that by Remark 3.2 and properties of the 

surjective map π : BΣ̂(0, r) → BR1+d1 (0, r) defined via (2.9), the calculations performed 

over Rd in [15] are also valid over the low frequencies belonging to Σ̂, therefore all three 

items follow from minimal modifications of Theorem 5.5, the last item of Theorem 5.6, 

and Theorem 5.12 of [15]. The case for general Σ follows from reducing to the three 

possibilities listed above. �
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2.2. The anisotropic space Xs(Σ; F) as an algebra

Let Σ be defined as in (1.1). In this subsection we prove that Xs(Σ; F) is an algebra 

for s > d
2 . To prove this we will first adapt the anisotropic Littlewood-Paley techniques 

used in [8] to prove that Xs(Rd; C) is an algebra. This special case turns out to be 

sufficient for deducing the result in the general case when Rd is replaced by Σ and C is 

replaced by R.

First, recall that the multiplier μ defined in (2.5) satisfies 1/μ ∈ L2(B(0, 1)) by the 

first item of Lemma 2.3. Next, we consider the functional I : (L0(Rd; [0, ∞]))3 → [0, ∞]

defined via

I[F, G, H] =

∫

B(0,1)2

μ(ξ + η)

μ(ξ)μ(η)
F (ξ)G(η)H(ξ + η) dξ dη, (2.31)

where L0(Rd; [0, ∞]) denote the non-negative measurable functions on Rd. Our goal is 

to use the same formula (2.31) to define a trilinear functional over (L2(Rd; C))3, but 

for now we only define I over non-negative measurable functions so that I is clearly 

well-defined.

The next lemma shows that I induces a bounded trilinear functional over (L2(Rd; C))3

into C as long as I is bounded over (L0(Rd; [0, ∞]))3 into R.

Lemma 2.6. Suppose there exists a constant c > 0 such that

I[F, G, H] � c ‖F‖L2 ‖G‖L2 ‖H‖L2 for all F, G, H ∈ L2(Rd; [0, ∞]), (2.32)

where I is the functional defined in (2.31). Then I induces a bounded trilinear map 

defined over (L2(Rd; C))3 into C via the same formula in (2.31). Furthermore, there 

exists a constant C > 0 such that

|I[F, G, H]| � C ‖F‖L2 ‖G‖L2 ‖H‖L2 for all F, G, H ∈ L2(Rd; C). (2.33)

Proof. We first consider the case when F, G, H ∈ (L2(Rd; R))3. Then by decomposing 

F = F0 − F1 where F0 = F + and F1 = F − are the positive and negative parts of F , and 

similarly for G, H, we have

FGH =
∑

j,k,l∈{0,1}

(−1)j+k+lFjGkHl. (2.34)

By linearity,

I[F, G, H] =
∑

j,k,l∈{0,1}

(−1)j+k+lI[Fj , Gk, Hl]. (2.35)
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By assumption, |I[Fj , Gk, Hl]| � c ‖Fj‖L2 ‖Gk‖L2 ‖Hl‖L2 for all j, k, l ∈ {0, 1}, thus by 

(2.35) I is bounded over F, G, H ∈ (L2(Rd; R))3 and |I[F, G, H]| � ‖F‖L2 ‖G‖L2 ‖H‖L2

for all F, G, H ∈ L2(Rd; R).

In the general case when F, G, H ∈ (L2(Rd; C))3, we write F = F0 + iF1 where 

F0, F1 ∈ L2(Rd; R), and similarly for G, H. Then

FGH =
∑

j,k,l∈{0,1}

(i)j+k+lFjGkHl, (2.36)

and by linearity again we have

I[F, G, H] =
∑

j,k,l∈{0,1}

(i)j+k+lI[Fj , Gk, Hl]. (2.37)

By the first case and following the same line of reasoning, I is bounded over (L2(Rd; C))3

into C and there exists a constant C > 0 for which (2.33) holds. �

Next, we claim that supercritical specialized Sobolev space is an algebra if and only 

if the functional defined via (2.31) is bounded over (L2(Rd; [0, ∞]))3 into [0, ∞].

Proposition 2.7. Assume s > d/2. Then Xs(Rd; C) is an algebra if and only if for the 

mapping I defined via (2.31), there exists a constant c > 0 such that for all F, G, H ∈
L2(Rd; [0, ∞]) we have the estimate I[F, G, H] � c ‖F‖L2 ‖G‖L2 ‖H‖L2 .

Proof. Assume first that I is bounded over (L2(Rd; [0, ∞]))3. By Lemma 2.6, I induces 

a bounded trilinear functional over (L2(Rd; C))3 into C via the same formula (2.31), and 

there exists a constant C > 0 such that

|I[F, G, H]| � C ‖F‖L2 ‖G‖L2 ‖H‖L2 , (2.38)

for all F, G, H ∈ L2(Rd; C).

Now suppose that f, g ∈ Xs(Rd; C). By the second item in Theorem 2.5, we 

may write f = f0 + f1 where f0 = F −1[1B(0,1)F [f ]] ∈ C∞
0 (Rd; C) and f1 =

F −1[1Rd\B(0,1)F [f ]] ∈ Hs(Rd; C), and similarly for g. Then we have the decomposition

fg = f0g0 + f0g1 + f1g0 + f1g1. (2.39)

If 1 � i +j, by the fact that we are in the supercritical regime s > d/2, f1, g1 ∈ Hs(Rd; C), 

(2.28), and (2.29) we have figj ∈ Hs with the estimate

‖figj‖Hs � ‖f‖Xs ‖g‖Xs . (2.40)

Thus, it remains to use the boundedness of I to understand the product f0g0. Note that 

by the first item of Theorem 2.5, we have the inclusions f̂0, ̂g0 ∈ L1(Rd; C), and hence 

Young’s inequality implies that f̂0 ∗ ĝ0 ∈ L1(Rd; C); also, supp(f̂0 ∗ ĝ0) ⊆ B(0, 2).
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Now let ϕ ∈ L2(Rd; C) ∩ L∞(Rd; C). Since f̂0 and ĝ0 are supported in B(0, 1) and 

μ is locally bounded, we may employ Tonelli’s theorem and a change of variables to see 

that

∫

Rd

μ(f̂0 ∗ ĝ0)ϕ =

∫

Rd

∫

Rd

μ(ξ + η)f̂0(ξ)ĝ0(η)ϕ(ξ + η) dξ dη

=

∫

B(0,1)2

μ(ξ + η)f̂0(ξ)ĝ0(η)ϕ(ξ + η) dξ dη = I[μf̂0,μĝ0, ϕ]. (2.41)

Therefore, by (2.38) we have

∣∣∣
∫

Rd

μ(f̂0 ∗ ĝ0)ϕ
∣∣∣ � C‖μf̂0‖L2‖μĝ0‖L2‖ϕ‖L2 , (2.42)

but by the density of L2(Rd; C) ∩L∞(Rd; C) in L2(Rd; C), the left side of this expression 

extends to define a bounded linear functional on L2(Rd; C) obeying the same estimate. 

Upon invoking Riesz’s representation theorem, we deduce that μ(f̂0 ∗ ĝ0) ∈ L2(Rd; C)

with

‖μ(f̂0 ∗ ĝ0)‖L2 � C‖μf̂0‖L2‖μĝ0‖L2 � C ‖f‖Xs ‖g‖Xs . (2.43)

As supp(f̂0 ∗ ĝ0) ⊆ B(0, 2), we have that 
∥∥∥〈·〉s−1μ(f̂0 ∗ ĝ0)

∥∥∥
L2

� 5
s−1

2

∥∥∥μ(f̂0 ∗ ĝ0)
∥∥∥

L2
. 

Thus, using (2.40), (2.43), and the fourth item of Theorem 2.5 we find that

‖fg‖Xs �
∑

0�i+j�2

‖figj‖Xs = ‖μ〈·〉s−1(f̂0 ∗ ĝ0)‖L2 +
∑

1�i+j�2

‖figj‖Xs

� ‖μ(f̂0 ∗ ĝ0)‖L2 +
∑

1�i+j�2

‖figj‖Hs � ‖f‖Xs ‖g‖Xs . (2.44)

Thus, Xs(Rd; C) is an algebra.

Conversely, assume that Xs(Rd; C) is an algebra. Let F, G, H ∈ L2(Rd; [0, ∞]) and 

observe first that I[F, G, H] = I[F1B(0,1), G1B(0,1), H] and then that F −1[F1B(0,1)/μ],

F −1[G1B(0,1)/μ] ∈ Xs(Rd; C). Therefore, by Cauchy-Schwarz and the boundedness of 

products in Xs we have

I[F, G, H] = I[F1B(0,1), G1B(0,1), H] =

∫

Rd

μ
(
(F1B(0,1)/μ) ∗ (G1B(0,1)/μ)

)
H

� ‖μ((F1B(0,1)/μ) ∗ (G1B(0,1)/μ))‖L2 ‖H‖L2

= ‖F
−1[F1B(0,1)/μ]F −1[G1B(0,1)/μ]‖Xs ‖H‖L2

� ‖F
−1[F1B(0,1)/μ]‖Xs‖F

−1[G1B(0,1)/μ]‖Xs ‖H‖L2 � ‖F‖L2 ‖G‖L2 ‖H‖L2 . (2.45)
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Hence, I is bounded over (L2(Rd; [0, ∞]))3 and the proof is complete. �

Thus, by Lemma 2.6 and Proposition 2.7, to prove that Xs(Rd; C) is an algebra it 

remains to show that the functional I defined over (L0(Rd; [0, ∞]))3 via (2.31) satisfies 

(2.32). For the rest of this subsection we assume that F, G, H ∈ L2(Rd; [0, ∞]), and we 

now estimate the L2-boundedness of the operator I.

First, we introduce a decomposition of the frequency space Rd × R
d.

Definition 2.8 (Squared frequency space and functional decomposition). We write I as the 

sum of two operators I = I0 + I1, where each Ii is accounting for the contribution from 

a special portion of squared frequency space.

(1) We identify the following ‘good’ and ‘bad’ sets. First we define the ‘good’ set E0 via

E0 = {(ξ, η) ∈ B(0, 1)2 | |ξ| + |η| � 3||ξ| − |η||}. (2.46)

Next we define the ‘bad’ set E1 via

E1 = {(ξ, η) ∈ B(0, 1)2 | |ξ| + |η| > 3||ξ| − |η||}. (2.47)

Note that B(0, 1)2 = E0 ∪ E1.

(2) For i ∈ {0, 1}, we define the functionals Ii : (L0(Rd; [0, ∞]))3 → [0, ∞] via

Ii[F, G, H] =

∫

Ei

μ(ξ + η)

μ(ξ)μ(η)
F (ξ)G(η)H(ξ + η) dξ dη. (2.48)

Clearly, Ii is well-defined, and we have the identity I = I0 + I1.

Next, we analyze the set E1 as defined in (2.47).

Lemma 2.9. The inclusion (ξ, η) ∈ E1 is equivalent to the bounds 1
2 |η| < |ξ| < 2|η|, and 

for (ξ, η) ∈ E1 we have the estimate |ξ + η| < 3|ξ|.

Proof. The second bound follows from the equivalence and the triangle inequality, so it 

suffices to prove the equivalence. For this we note that

(ξ, η) ∈ E1 ⇐⇒ |ξ| + |η| > 3||ξ| − |η|| ⇐⇒ |ξ|2 − 5

2
|ξ||η| + |η|2 < 0

⇐⇒ 1

2
|η| < |ξ| < 2|η|. � (2.49)

By Lemma 2.9, one can get a good geometric understanding of E0 and E1 by exam-

ining the plot in (|ξ|, |η|) space given in Fig. 3.

The region E0 is dubbed the good region because of the following lemma.
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Fig. 3. A schematic breakdown of the sets E0 and E1.

Lemma 2.10 (Multiplier subadditivity in E0). If (ξ, η) ∈ E0, then μ(ξ + η) � 3(μ(ξ) +

μ(η)).

Proof. If |ξ| + |η| � 3||ξ| − |η||, then the reverse triangle inequality |ξ + η| � ||ξ| − |η||
allows us to deduce

μ(ξ + η) =
|ξ1 + η1|
|ξ + η| + |ξ + η| � |ξ1| + |η1|

||ξ| − |η|| + |ξ| + |η|

� 3
|ξ1| + |η1|
|ξ| + |η| + |ξ| + |η| � 3(μ(ξ) + μ(η)). � (2.50)

This gives us the boundedness of I0.

Proposition 2.11. For all F, G, H ∈ L2(Rd; [0, ∞)) we have the estimate

I0[F, G, H] � 6 ‖1/μ‖L2(B(0,1)) ‖F‖L2 ‖G‖L2 ‖H‖L2 . (2.51)

Proof. By applying Lemma 2.10, Tonelli’s theorem, and Cauchy-Schwarz, we find

I0[F, G, H] � 3

∫

E0

1

μ(ξ)
F (ξ)G(η)H(ξ + η) dξ dη + 3

∫

E0

1

μ(η)
F (ξ)G(η)H(ξ + η) dξ dη

� 3

∫

B(0,1)2

1

μ(ξ)
F (ξ)G(η)H(ξ + η) dξ dη + 3

∫

B(0,1)2

1

μ(η)
F (ξ)G(η)H(ξ + η) dξ dη

� 3 ‖H‖L2

(
‖G‖L2

∫

B(0,1)

1

μ(ξ)
F (ξ) dξ + ‖F‖L2

∫

B(0,1)

1

μ(η)
G(η) dη

)

� 6 ‖1/μ‖L2(B(0,1)) ‖F‖L2 ‖G‖L2 ‖H‖L2 . � (2.52)
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We now further decompose the set E1 and the functional I1, as defined in (2.47) and 

(2.48).

Definition 2.12. We make the following definitions for m, n ∈ N.

(1) We define the set

Em,n = {(ξ, η) ∈ E1 | 2−m−1 � |ξ| � 2−m, 2−n+1 � |ξ + η| � 2−n+2}. (2.53)

(2) We define the functional Im,n : (L0(Rd; R))3 → [0, ∞] via

Im,n[F, G, H] =

∫

Em,n

μ(ξ + η)

μ(ξ)μ(η)
F (ξ)G(η)H(ξ + η) dξ dη. (2.54)

The dyadic decomposition of E1 gives us the following.

Lemma 2.13. The following hold.

(1) We have the equalities

∞⋃

m=0

∞⋃

n=m

Em,n = E1 and
∞∑

m=0

∞∑

n=m

Im,n = I1. (2.55)

(2) Let F, G, H ∈ L2(Rd; [0, ∞]). Then

Im,n[F, G, H] � I1[Fm, Gm, Hn], (2.56)

for the functions

Fm = F12−m−1A, Gm = G12−m−1A, and Hn = H12−nA, (2.57)

where A is the annulus A = {x ∈ R
d | 1/2 � |x| � 4}.

