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including that these spaces are an algebra in the supercritical
regime, which may be of independent interest.
© 2023 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license
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1. Introduction

The existence of traveling wave solutions to the equations of fluid mechanics has been
a subject of intense study for nearly two centuries (see Section 1.4 for a brief summary).
Until recently, most of the mathematical results in this area focused on inviscid fluids,
but work in the last few years constructed traveling wave solutions to the free bound-
ary Navier-Stokes equations with a single horizontally infinite but finite depth layer of
incompressible fluid [15], and with multiple layers [22] in a uniform, downward-pointing
gravitational field. The purpose of the present paper is to extend these constructions into
more general physical configurations by considering two effects: inclination of the fluid
domain, which results in a component of the gravitational field parallel to the fluid layer;
and, periodicity of the fluid layer in certain directions. The key to the constructions in
[15,22] was the identification and utilization of a new scale of anisotropic Sobolev spaces,
which serve as the container space for the function describing the free surface of the
fluid. The results in this paper rely crucially on some new functional analytic properties
of these spaces, which we prove here: the development of this scale of spaces on domains
with periodicity; and, the fact that these spaces form an algebra in the supercritical
regime. While these results are essential for our specific PDE needs, they may be of
independent interest to those interested in Sobolev spaces.

1.1. Kinematic and dynamic description of the fluid

In this paper we consider a single finite depth layer of viscous, incompressible fluid.
We assume that the fluid evolves in a strip-like domain, bounded below by a flat, rigid,
inclined surface and above by a free moving surface that can be described by the graph of
a continuous function, in dimensions n > 2 (though, of course, only the cases n € {2, 3}
are physically relevant). Furthermore, we assume that the fluid is subject to a uniform
gravitational field & € R™.

Prior to specifying the fluid domain or the equations of motion, we fix an orthogonal
coordinate system as follows. We choose the unit vector e,, to be normal to the inclined
surface, and we choose the unit vector e; in such a way that & lies in the e;-e,, hyper-
plane. In other words, we posit that the uniform gravitational field & resolves into two
components as & = ke; — ge,,, where k € R and g € (0,00). We can then define the
angle of incline of the domain, 6§ € (—7/2,7/2), via tan 6 = r/g (see Fig. 1).
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® Qyy¢(.p) - fluid domain under perturbation
® Xpi¢(p) - free moving surface
e X - rigid bottom surface

o s(x,)e; - equilibrium shear flow

o & = key — ge, - uniform gravitational force
e 0 - angle of incline
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Fig. 1. A sample portion of the time-dependent fluid domain under perturbation.

Next we turn to a description of the fluid cross-section, ¥, which will allow us to
specify the free surface and rigid bottom of the fluid and to model periodicity. The
flat rigid bottom of the fluid, which is orthogonal to the e, direction, is described by
(n — 1)-dimensional sets of the form

. {R x [['2) %, where $; = R or else & = L, T a1

H:’L:_]_l LZTa

where LT = R/LZ denotes the 1-torus of periodicity length L > 0. This choice of ¥
allows us to model: full periodicity in all directions, which corresponds to the second
case; no periodicity, which corresponds to the first case with each 3; = R; or partial
periodicity when n > 3, which corresponds to the first case with at least one ¥; = L;T.
However, for technical reasons that we will detail below, in the case of partial periodicity
we cannot allow periodicity in the e; direction, and so the first factor of 3 must be R. To
be more explicit in the physically relevant cases n € {2,3}, we note that (1.1) allows for
¥ € {R, LT} when n = 2, and when n = 3 it allows for ¥ € {R? R x LT, L; T x LyT},
but we exclude the possibility that > = L1 T x R. In any dimension, we endow ¥ with
the usual topological and smooth structure.

With ¥ in hand, we can now describe strip-like n-dimensional domains with cross
section ¥. Given any function ¢ : ¥ — (0,00), we define the set Q; C ¥ x R via
Qe ={z=(,2,) € ExR|0 <z, < {(2)} and the -graph surface ¥; C ¥ x R
via X = {z = (@/,2,) € I xR | z,, = ¢(2') for some ' € ¥}. We note that if ( is
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continuous, then the upper boundary of 2; is ¥; and its lower boundary is given by
Yo={z=(2',z,) €e ¥ xR |z, =0}.

We assume that at equilibrium, with all external forces and stresses absent, the fluid
occupies the flat equilibrium domain Qp = {z = (¢/,2,) € ¥ xR | 0 < z,, < b} for some
equilibrium depth parameter b > 0. Furthermore, we assume that under perturbation, the
fluid occupies the time-dependent fluid domain € ¢(. 4), where ¢ : £ x [0, 00) = (—b, c0)
is an unknown free surface function. The fluid is then bounded above by the (b+()-graph
surface ¥4 ¢(.,1) and below by the flat boundary .

In addition to the aforementioned gravitational force, we posit that there are four
other distinct forces acting upon the fluid: one in the bulk and three on the free surface.
The first bulk force is a generic force described by the vector field (-, t) : Qpreery — R™
The first surface force is a constant external pressure P.,; € R applied by the fluid above
the free surface. The second surface force is generated by an externally applied stress
tensor, which is described by a map T : Soge(y — REGT, where RETH = {M € R™*™ |
M = MT} is the set of symmetric n x n matrices. The symmetry condition is imposed
to be consistent with the fact that stress tensors are typically symmetric in continuum
mechanics, but this condition is not essential and could be dropped in our analysis. The
third surface force is the surface tension generated by the surface itself, which we model
in the standard way as —oH((), where o > 0 is the coefficient of the surface tension,
and

= div’/ 7VI§

is the mean-curvature operator.

We assume that the evolution of the fluid is described for time ¢ > 0 by its velocity
field w(-,t) : Qype(s) — R™ and its pressure P(-,t) : Qpy¢(..s) — R. For each t > 0, we
require that the fluid velocity w, the pressure P, and the free surface ( satisfy the free
boundary incompressible Navier Stokes equations:

p(Oyw 4+ w - Vw) — pAw + VP = —pge,, + pre1 +§, in Qorc(t)

divw = 0, in Qppeen

¢ =w-v/1+ V(2 on Xpye(-t) (1.3)
(PI — pDw)v = [—oH(C)I + Py + T, on Syic()

w =0, on Y.

Here p > 0 is the fluid density, p > 0 is the fluid viscosity, Dw = (Vw) + (Vw)” € R
is the symmetrized gradient of w, and v(-,t) = (=V'¢(-,t),1)/+/1+ |V'C(-,t)|? € R"
is the outward pointing unit normal to the surface ¥y, ¢(. ). The first two equations in
(1.3) are the standard incompressible Navier-Stokes equations; the first equation asserts

the Newtonian balance of forces, the second enforces the conservation of mass. The
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third equation is the kinematic boundary condition describing the evolution of the free
surface with the fluid. We note in particular that the third equation may be written as
a transport equation in the form of 0;,¢ + V'¢ - w'|s, (.,
that the free surface ( is transported by the horizontal component of the velocity w’ and

= Wn|5,,¢(...h» Which shows

driven by the vertical component of the velocity w,. The fourth equation encodes the
dynamic boundary conditions asserting the balance of forces on the free surface. The
fifth equation is the typical no-slip condition enforced on flat rigid surfaces.

For the sake of convenience, we shall assume without loss of generality that p = u =
g = 1. This can be achieved by dividing both sides of the first equation in (1.3) by p,
rescaling the space-time variables, and renaming b, o, %, f, P.yi, T, and (in the periodic
settings) the periodicity length scales L;, accordingly. This yields the system

ow+w-Vw— Aw+ VP = —e, + ke + f, in Qyiein
divw = 0, in Qe
0:¢ = w-v/T+ V(P on Xpi¢(-,t) (1.4)
(PI —Dw)v = [~oH () + PopeI + Ty, on Xyt c(.0)

w =0, on Y.

For a differentiable vector field v and a scalar p, we define the stress tensor S(p,u) =
pl — Du € R2X™, where I is the n x n identity and Dwu is the symmetrized gradient of

sym
u. By defining the divergence operator to act on tensors in the canonical way, we have

div S(p,u) = Vp — Au + V divu. This means that in the first equation of (1.4) we can

rewrite
VP — Aw = div S(P,w). (1.5)
1.2. Shear flows and perturbations
The system (1.4) admits steady shear flow solutions that reduce to hydrostatic equi-

librium when k = 0. To see this, we suppose that { = O,} = 0,7 = 0. We then define
the smooth functions sg,s : R — R via

2
so(xn) = by, — % and s(z,) = kso(zn). (1.6)

We then define the steady shear velocity field U! : ©, — R™ via
W', x,) = s(zn)er, (1.7)
and the equilibrium hydrostatic pressure p : 0, — R via

p(a', @) = Pegt — T +b. (1.8)
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See Fig. 1 for a sketch of the W profile. One can readily check that w = W', P =p,( =0
is a steady shear flow solution to (1.4) when § = 0,7 = 0. Note that these shear flow
solutions are special solutions induced by x # 0, and they exist due to the presence of
viscosity, with no clear analogue in the Euler system. In the literature, these solutions
are sometimes referred to as Nusselt solutions.

We will study the system (1.4) as a perturbation of this steady solution. We define
the perturbation of the velocity field and pressure field given by

@ (o, t) = w(z, ) + Wi(z), P (w,t) = Pa,t) +pla), (1.9)

and we see that (El,ﬁl, ¢) is a solution to (1.4) if and only if (w, P, () satisfies

dyw + div S(P,w) + (w + W) - V(w + W) =1, in Qe

divw =0, in Qb-&-((‘,t)

G+ V'C-w' + (010)s(C + b) = wy, on Yy (1.10)
S(Pw)y =[(( —oHO) +T — rl(e1 ® en +en @e1)]y, on Tpycip

w =0, on Y.

Here we have utilized the identity (1.5) in the first equation of (1.10), and the tensor
product v ® w € R™ ™ of two vectors v,w € R™ is defined in the standard way via
(U (39 w)ij = V;Wj.

1.8. Traveling wave solutions around shear flows

In this paper our main goal is to construct traveling wave solutions to (1.10), which are
solutions that are stationary when viewed in a coordinate system moving at a constant
speed. For this stationary condition to hold, the moving coordinate system must travel
at a constant velocity parallel to the flat rigid surface ¥y. In this paper we assume
that the traveling waves move at a constant velocity in the direction of incline; in other
words, that the moving coordinate system’s velocity relative to the Eulerian coordinates
of (1.3) is ve; for some v € R\ {0}. The speed of the traveling wave is then |y|, and
sgn(v) indicates the direction of travel along the e; axis.

Next we proceed to reformulate the problem in the traveling coordinates. We assume
that the stationary free surface is given by an unknown function 7 : ¥ — (—b,00), and
it is related to ¢ via ((a',t) = n(a’ — yter). The stationary velocity, pressure, force, and
stress v, q, f, T are related to w, P, ?, T via

w(zx,t) =v(x —7ter), P(x,t) =q(x —~vtey),

. ~ (1.11)
f(z,t) = f(z —vter), T(x,t) =T(a" —ter).

Then using (1.11), the system (1.10) reduces to a time-independent system for (v, q,n)
given the forcing terms f and T,
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div S(q,v) —ver - Vo + (v + W) - V(v + W) =7, in Qpiy

dive =0, in Qpiy
—yon+V'n-v' + (01n)s(n +b) = vy, on Xy, (1.12)
S(q, )N =[(n—oHm)I+T — knler @ e, + e, @e1)|N, on Xpiy

v =0, on X,

where we have defined the non-unit normal vector field
N = (=V'n,1). (1.13)
For technical reasons to be discussed later in Section 1.7, it is convenient for us to remove

the 7 terms appearing in the fourth equation of (1.12) by introducing an additional time-
independent perturbation term

W2 (2, x,) = krpn(z')e; (1.14)
and by defining the modified shear velocity and modified pressure via
vl (z,t) = v+ W(2), 7'(2) = q() +n(a’). (1.15)

One may readily check that (7', G", ) is a solution to (1.12) if and only if (v, ¢, ) satisfies

div S(q,v) —vye1 - Vv — ykxp,dimer + (v + W+ W?2) - V(v + W+ W?)
+(V'n,0) — kx,A'n(z')e; — k(x,V'01n,01m) = §, in Qpyp
dive 4+ sz, d1n(z’) =0, in Qpypy
(=y+sn+b)+r(n+bn)on=0v-N, on Spy
S(q, N = [—oHMI+T +tb+n)(er ® (V'n,0)+ (V'n,0) @e1)N, on Xy,
v =0, on Y.
(1.16)

We note that by using the perturbations introduced in (1.15), we have replaced the 7
terms in the fourth equation of (1.12) by either derivatives of ) or products of n and its
derivatives, at the price of introducing additional terms in the first equation.

1.4. Previous work

The system (1.3) and its variants have been studied extensively in the mathematical
literature. For a brief survey of the subject, we refer to Section 1.2 of Leoni-Tice [15]
and Section 1.4 of Tice [25]. For a more thorough review of the subject, we refer the
surveys of Toland [26], Groves [7], Strauss [23], the recent paper by Strauss et al. [12] in
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the inviscid case, and to the surveys of Zadrzytiska [29] and Shibata-Shimizu [20] in the
viscous case.

When « = 0, the small data theory for the free boundary problem (1.3) over periodic
domains is well-understood in dimension n = 3. For the problem with surface tension,
Nishida-Teramoto-Yoshihara [17] constructed global periodic solutions and proved that
they decay exponentially fast to equilibrium. For the problem without surface tension,
Hataya [11] constructed global solutions decaying at a fixed algebraic rate, and later Guo-
Tice [9] constructed global solutions decaying almost exponentially. In the non-periodic
setting, Beale [3] established the local-wellposedness of solutions without surface tension,
and Beale [4] proved the global existence of solutions with surface tension. Beale-Nishida
[5] later established that the aforementioned solutions decay at an algebraic rate. Tani-
Tanaka [24] proved the global existence solutions with and without surface tension under
milder assumptions on the initial data, but did not study their decay rates. Guo-Tice
[10] proved that for the problem without surface tension, the global solutions decay at a
fixed algebraic rate.

The investigation of the dynamics of viscous shear flows without free boundary is
classical and dates back to the work of Orr [18] and Sommerfeld [21], where they noted
the so-called viscous destabilization phenomenon. This was subsequently investigated
formally by many authors in the physics literature, including Heisenberg [13], Lin [16],
and Tollmien [27]. However, it wasn’t until recently that a rigorous mathematical proof
for the instability of viscous incompressible shear flows without free boundary appeared,
in the work of Grenier-Guo-Nguyen [6].

When & # 0, much less is known about the dynamics of the free boundary problem
(1.3). Ueno [28] studied the 2D problem with surface tension in the thin film regime
and established uniform estimates of solutions with respect to the thinness parameter.
Padula [19] studied the 3D problem with surface tension and proved sufficient conditions
for asymptotic stability under a priori assumptions on the global existence of solutions.
Tice [25] studied the asymptotic stability of shear flow solutions to the nonlinear problem
with and without surface tension, and proved that solutions decay exponentially fast to
equilibrium with surface tension and almost exponentially without surface tension.

The existence of traveling wave solutions without background shear flows to (1.3) first
appeared in the recent work of Leoni-Tice [15], and the results therein were extended by
Stevenson-Tice [22] to a multilayer configuration. To the best of our knowledge, there
are no known results on the existence of traveling wave solutions around shear flows in
the case when x # 0 or when the cross section X is periodic.

1.5. Reformulation in a fized domain

We note that in (1.16), the fluid domain of interest €2, is dependent on an unknown
free surface 1. To bypass the difficulty of working in such a domain, we proceed to
reformulate the problem on a fixed domain €, = X x (0,b), at the cost of worsening the
nonlinearities in the system.
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Fig. 2. The flattening map §, and its inverse.

To do so we introduce the flattening map §, : Q, — Qy4,, associated to a continuous
function 7 : ¥ — (—b, 00), defined via

(@), (1.17)

Sn(zlaxn) =x+ b n-.

We note that by construction, §,|s, = 2o and §,(2',b) = £,4p (see Fig. 2). Moreover,

Sy is bijective with its inverse 3;1 : Qg — Q, given by

3, y) = (y/, I%) : (1.18)

Throughout the rest of the paper we will typically suppress the dependence of the
subsequent maps and their associated domains on b and 7, e.g. writing §, as § and
as €, unless these dependencies need to be emphasized. We also use the following abuse
of notation throughout the paper: since the hypersurface ¥, C ¥ x R is canonically
diffeomorphic to X via the projection map 7 : X, — ¥ given by w(a’,b) = 2/, we will use
this to identify H*(Xp; V') with H*(X; V) (and similar spaces) for any finite dimensional
vector space V. This allows us to sometimes write f(z’) instead of f(z',b), and allows
us to apply the horizontal Fourier transform on ¥ in the natural way.

Following this convention, we note that § is a homeomorphism inheriting the regularity
of n, in the sense that if n € C*(3Z;R) then § is a C* diffeomorphism. When 7 is
differentiable we may compute

I(n—l) (n—1) O(n—l) 1
V§(x) = ( T a)T - n(;,)) : (1.19)
b b

Thus, the Jacobian J and the inverse Jacobian K of § are

n 1 b
1 _t_ v 1.2
J =det VF + b’ K bt (1.20)

We then introduce the matrix A : Q, — R™*" defined via
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7Invl (I,) , I/
A(z) = (V§)~T = [ Lo=vxn-n) - =ohen— =(I(n—1)x(n—1) —xnzcv"T”>,
le(n—l) b+nb(m/) 01><(n—1) IC

(1.21)

the A-dependent differential operators

(Vaf)i ZA”a fo (X V.au); ZXA]kaku“ diva X = ZAWBX“

7,k=1 ,j=1
(1.22)
and also
(DAU)ij = Z Aikﬁkuj + Ajkakui, SA(p, u) =pl — D yu,
k=1
diva Sa(p,u) =Vap — Aau — Vadivau, (Aqu); Z Aj 1Ok (Ajim O ;).
J,k,m=1
(1.23)

Now writing u, U, U? : Q - R",p: Q =R, f: Q = R"viau = voF,U' = W'loF,U? =
W203,p = qog, where v, ¢ satisfies (1.10), (1.16) can be reformulated as the quasilinear

system

divg Sa(p,u) —ver - Vau — yk(z, +n5=)01mes

+(u+U'+0U?) - Va(u+ U +U?)

+(V'n,0) — & (2 + 0% ) A'ner — k((zn + 0% )V'O1n, 1) = fo F, in Q
divau+ & (@, +n(2’) %) 01n =0, in Q
u- N = (—y+ s(n+b) + k(n+ b)n) on, on X
Sap, u)N = [—ocHm)I+T oFy +r(n+b)(er ® (V'n,0)+ (V'n,0)@e1)]N, on3
u =0, on Y.

(1.24)

1.6. Statement of main results

We now state the main results obtained in this paper, though we delay a thorough
discussion of them to the next subsection. To state these results in full generality we first
introduce some notation related to Cartesian products of groups.

Definition 1.1. Suppose that d > 1 and

d
I'=][r, Ii=Ror L;T, L; >0, d > 1. (1.25)

i=1
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(1) Suppose that E C {1,...,d} and « € X for X € {I',T'}, where I is the dual group
of I'. We define zg € X via

r, ifjekl
(wp)y=1" 7 (1.26)
0, ifjé¢E.

The utility of this notation is seen in the formula z = xg + z g, valid for any set
EC{1,...,d}.
(2) We define the sets Rr, Ry, Tr, Ty C {1,...,d} via

RI‘ :Rf = {Z S {].,,d} : Fz :R} =: {tla"'7t|Rr\}7 (127)
TF:Tf :{Z S {1,,d}1“l :LlT}:{l,,d}\RF
= {1,,d}\Rf = {’L17...,’L|Tr|}, (128)

where we order these such that v; <--- <7tg, and t; <--- < tj7.|. This allows us
to write I' > @ = 2, + 21 and I' 3 § = &p. + &7

With this notation in hand, we are ready to state the main results. The first result
concerns a key property of the anisotropic Sobolev space X*(X;F), which serves as the
container space for the free surface function n when F = R. We refer the reader to
Appendix A for the definition of .#/(X; C).

Theorem 1.2 (Proven later in Section 2.2). Suppose R 3 s > d/2, where d = dim ¥ and
Y is defined via (1.1). Then the anisotropic space X*(3;F) defined via

X*(5:F) = {{f € S'(%C) | f € LLo($:C), f =T, |flx- <oo}, F=R
’ {f € Z'(%5C) | f € Lipo(85C), || fllx+ < o0}, F=C,
(1.29)
where
; el + 16l forg#0
R TRYAVES TN _ ) )
1/l = IR Fllzz, for w(e) {1 foré 0, (1.30)

is an algebra.

The proof of this theorem utilizes anisotropic Littlewood-Paley techniques heavily
inspired by [8]. We note that this theorem is only non-trivial in the case when 1 €
Ry, |Rx| > 2, where the set Ry is defined via (1.27). It turns out that in all the remaining
possibilities of ¥, the anisotropic Sobolev X*(3; F) coincides with the standard Sobolev
space H*®(3;TF), so the result follows directly from standard Sobolev theory. In Lemma 2.1
we give the precise characterization of product domains I" for which H*(I';F) = X*(T;F)
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and H*(I;F) C X*(T;F). Moreover, we show in Proposition 2.2 that if I' = I, T x R,
then the space X*(I'; IF) is not complete, which is an initial indication of why we cannot
allow for ¥ = L1 T x R in our analysis.

With Theorem 1.2 in hand, we are able to prove the solvability of flattened system
(1.24), and by extension the solvability of the original system (1.16). Before stating the
solvability results we make a quick comment on the forcing terms in (1.16) and (1.24).
We first note that the bulk force f in (1.16) needs to be defined in the domain Qpy,
which depends on the unknown free surface function 7. In order to work with § without
the implicit need to know 7 first, we will assume a priori that f is defined in all of
¥ x R. We will also need the map (f,7) — fo §, to be C*, since we need to invoke the
implicit function theorem in our analysis in Section 4. It is known that this is possible,
for example, if the domain of f is H**! and its codomain is H®. Due to the strip-like
structure of the fluid domain and the flattening map defined in (1.17), we can in fact allow
for another type of bulk force which preserves the regularity of its domain. A detailed
discussion of this can be found in Section 1.4 of [15]. Moving forward, we consider the
generalized bulk forces f + Lg,,, f and the generalized surface forces Tls,,, + Sp4yT in
(1.16), where Lq, ., f(2', 2,) = f(z') and Spy,T(2', z,,) = T'(2").

With this in mind, we are able to prove the solvability of (1.24). The spaces
Cé“, Ck,oH*(;R™) referred to in the following results are defined in Section 1.8, and the
space X® is defined in Definition 3.10. We also write X 3 2’ = 2’z + 27, in accordance
with the notation introduced in (1.26).

Theorem 1.3 (Proved later in Section 4.2). Let & be given by (1.1) and suppose that

N > s> 5. Further suppose that either o >0 andn > 2 or else 0 =0 and n = 2. Then
there exist open sets

U C (R\{0}) x R x H*P2(S x Ry R2XM) x H5F2 (3 RX™)

sym sym

x H¥THE x R;R™) x H*(Z;R™) (1.31)
and O° C X?® such that the following hold.

(1) (0,0,0) € O°, and for every (u,p,n) € O° we have that

we el g rmy pe ot @Ry e T R) (132)
and

lim  0%u(z) =0 for allw € N™ such that |o] < 2+ [s - EJ (1.33)

|/, | 00

lim 0%(x) =0 for alla € N" such that |a| < 1+ {s - EJ ,  (1.34)

|y, |00
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maxy 1] < %, and the flattening map §, is a bi-Lipschitz homeomorphism and a
C3*ls=%] diffeomorphism.

(2) We have (R \ {0}) x {0} x {0} x {0} x {0} x {0} CU*.

(8) For each (v,k,T,T,f, f) € U*, there exists a unique (u,p,n) € O classically solving

divg Sa(p,u) —ver - Vau — yk(z, +n5=)oines
+ (u+ U+ U?) - V4 (u+ U +U?) + (V'n,0)
—k (zn +1%2) Aney — k(2 + %)V 01n, O1n)
=fody+La,f, inQ
divau+ (2, +n(a’) %) O1n =0, inQ (1.35)
u-N = (—=y+ s(n+b) + k(n+b)n) dn, on X,
Sa(p,u)N = [—ocH(n) L+ T o Fyls, + ST
+r(n+b)(e1 ® (V'n,0)+ (V'n,0) @ e1)| N, on Xy
u =0, on .

(4) The map U* > (v, k, T, T,f, f) = (u,p,n) € O% is C* and locally Lipschitz.

A few remarks are in order. First, we note again that in the physically relevant case
n = 3, we cannot solve (1.35) in the stated spaces if ¥ = L; T x R. Second, Theorem 1.3
is analogous to Theorem 1.1 in [15] for the problem without incline and periodicity,
and Theorem 1 in [22] for the multilayer problem. However, our choice of the function
space X° is slightly different from the one used there because we have formulated the
problem (1.35) in a slightly different manner, with the n term shifted from the dynamic
boundary condition into the bulk. This results in the pressure belonging to a standard
Sobolev space rather than a specialized anisotropic one, as in [15,22]. Third, we can say
something about the set of (v, k) parameters for which we can produce solutions,

B ={(y,k) € R\{0} xR | (v,,,T,T,f, f) € U® for some (T,T,f, f)}. (1.36)

Indeed, an examination of our proof of Theorem 1.3 shows that for every v € R\{0},
there exists a ko(y) > 0, depending on 7 and the other physical parameters in a semi-
explicit way (see Theorem 3.19), such that

(=r0(7),k0(7) E{r e R | (7, k) € P} (1.37)

However, the estimates in Theorem 3.19 suggest that for each x € R\{0}, the set {v €
R\{0} | (v,&) € P*} is bounded, and possibly empty for large |x|. We conjecture that
this is indeed the case, but we do not have a complete proof here due to the complicated
dependence the operator norm of Ly ,, defined in (3.65), on . Lastly, we note that by
(1.32) and the decay conditions (1.33), (1.34), the traveling wave solutions in the flattened
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domain correspond to what are known as solitary waves in the inviscid traveling wave
literature.

Using solutions constructed in the flattened domain via Theorem 1.3, we can then
produce solutions to the unflattened system (1.16). This leads us to the final result of
this paper.

Theorem 1.4 (Proved later in Section 4.3). Let ¥ be given by (1.1), and suppose that
N > s> 5. Suppose that either o >0 andn > 2 or else 0 =0 and n = 2. Let
Us < (R\{0}) x R x H**2(2 x RyRIM) x HoF3 (S REXT)

x HTHZ x R;R™) x H*(Z;R™) (1.38)

and O% C X* be the same open sets as in Theorem 1.3. Then for each (v,k,T,T,f, f) €
U?®, there exist

e a free surface function n € X*15/2(3;R) N C’és_n/QHQ(E;R) such that maxs, |n| <
b/2, and §, as defined in (1.17) a bi-Lipschitz homeomorphism and a Cls—7/21+3
diffeomorphism,

o a velocity field v € oH*2(Qpyp; R?) N CL=/242(Qp s RT),

o a pressure ¢ € H*TH( Qs R) N C’bLsfn/QHl(QbJrn; R),

e and constants C,; R > 0,

such that the following hold:

(1) (v,q,m) are classical solutions to

div S(q,v) —ve1 - Vv — ykx,01mer + (v + W+ W?2) . V(v + W + W?)

+(V'n,0) — kzn A'n(a")er — (2, V'O1n, 01n) = § + Lo, [, in Qpiy
divo + kx,din(z’) =0, in Qpgy
(—y +s(n+b) +k(n+bn)on=uv-N, on Spiy
S(g 0N = [=oHI + Tz, + So4nT + w0+ n)(ex ® (V'n,0)

+(V'n,0) @ ep)|N, on Ly
v =10, on Y.

(1.39)

(2) (voFy,qoFyn) €O C X,
(3) If (7*7’{*77;7T*7f*,f*) e U? satzsfy

Y = el 16 = B F T = Tall grose + 1T = Tell o
FF = Fellgoer +1F = Fell e < B, (1.40)
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then the corresponding solution triple (vs, q«,7x) satisfies

(v oSy, qoTnn) — (v 0 Fr.s @x © Ty 1)l e

S Oy =wlH 6=k HIT = Tell gose HIT = Tell gesrre 1T = Fell grasa +1f = Fill gro)-
(1.41)

1.7. Discussion of techniques and plan of attack

As in [15], our strategy for producing solutions to (1.24) is to employ an implicit
function theorem argument built on the linearization of (1.24),

div S(p,u) — yO1u — ykx01mer + (V'n,0) + s(z,)01u
+5' (xp)uner + krps(z,)Oiner — kxpA'ney — k(x, V'01n,01m) = f, inQ
divu + kx,0hn = g, in Q
Un + (v — )01 = h, on Y
S(p,w)en + ocA'ne, =k, on X
u =0, on Y.
(1.42)

When k = 0 and X = R"~!, the strategy for producing solutions to (1.16) is discussed
extensively in Section 1.5 of [15]. To succinctly summarize their approach, a viable strat-
egy for producing solutions to (1.4) is to use the implicit function theorem after first
proving that (1.42) induces an isomorphism (u,p,n) — (f,g,h, k) between a pair of
identified function spaces. Since (1.42) is not a standard elliptic system in the sense con-
sidered in Agmon-Douglis-Nirenberg [1], as the unknown free surface n only appears in
the equations imposed on the boundary, we follow the decoupling strategy in [15] and
first study the overdetermined system

divS(p,u) —you=f inQ

divu =g, in Q

S(p,u)e, =k, on X (1.43)
U, = h, on X

u = 0, on Eo

and its associated compatibility conditions. By the adjoint compatibility condition (3.25),
the free surface function 1 can be constructed from the data tuple (f, g, h, k) by means
of the pseudodifferential equation p (£)7(§) = ¢(§) for € € 3, where 3 is the dual group
of 3 defined via (1.54), and 1, p, are defined in (3.35), (3.19) as



16 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057

b
& = [ (Fe.00)- Vw7 - (6. 2,)QE 20 —) da
0

— k(&) - V(Eb,—7) + h(9),
p (&) = 2minés + (1 + 47| 20)m(E, —7). (1.44)

Here V,Q,m defined via (3.9) are symbols of special pseudodifferential operators. In
order to solve the pseudodifferential equation for 7, we need the precise asymptotics of
V,Q,m on 3. In particular, we note that when v # 0 and ¥ is defined via (1.1), the
asymptotics of m completely determine the asymptotics of p, on 3, which for v # 0 are
given in Lemma 3.6 as

{pv(f)l = (€ + 10 (©) + (1L + EP) s, >0 (1.45)

1o (7 = [E* LB 0,1)(€) + (1 + [E1*) L (0,1)< (€), o=0,n=2.

With the asymptotics of p., in hand, we define 7 via 7(§) = ¥(€)/p(§) for £ # 0, which
by (1.45) would imply

4
/51 E|L€| |2]lB 0,1) (1 + |§|2)s+5/2m(g)‘z]lB(O’l)c df

W
[€1?

S

Lo, + (1+ €3 P 20(€) P 1p0,1) dE.  (1.46)
=

Using the asymptotics of V, @ in Theorem 3.5, and the functional framework built on
the specialized anisotropic space X*®(3; R) that serves as the container space for the free
surface function 7 in Section 2.1, we can then utilize the equivalence (1.46) to recover 7 via
Fourier reconstruction. We note that by the first items of Lemma 2.1 and Theorem 2.5,
the free surface function n recovered through this process will be regular enough to be
a classical function as opposed just being a tempered distribution, which is a crucial
requirement for 7 to be utilized in the subsequent nonlinear analysis.

It is also worth mentioning that in the physically relevant dimension n = 3, we de-
liberately chose to ignore the configuration ¥ = (L1 T) x R, as in this case we would
have £ € Bg(0,7) <= & = (0,&),[&| < 7 for 7 = min(1, LT'). By (1.44), this implies
that [o,(§)[*La, 0. X Y = [EP10(E) 140, < W](agl 1, (0,r)- Unfortunately, in
this scenario we only have H' control over the low frequency modes of 1, and by Propo-

sition 2.2 the corresponding anisotropic space X*((L; T x R);R) fails to be complete.
If one were to consider the completion of this space, elements of the completion would
be equivalence classes of tempered distributions modulo polynomials. Since we mandate
elements of the container space for the free surface function 7 to be classical functions,
neither the space X*((L1T x R);R) nor its completion are suitable for the purposes of
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this paper. Practically speaking, this means that we cannot employ our techniques as-
suming a priori periodicity in the direction of incline. For the same reason, our framework
also cannot produce stationary solutions in the case when v = 0.

By solving for n through the aforementioned approach, we can then solve for (u,p)
by means of (1.42) and the linear isomorphism associated to (1.43). Fortunately, this is
possible as the results from the linear analysis in [15] continue to hold over ¥ defined in
(1.1). This is mainly due to the fact that many results in [15] are proved by analyzing the
low frequency behavior of functions in H*(R%;R) and X*(R? R). By utilizing the natural
isometric and measure-preserving identification between B (0,7) and Bpn.i(0,7), the
analogous results for H*(X;R) and X?*(3;R) can all be deduced from reducing a similar
set of calculations over ¥ and 3 to the calculations in [15] over R%. As such, the results
from [15] can be directly ported over with minimal modification of the proofs contained
therein.

However, in the case ¥ = L;T x R, the generalized space X*(I'; R) can fail to be
complete depending on the set I' over which it is defined. This is an initial indication
that some care needs to be taken in generalizing the space X*(R%; R) introduced in [15]
over general sets ' defined via (1.25). For the sake of simplicity, in Section 2.1 we will
assume that for d > 1, the set I' falls into one of the following four categories:

I = R%, (purely real)
(1.47)
d
= H LT, (purely toroidal)
i=1
(1.48)
do
=R x R% x HLﬂT, d1 >20,de >1,1+dy +de =d, (mixed with first factor real)
i=1
(1.49)
da
['=ILT xR x [[LiT, di,dy >0,1+dy +dy = d,
i=2

(mixed with first factor toroidal)
(1.50)

with the understanding that if d; = 0 then there are no additional real factors in the
Cartesian product and similarly if da = 0 (d2 = 0,1 in (1.50)) then there are no additional
toroidal factors in the Cartesian product. We note that these are specialized rearranged
cases of general sets I' defined via (1.25), with all toroidal moved to the end in the
reordered product with the real factors preceding. For general product domains I", the
relevant analysis can be reduced to the analysis over the four categories listed above
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Table 1
X?(T") in general dimensions d > 1.
General I' in terms of Rr,Tr  Corresponding case X*(T) is Relation to H*(T")
Tr = @ (purely real) (1.47) Complete X*(T) D H°('), equal if d =1
Rr = @ (purely toroidal) (1.48) Complete X°()=H*({) foralld > 1
1 € Rr,Tr # @ (mixed) Rearranged to (1.49) Complete X°(') D H*(I"), equal if d; =0
1 # Rr and Rp # @ (mixed) Rearranged to (1.50) Complete iff H®*(I3F) C X°(I';F)
di > 2

via a reordering map that fixes the first factor of I'. Therefore for the sake of simplicity
in this paper we chose to state the relevant results in Section 2.1 for X*(T';R) over the
specialized rearranged domains (1.47)-(1.50), even though they can be stated and proven
in greater generality. These results led us to identifying the “good sets” ¥ for which the
spaces X *(X;R) are compatible with our analysis, which is the motivation for the sets
Y considered in (1.1). A summary the completeness of X*(I';F) proved in Section 2.1 is
given in Table 1.