(3) We have Ld-almost everywhere the inequality

∑

m∈N

12−m−1A � 51B(0,2). (2.58)

Proof. For the first item we note that the second estimate of Lemma 2.9 implies that if 

n < m then Em,n = ∅, and hence Im,n = 0. The second item follows from the first item of 

Lemma 2.9 and nonnegativity. To prove the third item, we note that if x ∈ B(0, 2) \ {0}, 

there exists a unique n ∈ N such that |x| ∈ 2−n[1, 2). It is clear that 12−m−1A(x) = 0

whenever m � 0 and |m − n| > 2. The inequality now follows. �
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Using the preceding lemma we arrive at the following proposition.

Proposition 2.14. Let d ∈ N. The following hold:

(1) If d � 4, there exists a constant Cd > 0 such that for all F, G, H ∈ L2(Rd; [0, ∞])

we have the estimate I1[F, G, H] � Cd ‖F‖L2 ‖G‖L2 ‖H‖L2 .

(2) If d ∈ {2, 3}, there exists a constant C1,d > 0 such that for all F, G, H ∈
L2(Rd; [0, ∞]) we have the estimate

∞∑

m=0

∞∑

n=2m+1

Im,n[F, G, H] � C1,d ‖F‖L2 ‖G‖L2 ‖H‖L2 . (2.59)

Proof. Let m, n, d ∈ N with 2 � d and m � n. According to the second item of 

Lemma 2.13, we have

Im,n[F, G, H] � I1[Fm, Gm, Hn] =

∫

E1

μ(ξ + η)

μ(ξ)μ(η)
Fm(ξ)Gm(η)Hn(ξ + η) dξ dη. (2.60)

For (ξ, η) ∈ E1, the right hand integrand vanishes except possibly when the following 

inequalities hold: 2−m−2 � |ξ| � 2−m+1, 2−m−2 � |η| � 2−m+1, and 2−n−1 � |ξ + η| �
2−n+2. This provides the elementary estimate

μ(ξ + η)

μ(ξ)μ(η)
�

1 + |ξ + η|
|ξ||η| � 22m+4(1 + 2−n+2) � 22m, (2.61)

and hence

Im,n[F, G, H] � 22m

∫

E1

Fm(ξ)Gm(η)Hn(ξ + η) dξ dη. (2.62)

Now, for � ∈ Z
d let Q� denote the closed cube centered at 2−n� of side length 2−n and 

Q̃� denote the closed cube centered at −2−n� of side length 9 · 2−n. By construction, 

almost everywhere we have that

1 =
∑

�∈Zd

1Q�
and 9d =

∑

�∈Zd

1Q̃�
, (2.63)

and we may compute

max
�∈Zd

‖1Q�
‖L2 = ‖1Q0

‖L2 = 2−nd/2. (2.64)

Notice that if (ξ, η) ∈ E1 is such that the integrand on the right hand side of (2.62) is 

nonzero and ξ ∈ Q�, then
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|η + 2−n�|∞ � |η + ξ| + | − ξ + 2−n�|∞ � 2−n+2 + 2−n−1 =
9

2
· 2−n, (2.65)

which in particular implies that η ∈ Q̃�. Hence,

∫

E1

Fm(ξ)Gm(η)Hn(ξ + η) dξ dη

�
∑

�∈Zd

∫

B(0,1)2

Fm(ξ)1Q�
(ξ)Gm(η)1Q̃�

(η)Hn(ξ + η) dξ dη. (2.66)

By Tonelli’s theorem, repeated applications of Cauchy-Schwarz, and the identities in 

(2.63) and (2.64) we then find that

∑

�∈Zd

∫

B(0,1)2

Fm(ξ)1Q�
(ξ)Gm(η)1Q̃�

(η)Hn(ξ + η) dξ dη

=
∑

�∈Zd

∫

B(0,1)

Fm(ξ)1Q�
(ξ)

∫

B(0,1)

Gm(η)1Q̃�
(η)Hn(ξ + η) dη dξ

�
∑

�∈Zd

∫

B(0,1)

Fm(ξ)1Q�
(ξ)‖Gm1Q̃�

‖L2 ‖Hn‖L2 dξ

� ‖Hn‖L2‖1Q0
‖L2

∑

�∈Zd

‖Fm1Q�
‖L2‖Gm1Q̃�

‖L2

� 2−nd/2‖Hn‖L2

( ∫

Rd

|Fm(ξ)|2
∑

�∈Zd

1Q�
(ξ) dξ

)1/2( ∫

Rd

|Gm(η)|2
∑

�∈Zd

1Q̃�
(η) dη

)1/2

� 2−nd/2‖Fm‖L2‖Gm‖L2‖Hn‖L2 . (2.67)

Next we combine equations (2.62), (2.66), and (2.67) to deduce that

Im,n[F, G, H] � 22m−nd/2‖Fm‖L2‖Gm‖L2‖Hn‖L2 . (2.68)

Now we break to cases based on the dimension. First, if d � 4, then there is no issue 

in summing over the set {(m, n) ∈ N
2 | m � n}. Indeed, we use Cauchy-Schwarz along 

with the third item of Lemma 2.13 to find

∞∑

m=0

∞∑

n=m

Im,n[F, G, H] �
∞∑

m=0

∞∑

n=m

22m−nd/2‖Fm‖L2‖Gm‖L2‖Hn‖L2

�

∞∑

m=0

22m‖Fm‖L2‖Gm‖L2

( ∞∑

n=m

2−nd
)1/2( ∫

Rd

|H(ζ)|2
∞∑

n=m

12−nA(ζ) dζ
)1/2
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� ‖H‖L2

∞∑

m=0

2(2−d/2)m‖Fm‖L2‖Gm‖L2 � ‖F‖L2‖G‖L2‖H‖L2 . (2.69)

This completes the proof of the first item.

For the second item, we let d ∈ {2, 3} in equation (2.68) and sum over the set 

{(m, n) ∈ N
2 | 2m + 1 � n}. Arguing as above, we arrive at the bound

∞∑

m=0

∞∑

n=2m+1

Im,n[F, G, H] � ‖H‖L2

∞∑

m=0

2(2−d)m
( ∞∑

n=2m+1

2−d(n−2m)
)1/2

‖Fm‖L2‖Gm‖L2

� ‖F‖L2‖G‖L2‖H‖L2 . (2.70)

This completes the proof of the second item. �

It remains to study the functional 
∑∞

m=0

∑2m
n=m Im,n in the case d ∈ {2, 3}. We do 

this in the subsequent proposition.

Proposition 2.15. Let d ∈ {2, 3}. There exists a constant C2,d > 0 such that for all 

F, G, H ∈ L2(Rd; [0, ∞)) we may estimate

∞∑

m=0

2m∑

n=m

Im,n[F, G, H] � C2,d ‖F‖L2 ‖G‖L2 ‖H‖L2 . (2.71)

Proof. Let m, n ∈ N with m � n � 2m. We begin by estimating the right hand side of 

the following inequality of Lemma 2.13, Im,n[F, G, H] � I1[Fm, Gm, Hn], by decomposing 

into a rectangular grid. To this end we define the following family of rectangles indexed 

by p ∈ Z, π ∈ Z
d−1, and α ∈ [1, ∞), via

Rp,π(α) = 2−2m[−α/2 + p, α/2 + p] × 2−n
d−1∏

ν=1

[−α/2 + πν , α/2 + πν ]. (2.72)

Suppose that (ξ, η) ∈ E1 are such that the integrand of I1[Fm, Gm, Hn] is nonzero and 

that additionally ξ ∈ Rp,π(1) and η ∈ Rq,σ(1) for some p, q ∈ Z and π, σ ∈ Z
d−1. Then 

we obtain the inequalities

2−n(πν + σν − 1/2) � ξν+1 + ην+1 � 2−n(πν + σν + 1/2) for 1 � ν � d − 1, (2.73)

and upon pairing these with the bound |ξ + η| � 2−n+2 we deduce that

|πν + σν | � |πν + σν − 2n(ξν+1 + ην+1)| + 2n|ξν+1 + ην+1| � 9/2 for all 1 � ν � d − 1.

(2.74)

In particular, this implies that η ∈ Rq,−π(9), which when combined with the inclusion 

ξ ∈ Rp,π(1) further implies that ξ + η ∈ Rp+q,0(10). Therefore, we may estimate
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Im,n[F, G, H] �
∑

p,q∈Z

∑

π∈Zd−1

∫

E1

μ(ξ + η)

μ(ξ)μ(η)
Fm(ξ)1Rp,π(1)(ξ)Gm(η)1Rq,−π(9)(η)

× Hn(ξ + η)1Rp+q,0(10)(ξ + η) dξ dη. (2.75)

For fixed p, q, and π, we now want to estimate the factor μ(ξ+η)/μ(ξ)μ(η) appearing in 

the integrand in (2.75). First we note that if ξ ∈ Rp,π(1) ∩2−m−1A, then |22mξ1−p| � 1/2, 

which implies that 22m|ξ1| � max{0, |p| − 1/2} and hence

μ(ξ) =
|ξ1|
|ξ| + |ξ| � 2−m−1(22m|ξ1| + 1/2) � 2−m max{1, |p|}. (2.76)

Similarly, for η ∈ Rq,−π(9) ∩ 2−m−1A, we have the bound

μ(η) � 2−m−1(max{|q| − 9/2, 0} + 1/2) � 2−m max{1, |q|}. (2.77)

Finally, for ξ + η ∈ Rp+q,0(10) ∩ 2−nA, we estimate μ(ξ + η) from above, recalling that 

m � n:

μ(ξ + η) � 2n+1|ξ1 + η1| + 2−n+2 = 2n−2m+1(22m|ξ1 + η1| + 22(m−n)+1)

� 2n−2m+1(|p + q| + 5 + 2) � 2n−2m(max{1, |p|} + max{1, |q|}). (2.78)

Upon piecing equations (2.76), (2.77), and (2.78) all together, we obtain the bound

μ(ξ + η)

μ(ξ)μ(η)
� 2n

( 1

max{1, |p|} +
1

max{1, |q|}
)

(2.79)

for ξ ∈ Rp,π(1) ∩ 2−m−1A and η ∈ Rq,−π(9) ∩ 2−m−1A.

Next, we combine (2.75) and (2.79) and then use Tonelli’s theorem and Cauchy-

Schwarz to obtain

2−nIm,n[F, G, H] �
∑

p,q∈Z

∑

π∈Zd−1

1

max{1, |p|}

∫

B(0,1)

Fm(ξ)1Rp,π(1)(ξ)

×
∫

B(0,1)

Gm(η)1Rq,−π(9)(η)Hn(ξ + η)1Rp+q,0(10)(ξ + η) dη dξ

+
∑

p,q∈Z

∑

π∈Zd−1

1

max{1, |q|}

×
∫

B(0,1)

Fm(ξ)1Rp,π(1)(ξ)

∫

B(0,1)

Gm(η)1Rq,−π(9)(η)Hn(ξ + η)1Rp+q,0(10)(ξ + η) dη dξ

�
∑

p,q∈Z

∑

π∈Zd−1

( 1

max{1, |p|} +
1

max{1, |q|}
)
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×
∫

B(0,1)

Fm(ξ)1Rp,π(1)(ξ)‖Gm1Rq,−π(9)‖L2‖Hn1Rp+q,0(10)‖L2 dξ

�
∑

p,q∈Z

∑

π∈Zd−1

( 1

max{1, |p|} +
1

max{1, |q|}
)

× ‖1Rp,π(1)‖L2‖Fm1Rp,π(1)‖L2‖Gm1Rq,π(9)‖L2‖Hn1Rp+q,0(10)‖L2

= 2−m−n(d−1)/2
∑

p,q∈Z

∑

π∈Zd−1

( 1

max{1, |p|} +
1

max{1, |q|}
)

× ‖Fm1Rp,π(1)‖L2‖Gm1Rq,π(9)‖L2‖Hn1Rp+q,0(10)‖L2 . (2.80)

What remains, before we sum over m and n, is a few more applications of Cauchy-

Schwarz, one for each sum above. First we handle the sum over π ∈ Z
d−1 with

∑

π∈Zd−1

‖Fm1Rp,π(1)‖L2‖Gm1Rq,π(9)‖L2

�
( ∫

Rd

|Fm(ξ)|2
∑

π∈Zd−1

1Rp,π(1)(ξ) dξ
)1/2( ∫

Rd

|Gm(η)|2
∑

π∈Zd−1

1Rq,−π(9)(η) dη
)1/2

� ‖Fm1
⋃

π∈Zd−1 Rp,π(1)‖L2‖Gm1
⋃

π∈Zd−1 Rq,−π(9)‖L2 . (2.81)

Next we consider the sums over p, q ∈ Z. First, we consider the one containing 

1/ max{1, |p|},

∑

p,q∈Z

1

max{1, |p|}‖Fm1
⋃

π∈Zd−1 Rp,π(1)‖L2‖Gm1
⋃

π∈Zd−1 Rq,−π(9)‖L2‖Hn1Rp+q,0(10)‖L2

� ‖Gm1
⋃

q∈Z

⋃
π∈Zd−1 Rq,−π(9)‖L2

×
∑

p∈Z

1

max{1, |p|}‖Fm1
⋃

π∈Zd−1 Rp,π(1)‖L2‖Hn1
⋃

q∈Z
Rp+q,0(10)‖L2

� ‖Gm‖L2‖Hn‖L2

(∑

p∈Z

1

max{1, p2}
)1/2

‖Fm1
⋃

p∈Z

⋃
π∈Zd−1 Rp,π(1)‖

� ‖Fm‖L2‖Gm‖L2‖Hn‖L2 . (2.82)

Similarly, we consider the one containing 1/ max{1, |q|},

∑

p,q∈Z

1

max{1, |q|}‖Fm1
⋃

π∈Zd−1 Rp,π(1)‖L2‖Gm1
⋃

π∈Zd−1 Rq,−π(9)‖L2‖Hn1Rp+q,0(10)‖L2

� ‖Fm‖L2‖Hn‖L2

∑

q∈Z

1

max{1, |q|}‖Gm1
⋃

π∈Zd−1 Rq,−π(9)‖L2 � ‖Fm‖L2‖Gm‖L2‖Hn‖L2 .