We note to the reader that in the last case (1.50), X*(I';R) can only be complete
if d > 4 which is not physically relevant. For this reason we chose not to study the
functional analytical properties of these spaces in this case even if they are complete,
though we believe that the main results in Section 2.1 and Section 2.2 can be proven
with appropriate modifications since we have H! type control over the low frequencies.
We also emphasize that while our functional framework cannot produce solutions in the
case I' = L1 T x R, it is possible that solutions exist in other functional settings.

Next, we discuss the role of the perturbations (1.9), (1.15), and in particular the role
of (1.14). First, by renormalizing the pressure via (1.8), the vertical gravitational force
—e,, shifts from the bulk to the dynamic boundary conditions, appearing as the term (v
on the right hand side of the fourth equation in (1.10); this term later appears as nA/ in
the fourth equation of (1.12). By further modifying the pressure via (1.15), we eliminate
the term nA from (1.12), at the price of introducing (V'n,0) to the bulk in (1.16) and
(1.24). The advantage of this formulation is that the pressure ¢ in Theorem 1.4 lives in a
standard Sobolev space H*(€);R), as opposed to the alternative formulation in [15], for
which ¢ belongs to a specialized Sobolev space built on the anisotropic space X*(X;R).

A key difference between the system (1.10) and the analogous system in [15] is that
upon removing the background shear flow (1.7), we are left with the term xn(e; ® e, +
en ® e1)N appearing in the fourth equation of (1.12). Since 7 is expected to belong to
a specialized Sobolev space X*(X;R) that does not coincide with the standard Sobolev
space H*(¥;R) in general, attacking the problem at this level would require one to build
specialized spaces for the data tuple (f, g, h, k), and also prove that the associated linear
maps remain to be isomorphisms in this modified functional framework. By introducing
an additional perturbation (1.14), we were able to replace this term with terms that are
all standard Sobolev in the regime s > n/2 thanks to the second item of Theorem 2.5,
as the non-trivial terms are either derivatives of functions in X*(X;R) or products of
functions in X*(3;R) and derivatives of functions in X*(X;R). This approach allows us
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to directly employ the functional framework from [15] at the price of introducing worse
nonlinearities in (1.16) and (1.24).

To construct solutions to (1.16), we use the associated linear isomorphism in conjunc-
tion with the implicit function theorem around the trivial solution. In order to invoke
the implicit function theorem, the nonlinear maps associated to (1.24) first need to be
well-defined on the same spaces used in the linear analysis. This requires some analysis in
Section 4.1 to understand the mapping properties of functions in the specialized Sobolev
space X*(3;R), and also of the mean-curvature operator H defined in (1.2).

In addition, we also need a divergence-trace type compatibility condition (3.22) built
into the container space Y* defined in (3.23) to hold; in Theorem 4.2, we show that the
compatibility condition requires

b
Tn
—s(n +0)o1n — K(n + b)nodin — /J(w Tp)K (wn + n;) o dxy,
0 H-1

— {—n(b%?m + 001 + %aln?’)] < oo, (1.51)

H-1
where the H~! seminorm is defined in (3.2).

A major obstacle in proving (1.51) is that low-frequency control of powers of 7 is not
immediately evident from the inclusion n € X*(3;R). One could in principle attempt
to obtain control of powers of n by way of Young’s convolution inequality applied on
the Fourier side. However, in the model case ¥ = R? with s > d/2, this only leads to
the inclusion n* € H*(R%;R) for k > 2+ [4/(2d — 2)],d > 2. Unfortunately, this means
that in the physically relevant case n = 3 (so that d = n — 1 = 2), this elementary
argument only provides control over quartic or higher powers of 1. However, by the
fourth item of Theorem 2.5, we know that if ¢ € X*(X;R), then 0;C € H '(X;R).
Thus, a viable strategy for proving (1.51) is to show that X°(X;R) is an algebra. By
Lemma 2.1, there are configurations of ¥ for which X*(3;R) = H*(2;R), in which case
we know X°(X;R) is an algebra for s > dim /2. In general, though, we only know
that H*(3;R) — X*°(X;R), so further analysis is required to show that X*(¥;R) is an
algebra. Fortunately, we are able to establish this in Theorem 1.2, which is proved later
in Section 2.2.

As the linearization of (1.24) depends on k, we also need to identify a parameter
regime for k for which the associated linear map remains an isomorphism. To that end,
in Section 3.6 we study the map

Lo (u,p,n) = (div S(p,u) — ykzndiner — yoru + (V'n,0)
+ 8(xpn)01u + 8" (zp)uner + Krps(x,)0iner — krpA'ner — k(2,01 V'n, 01n), divu

)3177»5(17, u)en|2b + GAlnen) (152)

kb2
+ '%xnalnv un‘zb + (’y - 7



20 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057

induced by the linearization associated to (1.24), and in Theorem 3.19 we show that via
a perturbative argument around x = 0 that for fixed v and other physical parameters,
there exists a k9 > 0 for which L, , is an isomorphism over appropriate spaces for all
Kk € (—Ko, ko). Synthesizing the aforementioned results and employing our strategy of
invoking the implicit function theorem leads us to the solvability of (1.24) and (1.16).

Finally, we discuss the strategy for producing solutions to the unflattened system
(1.16) using solutions constructed in the flattened domain via Theorem 1.3. To that end,
we use the free surface function 7 to build the flattening map and its inverse defined in
(1.17) and (1.18) to undo the reformulation outlined in Section 1.5. This requires some
results on the regularity of these maps, which is recorded in Section 4.1. Fortunately, the
same analysis can be adapted from [15] with minimal modification.

1.8. Notational conventions and outline of article

In this subsection we discuss the notational conventions adopted throughout this
paper. In this paper, N denotes the natural numbers including 0. We always use n > 1
to denote the dimension of the flattened fluid domain = ¥ x R. For d > 1, we will
consider spaces defined over domains I' defined via (1.47)-(1.50), where T is endowed
with the natural group, topological, and smooth structures. In fact, the topology on I"
is metrizable, and in this paper we equip I' with the metric

4 1/2
dr(z,y) = (Z di(ws, Z/z‘)2>

di(zs, i) = |25 — yil, if I =R
for d;(;, i) = (0 0) =i~ 3 1 (1.53)
di(xs,y;) = inf{|r —s| | r € [zg], s € [wi]}, UT;=LT.
We write I' to denote the dual group associated to I', defined via
. LI R, T, =R
r=||n;=1|I; I = (1.54)
paie} ey L7'7, ifT; = LT,

where I is also endowed with the obvious group, topological, and smooth structures. We
also endow I' with the metric induced by inclusion in R%:

d
de(a,y) =Y (s — wil?) % (1.55)

i=1

If X is a metric space, we write Bx (z,r) = {y € X | dx(z,y) < r} for the open ball.
For X e {I',T'}, we write .#(X;C) to denote the Schwartz class of complex valued

functions over X and .#’/(X;C) to denote the space of complex valued tempered dis-

tributions over X; a detailed treatment of how to define these spaces can be found in



J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057 21

Appendix A. For f € (X;C) or f € & (X;C), we denote its unitary Fourier and
inverse Fourier transforms by

F&) = FLF1©),  f(&) = Fx{fH9), (1.56)

where .Z ¢ is defined in (A.5). Sometimes we will also write

ZI©) = Zx{f}€), FT©) = Fx{f}(&) (1.57)

We use the Parseval and Tonelli-Fubini Theorems to extend (A.5) in the natural way
to functions defined over €, via

f(é,en) = / Fa wn)e 0 E de! | (! ) = / F(6,mn)e € de. (158)
b)) b))

For k € N, a non-empty open set U C T for T" defined via (1.25), and a finite-dimensional
inner product space V, we define the L2-based Sobolev space

HNU, V) ={f:U—=V|0*f € L*(U;V) for « € N |a| < k}. (1.59)
For R 3 s > 0 we use H*(U; V) to denote the fractional Sobolev spaces obtained via
interpolation. If U = T', we equip H*(I'; V') with the norm

1/2
e = | [0+1EP1OR ae) (1.60)

r

and we may also use (1.60) to define Sobolev spaces of negative order s € (—o0,0) over
T in the standard way. For R 3 s > 1/2 and a Lipschitz ¢ : ¥ — R satisfying inf { > 0,
we define

oH (U R™) ={u e H(Q;R") |[u=0o0n 2o}, (1.61)

where the equality is taken in the trace sense. In the case when s = 1 and { = b, we
endow o H!(2; R™) with the inner product

1
(u,v)ymr = B /]D)u : Do dz, (1.62)
Qp

which generates the same topology as the standard H'-norm by Korn’s inequality (see
Lemma 2.7 of [3]). For k € N, a real Banach space V, and a nonempty open set U C T
we define the space
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CHU;V)={f:U—=V|LfeCHR:V), Lf(z) = f([z])}. (1.63)
We define
CEUV)={f: U=V |feC*U;V)and |f|¢s < oo}, (1.64)
where
flex =Y suwp[o*f@)]y - (1.65)

aeN4 Ja|<k €

We also define the space C§(I'; V') C CE(I'; V) to be the closed subspace

CET,V)={feCFT;V)| lim 0“f(z) =0 for all a € N such that |a| < k},

|z Rp [—00

(1.66)

where zp. € T is defined via (1.27). Lastly, we use L°(T;[0,00]) to denote the set of
non-negative measurable functions over I.

We conclude this section by giving outline of the article. In Section 2, we introduce the
anisotropic Sobolev space X*(I'; R) and characterize the space based on the underlying
product structure of the domain I". We then state its essential properties, and in Sec-
tion 2.2 we prove that for 3 defined via (1.1), X*(3;R) is an algebra in the supercritical
regime s > dim 3 /2.

In Section 3, we first record the isomorphism associated to the overdetermined system
(1.43) and the asymptotics of the special pseudodifferential symbols used in the construc-
tion of the free surface function 7. This allows us to prove the isomorphism associated
to the linear system (1.42). We then establish the parameter regime for x for which the
flattened system (1.24) induces an isomorphism.

In Section 4, we first record some key mapping properties of the anisotropic space
X*(%;R) and various nonlinear maps used in the subsequent analysis. Using these pre-
liminary results, we show that the maps induced by (1.24) are well-defined and smooth,
and we use this in conjunction with the implicit function theorem to produce solutions
to (1.24). We conclude the paper by using the solutions from (1.24) to produce solutions
to (1.16).

2. The anisotropic space X *(IT'; )

In this section we aim to generalize the anisotropic Sobolev space X*(R% R) intro-
duced in Section 5 of [15].
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2.1. Definition of X*(I';F) and its general properties

In this subsection we let R 3 s > 0, N 5 d > 1, and we consider the domain I'
defined via (1.47)-(1.50). Recall that the Japanese bracket (-) : R — [0,00) is defined
via (€) = (14 |€]?)1/2. In [15], the anisotropic space X *(R%; R) is defined in terms of the
Fourier multiplier w, : R?\ {0} — R given by

&2

ws(g) = ]1B1;(0,7")( ) ( ‘€|2

+m2)+mmw<mﬂoafﬁ 2.1

In this paper, we use the same formula in (2.1) to define w; on I'; in the purely toroidal
case when ' = [[°_, L7 Z, we also define w,(0) = 1 so that w, takes on the same value
as the standard Sobolev multiplier (-)2¢ at ¢ = 0. The function w; is introduced due to
its close relation to the symbol p. from (1.44). To see this, we first introduce the low
frequency cutoff 0 < r < 1 via

r:{L =R (22)

min{1, min;er. L; '}, otherwise,

and we note that £ € Bp(0,7) = &7 = 0. Then

{1 =, (£)° =, (6)°~ for € € Bp(0,7) 23)

mew%+wﬁm6m%mm

and so this and (1.45) show that for £ # 0 we have the equivalences

oy (&)I?
€17

(315
€12

L 161) 7 + Loy 7 @7

€l
|§1‘ 2(s—1)
(ﬂ+m)<> L (24

@%X1&@MO< +mﬁ*ﬂmsmwﬂﬁﬁ=w4@

=< 1B.(0,r) () (

where the implicit constants depend only on r,n,~, o, b.
The equivalence (2.4) suggests that we can give equivalent definitions of the space by
either using ws or the multiplier p : [' > R defined by
&
+]¢l for €40
we =< (2.5)
1 for £ = 0.

We note that defining n(0) = 1 is only relevant in the purely toroidal case when I' =
Hf L L7'Z, and we do so that the restriction of it over T is well-defined and it takes on
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the same value as (-) at £ = 0. We then define the specialized Sobolev space X*(I';F) of
order s > 0 in terms of p, to be the function space

X(0F) = {{f € A5C) | f € Lho(B:C), f=T, k) fllze < o0}, F =R
{f € 7€) | f € Lige(I5.C), [u()* " fllz2 < oo}, F=C,
(2.6)
with the norm associated to X*(T';F) defined by
1£1lxs = IR Fllze. (2.7)

The definitions of the class of tempered distributions ./(I';C) on I' and the Fourier
transform on %/ (T'; C) are contained in Appendix A.

First, we characterize the anisotropic space X*(I';F) in relation to the number of
R-factors appearing in I'.

Lemma 2.1. Let T be defined as in (1.47)-(1.50) with dimT = d > 1. Then the following
hold.

(1) IfT is defined via T =[], LiT or T = R x [[%2, L;T with dy > 0,1+dy = d, then
X*(I;F) = H*(I;F) and |||y« and ||-|| g are equivalent norms. In particular, this
implies that if s > d/2, then X*(I;F) is an algebra.

(2) IfT = R x R4 x [[%, L;T with dy > 1,dy > 0,1+ dy + do = d, then X*(I;F) is
not closed under rotations in the sense that for any orthogonal matriz Q € O(1+4d;)
such that |Qey - e1| < 1, there exists a function f € X*(T;F) \ L?(I';F) such that
FUQaT)) ¢ X5(T;F), where Q1 : (RxRM)@[[%, L,T — (RxR™) @[], L, T
maps (z,y) to (Qx,y). In particular, this implies that H*(T;F) C X*(I;TF).

(3) IfT = L1 T xR x[[2, LT, dy,dy > 0, 14+dy+dy = d, then H*(T;F) C X*(I;F).
Furthermore, for all f € X*(I';F) we have

191 = [ I (€2 @) de (2.8)
I

Proof. We note that since p(§) < 1+ |¢], we always have H*(I;R) C X*(T';R). To
prove the first item, we note that if I' = Hle L;T, then the only low frequency mode
£ € Bp(0,7) is & = 0. By the definition of w at { = 0 in (2.5), we have u(0) = 1 = (0).
So by (2.3) we find that for all £ € T, u(¢) = (£) and the desired conclusion follows.
T =R x[[[2, LiT,ds > 0, then £ € Bp(0,7) <= £ = (&,0) for |&;] < 7. Then
for ¢ € B(0,7), we have u(€) = 1+ |&| and (€) = (1 + [&1]%)/2, which implies that
w(€) =, (€) for all ¢ € T', and the desired conclusion follows.

Next we proceed to prove the second item. The case when I' = R? for d > 2 follows
from the third item of Proposition 5.2 in [15], so we assume here that do > 1. Since
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dy > 1, by the third item of Proposition 5.2 in [15], for every Q € O(1 + dy) such that
|Qe1 - e1]| < 1 there exists a function G € (X*(R1*41;F)NCe (R4 F))\ L2(R1F4;TF)
such that G(Q-) ¢ X*(R'*91;F). Let G be such a function. We note that for every ¢ € T,
we may write & = (€g,&p) € RIFD x Hfil L;1Z. We then define the surjective map
m: T — R via

(&) = (&R, &r) = &R, (2.9)

and we note that this is an isometric measure-preserving group isomorphism between
Ir:={¢ el | &= (r0)} and R"% . We then consider the measurable function
F:T — C defined via

G I’ such that &€ = (£x,0) € T

F(&) = { om(), € STIC at £ = (r,0) € I'g, (2.10)
0, otherwise.

Then by Fubini’s theorem, it follows that

[ir@ids= [1Gon©lde= [ 16w <,

P fr R1+d1

[ir@ra= [ 6P d=x. (2.11)

P R1+d1

We also have

r

/ﬁ@@%”W@F%:/ﬁ@@%“@w@W%
Ir

:l/uwﬂm%“@wW%<m. (2.12)

R1+d1

Hence, the function f := F' € X*(I';F) \ L3(I';F). In particular, f ¢ H*(I;F). On the
other hand, we have

ﬁﬁﬂ@@nﬂ@ri/ﬂ@@nma%wﬂm:/}@k*M@MW“m
I T

= F((Q® I)E). (2.13)

Then by Fubini’s theorem,

lr(Qe 1)

;m=/ﬁ@@W*Wﬂ@@D®P%

r
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= / W)€ V|G on((Q & 1)E)[* dé = / w(w) () 26D (Qw)? dw = 0.
f‘R R1+dq

(2.14)

This proves the second item.

To prove the last item, we note that if I' = L; T x Rt x H;iil L;T with dy,ds > 0,
then & € Bf(O,T’) — £ = (0,53,0) for € € Bri+a, (0,7’) and Bf((),’f’) \ {0} #+ .
In particular, for £ € Bp(0,7) we have £ = 0, which implies that w(&) = [{r| = (]
for £ € Bp(0,7) \ {0}, so by (2.3), we arrive at (2.8). By (2.8), it also follows that
H*(T;F) C X*(I';F). O

Recall that our ultimate aim in introducing X *(T'; ) is to use it as the container space
for the free surface function 7 in our study of the traveling wave problem. The upshot
of Lemma 2.1 is that the precise structure of the space X*(T';F) is heavily dependent
on the form of the domain T', and in particular, the properties of the set Rr. In the
first case considered in the lemma, X*(T';F) is the standard Sobolev space H*(T';TF),
and therefore we may employ standard Sobolev tools in our subsequent analysis. In the
second case, even though X*(T';F) is not a standard Sobolev space, we will be able to
prove that it enjoys many of the same properties as H*(T'; F). However, in the third case,
which includes the physically relevant case when I' = L1 T x R, the space X*(I';F) is
unfortunately unusable for our subsequent analysis due to a failure of completeness. To
justify the last claim, we prove the following proposition.

Proposition 2.2. Let N 3 d > 2 and T be defined as in (1.50): T = L;T x RItd x
H?il L;T for dy,ds > 0,1+ dy +dy = d. Then X*(T;F) is complete if and only if
dy = 2.
Proof. The proof is a modification of Proposition 1.34 in [2], which characterizes
when the homogeneous Sobolev space H®*(R?) is complete. We define the measure
ps == €2(€)26=D) d¢, and denote by L2(I'; C) the complex valued functions in L2(I; jis).
First assume d; > 2, and suppose {u, }32 is a Cauchy sequence in X*(T'; F). Then by
(2.8), {f,}22, is a Cauchy sequence in L2(I";C), and hence there exists a function f €
L2(1;C) such that u, — f in L2(T;C). Recall that by (2.2), we have £ € Bp(0,7) <=
& = (0,¢&R,0), where g € Brita, (0,7). Then by using the assumption that dy > 2, we
have

1/2 1/2

/If(€)|d§< /|§|2|f(§)|2d£ / W Pdo|  <oo,  (215)

By (0,r) B (0,7) B]R1+d1 (0,7)

where we have used the isometric measure-preserving isomorphism 7 : Bp(0,7) —
Bri+a, (0,7) defined via
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m(§) = 1(0,€r,0) = &r. (2.16)

Since ]lf\Bf(o,r)f belongs to H*(I; C), with (2.15) we can infer that f defines a tempered
distribution. Then u := f € X*(I';F) and u,, — w in X*(I’;F). This shows that X*(I'; F)
is complete.

Now assume d; = 0 or d; = 1, and suppose for the sake of contradiction that X*(I';F)
is complete with respect to the X*® norm defined via (2.7). Consider a new norm on
X3([;F) given by |Jull, = |lully. + ||12||L1(Bf(0’r)); this norm is well-defined since the
definition of X*(T';F) requires @ € LIOC(F; C) for any function v € X*(I";F). We then
claim that X*(I';F) is also complete endowed with the |||, norm. Indeed, suppose
{un}22 is a Cauchy sequence in (X*(I;F), |||, ), then {u,}22, is a Cauchy sequence in
(X5(I;F), |||l o) and {@,}52; is a Cauchy sequence in L' (Bg(0,r); C). By the assumed
completeness of (X*(I',F), ||-|| y. ), there exists a function u € (X*(T',F), ||-|| y.) for which
t, — uw in (X*(I,F), ||| x.). Similarly, there exists a function g € L*(Bp(0,7);C) for
which @, — g in L'(B;(0,7); C). Clearly, g = @ a.e. in L*(Bp(0,7); C), therefore we can
conclude that u, — u in (X*([;F), |-||,). This completes the proof of the claim.

We now know that X*(I';F) is complete with respect to both ||-||x. and ||-||,. The
identity map I : (X5(I;F),|-,) = (X5(I;F), ||| x.) is trivially continuous, thus we
can invoke the bounded inverse theorem to deduce the existence of a universal constant
C > 0 such that ||ul|, < C|lu| y. for all functions v € X*(I';F). In turn, this implies
that

lall 1B, “om SC |lul| yo for all w e X*(I';F). (2.17)

To derive a contradiction, we construct an explicit function f € X*(T';F) for which
(2.17) is violated. For any ¢ € I', we adopt the convention in (1.26) and write £ =
§r. +&r.. Let C = {§ € | {r. = 0 and r/2 < [g.| < r}, which in particular implies
that 27°C N 277C = @ for any 4,j € N such that i # j. Now for every n > 1 we then
consider G,, € L'(I"; C) defined via

" 9q(1+(1+d1)/2)
=3 T Tyac($). (2.18)

q=1

We note in particular that G,,(§) = G, (=€) and suppG, C Bn(0,r) C [, and so we
may define the smooth and bounded function g, : I'x — R via g, = Z ![G,]. Let 2#
denote the Hausdorff measure over I'. Now we may readily calculate

. " 9a(1+(1+4d1)/2)
192l 2B 0, = Z f2 a(l+di) gpltdi ()
q=1

" 9q(1—(1+d1)/2)
= Z — 00 asn — 09, (2.19)

q=1
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since d; < 2. On the other hand, for any n > 1 we have

9a(1+(14+d1)/2)
Il = [ IEPIGAO de = Z/W (7> do

Bf(O,T)

_ 14+d; l
p =) Y . (2.20)

n 2 n
94(1+(1+d1)/2)
=)y amragmalitd) (—)
©) y

q=

Therefore, sup,,~1 [|gnllxs < oo and by (2.17) and (2.19), we arrive at a contradiction.
Thus, X*(T"; F) cannot be complete for d; < 2. O

We now proceed to study the space X*(I';F) in the second case of Lemma 2.1. We
begin by stating a preliminary result.

Lemma 2.3. Suppose R 35 >0, N3d >2,T =R x R" x [[2, L;T with d, > 1,dy >
0,1+ dy +do =d and let r be defined as in (2.2). The following hold.

(1) For w:T'— R defined in (2.5), we have

1
Bx(0,7)

(2) For f € X*(I';F) we have the estimate

1/2
[ e | [ avieprliors|  Salfle. @2
By.(0,r) [\ B (0,7)
In particular, if s > d/2 then
17 ey Sas 115 (2.23)

Proof. For the first item, we note that £ € Bp(0,7) <= £ = ({g,0) for &g € R1t+dr,

therefore
45 _ . jw]?
-/ GRS / &l © / e ER R

[

B (0,r) B (0,r) o,r BTR1+d1 (0,r)

where in the last equality we used the isometric measure-preserving group isomorphism
7t defined via (2.9) between By (0,7) and Bri+a, (0,7). The latter integral can readily be
verified to be finite; see for instance, Proposition 5.2 of [15].
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For the second item, we note that by (2.3), we have

1% = / WO FO) de + / % F(©)? de. (2.25)

B (0,7) I\ B (0,r)
Then by Cauchy-Schwarz, (2.21), and (2.25) we have

1/2 1/2

[ renes<| [ 5| | ] wefere) sk @)

Bf(O,T‘) Bl;(O,r) Bf(O,r)
Then (2.22) follows immediately from (2.25) and (2.26). O

The next theorem records the fundamental completeness and embedding properties
of the space X*(T';F) in the first and second cases considered in Lemma 2.1.

Theorem 2.4. Suppose R 3 s > 0,N >d > 1. Let T' be defined as in (1.47)-(1.49). Then
the following hold.

(1) X*(I;F) is a Hilbert space.

(2) The Schwartz space .#(I';F) as defined in (A.2) is dense in X*(I';F).

(3) If t € R and s < t, then we have the continuous inclusion X*(I';F) — X5(I' F).

(4) We have the continuous inclusion H*(T;F) — X*(I';TF).

(5) If s > 1, then there exists a constant ¢ > 0 depending on d, s, and in the toroidal
cases on L;, such that

||VfHH571 < C||f||xs . (2.27)

In particular, this implies that the map V : X*(I;F) — H*~Y(T;F?) is continuous.

Proof. The case when I' = R? is studied in Theorem 5.6 of [15]. In the case when
I = Hle LTorT=Rx Hfil L; T with dy > 0, by the first item of Lemma 2.1 all five
items follow from standard Sobolev theory as X*(I';F) is the standard Sobolev space
Hs (T, F).

Next suppose that I' = R x R% x H?il L;T, dy,dy = 1. If a sequence {f,}22, C
X5(I;F) is Cauchy, then there exists F € L2(T;F) for which f,, — F in L(I;F) as
n — oo. The second item of Lemma 2.3 guarantees that F* C L'(Bp(0,r); C) + L3I\
B.(0,7); C); therefore f := F e X5(I;F) is well-defined and it is easy to verify that f
is real-valued in the case when F = R, as realness is preserved in the limit. This implies
fn — fin X°(I;F) as n — oo, and it follows then that X*(I'; F) is complete. This
proves the first item. Following the arguments of Theorem 5.6 of [15], the first item in
turn implies the other fundamental properties listed in the second to fifth items. O
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The previous theorem shows that X*(T';F) for T defined via (1.47)-(1.49) is suitable
for the analysis in this paper, which leads us to considering the sets in (1.1) to model
the horizontal fluid cross section X. By reducing the analysis to the three possibilities
considered above, one can see that X*(X; R) also satisfies the items listed in Theorem 2.4.

We conclude this subsection by summarizing some additional properties of the space
X*(%;R) for ¥ defined via (1.1).

Theorem 2.5. Let R 3 s > 0 and let 3 be defined as in (1.1). Then following hold.

(1) (Low-high frequency decomposition) For every f € X*(X;R) and t > 0, we can
write f = fir + fat, where fiz = ﬁ_l[lg(o,t)ﬁ[f]] € CP(%;C) and fr, =
ﬁ_l[ﬂf\B(O’t)y[f]] € H*(%;C). Furthermore, we have the estimates

I freller = SN0 frrllpe SIfurllxe and [|faillge S I fnell .- (2:28)

ol <k

(2) (Supercritical specialized Sobolev times standard Sobolev is standard Sobolev) If s >
d/2, then for any f € X°(I;F),g € H*(X;F) we have fg € H*(Z;F), and there
exists a constant ¢ = ¢(d, s) > 0 for which

19l = < cllfllxs gl e for all f € X*(3;F) and g € H*(5;F).  (2.29)
(8) (er-derivatives of specialized Sobolev are H—' bounded) If s > 1, then there exists a
constant ¢ = ¢(d, s) > 0 such that

[Oun] g < cllfllxs for all f € X*(5;F). (2.30)

This implies that the map 0 : X*(5;F) — H‘l(Z;]F) N H*~Y(X;F) ds continuous
and injective.

Proof. The case when ¥ = R? is considered in [15]. If & = [[, L;T or & = R x
Hfil L;T with d2 > 0, then by the first item of Lemma 2.1 X*(3;R) is the standard
Sobolev space H?(3;R). All three items then follow from standard results on H*(3; R). If
Y =RxR% x H?il L; T with dy,ds > 1, we note that by Remark 3.2 and properties of the
surjective map 7t : B, (0,7) — Bri+a, (0,7) defined via (2.9), the calculations performed
over R? in [15] are also valid over the low frequencies belonging to 3, therefore all three
items follow from minimal modifications of Theorem 5.5, the last item of Theorem 5.6,
and Theorem 5.12 of [15]. The case for general ¥ follows from reducing to the three
possibilities listed above. O
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2.2. The anisotropic space X*(3;F) as an algebra

Let ¥ be defined as in (1.1). In this subsection we prove that X*(3;F) is an algebra
for s > %. To prove this we will first adapt the anisotropic Littlewood-Paley techniques
used in [8] to prove that X*(R%; C) is an algebra. This special case turns out to be
sufficient for deducing the result in the general case when R? is replaced by ¥ and C is
replaced by R.

First, recall that the multiplier u defined in (2.5) satisfies 1/u € L2(B(0,1)) by the
first item of Lemma 2.3. Next, we consider the functional I : (L°(R%;[0, 00]))® — [0, oc]
defined via

_ weE+n)
I[F,G, H] - 1 R PG+ 1) dE dn (2.31)

where L°(R%; [0, 00]) denote the non-negative measurable functions on R%. Our goal is
to use the same formula (2.31) to define a trilinear functional over (L?(R%;C))3, but
for now we only define I over non-negative measurable functions so that I is clearly
well-defined.

The next lemma shows that I induces a bounded trilinear functional over (L?(R%; C))3
into C as long as I is bounded over (L°(R%;[0,c]))? into R.

Lemma 2.6. Suppose there exists a constant ¢ > 0 such that
I[F, G H] < ¢||F|| g2 |Gl 2 |H | 2 for all F,G, H € L*(R%; [0,00]),  (2.32)

where I is the functional defined in (2.31). Then I induces a bounded trilinear map
defined over (L?>(R%; C))? into C wvia the same formula in (2.31). Furthermore, there
exists a constant C > 0 such that

\I[F,G,H|| < C||F| ;2 |Gl ;2 | H| 2 for all F,G, H € L*(R%C). (2.33)
Proof. We first consider the case when F,G, H € (L*(R%R))3. Then by decomposing

F = Fy— F; where Fy = F™ and F| = F~ are the positive and negative parts of I, and
similarly for G, H, we have

FGH= Y (-1)/™FG.H,. (2.34)
7.k, 1€{0,1}
By linearity,
I[F,G.H| = > (=1Y™[F;, Gy, Hi. (2.35)

J,k,1€{0,1}
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By assumption, [I[F}, Gi, Hi]| < c||Fjll ;2 |Gl 12 [|1Hil 12 for all j,k,1 € {0,1}, thus by
(2.35) I is bounded over F,G,H € (L*>(R%R))? and |I[F, G, H]| S ||F|l 2 |Gl 2 |1 H | 12
for all F, G, H € L*(R%:R).

In the general case when F,G,H € (L*(R%C))3, we write F = Fy + il where
Fy, F; € L2(R%R), and similarly for G, H. Then

FGH= Y (i)/"""FG.H, (2.36)
j.k,1e{0,1}

and by linearity again we have

I[F,G.Hl = Y (@) [F;, Gy, H. (2.37)
7,k,1€{0,1}

By the first case and following the same line of reasoning, I is bounded over (L?(R%; C))?

into C and there exists a constant C' > 0 for which (2.33) holds. O

Next, we claim that supercritical specialized Sobolev space is an algebra if and only
if the functional defined via (2.31) is bounded over (L?(R%; [0, 00]))? into [0, oc].

Proposition 2.7. Assume s > d/2. Then X*(R%;,C) is an algebra if and only if for the
mapping I defined via (2.31), there exists a constant ¢ > 0 such that for all F,G,H €
L%(R% [0, 00]) we have the estimate I[F,G,H] < c||F|| 2 |Gl 12 || H|| 2 -

Proof. Assume first that I is bounded over (L?(R%; [0, c]))?. By Lemma 2.6, I induces
a bounded trilinear functional over (L?(R%;C))? into C via the same formula (2.31), and
there exists a constant C' > 0 such that

[I[F, G H]| < CIF| 2 Gl 2 1 Hl 2 (2.38)

for all F,G, H € L?>(R%;C).

Now suppose that f,g € X°*(R%C). By the second item in Theorem 2.5, we
may write f = fo + f1 where fo = Z 1o nZ[f]] € CREC) and fi =
ﬂfl[le\B(OJ)ﬁ[f]] € H*(R% C), and similarly for g. Then we have the decomposition

9= fogo+ fog1 + f190 + f191 (2.39)

If 1 < i+j, by the fact that we are in the supercritical regime s > d/2, f1,91 € H*(R%;C),
(2.28), and (2.29) we have f;g; € H® with the estimate

1figsll g« S 1 lxs gl - (2.40)

Thus, it remains to use the boundedness of I to understand the product fpgg. Note that
by the first item of Theorem 2.5, we have the inclusions fo, Go € L'(R%;C), and hence
Young’s inequality implies that fo * §o € L'(R4;C); also, supp(fo * go) C B(0,2).
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Now let ¢ € L2(R% C) N L>(R? C). Since fo and jo are supported in B(0,1) and
i is locally bounded, we may employ Tonelli’s theorem and a change of variables to see
that

/u(fo % go)p = //u(& +n) fo(&)do(n) (& +n) dé dn
Rd Rd Rd

- / (& + ) Fol€)do (m)o(€ + ) d€ dn = Tlsfo, ndo, ). (2.41)
B(0,1)2

Therefore, by (2.38) we have

| [t < o)e| < Clludoll Iugilzo el (2.42)
Rd

but by the density of L2(R%; C)NL>(R%; C) in L?(R%; C), the left side of this expression
extends to define a bounded linear functional on L?(R%; C) obeying the same estimate.
Upon invoking Riesz’s representation theorem, we deduce that p( fo = do) € L*(R4;C)
with

lu(fo * do)llzz < Cllwfollczllndollze < Cfll x-

gl xs - (2.43)

N N

As supp(fo + Go) C B(0,2), we have that |[()*"Tu(fo+ go)|| | < 55 |ufogo)| -
Thus, using (2.40), (2.43), and the fourth item of Theorem 2.5 we find that

fallxe < Do Mfigsllxe = IO Fox o=+ D figslx

0<i+5<2 1<i+5<2

Sletfoxdolllee + D lfigslle S 1F1lxe

1<i45<2

Illxs - (2:44)

Thus, X*(R%; C) is an algebra.

Conversely, assume that X*(R%; C) is an algebra. Let F,G,H € L?(R%[0,00]) and
observe first that I[F,G, H] = I[F1pg(.1), Glp(,1), H] and then that #~'[Flg(,1)/ul,
FHG1po1)/u € X*(R%C). Therefore, by Cauchy-Schwarz and the boundedness of
products in X*® we have

I[F,G, H| = I[Flp0,1), Glp0,), H] = /H((F]lB(o,n/H) * (Glp)/w)H
Ra
< [n((Flpeoa)/w) * (Glpo,y/wW)lcz [1H]| 1
= [|Z [Flpoy/WF Glpoy/Wlx: | HIl L
S F Loy /Wlx 17 7 G0 /Wlxs 1Hl 2 STz |Gl [1H Lz (2:45)
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Hence, I is bounded over (L2(R%; [0, ]))? and the proof is complete. 0O

Thus, by Lemma 2.6 and Proposition 2.7, to prove that X*(R¢;C) is an algebra it
remains to show that the functional I defined over (L°(R%; [0, 0]))? via (2.31) satisfies
(2.32). For the rest of this subsection we assume that F,G, H € L*(R%;[0,]), and we
now estimate the L?-boundedness of the operator I.

First, we introduce a decomposition of the frequency space R% x R?.

Definition 2.8 (Squared frequency space and functional decomposition). We write I as the
sum of two operators I = Iy + I, where each I; is accounting for the contribution from
a special portion of squared frequency space.