(2.83)
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Synthesizing estimates (2.80), (2.81), (2.82), and (2.83) we find that

Im,n[F, G, H] � 2−m+n(3−d)/2‖Fm‖L2‖Gm‖L2‖Hn‖L2 . (2.84)

Hence, we may sum over m � n � 2m to bound

2m∑

n=m

Im,n[F, G, H] � 2−m
( 2m∑

n=m

2n(3−d)
)1/2

‖H‖L2‖Fm‖L2‖Gm‖L2

� 2−m‖H‖L2‖Fm‖L2‖Gm‖L2 ·
{√

m + 1 if d = 3

2m+1/2 if d = 2
� ‖H‖L2‖Fm‖L2‖Gm‖L2 , (2.85)

and then finally sum over m � 0 to see that

∞∑

m=0

2m∑

n=m

Im,n[F, G, H] � ‖H‖L2

∑

m∈N

‖Fm‖L2‖Gm‖L2 � ‖F‖L2‖G‖L2‖H‖L2 , (2.86)

which is the stated estimate. �

By synthesizing the previous results, we immediately arrive at the following result.

Theorem 2.16 (Boundedness of I). The functional I : L2(Rd; [0, ∞))3 → [0, ∞] defined 

in (2.31) is bounded and satisfies the estimate (2.33).

Proof. We simply combine Lemma 2.13 and Propositions 2.11, 2.14, 2.15, and 2.7. �

With Theorem 2.16 in hand, we are ready to prove Theorem 1.2 as a corollary.

Proof of Theorem 1.2. By Lemma 2.6, Proposition 2.7, and Theorem 2.16, the anisotro-

pic space Xs(Rk; F) is an algebra for s > k/2 for F = C and F = R. Let Σ be defined as 

in (1.1) and let d = dim Σ. By the first item of Lemma 2.1, it suffices show that Xs(Σ; F)

is an algebra for s > d/2 for the case when 1 ∈ RΣ and |RΣ| � 2, as the anisotropic 

space coincides with the standard Sobolev space otherwise. For the sake of simplicity, we 

assume Σ = R × R
d1 ×∏d2

i=1 LiT for d1, d2 � 1; the general case follows from reducing 

to this case via rearrangement.

To show this we first argue similarly as in Proposition 2.7 to show that Xs(Σ; F) is 

an algebra if and only if for any F, G ∈ Xs(Σ; F), the estimate

‖F0G0‖Xs(Σ) � ‖F0‖Xs(Σ) ‖G0‖Xs(Σ) (2.87)

holds for F0 = F −1[1BΣ̂(0,r)F [F ]], G0 = F −1[1BΣ̂(0,r)F [G]].

By definition, we have supp F [F0], supp F [G0] ⊆ BΣ̂(0, r). Since ξ ∈ BΣ̂(0, r) ⇐⇒
ξ = (ξR, 0) for ξR ∈ R

1+d1 , by Fubini’s theorem we have
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F
+
Σ [F0G0](ω, k) =

∫

R1+d1

∑

m∈
∏d2

i=1 L−1
i Z

F
+
Σ [F0](ω − η, k − m)F +

Σ [G0](η, m)dη

=

∫

R1+d1

F
+
Σ [F0](ω − η, k)F +

Σ [G0](η, k) dη = δk0

∫

R1+d1

F
+
Σ [F0](ω − η, 0)F +

Σ [G0](η, 0) dη,

(2.88)

where δk0 is the Kronecker delta. This shows that supp F
+
Σ [F0G0] ⊆ BΣ̂(0, r). Since π

defined via (2.9) is an isometric measure-preserving group isomorphism between BΣ̂(0, r)

and BR1+d1 (0, r), we have

‖F0G0‖2
Xs(Σ) =

∫

BΣ̂(0,r)

μ2(ξ)〈ξ〉2(s−1)|F +
Σ [F0G0](ξ)|2 dξ

=

∫

B
R

1+d1 (0,r)

μ2(ω)〈ω〉2(s−1)|F +
Σ [F0G0](ω, 0)|2 dω = ‖F0(·, 0)G0(·, 0)‖2

Xs(R1+d1 ) .

(2.89)

Next we note that since F0 ∈ Xs(Σ; F), we have the inclusions

F0(·, 0) ∈ S
′(R1+d1 ; C) and F

+
R1+d1

[F0(·, 0)] ∈ L1
loc(R1+d1 ; C), (2.90)

and we know that F0(·, 0) = F0(·, 0), and supp F
+
R1+d1

[F0(·, 0)] ⊆ BR1+d1 (0, r). By using 

the isometric measure-preserving group isomorphism π : BΣ̂(0, r) → BR1+d1 (0, r) again, 

we have

‖F0(·, 0)‖2
Xs(R1+d1 ) =

∫

B
R

1+d1 (0,r)

μ2(ω)〈ω〉2(s−1)|F +
R1+d1

[F0(·, 0)](ω)|2 dω

=

∫

BΣ̂(0,r)

μ2(ξ)〈ξ〉2(s−1)|F +
Σ [F0](ξ)|2 dξ = ‖F0‖2

Xs(Σ) . (2.91)

This shows that F0(·, 0) ∈ Xs(R1+d1 ; F), and similarly we can conclude that G0(·, 0) ∈
Xs(R1+d1 ; F). Since s > d/2 � (1 + d1)/2, Xs(R1+d1 ; F) is an algebra, and therefore we 

have the estimate

‖F0(·, 0)G0(·, 0)‖Xs(R1+d1 ) � ‖F0(·, 0)‖Xs(R1+d1 ) ‖G0(·, 0)‖Xs(R1+d1 ) . (2.92)

Combining (2.91) and (2.92) then gives us (2.87). The desired conclusion then follows. �
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3. Linear analysis

In this section we record the linear analysis associated to the flattened system (1.24). 

First, we introduce the definition of the Ḣ−1 seminorm.

Definition 3.1 (The Ḣ−1 seminorm). For s � 0, in the case when Γ =
∏d

i=1 LiT , for 

f ∈ Hs(Γ; R) we define the Ḣ−1 seminorm of f via

[f ]Ḣ−1 =

{
0, if f̂(0) = 0

∞, otherwise.
(3.1)

For Γ = R × R
d1 ×∏d2

i=1 LiT , d1, d2 � 0, we define the Ḣ−1 seminorm of f ∈ Hs(Γ; R)

via

[f ]Ḣ−1 =

⎛
⎜⎝

∫

B
R

1+d1 (0,r)

|ω|−2|f̂(ω, 0)|2 dω

⎞
⎟⎠

1/2

. (3.2)

In all cases, for f ∈ Hs(Γ; R) we write f ∈ Ḣ−1(Γ; R) to mean that [f ]Ḣ−1 < ∞.

Remark 3.2. We note that our definition of the Ḣ−1 seminorm coincides with the stan-

dard definition of the Ḣ−1 seminorm for functions Hs(Γ; R). First, if a function f already 

belongs to Hs(Γ; R), then

∫

Γ̂

|ξ|−2|f̂(ξ)|2 dξ �
∫

BΓ̂(0,r)

|ξ|−2|f̂(ξ)|2 dξ. (3.3)

Second, we note that the product measure on Γ̂ is a product of Lebesgue measures and 

counting measures, corresponding to the R and L−1
i Z factors of Γ̂. If Γ =

∏d
i=1 LiT , 

then the only low frequency mode is the zero mode, and thus the integral in (3.3) takes 

values in {0, ∞} depending on the value of f̂(0). If Γ = R × R
d1 ×∏d2

i=1 LiT , d1, d2 � 0, 

then we note that by using the natural isometric and measure-preserving identification 

between BΓ̂(0, r) and BR1+d1 (0, r) we have

∫

BΓ̂(0,r)

|ξ|−2|f̂(ξ)|2 dξ �
∫

B
R

1+d1 (0,r)

|ω|−2|f̂(ω, 0)|2 dω. (3.4)

3.1. Asymptotics of the normal stress to solution map associated to (1.43)

In this subsection we record the asymptotics of some special functions associated to 

the normal stress to solution map associated to (1.43), which will play a crucial role in 
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the construction of the free surface function η. In the case where Σ̂ = R
n−1, the precise 

asymptotics of these symbols were derived using ODE techniques developed in [15]. For 

the other possibilities of Σ considered in (1.1), these estimates will continue to hold as 

Σ̂ remains a subgroup of Rn−1 and the asymptotics remain the same upon subsampling.

First we record an auxiliary result.

Theorem 3.3 (Hilbert isomorphism for the γ-Stokes system). Suppose s � 0. The map

Φγ : 0Hs+2(Ω; R
n) × Hs+1(Ω; R) → Hs(Ω; R

n) × Hs+1(Ω; R) × Hs+ 1
2 (Σb; R

n)(3.5)

defined via

Φγ(u, p) = (div S(p, u) − γ∂1u, div u, S(p, u)en) (3.6)

is a Hilbert isomorphism for all γ ∈ R.

Proof. The case Σ = R
n−1 follows from Theorem 2.6 in [15], and the arguments therein 

can be adapted with minimal modification to handle the cases when Σ �= R
n−1. �

Next, we define the normal stress to velocity and pressure maps induced by Φγ .

Definition 3.4 (Normal stress to velocity and pressure maps). Let γ ∈ R and s � 0. 

We define the normal stress to velocity and pressure maps to be the linear maps Uγ :

Hs+ 1
2 (Ω; R) → Hs+2 (Ω; R

n) and Pγ : Hs+ 1
2 (Ω; R) → Hs+1(Ω; R) defined via

Uγ(ψ) = u, Pγ(ψ) = p, (3.7)

where (u, p) is the unique solution to the −γ-Stokes system

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div S(p, u) + γ∂1u = 0, in Ω

div u = 0, in Ω

S(p, u)en = ψen, on Σb

u = 0, on Σ0.

(3.8)

The existence and uniqueness of (u, p) and the boundedness of Uγ , Pγ are guaranteed by 

Theorem 3.3.

Now we may record properties of the pseudodifferential operator associated to the 

normal stress to solution maps (3.7).

Theorem 3.5 (Symbols associated to the pseudodifferential operator and their asymp-

totics). Suppose s � 0. The linear maps Uγ , Pγ defined in (3.7) are well-defined and 

bounded. Moreover, there exists bounded and measurable functions V : Σ̂ × [0, b] × R →
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C
n, Q : Σ̂ × [0, b] × R → C

n, and m : Σ × R → C such that for all ψ ∈ Hs+ 1
2 (Σb; R), we 

have

Ûγ(ψ)(ξ, xn) = V (ξ, xn, −γ)ψ̂(ξ), P̂γ(ψ)(ξ, xn) = Q(ξ, xn, −γ)ψ̂(ξ),

m(ξ, γ) = Vn(ξ, b, γ). (3.9)

Furthermore, the following hold.

(1) V, Q, m are continuous, with V (0, xn, γ) = 0, Q(0, xn, γ) = 1, and m(0, γ) = 0.

(2) V (ξ, xn, γ) = V (−ξ, xn, γ), Q(ξ, xn, γ) = Q(−ξ, xn, γ), and m(ξ, γ) = m(−ξ, γ) for 

all ξ ∈ Σ̂.

(3) For each ξ ∈ Σ̂, V (ξ, ·, γ), Q(ξ, ·, γ) solve

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−∂2

n + 4π2|ξ|2
)

V ′ + 2πiξQ − 2πiξ1γV ′ = 0, in (0, b)
(
−∂2

n + 4π2|ξ|2
)

Vn + ∂nQ − 2πiξ1γVn = 0, in (0, b)

2πiξ · V ′ + ∂nVn = 0, in (0, b)

−∂nV ′ − 2πiξVn = 0, for xn = b

Q − 2∂nVn = 1, for xn = b

V = 0, for xn = 0.

(3.10)

(4) For |ξ| � 1, we have

V ′(ξ, xn, γ) = −πξ(2xnb−x2
n)+O(|ξ|2), Vn(ξ, xn, γ) = 2π2|ξ|2x2

n

(xn

3
− b
)

+O(|ξ|3),

Q(ξ, xn, γ) = 1 + O(|ξ|2), m(ξ, γ) = −4π2|ξ|2b3

3
+ O(|ξ|3), as |ξ| → 0 (3.11)

where F (ξ, xn) = O(|ξ|k) as |ξ| → 0 means that

lim sup
|ξ|→0

sup
0�xn�b

|F (ξ, xn)|
|ξ|k < ∞. (3.12)

(5) For each γ ∈ R, there exists a constant c = c(γ, b) > 0 and R = R(γ, b) > 0 such 

that for xn ∈ [0, b] and |ξ| > R, we have the point-wise estimates

|V ′(ξ, xn, γ)| � c

( |γ|
|ξ|2 + (b − xn)

)
e−2π|ξ|(b−xn) + ce−2π|ξ|b, (3.13)

|Vn(ξ, xn, γ)| � c

(
1

|ξ| + (b − xn)

)
e−2π|ξ|(b−xn) + ce−2π|ξ|b, (3.14)

|m(ξ, γ) +
1

4π|ξ| | � c
1

|ξ|2 , (3.15)

|Q(ξ, xn, γ)| � ce−2π|ξ|(b−xn) + ce−2π|ξ|b. (3.16)
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(6) For each γ ∈ R, there exists a constant c = c(n, b, γ) such that

sup
|ξ|�1,ξ �=0

1

|ξ|2

⎛
⎝

b∫

0

|V (ξ, xn, γ)|2 + |Q(ξ, xn, γ) − 1|2 dxn + |V (ξ, b, γ)|2
⎞
⎠ � c, (3.17)

and (1 + |ξ|2)3/2

b∫

0

|V (ξ, xn, γ)|2 dxn + (1 + |ξ|2)1/2

b∫

0

|Q(ξ, xn, γ)|2 dxn

+ (1 + |ξ|2)|V (ξ, b, γ)|2 � c, (3.18)

for all ξ ∈ Σ̂.

Proof. If Σ̂ = R
n−1, all six items follow from Theorem 4.5, Theorem 4.10, and Corol-

lary 4.11 in [15]. In the other cases, we have Σ̂ ⊆ R̂n−1 = R
n−1. Therefore, the same 

conclusions will follow as we are sampling the frequencies on subgroups of Rn−1. �

We conclude this subsection by recording the properties of an auxiliary function de-

fined in terms of m.

Lemma 3.6. Suppose γ ∈ R \ {0}, and define

ργ(ξ) = 2πiγξ1 + (1 + 4π2|ξ|2σ)m(ξ, −γ). (3.19)

Then the following hold.

(1) ργ(ξ) = 0 if and only if ξ = 0, and ργ(ξ) = ργ(−ξ) for all ξ ∈ Σ̂.

(2) For σ > 0, there exists a constant C = C(n, γ, σ, b) > 0 such that for all ξ ∈ Σ̂, we 

have

C−1|ργ(ξ)|2 � (ξ2
1 + |ξ|4)1B(0,1)(ξ) + (1 + |ξ|2)1B(0,1)c(ξ) � C|ργ(ξ)|2. (3.20)

(3) For σ = 0 and n = 2, there exists a constant C = C(γ, b) > 0 such that for all 

ξ ∈ Σ̂, we have

C−1|ργ(ξ)|2 � |ξ|21B(0,1)(ξ) + (1 + |ξ|2)1B(0,1)c(ξ) � C|ργ(ξ)|2. (3.21)

Proof. This follows from the proof for Lemma 6.1 in [15] and the asymptotics of m(ξ, −γ)

on general Σ̂ recorded as the third and fourth items of Theorem 3.5. �
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3.2. Compatibility conditions and the Hilbert isomorphism associated to the 

overdetermined γ-Stokes system

In this subsection we record the Hilbert isomorphism that completely characterize 

the solvability of the overdetermined system (1.43). First we introduce a pair of function 

spaces for the data tuple (f, g, h, k) that encodes the compatibility conditions associated 

to (1.43).