(1) We identify the following ‘good’ and ‘bad’ sets. First we define the ‘good’ set Ey via

By ={(&n) € B(0,1)* | [¢] + In| < 3[1¢] = Inl]}. (2.46)

Next we define the ‘bad’ set Ey via

By ={(&n) € B(0,1)* | [¢] + In| > 3[I€] — Inl]}. (2.47)

Note that B(0,1)? = Ey U Ej.
(2) For i € {0,1}, we define the functionals I; : (L°(R%; [0, 00]))? — [0, o0] via

w(€ +n)

Lk G H] = / n(&)n(n)

7

FE)G(n)H(E +n) dE dn. (2.48)

Clearly, I; is well-defined, and we have the identity I = Iy + I7.

Next, we analyze the set E; as defined in (2.47).

Lemma 2.9. The inclusion (£,n) € Ey is equivalent to the bounds 1|n| < [£| < 2|n|, and
for (§,m) € E1 we have the estimate |§ + 1| < 3[¢].

Proof. The second bound follows from the equivalence and the triangle inequality, so it
suffices to prove the equivalence. For this we note that

5
(&m) € By <= €] + In| > 3[I¢] = [nll <= [¢]* = S [&lInl + Inl* < 0
1
= §|77| <&l <2n. O (2.49)
By Lemma 2.9, one can get a good geometric understanding of Ey and F; by exam-

ining the plot in (€|, |n]) space given in Fig. 3.
The region Fy is dubbed the good region because of the following lemma.
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1 Inl = 2l¢|

Ul
E,

Ey

0 N 1

Fig. 3. A schematic breakdown of the sets Ey and FEj.

Lemma 2.10 (Multiplier subadditivity in Ey). If (§,m) € Eo, then n(§ +n) < 3(n(§) +
w(mn)).

Proof. If |¢| + |1 < 3||¢] — |n||, then the reverse triangle inequality | +n| = ||¢] — ||
allows us to deduce

€1+ M| |€1] + |m|

HEHI) = ey TS Qg+
[&al + [
<3 16+ Il <3O +uim). (2:50)

This gives us the boundedness of Ij.
Proposition 2.11. For all F,G, H € L?*(R%[0,0)) we have the estimate
Lo[F, G H < 6[1/ull L2 0,0y 1E 12 1G 2 [1Hl 2 - (2.51)
Proof. By applying Lemma 2.10, Tonelli’s theorem, and Cauchy-Schwarz, we find

1

S FOCmH(E+ ) de dn+3 / L R©)Gm)HE + ) de dy

w(n)

1
w(n)

IO[FaG7H] <3/

Ey

Ey
<3 [ gPOGmHE T m e+ [ S PEOGH(E ) de dy

B(0,1)2 B(0,1)?
1 1
<318, (161 [ PO de+ Pl [ =Gl dn)

B(0,1) B(0,1)
S 6L/ ull2(poay) 12 G 2 [1HI 2 O (2:52)
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We now further decompose the set F; and the functional I, as defined in (2.47) and

(2.48).
Definition 2.12. We make the following definitions for m,n € N.

(1) We define the set

Emn={&n) € By |27 gl <27™, 27" ¢+ <2772} (2.53)

(2) We define the functional I,,, ,, : (L°(R%;R))? — [0, oc] via

w(& +mn)

() T (CHE +m) d dn.

Ino|F,G, H] = /

Em,n

The dyadic decomposition of F gives us the following.
Lemma 2.13. The following hold.

(1) We have the equalities

[j [j Epn=FE and i i[m,n:h.

m=0n=m m=0n=m

(2) Let F,G,H € L*(R%[0,00]). Then
Im,n[Fa GvH] g Il[Fm7Gm>Hn]a

for the functions

Fm = F]lg—m—l/h G'm = G]lQ—m—lA, and Hn = H]lQ—nA7

where A is the annulus A = {x € R | 1/2 < |z| < 4}.
(3) We have L%-almost everywhere the inequality

Z ]127'm71A g 5]13(0’2)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

Proof. For the first item we note that the second estimate of Lemma 2.9 implies that if

n < mthen E,, ,, = &, and hence I,,, ,, = 0. The second item follows from the first item of
Lemma 2.9 and nonnegativity. To prove the third item, we note that if x € B(0, 2) \ {0},
there exists a unique n € N such that |z| € 27™[1,2). It is clear that lo-m-14(x) =0

whenever m > 0 and |m — n| > 2. The inequality now follows. O
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Using the preceding lemma we arrive at the following proposition.
Proposition 2.14. Let d € N. The following hold:

(1) If d > 4, there exists a constant Cyq > 0 such that for all F,G,H € L*(R% 0, 0c0])
we have the estimate I [F,G,H] < Cq ||F|| ;2 |G 12 || H|| -

(2) If d € {2,3}, there exists a constant C14 > 0 such that for all F,G,H €
L?(R%; [0, 00]) we have the estimate

Yo D InalF,GH < CrallFll e Gl e I1H| e - (2.59)

m=0n=2m-+1

Proof. Let m,n,d € N with 2 < d and m < n. According to the second item of
Lemma 2.13, we have

wE+n)

el L (OCm (D Hn (€ + ) d din. (2:60)

Im,n[FaGyH} < Il[Fm7Gm;Hn} :/

Eq

For (¢,m) € Ei, the right hand integrand vanishes except possibly when the following
inequalities hold: 2772 L |¢| < 27mFL 27m=2 L |p| < 27™FL and 27" < |€ 49| <
27"%2_ This provides the elementary estimate

r(E+n) < 1+ [€+n| < 92mHd(] 4 9-nH2) < 92m 261
wOum S e S22 (2.61)
and hence
Ly nlF.G, H] < 2°™ / Fon(€) G () Ho(€ 4+ 17) dE dly. (2.62)
E4

Now, for £ € Z% let @, denote the closed cube centered at 27"/ of side length 27" and
Q¢ denote the closed cube centered at —27"¢ of side length 9 - 27™. By construction,
almost everywhere we have that

1=>"1g, and 9= 14, (2.63)
LeZd LeZ
and we may compute
max|| Lo, |22 = [|1gollzz = 27"/ (2.64)
LeZ?

Notice that if (§,n) € F; is such that the integrand on the right hand side of (2.62) is
nonzero and £ € @y, then



38 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057

9
M+ 2o <€+ —€+27oe 27427 = D127, (2.65)

which in particular implies that n € Q. Hence,

/Fm(f)Gm(n)Hn(f +mn) d§ dn

Ey

<Y [ FalO10,(OGnLg () H (€ + 1) d dn (2.66)
EEZdB(O,l)Q

By Tonelli’s theorem, repeated applications of Cauchy-Schwarz, and the identities in
(2.63) and (2.64) we then find that

> [ F©10, G0, () Hu ) de d
eeZdB(071)2

=Y [ Fal910,6) [ Guliig,(Ha+n) dnde

teZp0,1) B(0,1)
<Y [ Fu©10,0l1Gn1g I |Hall,o de

ZEZdB(O,l)

< Hall2l1go 2 D I1Fmlq N2 [Gmlg, |2
LeZ?

< 2_nd/2HHnHL2(/'Fm(£)|2 Z 1g,(€) df)l/Q(/|Gm(77)|2 Z 1g,(m) dn>1/2
Rd R

LeZd eZd
S 272 Fllr2 |Gl 2 | Hull 2 (2:67)
Next we combine equations (2.62), (2.66), and (2.67) to deduce that
Ln[F, G, H] S 22" "2 Fyl 12| G | 22 | Hon | 2 (2.68)
Now we break to cases based on the dimension. First, if d > 4, then there is no issue

in summing over the set {(m,n) € N? | m < n}. Indeed, we use Cauchy-Schwarz along
with the third item of Lemma 2.13 to find

S InalBGHIS Y D 227 Bl 2| Gunll 2 | Ha 12
m=0n=m m=0n=m

oo

< 3 2Bl 1Glaa (2 2 ([ 1OF 3 1rea( )
m=0 Rd

n=m n=m



J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057 39

o0
SIHNz2 Y 227 Ell 12| Gl e S IF N2 G2l H 2. (2.69)

m=0

This completes the proof of the first item.
For the second item, we let d € {2,3} in equation (2.68) and sum over the set
{(m,n) € N? | 2m + 1 < n}. Arguing as above, we arrive at the bound

>y ImnFGH<||H||L222<2 (3 o) g

m=0n=2m+1 n=2m+1

SIFl Gl |H] 2 (2.70)
This completes the proof of the second item. O

It remains to study the functional Y, Z I, in the case d € {2,3}. We do
this in the subsequent proposition.

Proposition 2.15. Let d € {2,3}. There exists a constant Coq > 0 such that for all
F,G,H € L*(R%[0,00)) we may estimate

co  2m

DY InalF G H < Coa | Fllpa |Gl 2 I1H | - (2.71)

m=0n=m

Proof. Let m,n € N with m < n < 2m. We begin by estimating the right hand side of
the following inequality of Lemma 2.13, Iy, [F, G, H] < I1[Fp,, G, Hy), by decomposing
into a rectangular grid. To this end we define the following family of rectangles indexed
by p€Z, 7 € Z%!, and a € [1,00), via

d—1
Rypr(e) =27""[-a/2+4p,a/2+p] x 27" [[[~e/2+ ™, 0/2+ ). (2.72)

v=1

Suppose that (§,n) € E; are such that the integrand of I [F,,, Gy, H,] is nonzero and
that additionally £ € R, (1) and € R, (1) for some p,q € Z and 7,0 € Z*1. Then
we obtain the inequalities

27"y +0,—1/2) <&p1 +F M1 K27 (m 4o, +1/2) for 1 < v <d—1,(2.73)

n+2

and upon pairing these with the bound |[€ + 7| < 2~ we deduce that

|7y + ou| < |mp + 00 — 2" (Evgr + Mor1)| + 2741 + o1 <9/2forall 1 <v<d—1.
(2.74)

In particular, this implies that 7 € Ry _~(9), which when combined with the inclusion
& € Ry (1) further implies that £ + 7 € Rj,44,0(10). Therefore, we may estimate
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LolFGH< Y Y / “” Fun(©)Lr, 0 (©)Com () Lr, (o) (1)

P9€L el g
X Hn(§+n)1r,,, 000 (& +n) d§ dn. (2.75)

For fixed p, ¢, and m, we now want to estimate the factor w(é+n)/n(¢)u(n) appearing in
the integrand in (2.75). First we note that if £ € R, »(1)N27™"1 A4, then [22™¢&; —p| < 1/2,
which implies that 22™|¢;| > max{0, [p| — 1/2} and hence

i1}
[5)

Similarly, for n € Ry _~(9) N27™~1 A, we have the bound

W) = T el = 2722 G ] + 1/2) 2 27 max{1, [p[}. (2.76)

u(n) = 27" (max{lq| — 9/2,0} +1/2) 2 27" max{1, |q|}. (2.77)

Finally, for £ + 1 € Rp1+4,0(10) N 27 ™A, we estimate p(§ + 1) from above, recalling that
m < n:

H(g + 77) < 2n+1|§1 + 771| + 2—n+2 — 2n—2m+1(22m|§1 + n1| + 22(m—n)+1)
<27 (|p 4+ gl + 5+ 2) $ 2" (max{1, [p|} + max{1,|q|}). (2.78)

Upon piecing equations (2.76), (2.77), and (2.78) all together, we obtain the bound

€+ ~ on 1 1
wonn = (b} * st ) 21

for £ € Ry (1) N 2™~ 1A and n € R, —»(9)N 9-m—14
Next, we combine (2.75) and (2.79) and then use Tonelli’s theorem and Cauchy-

Schwarz to obtain

ﬂfmn F G H Z Z InaX{l |p|} / F ]]-Rpw(l)(g)

p,qEL TeZa-1 B(0,1)

/ G 1, (o) HnE+ 1) Lp .. s10)(E + 1) iy d
B(0,1)

LDIEDY

p,q€EZL TteZi—1

[ En @, ©) [ G, o Ha€+ )Ly 100(€ ) i

B(0,1) B(0,1)

1
<22 (max{l Ipl} max{l,lt}l}>

p,q€EZ neZi-1

maX{l lql}
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<[ Ful@n, @G, ol HaLnyey o022 d

B(0,1)
1
Z Z (max{l Ipl} +max{1,\q|})

p,q€EZ teZa -1

X [1r, . ylczlFmlr, )Lz l|Gnlr, o)Lz [Hnlr,,, 00l 22

m—n(d—1)/2 :
— 9 )/ Z Z (max{l Ip|} max{1,|Q|}>

p,q€EZ teZi-1

X NEmlr, )2 |Gmlr, @)z Hn R, 0q0)llL2- (2:80)

What remains, before we sum over m and n, is a few more applications of Cauchy-
Schwarz, one for each sum above. First we handle the sum over 7 € Z4~! with

Z 1 Emlr,  )llzz|lGm g, (o)L

TeZd—1

<([1E©F X 0@ de) " ([16n0P X te, @ an)”
R4

neZa-1 Rd neZd—1
S IERIY, pas By lL2Gmly, Ly Ry w9 llL2- (2.81)

Next we consider the sums over p,q € Z. First, we consider the one containing
1/ max{1, |p|},

1
> m“Fmﬂuwequ Rp-L2lGm1y__u s Ry w221 Hn 1Ry, o10)]l L2

P,q€EZ

SIGmly, LU, cpar Ry—n()llr2
1
X E — || F},1 H,1
PEZ max{l,\p|}” 1Y, s Ry ll2 1R Ly, e Ry o002

1 1/2
NGl Halliz (X i may) 11U Vs s 0
pEZ ’

S 1Bl 2 |G [ 2 [ Hall L2 (2.82)

Similarly, we consider the one containing 1/ max{1,|q|},

1
Z max{1, [¢|} HFm]lU,rezdﬂ Rm(l)”L2 ||Gm]lUﬂ,€Zd—1 Rq,_ﬁ(g)HL2 HHn111?/,9%0(10)||L2
p,q€Z ’
< 1 <
SN Fonll 2 | Hollz2 ) mlleﬂuﬁZH Ry l2 S 1 Fmll2l|Gmll2 | Hn|l L2
q€Z ’

(2.83)
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Synthesizing estimates (2.80), (2.81), (2.82), and (2.83) we find that
Im,n[F, Gv H] 5 2_m+n(3_d)/2||Fm||L2||GMHL2 HI_InHL2 (2'84)
Hence, we may sum over m < n < 2m to bound

2m 2m

1/2
> Il P G H] S 27 (30 267 0) T H] || 2 G 22
m+1 ifd=3

<
s gy SN Eall |Gl 2. (285)

<27 H| 2l Foll 22 Gl 22 - {

and then finally sum over m > 0 to see that

co  2m

YD LnnlF, G HI S I Hze Y 1 Fwll2l|Gunllze S IE 2 l|Glle | Hllze, — (2.86)

m=0n=m meN

which is the stated estimate. O

By synthesizing the previous results, we immediately arrive at the following result.

Theorem 2.16 (Boundedness of I). The functional I : L*(R%;[0,00))? — [0, 00| defined
in (2.31) is bounded and satisfies the estimate (2.33).

Proof. We simply combine Lemma 2.13 and Propositions 2.11, 2.14, 2.15, and 2.7. O
With Theorem 2.16 in hand, we are ready to prove Theorem 1.2 as a corollary.

Proof of Theorem 1.2. By Lemma 2.6, Proposition 2.7, and Theorem 2.16, the anisotro-
pic space X*(R¥;F) is an algebra for s > k/2 for F = C and F = R. Let ¥ be defined as
in (1.1) and let d = dim 3. By the first item of Lemma 2.1, it suffices show that X*(3;TF)
is an algebra for s > d/2 for the case when 1 € Ry and |Rx| > 2, as the anisotropic
space coincides with the standard Sobolev space otherwise. For the sake of simplicity, we
assume ¥ = R x R% x H?il L;T for dy,ds > 1; the general case follows from reducing
to this case via rearrangement.

To show this we first argue similarly as in Proposition 2.7 to show that X*(X;F) is
an algebra if and only if for any F,G € X*(%;F), the estimate

HFOGOHXS(E) S ||F0||XS(2) HGO”XS(E) (2-87)

holds for FO = y_l[lBi(o’T)g[F]], GO = ng._l[]lB)i(O’T)y[GH.
By definition, we have supp .% [Fy|,supp .#[Go] € Bg(0,r). Since & € Bg(0,r) <=
¢ = (&g, 0) for £ € R4 by Fubini’s theorem we have
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FERoGol(w, k) = / S FE )W — 0,k — m)FL(Gol(n,m)dn

Ri+d1 me[[12, L7'Z

= / yg [FOKW - k)y;]r [GO](U, k) d77 = 0ko / y;:r [FO](W - O)f; [GO](nv 0) d777
R1+dq Ri+dy

(2.88)

where d;o is the Kronecker delta. This shows that supp 3“; [FoGo| € By (0,7). Since 7
defined via (2.9) is an isometric measure-preserving group isomorphism between By, (0, )
and B+, (0,7), we have

[FGollumy = [ WO VT FGol(©) de
By (0,7)

= [ R ARG, 00 = Bl 0)Gol ) eren -
BR1+d1(07T)

(2.89)

Next we note that since Fy € X*(X;F), we have the inclusions

Fy(-,0) € /(R4 C) and Fy, 0, [Fo(+,0)] € Li, (R"4;C), (2.90)

and we know that Fy(-,0) = Fo(-,0), and supp Zg,a, [Fo(-,0)] € Bga+a; (0,7). By using
the isometric measure-preserving group isomorphism 7t : By (0,7) — Bri+a, (0,7) again,
we have

1Eo (-, 05 ivary = / R W)w)?C™VF g, [Fo(, 0)] (@) dw

Bgi+tay (0r)

= / WHENE*CTVIFL R de = | Follxe (s (2.91)

By (0,r)
This shows that Fy(-,0) € X*(R**41;F), and similarly we can conclude that Go(-,0) €

X3R4 F). Since s > d/2 > (1+d;)/2, X*(R'T4;F) is an algebra, and therefore we
have the estimate

[E0(-0)Go (- 0) xomirary S 0 (5 Ol xomivary 1Go (s 0) [ xomavary - (2:92)
( ) ( ) ( )

Combining (2.91) and (2.92) then gives us (2.87). The desired conclusion then follows. O
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3. Linear analysis

In this section we record the linear analysis associated to the flattened system (1.24).
First, we introduce the definition of the H~! seminorm.

Definition 3.1 (The H~' seminorm). For s > 0, in the case when T’ = Hle L;T, for
f € H*(T;R) we define the H~! seminorm of f via

{0, if f(0)=0 31)

o0, otherwise.

ForI' =R x R% x H?il L;T,dy,dy > 0, we define the H~! seminorm of f € H*(T;R)

via
1/2

fae=| [ WlPlword]| (:2)

Br1+dy (0;7)
In all cases, for f € H*(T;R) we write f € H—'(T; R) to mean that [f];_. < oo.

Remark 3.2. We note that our definition of the H~! seminorm coincides with the stan-
dard definition of the H~! seminorm for functions H #(I'; R). First, if a function f already
belongs to H*(T'; R), then

/ €22 de = / €172 ()2 de. (3.3)

Bf\ (0,7‘)

Second, we note that the product measure on lisa product of Lebesgue measures and
counting measures, corresponding to the R and L;ll factors of I'. If ' = Hle L;T,
then the only low frequency mode is the zero mode, and thus the integral in (3.3) takes
values in {0,000} depending on the value of f(0). If ' = R x R% x H;lil L;T,dy,ds 20,
then we note that by using the natural isometric and measure-preserving identification
between B (0,r) and Bgri+4, (0,7) we have

/|§|*2|f<s>|2d§x / w2 (w0, 0)? do (3.4)

Bf(O,r) BR1+‘11 0,r)
3.1. Asymptotics of the normal stress to solution map associated to (1.43)

In this subsection we record the asymptotics of some special functions associated to
the normal stress to solution map associated to (1.43), which will play a crucial role in
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the construction of the free surface function 7. In the case where S = R, the precise

asymptotics of these symbols were derived using ODE techniques developed in [15]. For

the other possibilities of ¥ considered in (1.1), these estimates will continue to hold as

3 remains a subgroup of R~ ! and the asymptotics remain the same upon subsampling.
First we record an auxiliary result.

Theorem 3.3 (Hilbert isomorphism for the ~-Stokes system). Suppose s > 0. The map
O, oH T2(Q;R™) x HTH(Q;R) — H*(Q;R™) x HPL(Q;R) x H* 2 (2, R™)(3.5)
defined via
., (u,p) = (div S(p, u) — voru,divu, S(p, u)ey) (3.6)
is a Hilbert isomorphism for all v € R.

Proof. The case ¥ = R"~! follows from Theorem 2.6 in [15], and the arguments therein
can be adapted with minimal modification to handle the cases when ¥ # R*~1. O

Next, we define the normal stress to velocity and pressure maps induced by @.,.

Definition 3.4 (Normal stress to velocity and pressure maps). Let v € R and s > 0.
We define the normal stress to velocity and pressure maps to be the linear maps U, :
H5"2(Q;R) — Ht2 (Q;R™) and P, : H¥"2 (Q;R) — H*t1(Q;R) defined via

Uy (V) =u, Py(¥) =p, (3.7)

where (u,p) is the unique solution to the —-Stokes system

div S(p,u) + v01u =0, inQ

divu = 0, in Q

(3.8)
S(pa u)en = ¢€na on Eb
u =0, on Y.

The existence and uniqueness of (u, p) and the boundedness of U, P, are guaranteed by
Theorem 3.3.

Now we may record properties of the pseudodifferential operator associated to the
normal stress to solution maps (3.7).

Theorem 3.5 (Symbols associated to the pseudodifferential operator and their asymp-
totics). Suppose s = 0. The linear maps U, P, defined in (3.7) are well-defined and
bounded. Moreover, there exists bounded and measurable functions V : 3 x [0,0] x R —
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C",Q:2%x[0,b] xR — C™, andm : X xR — C such that for all ¢ € H+2(Sy; R), we
have

Uy (D)(& ) = V(& @0y =1)D(E)s Py (D)€ an) = QE, @, —)D(E),
m(§,7) = Va(&,b,7). (3.9)

Furthermore, the following hold.

(1) V,Q, m are continuous, with V(0,2,,7) =0, Q(0,z,,v) =1, and m(0,v) =

(2) V(& xn,7) = V(=£,20,7), Q,20,7) = Q(=&,2n,7), and m(§,7y) = m(— § ) for
all € € 3.

(8) For each € € %, V(€,-,7),Q(E,-,7) solve

(=02 + 4m?|¢|?) V! + 2mikQ — 2mi&y V' =0, in (0,b)

(=02 +4m2[E[?) Vi + 0,.Q — 2mi&17V, =0, in (0,b)

27l - V' + 0,V = 0, in (0,b) (310)
—0, V' — 2mifV,, =0, foran =b

Q—20,V, =1, forx, =

V=0, forxz, =0.

(4) For |€| < 1, we have

V' (€ n7) = =€(2aab—a2)+O(IE[2), Va(&wns7) = 202l (5 =) +0(EP),

2 An?|¢|*b? 3
Q€ zn, ) =1+ 0(EF), m(§,7) =———73—+O(), asl¢l—=0 (3.11)

where F(&,x,) = O(|¢[*) as |€| — 0 means that

F(& xn
limsup sup M < 0. (3.12)
g[+0 o<zt €]

(5) For each v € R, there exists a constant ¢ = ¢(vy,b) > 0 and R = R(v,b) > 0 such
that for x, € [0,b] and |£| > R, we have the point-wise estimates

IV’(f,xn,v)I<c<|”+(b ))e_Q”E(b_m")+ce_2”|5|b, (3.13)

€17
V(& mp,y)| < e <?| +(b— xn)) e 2mEIO=en) 4 ge=2mlelb - (314)
1
m(€,7) + ml\cmg, (3.15)

Q& n, )| < ce2TIENbmmm) 4 ge2mltle, (3.16)
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(6) For each v € R, there exists a constant ¢ = c¢(n,b,) such that
sup /IV & @, V)P +1Q(E wnyy) — 11 dn +[V(E,0,7)]* | <, (3.17)
le|<1, g;éo |€‘

b

b
and (14 |¢2)%/2 / V(€ )P dy + (11 [E2)1/2 / Q€ 272 dn
0

0
+ 1+ [EP)IVEDL < (3.18)
forall £ € 3.
Proof. If & = R"™ 1 all six items follow from Theorem 4.5, Theorem 4.10, and Corol-

lary 4.11 in [15]. In the other cases, we have 3 C Rn— Rn—1 = R»-1 . Therefore, the same
conclusions will follow as we are sampling the frequencies on subgroups of R*~. 0O

We conclude this subsection by recording the properties of an auxiliary function de-
fined in terms of m.

Lemma 3.6. Suppose v € R\ {0}, and define

p(€) = 2minés + (1 + 4n° [P a)m (€, —). (3.19)
Then the following hold.

(1) py(&) =0 if and only if € =0, and p,(§) = py(=E) for all € € s A
(2) For o > 0, there exists a constant C = C(n,~y,0,b) > 0 such that for all £ € 3, we
have

C Moy ()1 < (& +1€1)1p0,) (&) + (1 + €))L 0,1)-(§) < Cloy (7. (3.20)

(8) For 0 = 0 and n = 2, there exists a constant C = C(v,b) > 0 such that for all
¢ e S, we have

O oy (€)1 < 1€ Lp(0,1)(€) + (L + €1 Lp01)-(€) < Clpy (O, (3.21)

Proof. This follows from the proof for Lemma 6.1 in [15] and the asymptotics of m(&, —v)
on general 3 recorded as the third and fourth items of Theorem 3.5. O
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3.2. Compatibility conditions and the Hilbert isomorphism associated to the
overdetermined ~y-Stokes system

In this subsection we record the Hilbert isomorphism that completely characterize
the solvability of the overdetermined system (1.43). First we introduce a pair of function
spaces for the data tuple (f, g, h, k) that encodes the compatibility conditions associated

o (1.43).

Definition 3.7.Let s > 0 and ¥ be defined as in (1.1). We say that a data tu-

ple (f,g,h,k) € H*(R™) x HFHQ;R) x HF3/2(5;R) x H*FY/2(X;R") satisfy the
divergence-trace compatibility condition if

b
h — /g(~,xn) dz, € H1(Z;R). (3.22)
0

We define the Hilbert space )* to be
={(f,g,h, k) € H*(;R") x H*F1((;R) x H*T3/2(3;R) x H*TY/2(3;R™) |
(f, g, h, k) satisfy the divergence-trace condition (3.22)}, (3.23)

with the associated norm defined via

2 2 2 2 2
1CFs 95 s B)llye = 11 e + N9l gros + 1Rl prova + (1Bl gers 2
2

b
+ |h— [ g(-,x,) dzy, . (3.24)
/

H-1
Definition 3.8. Let s > 0. We say that the data tuple (f,g,h,k) € H*(Q;R"™) x
HTH(Q;R) x H*F3/2(5;R) x H*t1/2(3; R™) satisfy the adjoint compatibility condition
if
b
[ F620) - V&) = (6. 2) Q& 2] dan — () - VTE B, ) + e) =0,
0
(3.25)
where V, @ are defined via (3.10). We define the closed subspace Z° of V* to be

={(f,g,h, k) € Y| (f, 9, h, k) satisfy (3.25)}. (3.26)

Now we are ready to record the main result of this subsection.
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Theorem 3.9. Let s > 0,7 € R, and Z° the Hilbert space defined in (3.8). Then the
bounded linear operator ., : o HST2(Q; R™) x H5T1(Q;R™) — Z° given by

\I]’Y (u7p) = (le S(pa u) - 7811‘7 div u, Un|2ba S(pv u)en|2b) (327>
s an isomorphism.
Proof. The case ¥ = R" ! follows from Theorem 3.4 of [15]. We note that by Remark 3.2,
the calculations performed in R? in [15] are also valid over the low frequency regime in

f‘, therefore the arguments therein can be adapted with minimal modification to handle
the cases when ¥ # R"~1. 0O

3.3. Linear analysis with n and K

In this section we would like to establish the solvability of the y-Stokes system with
gravity capillary boundary conditions

divS(p,u) —yoiu+ (V'n,0) = f inQ

divu = g, in Q

Uy + 7011 = h, on %, (3.28)
S(p,u)en + cA'ne, =k, on Y

u =0, on X,

for data tuples belonging to the space Y*. First, we introduce the container space for

the solution tuple (u,p,n).

Definition 3.10. For s > 0, we define the Hilbert space

o = JAwpn) € oHTAQRY) x HHH(5R) x X925 R)}, - Ry # @ (3.20)
{(u,p,n) € oH*T2(Q;R™) x H(Q;R) x X*+5/2(3;R)}, Ry =9,
where
XH2(R) = {n € XT2(SR) [ 4(0) = 0). (3.30)
We endow X'® with the natural product norm defined via
2 2 2 2
(s s Maes = N[ullSgoss + Pl gers + 10l xors/2 - (3.31)

Next, we record an embedding result for X'°.
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Proposition 3.11. Suppose s > 0 and X?® is the Banach space in Definition 3.10. If
s >n/2, then we have the continuous inclusion

xs c ol R x of T i r) < cET T (s Ry, (3.32)

Moreover, if (u,p,n) € X%, then

| lir‘n 0%u(x) =0 for allaw € N™ such that |a] < 2+ Ls - gJ ) (3.33)
Z/RZ —00
| lirln 0%p(x) =0 for allw € N™ such that || < 1+ Ls - %J . (3.34)
z’RZ —00

Proof. This follows from standard Sobolev embedding (see, for instance, [14]) and the
first item of Theorem 2.5. O

In the subsection to follow, we establish some preliminary results to be utilized in the
subsequent analysis.

3.4. Preliminary results

In this subsection we use the asymptotics recorded in Section 3.1 to show that we can
construct the free surface function n from a given data tuple (f, g, h, k). First, we study
an auxiliary function defined in terms of the multipliers V, @ defined in (3.9).

Lemma 3.12. Let s > 0, v € R and (f, g, h, k) € Y*, where Y* is the Hilbert space defined
in (3.23). Consider V(-,-,—v) : £ x [0,0] = C", Q(-,-,—7) : £ x [0,b] — C defined in
(3.9). We define the measurable function v : 3 — C via

$(©) = [ (F(&wn) - V(€@ =) = 36 20)Q(E 20, =) ) da

o\@

— k(&) - V(€,b,—7) + h(&). (3.35)

Then the following hold.

(1) If Ry = @, then 1(0) = 0.

(2) V(&) = (=€) for every € € 3.
(3) We have the estimate

2
v

1
/|§|2|¢(€)213(0,r) + (L PR P Loy dE Snuss (9, hK)|
b))
(3.36)
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Proof. To prove the first item, we assume Ry = & and rewrite

o\o_

b
ke VED D + B - / i) dry | . (3.37)
0

We note that since h, g must satisty (3.22), by Remark 3.2 we have h fo (0, xy,) dzy,
= 0. We also note that by the first item of Theorem 3.5, V(0,z,,—v) = 0 and
Q(&, z,,—) = 0. The first item follows immediately from these two observations.

To prove the second item, we first note that by using the second item of Theorem 3.5
and by using the fact that f, g, k, h are real-valued,

(&) - V(& Tn, =) = 5E ) Q(E, Tn, =7) ) dan —h(€)-V (€, =) +h(€)

=
o
Il
O\O_
—
>

b
/ §,$n : (_gvxnv_’}/) _g(_gvxn)Q(_gvxn7_7)> d{En
0

— k(=€) - V(=&b,—7) + h(=€) = (=€) (3.38)

To prove the third, we first rewrite ¢ again as in (3.37) and apply the Cauchy-Schwarz
inequality to obtain

b b
W) < / FEan)P de / V(& )2 de
0 0
b
/ gaxn |2 dé- /|Q gaxna_’Y)_]'P df
0

b
RO PIV(E, b —7)P + h(E) / (6, 2a) danl?. (3.39)
0

We note that by the definition of the H~! seminorm, we have

b b
1 -
=€) = [ §(& xn) dun? dE < |h— | g(-,zn) day, . (3.40)

H-1
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Combining (3.39), (3.40) with (3.17), Tonelli’s theorem, and Parseval’s theorem then
gives us

b
O dE Snny FE )P + 156, 20)?) dende
€]
B(0,r) B(0,r) 0

2

b
+ / k() de+ |h - / 6oz dan| o |(Frgs b )]

B(0,r)

Do (341)

H-1

If |¢] > 1, then we apply the Cauchy-Schwarz inequality directly to (3.35) and obtain

b b
WEOP S| [ 17 za)l? de V(& xn)|? dE
/ /
b b
i / 96, de / QUE, 2y —)|? de
0 0

+R©OPIV(E b, =) + R (3.42)

Combining (3.42) with (3.18), Tonelli’s theorem, and Parseval’s theorem then gives us

/ (L4 [€2) 326 2 de

B(0,1)°

2

b b
S / / (L4 [€2)1F (€, ) ? dedn + / / (L+[€2)°13(6, ) ? dedn
0 0 %

b
T / (1+ [6)"F72](&) [ dg + / (1+ [T dE S / 1)y dn
> 5 0
b
+ / g2y e+ [k pnsz + 1l 2sare Sascrs |(Fr g, B R)
0

Se. O (343)

Next we study the linear map T, , : X* — V* defined via

T"/,cf (u7p7 77) = (le S(pv ’U,) - ’781“’ + (V/W» 0)7 div u,
un|2b + ’78177; S(pa u)en|2b + UA/nen) (344)
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which is the solution operator corresponding to the system (3.28). The next result shows
that this linear map is well-defined, bounded, and also injective.

Proposition 3.13. Suppose v € R\ {0}, 0 > 0, and s > 0. Then the linear map Y, , :
X*® — Y* defined in (3.44) is well-defined, continuous, and injective.

Proof. We first check that the map is well-defined and continuous. By the fifth item of
Theorem 2.4, the first component f = div S(p,u) —yd1u+ (V'n,0) belongs to H*(; R™)
with the estimate

1l S Nully e + 120 o + [0l o572 - (3.45)

The second component g = divu belongs to H*™(Q;R) with the estimate |g| o1 <

~

[[w|l, frs+2- By the fifth item of Theorem 2.4 and standard trace theory, we deduce that the
third component k = S(p, u)e,|s, +0Ane, belongs to H5+1/2(3; R™) with the estimate

5l sz < NPN grosrregsy + DUl gresasa sy + NOA D rosase sy

S Pl grsvq) + l[ullyprsve + 0l xors/z - (3.46)

By the fifth item of Theorem 2.4 and standard trace theory, the fourth component
h = up|x, + v01n belongs to H3+3/2(Eb; R) with the estimate

Vollgessse S Tl gess - [l osaro (3.47)

Next we note that since g = divu,

b

b
f/gxxndxnf/aunandxn /gxxndxn
0

0
b

= - div’/u'(m’, Tp) dz, (3.48)

0

for a.e. ' € ¥. Writing H*"3(3;R) > R(2') = fob ' (z', ) dx,, we first note that if
Rr = @, then (EI\R(O) =0 and 7/61\77(0) = 0. Then we note that

b
- / oza) dey| = [divR]gor S Julge (3.49)
0 H-1

therefore
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b b
h — /g(',$n) dzy, < |up — /g('axn) dxy, + [78177]['{71
0 H-1 0 H-1
Sl oz + 10l xsrs/2 - (3.50)

Combining the estimates above shows that T , is well-defined and continuous.

To show that Y., is injective, we suppose (u,p,n) € X* and Y, (u,p,n) = 0.
We note that if p = p — 7, then Vp = Vp — (V'n,0) and pI = pI — nl. Therefore
T, o(u,p,n) =0 if and only if (u,p,n) satisfies

div S(p,u) — yO1u = 0, in

divu =0, in Q

S(p,u)en, = (n—cA'n)e,, on (3.51)
Upn +y01m = 0, on X

u =0, on Y.