Definition 3.7. Let s � 0 and Σ be defined as in (1.1). We say that a data tu-

ple (f, g, h, k) ∈ Hs(Ω; Rn) × Hs+1(Ω; R) × Hs+3/2(Σ; R) × Hs+1/2(Σ; Rn) satisfy the 

divergence-trace compatibility condition if

h −
b∫

0

g(·, xn) dxn ∈ Ḣ−1(Σ; R). (3.22)

We define the Hilbert space Ys to be

Ys = {(f, g, h, k) ∈ Hs(Ω; R
n) × Hs+1(Ω; R) × Hs+3/2(Σ; R) × Hs+1/2(Σ; R

n) |
(f, g, h, k) satisfy the divergence-trace condition (3.22)}, (3.23)

with the associated norm defined via

‖(f, g, h, k)‖2
Ys = ‖f‖2

Hs + ‖g‖2
Hs+1 + ‖k‖2

Hs+1/2 + ‖h‖2
Hs+3/2

+

⎡
⎣h −

b∫

0

g(·, xn) dxn

⎤
⎦

2

Ḣ−1

. (3.24)

Definition 3.8. Let s � 0. We say that the data tuple (f, g, h, k) ∈ Hs(Ω; Rn) ×
Hs+1(Ω; R) × Hs+3/2(Σ; R) × Hs+1/2(Σ; Rn) satisfy the adjoint compatibility condition 

if

b∫

0

f̂(ξ, xn) · V (ξ, xn, −γ) − ĝ(ξ, xn)Q(ξ, xn, −γ) dxn − k̂(ξ) · V (ξ, b, −γ) + ĥ(ξ) = 0,

(3.25)

where V, Q are defined via (3.10). We define the closed subspace Zs of Ys to be

Zs = {(f, g, h, k) ∈ Ys | (f, g, h, k) satisfy (3.25)}. (3.26)

Now we are ready to record the main result of this subsection.
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Theorem 3.9. Let s � 0, γ ∈ R, and Zs the Hilbert space defined in (3.8). Then the 

bounded linear operator Ψγ : 0Hs+2(Ω; Rn) × Hs+1(Ω; Rn) → Zs given by

Ψγ(u, p) = (div S(p, u) − γ∂1u, div u, un|Σb
, S(p, u)en|Σb

) (3.27)

is an isomorphism.

Proof. The case Σ = R
n−1 follows from Theorem 3.4 of [15]. We note that by Remark 3.2, 

the calculations performed in Rd in [15] are also valid over the low frequency regime in 

Γ̂, therefore the arguments therein can be adapted with minimal modification to handle 

the cases when Σ �= R
n−1. �

3.3. Linear analysis with η and κ

In this section we would like to establish the solvability of the γ-Stokes system with 

gravity capillary boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

div S(p, u) − γ∂1u + (∇′η, 0) = f in Ω

div u = g, in Ω

un + γ∂1η = h, on Σb

S(p, u)en + σΔ′ηen = k, on Σb

u = 0, on Σ0,

(3.28)

for data tuples belonging to the space Ys. First, we introduce the container space for 

the solution tuple (u, p, η).

Definition 3.10. For s � 0, we define the Hilbert space

X s =

{
{(u, p, η) ∈ 0Hs+2(Ω; R

n) × Hs+1(Ω; R) × Xs+5/2(Σ; R)}, RΣ �= ∅

{(u, p, η) ∈ 0Hs+2(Ω; R
n) × Hs+1(Ω; R) × X̊s+5/2(Σ; R)}, RΣ = ∅,

(3.29)

where

X̊s+5/2(Σ; R) = {η ∈ Xs+5/2(Σ; R) | η̂(0) = 0}. (3.30)

We endow X s with the natural product norm defined via

‖(u, p, η)‖2
X s = ‖u‖2

0Hs+1 + ‖p‖2
Hs+1 + ‖η‖2

Xs+5/2 . (3.31)

Next, we record an embedding result for X s.
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Proposition 3.11. Suppose s � 0 and X s is the Banach space in Definition 3.10. If 

s > n/2, then we have the continuous inclusion

X s ⊆ C
�s−n/2�
b (Ω; R

n) × C
1+�s−n/2�
b (Ω; R) × C

3+�s−n/2�
0 (Σ; R). (3.32)

Moreover, if (u, p, η) ∈ X s, then

lim
|x′

RΣ
|→∞

∂αu(x) = 0 for all α ∈ N
n such that |α| � 2 +

⌊
s − n

2

⌋
, (3.33)

lim
|x′

RΣ
|→∞

∂αp(x) = 0 for all α ∈ N
n such that |α| � 1 +

⌊
s − n

2

⌋
. (3.34)

Proof. This follows from standard Sobolev embedding (see, for instance, [14]) and the 

first item of Theorem 2.5. �

In the subsection to follow, we establish some preliminary results to be utilized in the 

subsequent analysis.

3.4. Preliminary results

In this subsection we use the asymptotics recorded in Section 3.1 to show that we can 

construct the free surface function η from a given data tuple (f, g, h, k). First, we study 

an auxiliary function defined in terms of the multipliers V, Q defined in (3.9).

Lemma 3.12. Let s � 0, γ ∈ R and (f, g, h, k) ∈ Ys, where Ys is the Hilbert space defined 

in (3.23). Consider V (·, ·, −γ) : Σ̂ × [0, b] → C
n, Q(·, ·, −γ) : Σ̂ × [0, b] → C defined in 

(3.9). We define the measurable function ψ : Σ̂ → C via

ψ(ξ) =

b∫

0

(
f̂(ξ, xn) · V (ξ, xn, −γ) − ĝ(ξ, xn)Q(ξ, xn, −γ)

)
dxn

− k̂(ξ) · V (ξ, b, −γ) + ĥ(ξ). (3.35)

Then the following hold.

(1) If RΣ = ∅, then ψ(0) = 0.

(2) ψ(ξ) = ψ(−ξ) for every ξ ∈ Σ̂.

(3) We have the estimate

∫

Σ̂

1

|ξ|2 |ψ(ξ)|21B(0,r) + (1 + |ξ|2)s+3/2|ψ(ξ)|21B(0,r)c dξ �n,s,γ,b ‖(f, g, h, k)‖2
Ys .

(3.36)
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Proof. To prove the first item, we assume RΣ = ∅ and rewrite

ψ(ξ) =

b∫

0

(
f̂(ξ, xn) · V (ξ, xn, −γ) − ĝ(ξ, xn)(Q(ξ, xn, −γ) − 1)

)
dxn

− k̂(ξ) · V (ξ, b, −γ) +

⎛
⎝ĥ(ξ) −

b∫

0

ĝ(ξ, xn) dxn

⎞
⎠ . (3.37)

We note that since h, g must satisfy (3.22), by Remark 3.2 we have ĥ(0) −
∫ b

0
ĝ(0, xn) dxn

= 0. We also note that by the first item of Theorem 3.5, V (0, xn, −γ) = 0 and 

Q(ξ, xn, −γ) = 0. The first item follows immediately from these two observations.

To prove the second item, we first note that by using the second item of Theorem 3.5

and by using the fact that f, g, k, h are real-valued,

ψ(ξ) =

b∫

0

(
f̂(ξ, xn) · V (ξ, xn, −γ) − ĝ(ξ, xn)Q(ξ, xn, −γ)

)
dxn − k̂(ξ) ·V (ξ, b, −γ)+ ĥ(ξ)

=

b∫

0

(
f̂(−ξ, xn) · V (−ξ, xn, −γ) − ĝ(−ξ, xn)Q(−ξ, xn, −γ)

)
dxn

− k̂(−ξ) · V (−ξ, b, −γ) + ĥ(−ξ) = ψ(−ξ). (3.38)

To prove the third, we first rewrite ψ again as in (3.37) and apply the Cauchy-Schwarz 

inequality to obtain

|ψ(ξ)|2 �

⎛
⎝

b∫

0

|f̂(ξ, xn)|2 dξ

⎞
⎠
⎛
⎝

b∫

0

|V (ξ, xn)|2 dξ

⎞
⎠

+

⎛
⎝

b∫

0

|ĝ(ξ, xn)|2 dξ

⎞
⎠
⎛
⎝

b∫

0

|Q(ξ, xn, −γ) − 1|2 dξ

⎞
⎠

+ |k̂(ξ)|2|V (ξ, b, −γ)|2 + |ĥ(ξ) −
b∫

0

ĝ(ξ, xn) dxn|2. (3.39)

We note that by the definition of the Ḣ−1 seminorm, we have

∫

B(0,r)

1

|ξ|2 |ĥ(ξ) −
b∫

0

ĝ(ξ, xn) dxn|2 dξ �

⎡
⎣h −

b∫

0

g(·, xn) dxn

⎤
⎦

2

Ḣ−1

. (3.40)
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Combining (3.39), (3.40) with (3.17), Tonelli’s theorem, and Parseval’s theorem then 

gives us

∫

B(0,r)

1

|ξ|2 |ψ(ξ)|2 dξ �n,γ,b

∫

B(0,r)

b∫

0

(
|f̂(ξ, xn)|2 + |ĝ(ξ, xn)|2

)
dxndξ

+

∫

B(0,r)

|k̂(ξ)|2 dξ +

⎡
⎣h −

b∫

0

g(·, xn) dxn

⎤
⎦

2

Ḣ−1

�n,γ,b ‖(f, g, h, k)‖2
Ys . (3.41)

If |ξ| � 1, then we apply the Cauchy-Schwarz inequality directly to (3.35) and obtain

|ψ(ξ)|2 �

⎛
⎝

b∫

0

|f̂(ξ, xn)|2 dξ

⎞
⎠
⎛
⎝

b∫

0

|V (ξ, xn)|2 dξ

⎞
⎠

+

⎛
⎝

b∫

0

|ĝ(ξ, xn)|2 dξ

⎞
⎠
⎛
⎝

b∫

0

|Q(ξ, xn, −γ)|2 dξ

⎞
⎠

+ |k̂(ξ)|2|V (ξ, b, −γ)|2 + |ĥ(ξ)|2. (3.42)

Combining (3.42) with (3.18), Tonelli’s theorem, and Parseval’s theorem then gives us

∫

B(0,1)c

(1 + |ξ|2)s+3/2|ψ(ξ)|2 dξ

�n,γ,b

b∫

0

∫

Σ̂

(1 + |ξ|2)s|f̂(ξ, xn)|2 dξdxn +

b∫

0

∫

Σ̂

(1 + |ξ|2)s|ĝ(ξ, xn)|2 dξdxn

+

∫

Σ̂

(1 + |ξ|2)s+1/2|k̂(ξ)|2 dξ +

∫

Σ̂

(1 + |ξ|2)s+3/2|ĥ(ξ)|2 dξ �n,γ,b

b∫

0

‖f(·, xn)‖2
Hs(Σ) dxn

+

b∫

0

‖g(·, xn)‖2
Hs(Σ) dxn + ‖k‖2

Hs+1/2 + ‖h‖2
Hs+3/2 �n,s,γ,b ‖(f, g, h, k)‖2

Ys . � (3.43)

Next we study the linear map Υγ,σ : X s → Ys defined via

Υγ,σ(u, p, η) = (div S(p, u) − γ∂1u + (∇′η, 0), div u,

un|Σb
+ γ∂1η, S(p, u)en|Σb

+ σΔ′ηen) (3.44)
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which is the solution operator corresponding to the system (3.28). The next result shows 

that this linear map is well-defined, bounded, and also injective.

Proposition 3.13. Suppose γ ∈ R \ {0}, σ � 0, and s � 0. Then the linear map Υγ,σ :

X s → Ys defined in (3.44) is well-defined, continuous, and injective.

Proof. We first check that the map is well-defined and continuous. By the fifth item of 

Theorem 2.4, the first component f = div S(p, u) −γ∂1u +(∇′η, 0) belongs to Hs(Ω; Rn)

with the estimate

‖f‖Hs � ‖u‖
0Hs+2 + ‖p‖Hs+1 + ‖η‖Xs+5/2 . (3.45)

The second component g = div u belongs to Hs+1(Ω; R) with the estimate ‖g‖Hs+1 �

‖u‖
0Hs+2 . By the fifth item of Theorem 2.4 and standard trace theory, we deduce that the 

third component k = S(p, u)en|Σb
+σΔ′ηen belongs to Hs+1/2(Σ; Rn) with the estimate

‖k‖Hs+1/2 � ‖p‖Hs+1/2(Σ) + ‖Du‖Hs+1/2(Σ) + ‖σΔ′η‖Hs+1/2(Σ)

� ‖p‖Hs+1(Ω) + ‖u‖
0Hs+2 + ‖η‖Xs+5/2 . (3.46)

By the fifth item of Theorem 2.4 and standard trace theory, the fourth component 

h = un|Σb
+ γ∂1η belongs to Hs+3/2(Σb; R) with the estimate

‖h‖Hs+3/2 � ‖u‖
0Hs+2 + ‖η‖Xs+5/2 . (3.47)

Next we note that since g = div u,

un(x′, b) −
b∫

0

g(x′, xn) dxn =

b∫

0

∂nun(x′, xn) dxn −
b∫

0

g(x′, xn) dxn

= − div′

b∫

0

u′(x′, xn) dxn (3.48)

for a.e. x′ ∈ Σ. Writing Hs+3(Σ; R) � R(x′) =
∫ b

0
u′(x′, xn) dxn, we first note that if 

RΓ = ∅, then d̂iv R(0) = 0 and γ̂∂1η(0) = 0. Then we note that

⎡
⎣un −

b∫

0

g(·, xn) dxn

⎤
⎦

Ḣ−1

= [div R]Ḣ−1 � ‖u‖L2 , (3.49)

therefore
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⎡
⎣h −

b∫

0

g(·, xn) dxn

⎤
⎦

Ḣ−1

�

⎡
⎣un −

b∫

0

g(·, xn) dxn

⎤
⎦

Ḣ−1

+ [γ∂1η]Ḣ−1

� ‖u‖
0Hs+2 + ‖η‖Xs+5/2 . (3.50)

Combining the estimates above shows that Υγ,σ is well-defined and continuous.

To show that Υγ,σ is injective, we suppose (u, p, η) ∈ X s and Υγ,σ (u, p, η) = 0. 