By Tonelli’s theorem, Parseval’s theorem, and the fifth item of Theorem 2.4 we have
a(€,-) € H5((0,b);C™) and p(&,-) € HY((0,b);C), for a.e. £ € 3. By the second item
in Theorem 2.5, f# € L'(3;R) + L2(X, (1 + |£]?)(5+5/2)/2d¢; R). Applying the horizontal
Fourier transform to (3.51) shows that for a.e. £ € 3, w = a(¢,-), ¢ = p(€, -) satisfies

(=02 + a2 [¢?) w' + 2migq — 2mi&yw' =0, in (0,b)

(=02 4+ 4m?[€|?) wy, + Onq — 2mi&yw, =0, in (0,b)

2mi& - w' + Opw, = 0, in (0,b)

—Opw' — 2mikw, = 0, for z,, = (3.52)
¢ — 200w, = (1 + 472200, for 2, = b

Wy, + 27i€1yH = 0, for x,, =

w =0, for xz,, = 0.

First consider the special case when Ry = @ and £ = 0. In this case, the third and
sixth equations imply that w, = 0. Since n € )G(SH’/Q(E;]R), we have 7(0) = 0 and
therefore by the second and fifth equations, ¢ = 0. The first, fourth, and last equations
then tell us that w’ = 0. Therefore, we can conclude that at £ =0, w,q = 0.

Next consider the general case for which & € ¥\ {0} and (3.52) holds. Using (3.52)
and integrating by parts (for further details, see Proposition 4.1 in [15]), we deduce that

b
1
/—727ri§1|w\2 + 2|0nw,|? 4 [Opw’ + 2mitw,|* + 5\2771'5 @w +w' @ 2mié|? dr,
0

= —2mi&iy(1 +4n°|E[0) (€)% (3.53)
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By taking the real part of this expression, we see that we must have for a.e. £ € i
Opwy, =0 and O w' + 2miw, = 0 in (0,b), but since w(0) = 0, we must have w = 0 in
[0,0]. Then by the first equation, we must have ¢ = 0. By the second to last equation,
we find that n = 0. From this we find that (u,p,n) = (0,0,0), so we can conclude that
T, o is injective. O

Next we show that T, , is surjective. To do so we must construct the free surface
function 7 from a given data tuple (f,g,h,k) € Y*. For the reader’s convenience, we
record this construction in the next subsection.

3.5. Construction of the free surface function and the isomorphism associated to (3.28)

Lemma 3.14 (Construction of n in the presence of surface tension). Suppose v € R\ {0},
o>0andn > 2,s>0. Then for every (f,g,h, k) € Y*, there exists ann € XS+%(Z;R)
for which the modified data tuple

(f = (V'n,0),9,h = v0in, k — 0 A'pe,) € HY(Q;R") x H*HH(Q;R)
x H¥T3 (34 R) x H*"2 (5, R™) (3.54)

belongs to the range of Y. , defined in (3.44). Moreover, we have the estimate

Inll org S NCF5 950 Ry (3.55)
Proof. Given (f,g,h,k) € Y*, we propose to define n € XS+%(Z;R) through
b (E) 0
i = 7@ 7 (3.56)
0, £=0,

where p. is defined in (3.19) and ¢ is defined in terms of (f, g,h, k) in (3.35). We note
that the choice of #(0) = 0 is only relevant in the case when I' = H‘Ll L;T.

We first note that by the first item of Lemma 3.6 and the second item of Lemma 3.12,
we have 7(€) = A(—&). Furthermore, by the second item of Lemma 3.6 and the third
item of Lemma 3.12, we have the estimate

2 4
J (S 4 (41 00 ) O

X

. / (igetmon + 0+ 169 Laga: ) I OPIEF de

/ <|s|213<“ <1+f|2>“’+%13<o,r>a)|w<£>|2dss|<f,g,h7k>|;b (3.57)

by
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Consequently, if we define n = (7)Y, then by (3.57), and 7H(£) = 7(£), we have n €
X5+5/2(%; R) with the estimate (3.55).

To conclude our proof it suffices to show that the modified data given in (3.54)
belongs to the range of Y, ,(u,p,n). By Theorem 3.9, it suffices to show that the
modified data tuple has the desired regularity and satisfies the divergence-trace com-
patibility condition (3.22) and the adjoint compatibility condition (3.25). We note that
since n € X*T5/2(%;R), by the fifth item of Theorem 2.4 and the third item of Theo-
rem 2.5, we have (f,g, h—~y01n, k— UA'nen) € H5(Q;R™) x HFH(Q;R) x H5F2 (2 R) x
H 2 (S R™) with (h — v811) — fo S an) € H Y (Z;R). To check (3.25), we write
0 =1 — p,y7) for £ # 0 and use the definition of ¢ and p, to obtain

= [ (f(e.20) - V€@, =) — 9(6,2)Q(E 20, 7)) da,

o\@

= (k(&) + (1 + 4n®[EPo)(€)en) - V(E b =) + h(€) — 2mi&yi(€).  (3.58)
Using the third equation in (3.10) we have 27i€ - V'(§, zp, =) + 0 Vo (&, zpn, —7) = 0,

and since V(£,0,—v) = 0, we have

b b
Vi@ h =) = / O ValE,zn, ) diyy = / omie VI ) dm. (3.59)
0 0

Thus, we can rewrite (3.58) as

b
0= [ ((F(an) = (T2(9).0)) - V& =) = d(,2) Q. 7)) da
0

= (K(€) + oA (E)en) - Vb, =) + h(€) — 2migayi(€),  (3.60)
and the desired conclusion follows immediately. O

For the special case of n = 2, we can also construct the free surface function 7 in the
case without surface tension.

Lemma 3.15 (Construction of the free surface function without surface tension). Suppose
v € R\{0}, c =0 andn =2, s > 0. Then for every (f,g,h,k) € V*, there exists an
ne Hsts (3;R) for which the modified data tuple

(f — Oiner, g, h — Y0, k) € H*(QR™) x H*TH(Q;R) x H™"2 (8, R) x H*2 (Sy;R™)
(3.61)
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belongs to the range of Y., , defined in (3.44). Moreover, we have the estimate

17l g S NCF 950 Ry (3.62)

Proof. We follow the construction in the previous lemma and propose to define 7 via
(3.56). Then 7(€) = (=€), 7(0) = 0, and by the third item of Lemma 3.6 and the third
item of Lemma 3.12, we have

[ (@ 1gPataon + 1+ 167+ 1m0 ) li(E) P de

X

. / (igeteon + 0+ 16 Laga ) I O PO de

/<€|2 +(1+[¢)?) +%1B(0,1)c) W(€)|* de SII(f,g,h,k)|I5. . (3.63)

Consequently, we may define n = (9)V. By (3.63) and Lemma 2.1, we have n €
Ht5/2(3;R) = X*+5/2(%;R) with the estimate (3.62). By the third item of Theo-
rem 2.5, we have (f —diney, g, h — 'yaln,k) € H* (& R”) x HSTH(Q; R) x HoH3 (5 R) x
H*+2($,:R™) and (h — y011) — fo ., &3) dry € H ' (3;R). To conclude we follow the
same line of calculations as in Lemma 3.14 to arrive at

b
/ 57 x2 - 27‘—2517761) (57 x2, _’Y) - g(é-? .'172)@(5, x2, _7)> de
0

— k(&) - V(&b,—7) + (&) — 2mikayi(€), (3.64)
which verifies the overdetermined compatibility condition (3.25). O

Now we are ready to prove that T, , : X* — )* is an isomorphism when o > 0 and
n > 2, and when 0 =0 and n = 2.

Theorem 3.16 (Existence and uniqueness of solutions to (3.28) ). Supposey € R\{0},s >
0.

(1) (Isomorphism in the case with surface tension) If o > 0 and n > 2, then the bounded
linear map Y 5 : X° — Y* defined in (3.44) is an isomorphism.

(2) (Isomorphism in the case without surface tension) If o = 0 and n = 2, then the
bounded linear map Y~ : X° — V° defined in (3.44) is an isomorphism.

Proof. To prove the first item, by Proposition 3.13, it suffices to show that T, , is surjec-
tive. Suppose (f, g, h, k) € Y*, and define the free surface function n € X*+5/2(%;R) by
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the construction in Lemma 3.14. By Theorem 3.9, there exists (u,p) € o H*T?(Q; R") x
H*1(Q;R) such that ¥ (u,p) = (div S(p,u) — yOru, divu, u,|s,, S(p, u)en|s,) = (f —
(V'n,0), g, h—~01n, k—oA'ney). Therefore, we find that Y, ,(u,p,n) = (f, g, h, k). This
shows that T, , is surjective, and it follows that T , is an isomorphism.

To prove the second item we follow the same argument as above, using Lemma 3.15
in place of Lemma 3.14 and T, o in place of ¥, ,. O

3.6. Parameter regime for the linear isomorphism associated to (1.24)

In this subsection we consider the linearization of the flattened system (1.24) around
the trivial solution v = 0,p = 0,7 = 0, which is given by the map X* > (u,p,n) —
L., € Y*® defined in (1.52). Our goal is to show that there is a parameter regime in
terms of x for which L, , remains an isomorphism between X® and )°. To achieve this
we first define Ly ,, My : X* — Y° via

LO,U(uapa 77) = T’YyU(U‘?p’ 77)
= (div S(p,u) — v01u+ (V'n,0),divu, uy|s, + 7011, S(p,w)en|s, + cA'ney), (3.65)

and

M, (u,p,n) = (—yKx01me1 + K50(2n) 01U + K8H(Tn)uner + k22, s0(x,)01me1

b2
— kxpA'ner — K(x,V'01n, 01n), Kz, 011, ,%31,7’ 0), (3.66)

so that L, = Loos + M, = Loo(I + L&},Mn), where L, , is defined via (1.52) and
¢ is defined via (1.6). Our goal in this subsection is to show that || M| < W for
sufficiently small .

We first establish a preliminary lemma. While the following result is not at all surpris-
ing and follows from routine applications of Tonelli’s theorem and Hélder’s inequality, we
record the proof below to show that the universal constants in the estimates are purely
combinatorial and do not depend on the physical parameters.

Lemma 3.17. Let Z 5 n > 2 and suppose f € C*°([0,b];R). The following hold.

(1) If g € HF(Q;R™) for some integer k > 0 and for any i € N,j € N™ with |j| < k we
define (' f07g)(x) = 0" f(x,)0 g(x), then we have

10°F g o < NNO"F| o gl s - (3.67)

Consequently, fg € HF(Q;R™) and there exists a combinatorial constant C =
C(k) > 0 such that
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17gllie < € max [10°F]] o N9l - (3.68)

(2) If g € H*(Z;R) for some integer k > 0 and for any i € N,j € N"~1 with |j| < k
), then we have

we define (0°f7g)(z) = 0 f(x,)07 g(z'

[0 g| o < (10" F| 12 Ngll s - (3.69)

Consequently, fg € H*(S;R) and there exists a combinatorial constant C = C(k) >
0 such that

1£gll gz < € max [|0°f]] . lgll g - (3.70)

0<i<k

Proof. To prove the first item, we note that by Tonelli’s theorem and Hélder’s inequality,

[NIE

b
|0 07gl1,s = [ [ 105 Plovg(a)? di’
> 0

1

b 2

<0 lyman | [ [ Po@P doaa
X 0

<19 00 199 s <10l ol 371

Then by the Leibniz formula, we have

o< X (D) 105l 0l < € i 0]

0<i<keN
0<5]<k, m<GEN™ S
(3.72)

where C' = C(k) > 0 is a combinatorial constant depending only on k. To prove the
second item, we note that by Tonelli’s theorem and Hoélder’s inequality again,

1
2

10°7 99 .

b
[ 105t da [ 199 a
0 =

10° 712 1979l 2 < [10°Fl 2 Nlgl s - (3.73)

Then by the Leibniz formula,

D S G | L L

0<|j|<k, m<GjEN !
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S CKIZ%C’EN 10" fll 2 gl g - O (3.74)

This gives us an immediate corollary that will prove useful in the next section.

Corollary 3.18 (Multiplication with smooth functions in the vertical variable). Let ¥ be
defined as in (1.1) and suppose R 3 s > 0. If ¢ € C*°([0,b];R), then the map T,
H*(3;R) = H*(Q;R) defined via Ty, f(z) = p(xy,) f(2) is well-defined and bounded.

Proof. This follows directly from the second item of Lemma 3.17 when s is an integer.
By interpolation, the second item also holds when s is real-valued. O

Now we are ready to prove the main result of this subsection.

Theorem 3.19. Let R 5 s > 0,k € R and consider the linear map M, : X° — Y*® as
defined in (3.66). Then the following hold.

(1) There exists a constant C > 0 depending on s,n, and in the periodic cases on L;,
such that

IMll e ey < C (max{b%,b%}w ¥ (|fy|max{b1/2,b3/2} +max{1,b2}> |,.;|) .
(3.75)
(2) There exists kg > 0 depending on 7, s,b,n, and in the toroidal cases on L;, such
that for all kK € (—ko, ko), the map L., : X° — Y° as defined in (3.65) is an
isomorphism.

Proof. To prove the first item, we first suppose that (u,p,n) € X*® for some integer

> 0 and consider (f,g,h,k) = My(u,p,n), where M, is defined in (3.66). Then by
the fifth item of Theorem 2.4, the third item of Theorem 2 , and Lemma 3.17 we have
(fs9,h, k) = M, (u,p,n) € Y*. Recall that so(x,) = bz, — and note that 8(())(.73”) =0
for i > 3 and (x,80(x,))® = 0 for i > 4. Therefore, by Lemma 3.17 and the fifth item
of Theorem 2.4 we have

1l S ol e (29 Nownlzr. + Ixl masg [[s6” ] lrulless
1wl g |67 llullze + [P Orgagc3H<mnso>“>HL2 0171

+ || max H 5;')
0<i<1

A . + [i] max [|o

0<i<1 12 [Ov | ass + ] 1017]] -
\ X

Som [masx{v3, 63}l + (o ma{b!/2, 5/} + maxf1,6}) Jiel| (fulgos + [l o)

Son (max{vd 3 Ml + (7 max{b/2,6%/2} 4 max{1,6%} ) [6]) I p, )| . -~ (3.76)
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We also have

1 .3 1 .3
gl gress Ss Rl max{b, 02} 0ul] grosr Ssn |6l max{b, 02} 0] xosa (3.77)

and HhHHer% Sen ||V 17l o+ 3 - Therefore,

M () e S (ma{bd, 63}l + (9] max{p'/2, 62} + max{1,6%} ) ]
< s m)lee = By byk) [ p )l e (3.78)

which implies that || My xsy0) Ssin B(7,b,%). We note that by the fifth item of
Theorem 2.4, in the toroidal cases the universal constants in the preceding equations
also depend on ;.

For any real valued s > 0, we may find an integer m > 0 and some 6 € [0, 1] such
that s = 6m + (1 — 0)(m + 1). Then by interpolation, there exists some constant C' > 0
depending on s,n, and in the periodic cases on L; such that

Myl g (aee) < 1M ||[, xmiym) [ M ||c(xm+1 ym+1y < CB(7,b, K). (3.79)

This proves the first item. To prove the second item, we note that

B(y,b, ) = max{b}, b7 } |2 + (r] max{p'/2,6%/2} + max{1,%}) |x]

b72k2 + (6% + 07|k, b>1
_ { 612 + (62 + ) (350)

V2612 + (b2 + 1)lkl, 0<b<1

From (3.80), we may infer that for ¢ = C~1 ||L0,‘,H_1 > 0, where C' > 0 is the constant
appearing in (3.79), there exists ko9 depending on =, s,b,n and in the toroidal cases on
L; for which B(7v,b,k) < cif k € (—kg, ko)-

Then by (3.79), if & € (—ko, ko) then [[Mallz(xe ys) < ||L0,g||2(1ys;xs), thus the linear
map Lacl,M,{ : X% — X® as defined in (3.65) satisfies ||L6(1,M,€H < |La},” | M|l < 1.
Hence, I + L(I},M,{ : X® — X? is an isomorphism, and we conclude that Ly , = Lo (I +
Ly}

fea

M,,) is an isomorphism from X'® to Y*. 0O
4. Nonlinear analysis
4.1. Preliminaries

We first record a set of results on various maps defined in terms of 7, including the
flattening map §,, that we will use in the subsequent analysis.

Theorem 4.1. Let 3 be defined as in (1.1), N>5n>2 N> k> %, andV be a real finite
dimensional inner product space.
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(1) Let C € Cg’l(Z;R) such that inf ¢ > 0, and R 5 s > 2. Then there exists r1 > 0

2
depending on n,b, s, C, and in the toroidal cases on L;, such that the maps I'1,T'5 :

Bxs(0,71) x H*(Q¢; R) = H*(Q¢;R) given by

Io(f.g) = 21 (4.1)

9
b+ f’
are well-defined and smooth. There also exists a constant ro > 0 depending on d, s,
and in the toroidal cases on L;, such that the map T : By« (s,ray(0,72) — H*(3;RY)
given by

_f

s well-defined and smooth.

(2) (The flattening map §, and its inverse) Letn € X*+3(3;R) be such that H77Hcg < %

Define &, : Qpiyy — 1y via

&, (z) = (x %) . (4.3)

Then the following hold.

(a) &, € C" (i3 M) is a diffeomorphism for r = 3+ |k — % |, with its inverse
being §y € C" (€4 Qpyy).

(b) If0 < s < k+2and F € H*(; V), then F o &, € H*(Qp4r; V). Moreover,
there exists a constant ¢ > 0 depending on n, s, k, |n|| yr+2, and in the toroidal
cases on L;, such that

| F o QSWHHS(QbJrn;V) < CHF”Hs(Qb;v)v (4.4)
and the map r +— c(n, s, k,r) is non-decreasing.
(¢c) If0 < s <k+2and F € H(Qyiy; V), then FoF, € H*(; V). Moreover,

there exists a constant ¢ > 0 depending on n, s, k, ||n|| xrs2, and in the toroidal
cases on L;, such that

||FOST?||HS(Qb;V) < C||FHH5(QI7+";V)7 (4.5)

and the map r — c(n, s, k,r) is non-decreasing.