We note that if p̃ = p − η, then ∇p̃ = ∇p − (∇′η, 0) and p̃I = pI − ηI. Therefore 

Υγ,σ(u, p, η) = 0 if and only if (u, p̃, η) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

div S(p̃, u) − γ∂1u = 0, in Ω

div u = 0, in Ω

S(p̃, u)en = (η − σΔ′η)en, on Ωb

un + γ∂1η = 0, on Σb

u = 0, on Σ0.

(3.51)

By Tonelli’s theorem, Parseval’s theorem, and the fifth item of Theorem 2.4 we have 

û(ξ, ·) ∈ Hs((0, b); Cn) and ̂̃p(ξ, ·) ∈ H1((0, b); C), for a.e. ξ ∈ Σ̂. By the second item 

in Theorem 2.5, η̂ ∈ L1(Σ; R) + L2(Σ, (1 + |ξ|2)(s+5/2)/2dξ; R). Applying the horizontal 

Fourier transform to (3.51) shows that for a.e. ξ ∈ Σ̂, w = û(ξ, ·), q = ̂̃p(ξ, ·) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−∂2

n + 4π2|ξ|2
)

w′ + 2πiξq − 2πiξ1γw′ = 0, in (0, b)
(
−∂2

n + 4π2|ξ|2
)

wn + ∂nq − 2πiξ1γwn = 0, in (0, b)

2πiξ · w′ + ∂nwn = 0, in (0, b)

−∂nw′ − 2πiξwn = 0, for xn = b

q − 2∂nwn = (1 + 4π2|ξ|2σ)η̂, for xn = b

wn + 2πiξ1γη̂ = 0, for xn = b

w = 0, for xn = 0.

(3.52)

First consider the special case when RΣ = ∅ and ξ = 0. In this case, the third and 

sixth equations imply that wn ≡ 0. Since η ∈ X̊s+5/2(Σ; R), we have η̂(0) = 0 and 

therefore by the second and fifth equations, q ≡ 0. The first, fourth, and last equations 

then tell us that w′ ≡ 0. Therefore, we can conclude that at ξ = 0, w, q ≡ 0.

Next consider the general case for which ξ ∈ Σ̂ \ {0} and (3.52) holds. Using (3.52)

and integrating by parts (for further details, see Proposition 4.1 in [15]), we deduce that

b∫

0

−γ2πiξ1|w|2 + 2|∂nwn|2 + |∂nw′ + 2πiξwn|2 +
1

2
|2πiξ ⊗ w′ + w′ ⊗ 2πiξ|2 dxn

= −2πiξ1γ(1 + 4π2|ξ|2σ)|η̂(ξ)|2. (3.53)
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By taking the real part of this expression, we see that we must have for a.e. ξ ∈ Σ̂, 

∂nwn ≡ 0 and ∂nw′ + 2πiξwn ≡ 0 in (0, b), but since w(0) = 0, we must have w ≡ 0 in 

[0, b]. Then by the first equation, we must have q ≡ 0. By the second to last equation, 

we find that η ≡ 0. From this we find that (u, p, η) = (0, 0, 0), so we can conclude that 

Υγ,σ is injective. �

Next we show that Υγ,σ is surjective. To do so we must construct the free surface 

function η from a given data tuple (f, g, h, k) ∈ Ys. For the reader’s convenience, we 

record this construction in the next subsection.

3.5. Construction of the free surface function and the isomorphism associated to (3.28)

Lemma 3.14 (Construction of η in the presence of surface tension). Suppose γ ∈ R \{0}, 

σ > 0 and n � 2, s � 0. Then for every (f, g, h, k) ∈ Ys, there exists an η ∈ Xs+ 5
2 (Σ; R)

for which the modified data tuple

(f − (∇′η, 0), g, h − γ∂1η, k − σΔ′ηen) ∈ Hs(Ω; R
n) × Hs+1(Ω; R)

× Hs+ 3
2 (Σb; R) × Hs+ 1

2 (Σb; R
n) (3.54)

belongs to the range of Υγ,σ defined in (3.44). Moreover, we have the estimate

‖η‖
Xs+ 5

2
� ‖(f, g, h, k)‖Ys . (3.55)

Proof. Given (f, g, h, k) ∈ Ys, we propose to define η ∈ Xs+ 5
2 (Σ; R) through

η̂(ξ) =

{
ψ(ξ)
ργ (ξ) , ξ �= 0

0, ξ = 0,
(3.56)

where ργ is defined in (3.19) and ψ is defined in terms of (f, g, h, k) in (3.35). We note 

that the choice of η̂(0) = 0 is only relevant in the case when Γ =
∏d

i=1 LiT .

We first note that by the first item of Lemma 3.6 and the second item of Lemma 3.12, 

we have η̂(ξ) = η̂(−ξ). Furthermore, by the second item of Lemma 3.6 and the third 

item of Lemma 3.12, we have the estimate

∫

Σ̂

(
ξ2

1 + |ξ|4
|ξ|2 1B(0,r) + (1 + |ξ|2)s+ 5

21B(0,r)c

)
|η̂(ξ)|2 dξ

�

∫

Σ̂

(
1

|ξ|21B(0,r) + (1 + |ξ|2)s+ 3
21B(0,r)c

)
|ργ(ξ)|2|η̂(ξ)|2 dξ

�

∫

Σ̂

(
1

|ξ|21B(0,r) + (1 + |ξ|2)s+ 3
21B(0,r)c

)
|ψ(ξ)|2 dξ � ‖(f, g, h, k)‖2

Ys . (3.57)
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Consequently, if we define η = (η̂)∨, then by (3.57), and η̂(ξ) = η̂(ξ), we have η ∈
Xs+5/2(Σ; R) with the estimate (3.55).

To conclude our proof it suffices to show that the modified data given in (3.54)

belongs to the range of Υγ,σ(u, p, η). By Theorem 3.9, it suffices to show that the 

modified data tuple has the desired regularity and satisfies the divergence-trace com-

patibility condition (3.22) and the adjoint compatibility condition (3.25). We note that 

since η ∈ Xs+5/2(Σ; R), by the fifth item of Theorem 2.4 and the third item of Theo-

rem 2.5, we have (f, g, h −γ∂1η, k−σΔ′ηen) ∈ Hs(Ω; Rn) ×Hs+1(Ω; R) ×Hs+ 3
2 (Σb; R) ×

Hs+ 1
2 (Σb; Rn) with (h − γ∂1η) −

∫ b

0
g(·, xn) ∈ Ḣ−1(Σ; R). To check (3.25), we write 

0 = ψ − ργ η̂ for ξ �= 0 and use the definition of ψ and ργ to obtain

0 =

b∫

0

(
f̂(ξ, xn) · V (ξ, xn, −γ) − ĝ(ξ, xn)Q(ξ, xn, −γ)

)
dxn

− (k̂(ξ) + (1 + 4π2|ξ|2σ)η̂(ξ)en) · V (ξ, b, −γ) + ĥ(ξ) − 2πiξ1γη̂(ξ). (3.58)

Using the third equation in (3.10) we have 2πiξ · V ′(ξ, xn, −γ) + ∂nVn(ξ, xn, −γ) = 0, 

and since V (ξ, 0, −γ) = 0, we have

Vn(ξ, b, −γ) =

b∫

0

∂nVn(ξ, xn, −γ) dxn =

b∫

0

2πiξ · V ′(ξ, xn, −γ) dxn. (3.59)

Thus, we can rewrite (3.58) as

0 =

b∫

0

((
f̂(ξ, xn) − (∇̂′η(ξ), 0)

)
· V (ξ, xn, −γ) − ĝ(ξ, xn)Q(ξ, xn, −γ)

)
dxn

− (k̂(ξ) + σ̂Δ′η(ξ)en) · V (ξ, b, −γ) + ĥ(ξ) − 2πiξ1γη̂(ξ), (3.60)

and the desired conclusion follows immediately. �

For the special case of n = 2, we can also construct the free surface function η in the 

case without surface tension.

Lemma 3.15 (Construction of the free surface function without surface tension). Suppose 

γ ∈ R \ {0}, σ = 0 and n = 2, s � 0. Then for every (f, g, h, k) ∈ Ys, there exists an 

η ∈ Hs+ 5
2 (Σ; R) for which the modified data tuple

(f − ∂1ηe1, g, h − γ∂1η, k) ∈ Hs(Ω; R
n) × Hs+1(Ω; R) × Hs+ 3

2 (Σb; R) × Hs+ 1
2 (Σb; R

n)

(3.61)
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belongs to the range of Υγ,σ defined in (3.44). Moreover, we have the estimate

‖η‖
Xs+ 5

2
� ‖(f, g, h, k)‖Ys . (3.62)

Proof. We follow the construction in the previous lemma and propose to define η via 

(3.56). Then η̂(ξ) = η̂(−ξ), η̂(0) = 0, and by the third item of Lemma 3.6 and the third 

item of Lemma 3.12, we have

∫

Σ̂

(
(1 + |ξ|2)1B(0,1) + (1 + |ξ|2)s+ 5

21B(0,1)c

)
|η̂(ξ)|2 dξ

�

∫

Σ̂

(
1

|ξ|21B(0,1) + (1 + |ξ|2)s+ 3
21B(0,1)c

)
|ργ(ξ)|2|η̂(ξ)|2 dξ

�

∫

Σ̂

(
1

|ξ|21B(0,1) + (1 + |ξ|2)s+ 3
21B(0,1)c

)
|ψ(ξ)|2 dξ � ‖(f, g, h, k)‖2

Ys . (3.63)

Consequently, we may define η = (η̂)∨. By (3.63) and Lemma 2.1, we have η ∈
Hs+5/2(Σ; R) = Xs+5/2(Σ; R) with the estimate (3.62). By the third item of Theo-

rem 2.5, we have (f − ∂1ηe1, g, h − γ∂1η, k) ∈ Hs(Ω; Rn) × Hs+1(Ω; R) × Hs+ 3
2 (Σb; R) ×

Hs+ 1
2 (Σb; Rn) and (h − γ∂1η) −

∫ b

0
g(·, x2) dx2 ∈ Ḣ−1(Σ; R). To conclude we follow the 

same line of calculations as in Lemma 3.14 to arrive at

0 =

b∫

0

(
(f̂(ξ, x2) − 2πiξ1η̂e1) · V (ξ, x2, −γ) − ĝ(ξ, x2)Q(ξ, x2, −γ)

)
dx2

− k̂(ξ) · V (ξ, b, −γ) + ĥ(ξ) − 2πiξ1γη̂(ξ), (3.64)

which verifies the overdetermined compatibility condition (3.25). �

Now we are ready to prove that Υγ,σ : X s → Ys is an isomorphism when σ > 0 and 

n � 2, and when σ = 0 and n = 2.

Theorem 3.16 (Existence and uniqueness of solutions to (3.28)). Suppose γ ∈ R \{0}, s �

0.

(1) (Isomorphism in the case with surface tension) If σ > 0 and n � 2, then the bounded 

linear map Υγ,σ : X s → Ys defined in (3.44) is an isomorphism.

(2) (Isomorphism in the case without surface tension) If σ = 0 and n = 2, then the 

bounded linear map Υγ,0 : X s → Ys defined in (3.44) is an isomorphism.

Proof. To prove the first item, by Proposition 3.13, it suffices to show that Υγ,σ is surjec-

tive. Suppose (f, g, h, k) ∈ Ys, and define the free surface function η ∈ Xs+5/2(Σ; R) by 
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the construction in Lemma 3.14. By Theorem 3.9, there exists (u, p) ∈ 0Hs+2(Ω; Rn) ×
Hs+1(Ω; R) such that Ψγ(u, p) = (div S(p, u) − γ∂1u, div u, un|Σb

, S(p, u)en|Σb
) = (f −

(∇′η, 0), g, h −γ∂1η, k−σΔ′ηen). Therefore, we find that Υγ,σ(u, p, η) = (f, g, h, k). This 

shows that Υγ,σ is surjective, and it follows that Υγ,σ is an isomorphism.

To prove the second item we follow the same argument as above, using Lemma 3.15

in place of Lemma 3.14 and Υγ,0 in place of Υγ,σ. �

3.6. Parameter regime for the linear isomorphism associated to (1.24)

In this subsection we consider the linearization of the flattened system (1.24) around 

the trivial solution u = 0, p = 0, η = 0, which is given by the map X s � (u, p, η) �→
Lκ,σ ∈ Ys defined in (1.52). Our goal is to show that there is a parameter regime in 

terms of κ for which Lκ,σ remains an isomorphism between X s and Ys. To achieve this 

we first define L0,σ, Mκ : X s → Ys via

L0,σ(u, p, η) = Υγ,σ(u, p, η)

= (div S(p, u) − γ∂1u + (∇′η, 0), div u, un|Σb
+ γ∂1η, S(p, u)en|Σb

+ σΔ′ηen), (3.65)

and

Mκ(u, p, η) = (−γκxn∂1ηe1 + κs0(xn)∂1u + κs′
0(xn)une1 + κ2xns0(xn)∂1ηe1

− κxnΔ′ηe1 − κ(xn∇′∂1η, ∂1η), κxn∂1η, −κb2

2
∂1η, 0), (3.66)

so that Lκ,σ = L0,σ + Mκ = L0,σ(I + L−1
0,σMκ), where Lκ,σ is defined via (1.52) and 

s0 is defined via (1.6). Our goal in this subsection is to show that ‖Mκ‖ < 1
‖L0,σ‖−1 for 

sufficiently small κ.

We first establish a preliminary lemma. While the following result is not at all surpris-

ing and follows from routine applications of Tonelli’s theorem and Hölder’s inequality, we 

record the proof below to show that the universal constants in the estimates are purely 

combinatorial and do not depend on the physical parameters.

Lemma 3.17. Let Z � n � 2 and suppose f ∈ C∞([0, b]; R). The following hold.

(1) If g ∈ Hk(Ω; Rn) for some integer k � 0 and for any i ∈ N, j ∈ N
n with |j| � k we 

define (∂if∂jg)(x) = ∂if(xn)∂jg(x), then we have

∥∥∂if∂jg
∥∥

L2 �
∥∥∂if

∥∥
L∞ ‖g‖Hj . (3.67)

Consequently, fg ∈ Hk(Ω; Rn) and there exists a combinatorial constant C =

C(k) > 0 such that
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‖fg‖Hk � C max
0�i�k

∥∥∂if
∥∥

L∞ ‖g‖Hk . (3.68)

(2) If g ∈ Hk(Σ; R) for some integer k � 0 and for any i ∈ N, j ∈ N
n−1 with |j| � k

we define (∂if∂jg)(x) = ∂if(xn)∂jg(x′), then we have

∥∥∂if∂jg
∥∥

L2 �
∥∥∂if

∥∥
L2 ‖g‖Hj . (3.69)

Consequently, fg ∈ Hk(Ω; R) and there exists a combinatorial constant C = C(k) >

0 such that

‖fg‖Hk � C max
0�i�k

∥∥∂if
∥∥

L2 ‖g‖Hk . (3.70)

Proof. To prove the first item, we note that by Tonelli’s theorem and Hölder’s inequality,

∥∥∂if∂jg
∥∥

L2 =

⎛
⎝
∫

Σ

b∫

0

|∂if(xn)|2|∂jg(x)|2 dxndx′

⎞
⎠

1
2

�
∥∥∂if

∥∥
L∞(0,b)

⎛
⎝
∫

Σ

b∫

0

|∂jg(x)|2 dxndx′

⎞
⎠

1
2

�
∥∥∂if

∥∥
L∞(0,b)

∥∥∂jg
∥∥

L2(Σ×(0,b))
�
∥∥∂if

∥∥
L∞ ‖g‖Hj . (3.71)

Then by the Leibniz formula, we have

‖fg‖Hk �
∑

0�|j|�k, m�j∈N
n

(
j

m

)∥∥∂jf
∥∥

L∞

∥∥∂j−mg
∥∥

L2 � C max
0�i�k∈N

∥∥∂if
∥∥

L∞ ‖g‖Hk ,

(3.72)

where C = C(k) > 0 is a combinatorial constant depending only on k. To prove the 

second item, we note that by Tonelli’s theorem and Hölder’s inequality again,

∥∥∂if∂jg
∥∥

L2 =

⎛
⎝

b∫

0

|∂if(xn)|2 dxn

∫

Σ

|∂jg(x′)|2 dx′

⎞
⎠

1
2

=
∥∥∂if

∥∥
L2

∥∥∂jg
∥∥

L2 �
∥∥∂if

∥∥
L2 ‖g‖Hj . (3.73)

Then by the Leibniz formula,

‖fg‖Hk �
∑

0�|j|�k, m�j∈N
n−1

(
j

m

)∥∥∂jf
∥∥

L2

∥∥∂j−mg
∥∥

L2



60 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057

� C max
0�i�k∈N

∥∥∂if
∥∥

L2 ‖g‖Hk . � (3.74)

This gives us an immediate corollary that will prove useful in the next section.

Corollary 3.18 (Multiplication with smooth functions in the vertical variable). Let Σ be 

defined as in (1.1) and suppose R � s � 0. If ϕ ∈ C∞([0, b]; R), then the map Tϕ :

Hs(Σ; R) → Hs(Ω; R) defined via Tϕf(x) = ϕ(xn)f(x′) is well-defined and bounded.

Proof. This follows directly from the second item of Lemma 3.17 when s is an integer. 

By interpolation, the second item also holds when s is real-valued. �

Now we are ready to prove the main result of this subsection.

Theorem 3.19. Let R � s � 0, κ ∈ R and consider the linear map Mκ : X s → Ys as 

defined in (3.66). Then the following hold.

(1) There exists a constant C > 0 depending on s, n, and in the periodic cases on Li, 

such that

‖Mκ‖L(X s;Ys) � C
(

max{b
1
2 , b

7
2 }|κ|2 +

(
|γ| max{b1/2, b3/2} + max{1, b2}

)
|κ|
)

.

(3.75)

(2) There exists κ0 > 0 depending on γ, s, b, n, and in the toroidal cases on Li, such 

that for all κ ∈ (−κ0, κ0), the map Lκ,σ : X s → Ys as defined in (3.65) is an 

isomorphism.

Proof. To prove the first item, we first suppose that (u, p, η) ∈ X s for some integer 

s � 0 and consider (f, g, h, k) = Mκ(u, p, η), where Mκ is defined in (3.66). Then by 

the fifth item of Theorem 2.4, the third item of Theorem 2.5, and Lemma 3.17 we have 

(f, g, h, k) = Mκ(u, p, η) ∈ Ys. Recall that s0(xn) = bxn − x2
n

2 and note that s
(i)
0 (xn) = 0

for i � 3 and (xns0(xn))(i) = 0 for i � 4. Therefore, by Lemma 3.17 and the fifth item 

of Theorem 2.4 we have

‖f‖Hs �s |γ||κ| max
0�i�1

∥∥∥x(i)
n

∥∥∥
L2

‖∂1η‖Hs + |κ| max
0�i�2

∥∥∥s(i)
0

∥∥∥
L∞

‖u‖Hs+1

+ |κ| max
1�i�2

∥∥∥s(i)
0

∥∥∥
L∞

‖u‖Hs + |κ|2 max
0�i�3

∥∥∥(xns0)(i)
∥∥∥

L2
‖∂1η‖Hs

+ |κ| max
0�i�1

∥∥∥x(i)
n

∥∥∥
L2

‖Δ′η‖Hs + |κ| max
0�i�1

∥∥∥x(i)
n

∥∥∥
L2

‖∂1η‖Hs+1 + |κ| ‖∂1η‖Hs

�s,n

[
max{b

1
2 , b

7
2 }|κ|2 +

(
|γ| max{b1/2, b3/2} + max{1, b2}

)
|κ|
]

(‖u‖Hs+1 + ‖η‖Xs+2)

�s,n

(
max{b

1
2 , b

7
2 }|κ|2 +

(
|γ| max{b1/2, b3/2} + max{1, b2}

)
|κ|
)

‖(u, p, η)‖X s . (3.76)
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We also have

‖g‖Hs+1 �s |κ| max{b
1
2 , b

3
2 } ‖∂1η‖Hs+1 �s,n |κ| max{b

1
2 , b

3
2 } ‖η‖Xs+2 (3.77)

and ‖h‖
Hs+ 3

2
�s,n |κ|b2 ‖η‖

Xs+ 5
2

. Therefore,

‖Mκ(u, p, η)‖Ys �s,n

(
max{b

1
2 , b

7
2 }|κ|2 +

(
|γ| max{b1/2, b3/2} + max{1, b2}

)
|κ|
)

× ‖(u, p, η)‖X s =: B(γ, b, κ) ‖(u, p, η)‖X s (3.78)

which implies that ‖Mκ‖L(X s;Ys) �s,n B(γ, b, κ). We note that by the fifth item of 

Theorem 2.4, in the toroidal cases the universal constants in the preceding equations 

also depend on Li.

For any real valued s � 0, we may find an integer m � 0 and some θ ∈ [0, 1] such 

that s = θm + (1 − θ)(m + 1). Then by interpolation, there exists some constant C > 0

depending on s, n, and in the periodic cases on Li such that

‖Mκ‖L(X s;Ys) � ‖Mκ‖θ
L(X m;Ym) ‖Mκ‖1−θ

L(X m+1;Ym+1) � CB(γ, b, κ). (3.79)

This proves the first item. To prove the second item, we note that

B(γ, b, κ) = max{b
1
2 , b

7
2 }|κ|2 +

(
|γ| max{b1/2, b3/2} + max{1, b2}

)
|κ|

=

{
b7/2|κ|2 + (|γ|b3/2 + b2)|κ|, b > 1

b1/2|κ|2 + (|γ|b1/2 + 1)|κ|, 0 < b � 1.
(3.80)

From (3.80), we may infer that for c = C−1 ‖L0,σ‖−1
> 0, where C > 0 is the constant 

appearing in (3.79), there exists κ0 depending on γ, s, b, n and in the toroidal cases on 

Li for which B(γ, b, κ) < c if κ ∈ (−κ0, κ0).

Then by (3.79), if κ ∈ (−κ0, κ0) then ‖Mκ‖L(X s,Ys) < ‖L0,σ‖−1
L(Ys;X s), thus the linear 

map L−1
0,σMκ : X s → X s as defined in (3.65) satisfies 

∥∥L−1
0,σMκ

∥∥ �
∥∥L−1

0,σ

∥∥ ‖Mκ‖ < 1. 

Hence, I + L−1
0,σMκ : X s → X s is an isomorphism, and we conclude that Lκ,σ = L0,σ(I +

L−1
0,σMκ) is an isomorphism from X s to Ys. �

4. Nonlinear analysis

4.1. Preliminaries

We first record a set of results on various maps defined in terms of η, including the 

flattening map Fη, that we will use in the subsequent analysis.

Theorem 4.1. Let Σ be defined as in (1.1), N � n � 2, N � k > n
2 , and V be a real finite 

dimensional inner product space.



62 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057

(1) Let ζ ∈ C0,1
b (Σ; R) such that inf ζ > 0, and R � s > n

2 . Then there exists r1 > 0

depending on n, b, s, ζ, and in the toroidal cases on Li, such that the maps Γ1, Γ2 :

BXs(0, r1) × Hs(Ωζ; R) → Hs(Ωζ; R) given by

Γ1(f, g) =
g

b + f
, Γ2(f, g) =

gf

b + f
(4.1)

are well-defined and smooth. There also exists a constant r2 > 0 depending on d, s, 

and in the toroidal cases on Li, such that the map Γ : BHs(Σ;Rd)(0, r2) → Hs(Σ; Rd)

given by

Γ(f) =
f√

1 + |f |2
(4.2)

is well-defined and smooth.

(2) (The flattening map Fη and its inverse) Let η ∈ Xk+ 5
2 (Σ; R) be such that ‖η‖C0

b
� b

2 . 

Define Gη : Ωb+η → Ωb via

Gη(x) =

(
x′,

xnb

b + η(x′)

)
. (4.3)

Then the following hold.

(a) Gη ∈ Cr(Ωb+η; Ωb) is a diffeomorphism for r = 3 +
⌊
k − n

2

⌋
, with its inverse 

being Fη ∈ Cr(Ω; Ωb+η).

(b) If 0 � s � k + 2 and F ∈ Hs(Ωb; V ), then F ◦ Gη ∈ Hs(Ωb+η; V ). Moreover, 

there exists a constant c > 0 depending on n, s, k, ‖η‖Xk+2 , and in the toroidal 

cases on Li, such that

‖F ◦ Gη‖Hs(Ωb+η;V ) � c ‖F‖Hs(Ωb;V ) , (4.4)

and the map r �→ c(n, s, k, r) is non-decreasing.

(c) If 0 � s � k + 2 and F ∈ Hs(Ωb+η; V ), then F ◦ Fη ∈ Hs(Ωb; V ). Moreover, 

there exists a constant c > 0 depending on n, s, k, ‖η‖Xk+2 , and in the toroidal 

cases on Li, such that

‖F ◦ Fη‖Hs(Ωb;V ) � c ‖F‖Hs(Ωb+η;V ) , (4.5)

and the map r �→ c(n, s, k, r) is non-decreasing.

(3) (ω-lemma for compositions) For η ∈ Xk+ 1
2 (Σb; R) we define the flattening map Fη

as in (1.17). Then there exists some 0 < δ∗ < 1 such that the following hold:
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(a) The map ΛΩ : Hk+1(Σ × R; Rn) × B
Xk+ 1

2
(0, δ∗) → Hk(Ωb; Rd) given by

ΛΩ(f, η) = f ◦ Fη (4.6)

is well-defined and C1, with DΛΩ(f, η)(g, ζ) = ϕ
b ∂nf ◦ Fηζ + g ◦ Fη.

(b) The map Sb : Hk+2(Σ × R; Rn) × B
Xs+ 3

2
(0, δ∗) → Hs+ 1

2 (Σb; Rd) defined via

Sb(f, η) = f ◦ Fη|Σb
(4.7)

is well-defined and C1, with DSb(f, η)(g, ζ) 
(

ϕ
b ∂nf ◦ Fηζ + g ◦ Fη

)
|Σb

.

(c) The map Tb : Hk+2(Σ × R; Rn×n
sym ) × BXk+5/2(0, δ∗) → Hk+1/2(Σb; Rd) defined 

via

Tb(T , η) = (T ◦ Fη|Σb
)N , (4.8)

where N is defined via (1.13), is well-defined and C1.

Proof. The three items in the case Σ = R
d for d � 1 follow from Theorems 5.16, 5.17, 

A.12, Corollary 5.21, and Proposition 7.4 in [15]; the proofs therein can be adopted with 

minimal modification to handle to cases when Σ �= R
d. �

Now we can synthesize the aforementioned results to show that all the nonlinear maps 

appearing in (1.24) are well-defined and smooth.

Theorem 4.2. Let R � s > n
2 and σ � 0. For δ > 0, define the open set of X s

Us
δ = {(u, p, η) ∈ X s | ‖η‖

Xs+ 5
2

< δ}. (4.9)

For γ ∈ R, T ∈ Hs+ 1
2 (Σ; Rn×n

sym ), (u, p, η) ∈ Us
δ , U1 = W1 ◦ Fη, U2◦ = W2 ◦ Fη with 

W1, W2 as defined in (1.7), (1.14), Fη as defined in (1.17), and J , A, N , H as defined 

in (1.20), (1.21), (1.13) and (1.2), we define f = divA SA(p, u) − γe1 · ∇Au − γκ(xn +

η xn

b )∂1ηe1+
(
u + U1 + U2

)
·∇A

(
u + U1 + U2

)
+(∇′η, 0) −κ 

(
xn + η xn

b

)
Δ′ηe1 −κ((xn+

η xn

b )∇′∂1η, ∂1η), g = J [divA u + κ 
(
xn + η(x′)xn

b

)
∂1η(x′)], h = u · N − (−γ + s(η + b) +

κ(η+b)η)∂1η, and k = SA(p, u)N −[σH(η)I+T +κ(η+b)(e1⊗(∇′η, 0) +(∇′η, 0) ⊗e1)]N . 

Then (f, g, h, k) ∈ Ys, and the map

R × R × Hs+ 1
2 (Σ; R

n×n
sym ) × Us

δ � (γ, T, u, p, η) �→ (f, g, h, k) ∈ Ys (4.10)

is smooth.

Proof. By the first item in Theorem 2.5 and standard Sobolev embedding, there exists 

a constant δ0 > 0 depending on n, s, b, and in the toroidal cases on Li, such that if 

s > n/2 and η ∈ Xs+5/2(Σ; R) with ‖η‖Xs+5/2 < δ0, then ‖η‖C0
b
� b/2. We define 
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δ = min{δ0, r1, r2/c1}, where r1, r2 are the radii from the first item of Theorem 4.1, and 

c1 is the embedding constant from (2.27). By Theorem 7.3 in [15] and standard results 

from the theory of Sobolev spaces, the map

R × R × Hs+ 1
2 (Σ; R

n×n
sym ) × Us

δ � (γ, T, u, p, η) �→
(divA SA(p, u) + (u − γe1) · ∇Au + u · ∇Au, J divA u, u · N + γ∂1η,

SA(p, u)N − (σH(η)I + T )N ) ∈ Ys (4.11)

is well-defined and smooth, so it suffices to show that the map

R × Hs+ 1
2 (Σ; R

n×n
sym ) × Us

δ � (γ, T, u, p, η) �→
(−γκFη(x′, xn)en∂1ηe1 + u · ∇A(U1 + U2) + (U1 + U2) · ∇A(u + U1 + U2)

+(∇′η, 0)−κFη(x′, xn)enΔ′η(x′)e1−κ(Fη(x′, xn)en∂1∇′η, ∂1), J κ(xn+η(x′)
xn

b
)∂1η(x′),

− s(η + b)∂1η − κ(η + b)η∂1η, κ(η + b) [e1 ⊗ (∇′η, 0) + (∇′η, 0) ⊗ e1] N ) ∈ Ys (4.12)

is well-defined and smooth, where Fη(x′, xn)en = xn + η(x′)xn

b . By the fifth item of 

Theorem 2.4, the second item of Theorem 2.5, and Corollary 3.18 the map

R × R × Xs+5/2(Σ; R) � (γ, κ, η) �→ −γκFη(x′, xn)en∂1ηe1 + (∇′η, 0)

− κFη(x′, xn)enΔ′η(x′)e1 − κ(Fη(x′, xn)en∂1∇′η, ∂1η) ∈ Hs+1/2(Ω; R
n) (4.13)

is well-defined and smooth. By (1.7), (1.14), (1.17), and (1.21), we have

u · ∇A(U1 + U2) + (U1 + U2) · ∇A(u + U1 + U2)

=
n∑

j,k=1

ujAjk∂k(U1 + U2) +
n∑

k=1

(U1
1 + U2

1 )A1k∂k(u + U1 + U2)

=
n−1∑

j=1

uj∂j(U1 + U2) +
n−1∑

k=1

unAnk∂k(U1 + U2) + unK∂n(U1 + U2)

+ (U1
1 + U2

2 )∂1(u + U1 + U2) − (U1
1 + U1

1 )xnK∂1η(x′)

b
∂n(U1 + U2), (4.14)

where K = 1/J . By (1.7), (1.14), and (1.17), (U1 + U2)(x, η) = κ(bFη(x)en −
(Fη(x)en)2/2 + Fη(x)enη(x′))e1 where Fη(x)en = xn(1 + η(x′)/b) = xnJ , so we find 

that

∂k(U1 + U2)(x′, xn) =

{
κJ xn(2b−xn)

b ∂kη(x′)e1, k �= n

κ(b + xnJ + η(x′))J , k = n.
(4.15)
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Thus, by the second item of Theorem 2.5, Corollary 3.18, and the algebra properties 

of standard Sobolev spaces for s > n/2 the map Xs+5/2(Σ; R) × Hs(Ω; R) � (η, ψ) �→
ψ∂k(U1 +U2) ∈ Hs(Ω; Rn) is well-defined and smooth. By the first item of Theorem 4.1, 

the map BXs(0, δ) × Hs(Ω; R) � (η, ψ) �→ ψK ∈ Hs(Ω; R) is well-defined and smooth 

for any ψ ∈ Hs(Ω; Rn). We also note that every non-trivial term in the components of 

(4.14) is either a product of functions in Xs+5/2(Σ; R) and functions in Hs(Ω; R), or 

functions in Xs+5/2(Σ; R) and derivatives of functions in Xs+5/2(Σ; R). To summarize, 

by the observations made above, (4.15), the second item of Theorem 2.5, Corollary 3.18, 

and the first item of Theorem 4.1, the map

R × Us
δ � (κ, u, p, η) �→ u · ∇A(U1 + U2) + (U1 + U2) · ∇A(u + U1 + U2) ∈ Hs(Ω; R

n)

(4.16)

is well-defined and smooth. Similarly, the maps

R × Xs+5/2(Σ; R) � (κ, η) �→ J κ(xn + η(x′)
xn

b
)∂1η(x′) ∈ Hs+3/2(Σ; R) (4.17)

and

R × Xs+5/2(Σ; R) � (κ, η) �→
(s(η + b)∂1η + κ(η + b)η∂1η, κ(η + b)(e1 ⊗ (∇′η, 0) + (∇′η, 0) ⊗ e1)N )

∈ H3/2(Σ; R) × H3/2(Σ; R
n) (4.18)

are also well-defined and smooth. Finally, it remains to show that

−s(η + b)∂1η − κ(η + b)η∂1η −
b∫

0

J (·, xn)κ
(

xn + η
xn

b

)
∂1η dxn ∈ Ḣ−1(Σ; R).(4.19)

By (1.20), we have

− s(η + b)∂1η − κ(η + b)η∂1η −
b∫

0

J (·, xn)κ
(

xn + η
xn

b

)
∂1η dxn

= −κ(b2∂1η + b∂1η2 +
1

3
∂1η3). (4.20)

Thus, by Theorem 1.2 and the third item of Theorem 2.5 we have b2∂1η+b∂1η2+ 1
3∂1η3 ∈

Ḣ−1(Σ; R). Therefore, we have shown that (f, g, h, k) ∈ Ys, and the map defined by 

(4.10) is smooth. �
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4.2. Solvability of the flattened system (1.24)

Now we are ready to construct solutions to (1.24) by using the implicit function 

theorem.

Proof of Theorem 1.3. We first consider the case with surface tension, σ > 0 and n � 2. 

Let δ be the minimum of the δ1 > 0 from Theorem 4.2 and δ∗ > 0 from the third item 

of Theorem 4.1. Consider the open subset Us
δ of X s defined via

Us
δ = {(u, p, η) ∈ X s | ‖η‖

Xs+ 5
2

< δ}. (4.21)

Using Proposition 3.11 and standard Sobolev embedding, any open subset of Us
δ con-

taining (0, 0, 0) satisfies the first assertion of the theorem. This proves the first item.

To prove the remaining items, we consider the Hilbert space

Es = R × R × Hs+2(Σ × R; R
n×n
sym ) × Hs+ 1

2 (Σ; R
n×n
sym ) × Hs+1(Σ × R; R

n) × Hs(Σ; R
n)

(4.22)

and the solution map Ξ : Es × Us
δ → Ys associated to (1.24) defined via

Ξ(γ, κ, T , T, f, f, u, p, η) = (divA SA(p, u) − γe1 · ∇Au − γκxn∂1ηe1

+
(
u + U1 + U2

)
· ∇A

(
u + U1 + U2

)

+ (∇′η, 0) − κFη(x)enΔ′ηe1 − κ(Fη(x)en∇′∂1η, ∂1η) − f ◦ Fη − LΩb
f,

J [divA u + κFη(x)en∂1η], u · N − (−γ + s(η + b) + κ(η + b)η)∂1η,

SA(p, u)N − [σH(η)I + T ◦ Fη + SbT |Σb
+ κ(η + b)(e1 ⊗ (∇′η, 0) + (∇′η, 0) ⊗ e1)]N ),

(4.23)

where LΩb
f(x) = f(x′), SbT (x′, b) = T (x′). By Theorem 4.1, Theorem 4.2, and Lem-

mas A.10 and A.11 in [15] the map Ξ is well-defined and C1.

By the product structure of Es × Us
δ , we can define D1Ξ : Es × Us

δ → L(Es; Ys) and 

D2Ξ : Es × Us
δ → L(X s; Ys) to be the derivatives of Ξ with respect to Es and Us

δ , re-

spectively. Note that by the second item of Theorem 4.1, we have D2Sb(0, 0) = 0 and 

D2ΛΩ(0, 0) = 0. Therefore, for any γ ∈ R, Ξ(γ, 0, 0, 0, 0, 0, 0, 0, 0) = (0, 0, 0, 0) since we 

also have U2 = 0, U1 ·∇AU1 = (U1
1 )∂1U1 = 0 for η = 0, and D2Ξ(γ, 0, 0, 0, 0, 0, 0, 0, 0) =

Lκ,σ where Lκ,σ is defined in (3.65). By Theorem 3.19, for every γ∗ �= 0 there exists 

some κ0 > 0 for which D2Ξ(γ, 0, 0, 0, 0, 0, 0, 0, 0) is a linear isomorphism for every κ ∈
(−κ0, κ0). Thus, by the implicit function theorem, there exist open sets U(γ∗) ⊆ Es and 

O(γ∗) ⊆ Us
δ such that (γ∗, 0, 0, 0, 0, 0) ∈ U(γ∗) and (0, 0, 0) ∈ O(γ∗), and a C1 and Lips-

chitz map �γ∗
: U(γ∗) → O(γ∗) ⊆ Us

δ such that Ξ(γ, κ, T , T, f, f, �γ∗
(γ, κ, T , T, f, f)) =

(0, 0, 0, 0) for all (γ, κ, T , T, f, f) ∈ U(γ∗). Moreover, (u, p, η) = �γ∗
(γ, κ, T , T, f, f) is the 

unique solution to Ξ(γ, κ, T , T, f, f, u, p, η) = (0, 0, 0, 0) in O(γ∗).
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Next, we define the open sets

Us =
⋃

γ∗∈R\{0}

U(γ∗) ⊆ Es and Os =
⋃

γ∗∈R\{0}

O(γ∗) ⊆ Us
δ . (4.24)

We note that by construction, (R \ {0}) × {0} × {0} × {0} × {0} × {0} ⊂ Us. Fur-

thermore, for every (γ, κ, T , T, f, f) ∈ Us, there exists a γ∗ ∈ R \ {0} for which 

(γ, κ, T , T, f, f) ∈ U(γ∗) and (u, p, η) = �γ∗
(γ, κ, T , T, f, f) ∈ O(γ∗). By the obser-

vation above and the implicit function theorem, the map � : Us → Os defined via 

�(γ, κ, T , T, f, f) = �γ∗
(γ, κ, T , T, f, f), where γ∗ ∈ R \{0} is such that (γ, κ, T , T, f, f) ∈

U(γ∗), is well-defined, C1, and locally Lipschitz. This proves the remaining items for 

σ > 0 and n � 3.

To prove the remaining items in the case without surface tension and n = 2, we argue 

along the same lines but use the second item of Theorem 3.16 instead of the first and 

use the isomorphism Lκ,0. �

4.3. Solvability of the unflattened system (1.16)

We now examine the solvability of the system (1.16) in the original Eulerian coordi-

nates.

Proof of Theorem 1.4. Consider the map � : Us → Os constructed in Theorem 1.3. By 

Theorem 1.3, for every (γ, κ, T , T, f, f) ∈ Us the tuple Os � (u, p, η) = �(γ, κ, T , T, f, f)

solves (1.24) classically. Since (u, p, η) ∈ Os, we have ‖η‖C0
b
� b/2, therefore by the 

second item in Theorem 4.1, the flattening map Fη and its inverse F−1
η are both 

C�s−n/2�+3 diffeomorphisms. Now we fix (γ, κ, T , T, f, f) ∈ Us and set (u, p, η) =

�(γ, κ, T , T, f, f), v = u ◦ F−1
η , and q = p ◦ F−1

η . Then by the second item of Theo-

rem 4.1 and Sobolev embedding, we have v ∈ 0Hs+2(Ωb+η; Rn) ∩ C�s−n/2�+2(Ωb+η; Rn)

and q ∈ Hs+1(Ωb+η; R) ∩ C
�s−n/2�+1
b (Ωb+η; R). Since (F−1

η (x))′ = x′, we have (f ◦ Fη +

LΩb
f) ◦F−1

η (x) = f(x) +LΩb+η
f(x) and (T ◦Fη|Σb

+SbT ) ◦F−1
η (x) = T |Σb+η

(x) +Sb+ηT (x)

for all x ∈ Ωb+η. Thus, if (u, p, η) is a solution tuple to (1.24) then (v, q, η) is a solution 

tuple to (1.16). The last item follows from the fact that � is locally Lipschitz. �
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Appendix A. Tempered distributions and the Fourier transform

In this subsection we carefully define the class of tempered distributions on Γ and its 

Pontryagin dual Γ̂. For the sake of simplicity, we shall assume Γ = R
d1 ×∏d2

i=1 LiT with 

N � d1, d2 � 0, d = dim Γ = d1 + d2 � 1, corresponding to (1.47)-(1.49); the analysis for 

general Γ follows from composition with permutations. First, we note that this allows us 

to write Γ̂ � ξ = (ξR, ξT ) ∈ R
d1 ×∏d2

i=1 L−1
i Z. Second, we note that for any α ∈ N

d, we 

may follow the convention in (1.26) and write α = αRΓ
+ αTΓ

. We then define

N
d
RΓ

= {α ∈ N
d | αTΓ

= 0}, N
d
TΓ

= {α ∈ N
d | αRΓ

= 0}. (A.1)

Definition A.1. Let Γ = R
d1 ×∏d2

i=1 LiT with N � d1, d2 � 0, d = dim Γ = d1 + d2 � 1.

(1) We define the Schwartz class S (Γ; C) on Γ via

S (Γ; C) = {f ∈ C∞(Γ; C) | [f ]Γ,α,β = sup
x∈Γ

|xα∂βf(x)| < ∞ for all α ∈ N
d
RΓ

, β ∈ N
d}

(A.2)

and on Γ̂ via

S (Γ̂; C) = {f : Γ̂ → C | f(·, ξT ) ∈ C∞(Rd1 ; C) for all ξT ∈
d2∏

i=1

L−1
i Z and

[f ]Γ̂,α,β = sup
ξ∈Γ̂

|ξα∂βf(ξ)| < ∞ for all α ∈ N
d, β ∈ N

d
RΓ̂

}. (A.3)

We equip S (Γ; C) and S (Γ̂; C) with the Fréchet topology induced by the countable 

family of seminorms {[·]Γ,α,β}α∈Nd
RΓ

,β∈Nd and {[·]Γ̂,α,β}α∈Nd,β∈Nd
R

Γ̂

, by endowing 

S (Γ; C) and S (Γ̂; C) with the metrics

dS (Γ)(f, g) =
∑

α∈Nd
RΓ

∑

β∈Nd

1

2|α|+|β|

[f − g]Γ,α,β

1 + [f − g]Γ,α,β
,

d
S (Γ̂)(f, g) =

∑

α∈Nd

∑

β∈Nd
R

Γ̂

1

2|α|+|β|

[f − g]Γ̂,α,β

1 + [f − g]Γ̂,α,β

. (A.4)

(2) We define the unitary Fourier and inverse Fourier transforms F ±
Γ : S (Γ; C) →

S (Γ̂; C), F ±

Γ̂
: S (Γ̂; C) → S (Γ; C) on S (Γ; C) and S (Γ̂; C) via

F
±
Γ {f}(ξ) =

1√∏
i∈TΓ

Li

∫

Γ

f(x)e∓2πiξ·x dx = F
∓
Γ {f}(−ξ),
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F
±

Γ̂
{f}(x) =

1√∏
i∈TΓ

Li

∫

Γ̂

f(ξ)e∓2πiξ·x dξ = F
∓

Γ̂
{f}(−x). (A.5)

(3) We define the class of tempered distributions S ′(Γ; C) and S ′(Γ̂; C) to be the set 

of continuous linear functionals on S (Γ; C) and S (Γ̂; C), respectively.

Next we record some important properties of the Schwartz classes S (Γ; F) and 

S (Γ̂; F).

Proposition A.2. Let Γ be defined as in (1.47)-(1.49). Then the following hold.

(1) We have the continuous inclusions S (Γ; C) ↪→ Lp(Γ; C) and S (Γ̂; C) ↪→ Lp(Γ̂; C)

for any 1 � p � ∞.

(2) We have the continuous inclusion Lp(Γ; C) ↪→ S ′(Γ; C) and Lp(Γ̂; C) ↪→ S ′(Γ̂; C)

for all 1 � p � ∞.

(3) For any f ∈ S (Γ; C), α ∈ N
d
RΓ

, and β ∈ N
d the functions gα,β , hα,β : Γ → C defined 

via gα,β(x) = xα∂βf(x) and hα,β = ∂α(xβf(x)) belong to S (Γ; C). Furthermore, the 

maps f �→ gα,β and f �→ hα,β are continuous. Similarly, for any f ∈ S (Γ̂; C), α ∈
N

d, and β ∈ N
d
RΓ̂

the functions gα,β , hα,β : Γ → C defined via gα,γ(ξ) = ξα∂βf(ξ)

and hα,β = ∂α(ξβf(ξ)) belong to S (Γ̂; C). Furthermore, the maps f �→ gα,β and 

f �→ hα,β are continuous.

(4) If f ∈ S (Γ; C), then F ±
Γ {f} ∈ S (Γ̂; C) and the map f �→ F

±
Γ {f} is continuous. 

Likewise, if f ∈ S (Γ̂; C), then F ±

Γ̂
{f} ∈ S (Γ; C) and the map f �→ F

±

Γ̂
{f} is 

continuous.

(5) If f ∈ S (Γ; C) and g ∈ S (Γ̂; C), then

∫

Γ̂

F
±
Γ {f}(ξ, k)g(ξ, k) dξdk =

∫

Γ

f(x, y)F ±

Γ̂
{g}(x, y) dxdy. (A.6)

(6) If f ∈ S (Γ; C), then f = F
∓

Γ̂
◦ F

±
Γ {f}. Similarly, if f ∈ S (Γ̂; C), then f =

F
∓
Γ ◦ F

±

Γ̂
{f}.

(7) The Fourier and inverse Fourier transforms F ±
Γ : S (Γ; C) → S (Γ̂; C) on S (Γ; C)

are isomorphisms from S (Γ; C) to S (Γ̂; C). Likewise, the Fourier and inverse 

Fourier transforms F ±

Γ̂
: S (Γ̂; C) → S (Γ; C) on S (Γ̂; C) are isomorphisms from 

S (Γ̂; C) to S (Γ; C)

Proof. Define

τ =

{
1, Γ = R

d

max{1, 2 maxi∈{1,...,d2} Li}, otherwise.
(A.7)
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To prove the first item, we note that for any 1 � p < ∞, f ∈ S (Γ; C), and α, β ∈ N
d
RΓ

with |α| = d + 1, |β| = �(d + 1)/p� + 1 we have

‖f‖Lp(Γ) �

⎛
⎜⎝
∫

B(0,τ)

|f(x)|p dx +

∫

B(0,τ)c

dΓ(x, 0)α|f(x)|pdΓ(x, 0)−α dx

⎞
⎟⎠

1/p

�

⎛
⎜⎝‖f‖p

L∞ +

(
sup

x∈B(0,τ)c

dΓ(x, 0)α/p|f(x)|
)p ∫

B(0,τ)c

dΓ(x, 0)−α dx

⎞
⎟⎠

1/p

� ‖f‖L∞ + sup
x∈B(0,τ)c

dΓ(x, 0)β |f(x)| � [f ]Γ,0,0 +
∑

β∈Nd
RΓ

,|β|=�(d+1)/p�+1

[f ]Γ,β,0, (A.8)

and when p = ∞ we have ‖f‖L∞(Γ) = [f ]Γ,0,0. It follows then that S (Γ; C) ↪→ Lp(Γ; C)

for all 1 � p � ∞. A similar set of computations can be performed to prove S (Γ̂; C) ↪→
Lp(Γ̂; C) for 1 � p � ∞. For the second item, suppose that we have a sequence {fk}∞

k=1 ⊂
Lp(Γ; C) for 1 � p � ∞ such that fk → f in Lp(Γ; C). We note that the canonical 

distribution Tfk
: S (Γ; C) → C associated to each fk defined via

〈Tfk
, ϕ〉S ′,S =

∫

Γ

fkϕ dx for all ϕ ∈ S (Γ; C) (A.9)

is clearly linear. By the first item and Hölder’s inequality, if {ϕm}∞
m=1 ⊂ S (Γ; C) and 

ϕm → ϕ as m → ∞ in S (Γ; C), then for each k we have

|〈Tfk
, ϕm − ϕ〉S ′,S | � ‖fk‖Lp ‖ϕm → ϕ‖Lq → 0. (A.10)

This implies that Tfk
∈ S ′(Γ; C). Furthermore, since fk → f in Lp(Γ; C), by the first 

item and Hölder’s inequality again, we have

|〈Tfk
− Tf , ϕ〉S ′,S | � ‖fk − f‖Lp ‖ϕ‖Lq → 0 for all ϕ ∈ S (Γ; C). (A.11)

Since the map Lp(Γ; C) � f �→ Tf ∈ S ′(Γ; C) is also clearly injective, the inclusion 

map i : Lp(Γ; C) → S ′(Γ; C) as is well-defined and continuous. This proves the second 

item for S (Γ; C), and the same argument can be applied to prove the second item for 

S (Γ̂; C). The third item follows directly from the Leibniz rule.

To prove the fourth item, we first note that if f ∈ S (Γ; C), by the first and third 

items we have ∂α((−2πix)γf) ∈ S (Γ; C) ⊂ L1(Γ; C) for any α, γ ∈ N
d1 . This shows that 

F
±
Γ f(·, k) ∈ C∞(Rd1 ; C) for any k ∈∏d2

i=1 L−1
i Z. Then for any α, γ ∈ N

d1 , β ∈ N
d2 , we 

have
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(−2πiξ)α(−2πik)β∂γ
ξ F

±{f}(ξ, k)

= (−2πiξ)α(−2πik)β∂γ
ξ

∫

Γ

f(x, y)e∓2πiξ·xe∓2πik·y dxdy

=

∫

Γ

f(x, y)(∓2πix)γ∂α
x e∓2πiξ·x∂β

y e∓2πik·y dxdy

= (−1)|α|+|β|

∫

Γ

∂α
x [(∓2πix)γ∂β

y f(x, y)]e∓2πiξ·xe∓2πik·y dxdy. (A.12)

By the first and third items, we find that the preceding inequality implies F ±{f} ∈
S (Γ̂; C) and if {fk}∞

k=1 ⊂ S (Γ; C) and fk → f in S (Γ; C), then F ±
Γ {fk} → F

±
Γ {f}

in S (Γ̂; C). Therefore, we can conclude that if f ∈ S (Γ; C) then F ±
Γ {f} ∈ S (Γ̂; C), 

and the map f �→ F
±
Γ {f} is continuous. Likewise, by a similar calculation we find that 

if f ∈ S (Γ̂; C) then F ±

Γ̂
{f} ∈ S (Γ; C), and the map f �→ F

±

Γ̂
{f} is continuous. To 

prove the fifth item, we note that by the first item and Fubini’s theorem,

∫

Γ̂

F
±
Γ {f}(ξ, k)g(ξ, k) dξdk =

∫

Γ̂

⎛
⎝
∫

Γ

f(x, y)e∓2πiξ·xe∓2πik·y dxdy

⎞
⎠ g(ξ, k) dξdk

=

∫

Γ

f(x, y)

⎛
⎜⎝
∫

Γ̂

g(ξ, k)e∓2πiξ·xe∓2πik·y dξdk

⎞
⎟⎠ =

∫

Γ

f(x, y)F ±

Γ̂
{g}(x, y) dxdy. (A.13)

To prove the sixth item, suppose f ∈ S (Γ; C) and for any fixed t > 0 and (x, y) ∈ Γ we 

consider the function

φ±(ξ, k) = e−πt2(|ξ|2+|k|2)e±2πiξ·x e±2πik·y

√∏d2

i=1 Li

. (A.14)

We note that

F
±

Γ̂
{φ±}(r, s) = F

±

Γ̂
{gt}(r − x, s − y), (A.15)

where gt(ξ, k) = (
∏d2

i=1 Li)
−1/2e−πt2(|ξ|2+|k|2). Furthermore, we note that the dual lattice 

of Δ =
∏d2

i=1 L−1
i Z is Δ′ =

∏d2

i=1 LiZ and the volume of the fundamental domain of Δ′

is 
∏d2

i=1 Li. Therefore,

F
±

Γ̂
{gt}(x, y) = F

±
Rd1

{e−πt2|·|2}(x) · F
±∏d2

i=1 L−1
i Z

{e−πt2|·|2}(y)

= t−d1e−π|x|2/t2

(
d2∏

i=1

Li

)−1 ∑

k∈
∏d2

i=1 L−1
i Z

e−πt2|k|2

e2πik·y
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= t−d1e−π|x|2/t2

t−d2

∑

k∈
∏d2

i=1 LiZ

e−π|y+k|2/t2

= t−(d1+d2)e−π|x|2/t2 ∑

k∈
∏d2

i=1 LiZ

e−π|y+k|2/t2

, (A.16)

where we used the Poisson summation formula for h(y) = e−πt2|y|2

on lattices to justify 

the second to last equality. By the fifth item, (A.15) and (A.16), we have

∫

Γ̂

e−πt2(|ξ|2+|k|2)e±2πiξ·x e±2πik·y

√∏d2

i=1 Li

F
±
Γ {f}(ξ, k) dξdk

=

∫

Γ

f(r, s)F ±

Γ̂
{gt}(r − x, s − y) drds

=

∫

Γ

f(r, s)F ±

Γ̂
{gt}(x − r, y − s) drds = f ∗ F

±

Γ̂
{gt}(x, y). (A.17)

We note that by the dominated convergence theorem, we have

lim
t→0+

∫

Γ̂

e−πt2(|ξ|2+|k|2)e±2πiξ·x e±2πik·y

√∏d2

i=1 Li

F
±
Γ {f}(ξ, k) dξdk = F

∓

Γ̂
◦ F

±
Γ {f}(x, y)

(A.18)

for all (x, y) ∈ Γ. On the other hand, we note that {F
±

Γ̂
{gt}}t>0 form an approximate 

identity on Γ since for all t > 0, F ±{gt}(r, s) � 0 on Γ and by (A.16),

∫

Γ

F
±

Γ̂
{gt}(r, s) drds = t−(d1+d2)

∫

Γ

e−π|r|2/t2 ∑

k∈
∏d2

i=1 LiZ

e−π|s+k|2/t2

drds

= t−(d1+d2)

∫

Rd1

e−π|r|2/t2

dr

∫

Rd2

e−π|s|2/t2

ds = 1, (A.19)

and by (A.19) we also have limt→0

∫
Γ\B(0,δ)

F
±

Γ̂
{gt}(r, s) drds → 0 for all δ > 0. There-

fore, for all (x, y) ∈ Γ we have

F
∓

Γ̂
◦ F

±
Γ {f}(x, y) = lim

t→0+
f ∗ F{gt}(x, y) = f(x, y). (A.20)

To prove the analogous inversion formula on S (Γ̂; C), for any given t > 0 and (ξ, k) ∈ Γ̂

we consider the function
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ϕ±(x, y) =

(
d2∏

i=1

Li

)1/2

e−πt2|x|2

e±2πiξ·xe±2πik·y. (A.21)

We note that

F
±
Γ {ϕ±}(η, m) = F

±
Γ {ht}(η − ξ, m − k) (A.22)

where ht(x, y) =
(∏d2

i=1 Li

)1/2

e−πt2|x|2

, and by a change of variables we have

F
±
Γ {ht}(ξ, k) =

(
d2∏

i=1

Li

)1/2

FRd1 {e−πt2|·|2}(ξ) · F∏d2
i=1 LiT

{1}(k) = t−d1e−π|ξ|2/t2

δ0,k,

(A.23)

where δ0,k is the Kronecker delta. Thus, by the fifth item, we have

∫

Γ

(
d2∏

i=1

Li

)1/2

e−πt2|x|2

e±2πiξ·xe±2πik·y
F

±

Γ̂
{f}(x, y) dxdy

=

∫

Γ̂

f(η, m)F ±
Γ {ht}(η − ξ, m − k) dηdm

=

∫

Γ̂

f(η, m)F ±
Γ {gt}(ξ − η, k − m) dηdm = f ∗ F

±
Γ {ht}(ξ, k). (A.24)

We note that by (A.22), {F
±
Γ {ht}}t>0 form an approximate identity on Γ̂, therefore by 

repeating the same argument on S (Γ; C) we find that f(ξ, k) = F
∓
Γ ◦ F

±

Γ̂
{f}(ξ, k) for 

all (ξ, k) ∈ Γ̂. This proves the sixth item.

The last item follows immediately from the fourth item and the seventh item. �

We then extend the definition of the Fourier transform to the class of tempered dis-

tributions.

Definition A.3. Suppose T1 ∈ S ′(Γ; C) and T2 ∈ S ′(Γ̂; C), where Σ is defined via (1.25).

(1) We define the Fourier and inverse Fourier transform of T1 to be F ±
Γ {T1} ∈ S ′(Γ̂; C)

given by

〈F ±
Γ {T1}, ϕ〉 = 〈T1, F ±

Γ {ϕ}〉 for all ϕ ∈ S (Γ̂; C) (A.25)

(2) We define the Fourier and inverse Fourier transform of T2 to be F ±

Γ̂
{T2} ∈ S ′(Γ; C)

given by
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〈F ±

Γ̂
{T2}, ϕ〉 = 〈T2, F ±

Γ̂
{ϕ}〉 for all ϕ ∈ S (Γ; C) (A.26)

We note that by Proposition A.2, the maps F ±
Γ : S ′(Γ; C) → S ′(Γ̂; C) and F ±

Γ̂
:

S ′(Γ̂; C) → S ′(Γ; C) are also isomorphisms.

Throughout the paper we will follow standard notation by denoting the Fourier and 

inverse Fourier transforms for a Schwartz function f ∈ S (Γ; C) or a tempered dis-

tribution f ∈ S ′(Γ; C) by f̂ = F
+
Γ {f}, f̌ = F

−
Γ {f}. Sometimes we will also write 

FΓ[f ] = F
+
Γ {f}, F −1

Γ [f ] = F
−
Γ {f}.
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