(3) (w-lemma for compositions) For n € X’”%(Eb;R) we define the flattening map

as in (1.17). Then there exists some 0 < 6, < 1 such that the following hold:
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(a) The map Aq : H*1(E x R;R™) x B_,,1(0,8,) — H*(Q%; RY) given by

xFktz
Aa(fin)=foSy (4.6)

is well-defined and C*, with DAq(f,n)(g,¢) = ZOnf oS¢ +gody.
(b) The map & : H*2(X x R;R™) x B 3 (0,68,) — H5"2(3y; R?) defined via

Su(fim) = f o Buls, (47)

is well-defined and C*, with DS,(f,n)(g,¢) (%(%f ofy¢+go S,])|gb.
(¢) The map Ty : H* (S x R;RIM) X Byrs/2(0,6.) — HEHY2(Sy;RY) defined
via

(T, m) = (T o Fnlz, N, (4.8)

where N is defined via (1.13), is well-defined and C*.

Proof. The three items in the case & = R? for d > 1 follow from Theorems 5.16, 5.17,
A.12, Corollary 5.21, and Proposition 7.4 in [15]; the proofs therein can be adopted with
minimal modification to handle to cases when ¥ # R%. O

Now we can synthesize the aforementioned results to show that all the nonlinear maps
appearing in (1.24) are well-defined and smooth.

Theorem 4.2. Let R > s> 5 and o > 0. For 6 > 0, define the open set of X'®
Us ={(u,p,n) € X° [ |Inll y.r5 <3} (4.9)

For v € R, T € H* 3(%;REX™), (u,p,n) € U, U = Wy 0F,,Uzo = Wa 0§, with
Wi, Wy as defined in (1.7), (1.14), §, as defined in (1.17), and J, AN, H as defined
in (1.20), (1.21), (1.13) and (1.2), we define f = diva Sa(p,u) —ver - Vau — yr(xy +
ntz)omer+ (u+ Ut + U?) -V (u+ U+ U?)+(V'n,0)—k (zn + n%) Aney —k((zn+
nZ)V'oin, 01n), g = Jldivau+k (z, +n(@’)22) Oin(2’)], h=u N —(—y+s(n+b)+
k(N+b)n)oin, and k = Sa(p, w)N —=[oH(n)I+T+r(n+b)(e1@(V'n,0)+(V'n,0)®e1)|N.
Then (f,g,h, k) € Y*, and the map

R x R x H*"3 (SR x U 3 (, Tyu, pyn) = (f, g, by k) € V° (4.10)

sym

18 smooth.

Proof. By the first item in Theorem 2.5 and standard Sobolev embedding, there exists
a constant dy > 0 depending on n,s,b, and in the toroidal cases on L;, such that if
s > n/2 and n € X*/2(5;R) with ||| xes2 < o, then nllcp < /2. We define
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d = min{dy, r1,72/c1}, where r1, ro are the radii from the first item of Theorem 4.1, and
¢y is the embedding constant from (2.27). By Theorem 7.3 in [15] and standard results
from the theory of Sobolev spaces, the map

RXRXHS+ ( Rnxn)XU§9(75T7uap7n)'_}

sym
(diva Sa(p,u) + (u—ve1) - Vau+u-Vau, J divau,u- N + 011,
SAp,u)N = (eH(mMI+T)N) € Y* (4.11)

is well-defined and smooth, so it suffices to show that the map

R x H**3 (S R2XP) % US 3 (v, T, u, p,1j) —

sym

(=88 (2, xn)endiner +u-VaU' +U?) + (U +U?) - Va(u+ U +U?)
+(V'n,0) =65, (2", xn)enA'n(z")er —5(Fy (@, ) e, 1 V', 01), J%(%ﬁrﬂ(%’)%)@m(m'),
—s(n+b)oin — k(n+b)ndin, Kk(n+b)le1® (Vn,0)+ (V'n,0)@el] N) € Y* (4.12)

is well-defined and smooth, where §, (2", z,)e, = 2, + n(2’)%=. By the fifth item of
Theorem 2.4, the second item of Theorem 2.5, and Corollary 3.18 the map

R xR x X$+5/2(z; R) > (7) 5777) — —’yﬁ%n(l‘/7 l’n)enalnel + (V/na O)
— kEy(@, zp)en Aln(x"er — K(Fy (2, xn)e, 1V, 01m) € HS“/Q(Q;]R") (4.13)

is well-defined and smooth. By (1.7), (1.14), (1.17), and (1.21), we have
u- VAU + U+ U+ U?) - Va(u+ U+ U?)

= Z uj A0k (U + U?) + Y (Ul + UD) A (u + U + U?)
k=1

7,k=1
n—1
_Zuj (U +U?) + Y unAnkOi (U + U?) + un KO (U + U?)
k=1

O1n(z)

+ (U} + U (u+ U+ U?) — (UL + Uz K 3

O (U +U?), (4.14)

where K = 1/J. By (1.7), (1.14), and (1.17), (U* + U*)(z,n) = r(bF,(z)e, —
(Fn(2)en)?/2 + Ty(z)enn(a’))er where Fy(z)en = z,,(1 + n(z’)/b) = x,J, so we find
that

KT (el ey, k£

kb+z, T + ()T, k= (4.15)

(U + U (2, x,) = {
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Thus, by the second item of Theorem 2.5, Corollary 3.18, and the algebra properties
of standard Sobolev spaces for s > n/2 the map X*+t5/2(%;R) x H*(Q;R) 3 (n,v) —
PO (U+U?) € H*(Q;R™) is well-defined and smooth. By the first item of Theorem 4.1,
the map Bxs(0,0) x H5(Q;R) > (n,v) — vK € H*(Q;R) is well-defined and smooth
for any ¢ € H*(2;R™). We also note that every non-trivial term in the components of
(4.14) is either a product of functions in X*+5/2(¥;R) and functions in H*(Q;R), or
functions in X*+5/2(3; R) and derivatives of functions in X*+5/2(3;R). To summarize,
by the observations made above, (4.15), the second item of Theorem 2.5, Corollary 3.18,
and the first item of Theorem 4.1, the map

R x U > (kyu,p,n) = u- VAU +U?) + (U +U?) - Va(u+U' +U?) € H(;RY)
(4.16)

is well-defined and smooth. Similarly, the maps
s+5/2 (. nEn ’ s+3/2 (.
RxX (%;R) 3 (k,m) = Tk(xn +n(a’) 2 Yoin(z') € H (X;R)  (4.17)

and

R x X*T2(%:R) 3 (k1) —
(s(n +b)01n + k(1 + b)ndin, k(n + b)(e1 ® (V'n,0) + (V'n,0) ® e1)N)
€ H3?(3;R) x H32(Z;R™)  (4.18)

are also well-defined and smooth. Finally, it remains to show that
b
—s(n+0b)o1n — k(n+ b)ndin — /J(-, Tn)K (xn + n%) o dx, € H1(2;R)(4.19)
0

By (1.20), we have

b
— s(n +0)o1n — K(n + b)ndin — /j(w Tp)k (ffn + 77%") o dxy,
0

= —Ii(b28177 + b81772 + %81773). (420)

Thus, by Theorem 1.2 and the third item of Theorem 2.5 we have b20;n+b0;n? + %81773 €
H~'(%;R). Therefore, we have shown that (f,g,h,k) € Y*, and the map defined by
(4.10) is smooth. O
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4.2. Solvability of the flattened system (1.24)

Now we are ready to construct solutions to (1.24) by using the implicit function
theorem.

Proof of Theorem 1.3. We first consider the case with surface tension, o > 0 and n > 2.
Let 6 be the minimum of the d; > 0 from Theorem 4.2 and §, > 0 from the third item
of Theorem 4.1. Consider the open subset U of X'* defined via

Us = {(u,p,n) € X% [Inll vy <6} (4.21)

Using Proposition 3.11 and standard Sobolev embedding, any open subset of U§ con-
taining (0, 0,0) satisfies the first assertion of the theorem. This proves the first item.
To prove the remaining items, we consider the Hilbert space

£ =R x R x H*V2(D x RyRIX™) x H*F3 (SR x HTH(E x R;R™) x H*(Z;R™)
(4.22)

and the solution map = : £ x Uj — Y* associated to (1.24) defined via

E(v, kT, T, §, fyu,p,m) = (divg Sa(p,u) — ver - V. a4u — ykx,01ne1
+(u+ U +U?) - Va(ut+U'+U?)
+(V',0) — 68y (x)enA'ner — £(Fy(2)enV'01n, 01n) — § o &y — Lo, f,
Jdivau+ 68, (2)endinl,u- N — (=y + s(n + b) + x(n + b)n)own,

Salp, )N = [oHMI+ T oFy + SeT|s, + r(n+b)(exr ® (V'n,0) + (V'n,0) ® e1)|N),
(4.23)

where Lg, f(z) = f(a'), SpT(2’,b) = T(z'). By Theorem 4.1, Theorem 4.2, and Lem-
mas A.10 and A.11 in [15] the map Z is well-defined and C*.

By the product structure of £ x Uy, we can define D= : €% x U§ — L(E%;Y*) and
Dy=: €% x Ui — L(X®;)?) to be the derivatives of = with respect to £° and U}, re-
spectively. Note that by the second item of Theorem 4.1, we have D2G,(0,0) = 0 and
DyAq(0,0) = 0. Therefore, for any v € R, =(+,0,0,0,0,0,0,0,0) = (0,0,0,0) since we
also have U? = 0, U' -V 4U! = (U})0,U* = 0 for n = 0, and D>Z(v,0,0,0,0,0,0,0,0) =
L, , where L, , is defined in (3.65). By Theorem 3.19, for every =, # 0 there exists
some kg > 0 for which Dy=(,0,0,0,0,0,0,0,0) is a linear isomorphism for every x €
(—ko, ko). Thus, by the implicit function theorem, there exist open sets U(7y.) C £° and
O(7x«) C U§ such that (v«,0,0,0,0,0) € U(v,) and (0,0,0) € O(74), and a C! and Lips-
chitz map @, : U(v.) = O(v.) C Uf such that =Z(v,, T,T.f, f, . (v, 5, T,T.§, f)) =
(0,0,0,0) for all (v,x,T,T,f, f) € U(7«). Moreover, (u,p,n) = @, (v,K,T,T,f, f) is the
unique solution to E(v, k, T, T, §, f,u,p,n) = (0,0,0,0) in O(~,).
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Next, we define the open sets

w= |J uUr)cé&ando’ = |J O CU;. (4.24)
~.€R\{0} 7. €ER\{0}

We note that by construction, (R \ {0}) x {0} x {0} x {0} x {0} x {0} C U*. Fur-
thermore, for every (v,k,7T,T,f,f) € U®, there exists a . € R\ {0} for which
(v, &, T,T,f, f) € U(v) and (u,p,n) = @y, (7,5, T,T.,f) € O(v). By the obser-
vation above and the implicit function theorem, the map @ : U® — O defined via
w(v,k, T, T,§, f) = wy. (v, &, T, T, f, f), where v, € R\{0} is such that (v, x, T, T,f, f) €
U(74), is well-defined, C*, and locally Lipschitz. This proves the remaining items for
oc>0andn > 3.

To prove the remaining items in the case without surface tension and n = 2, we argue
along the same lines but use the second item of Theorem 3.16 instead of the first and
use the isomorphism L, . O

4.8. Solvability of the unflattened system (1.16)

We now examine the solvability of the system (1.16) in the original Eulerian coordi-
nates.

Proof of Theorem 1.4. Consider the map w : Y* — O° constructed in Theorem 1.3. By
Theorem 1.3, for every (v,k,T,T,f, f) € U* the tuple O° 5 (u,p,n) = w(y, &, T, T,f, f)
solves (1.24) classically. Since (u,p,n) € O°, we have ||77||C,? < b/2, therefore by the
second item in Theorem 4.1, the flattening map §, and its inverse §, I are both
Cls=n/21+3 diffeomorphisms. Now we fix (v,k,T,T,f,f) € U° and set (u,p,n) =
w(y, k&, T,T,f, f),v = uo S;l, and ¢ = po S;l. Then by the second item of Theo-
rem 4.1 and Sobolev embedding, we have v € o H**2(Qp4,,; R?) N CLs—n/2142(Qy  R™)
and ¢ € H5 Qs R) N CZ)LS_"/QJH(QHW;R). Since (F, ' (x)) = 2’, we have (fo §, +
La, [)o, ' (x) = f(x)+La,,, f(z) and (T oFy|s, +S5T) 0T, (z) = Tls, ., (2) +Sp4n T (@)
for all € Qp4yy. Thus, if (u,p,n) is a solution tuple to (1.24) then (v,q,n) is a solution
tuple to (1.16). The last item follows from the fact that w is locally Lipschitz. O
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Appendix A. Tempered distributions and the Fourier transform

In this subsection we carefully define the class of tempered distributions on I' and its
Pontryagin dual I. For the sake of simplicity, we shall assume I' = R4 x Hfil L; T with
N >dy,dy 2 0,d=dimT = dy +ds > 1, corresponding to (1.47)-(1.49); the analysis for
general I" follows from composition with permutations. First, we note that this allows us
to write I' 3 € = (€g, &r) € R% x H?il L;7'7. Second, we note that for any a € N%, we
may follow the convention in (1.26) and write « = ag,. + ag.. We then define

Ng ={aeN|ap. =0}, N¢ ={aeN*|ag. =0}. (A.1)
Definition A.1. Let ' = R% x H 1 LiT with N 3 dy,de > 0,d =dimI' = d; +da >
(1) We define the Schwartz class .#(I';C) on T" via

S (T;C) ={f € C°(T;C) | [flr,a,p = sup|2*0° f(z)| < oo for all « € N , 3 € N7}
zel
(A.2)

and on I via

do
SOC)={f:T = C|f(-.&r) € C®R;C) for all &y € [[ L;'Z and
i=1
[flf 0.5 =sup €90 f(€)] < oo for alla € N4, 3 € Nfl;tf}. (A.3)
ger

We equip .(T'; C) and .%¥ (f‘, C) with the Fréchet topology induced by the countable
family of seminorms {[-Jr,a,g}aend sene and {[z , staena geng , by endowing
‘T [hnt] ? '

S(T;C) and .7(I'; C) with the metrics

1 [f — 9lr,a.8
dsmy(f,9) Z Z 21081+ [f —glra,p’

aeNd BeEN

1 f‘_gy‘ag
oy (f9)= > D 2lal+1l 1 4 [f — Z]FM (A.4)

aeNdﬁeN

(2) We define the unitary Fourier and inverse Fourier transforms Z= : .#(T;C) —
Z(1;C), F£ : Z(1;C) - #(T;C) on #(T;C) and .#(T; C) via

1

ﬁ f(ﬂﬁ)@wmfm dx = yﬁ{f}(—f)v
i€Tp 1 T

FE{fHE) =
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1

HiETF L'L f‘

FAfHz) = F(©eT T de = FT{f}(—x). (A5)

(3) We define the class of tempered distributions .#(I'; C) and .#”(I'; C) to be the set
of continuous linear functionals on .(I'; C) and .%¥ (f‘, C), respectively.

Next we record some important properties of the Schwartz classes #(I';F) and

Proposition A.2. Let T' be defined as in (1.47)-(1.49). Then the following hold.

(1) We have the continuous inclusions .# (I'; C) < LP(I;C) and .&(I';C) — LP(I';C)
forany 1 <p < oo.

(2) We have the continuous inclusion LP(T;C) < .'(I';C) and LP(I;C) — .#'(I';C)
forall 1 < p < oco.

(8) Forany f € S (I;C), a € Nj‘%r, and B € N? the functions g g, hap: T — C defined
via go5(2) = 20P f(x) and hy g = 0% (2P f(z)) belong to #(T'; C). Furthermore, the
maps f +— ga,g and f — hq g are continuous. Sitmilarly, for any f € Y(f;(C), o€
N?, and g € Ng{f the functions ga.g,ha,s : I — C defined via go - (€) = £€20° f(€)
and ho g = 0%(EPf(€)) belong to S (I;C). Furthermore, the maps f Ga,8 and
f = ha,pg are continuous.

(4) If f € L(T;C), then FE{f} € #(T;C) and the map f — FE{f} is continuous.
Likewise, if f € .#(I;C), then ﬁ\;—L{f} e Z(I;C) and the map f — ﬂlft{f} is
continuous.

(5) If f € #(I;C) and g € .#(I';C), then

[ #Etneng(en) deak = [ ) FE o o) dedy. (40

(6) If f € S (T;C), then f = FF o FE{f}. Similarly, if f € #([;C), then f =
Fi o Fi{f}.

(7) The Fourier and inverse Fourier transforms Z5 : .#(T;C) — . (I';C) on .#(T;C)
are isomorphisms from Z(I';C) to y(f;(C). Likewise, the Fourier and inverse
Fourier transforms 3?13[ . .7 ([;C) = L(T;C) on #(I;C) are isomorphisms from
Z(I;C) to S(T';C)

Proof. Define

1, I =R¢
max{l,2max;efy, . 4,} Li}, otherwise.



70 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057

To prove the first item, we note that for any 1 < p < oo, f € S (T;C), and o, § € N%P
with || =d+1,|8] = |(d+ 1)/p| + 1 we have

1/p

oo & | [ 1H@Pdes [ @0 r@Pde0)® d

B(0,7) B(0,7)°
1/p
P
N |f||’£oo+< sup dr(%O)a/”f(ﬂ?)I) / dr(z,0)" dx
x€B(0,7)°
B(0,7)¢
SUfllpe + sup dr(e,0)°(f(2)] S [flro0 + > [flr.s0. (A8)

z€B(0,7)° BENE ,181=1(d+1)/p]+1

and when p = oo we have || f[|;« ) = [f]r,0,0- It follows then that .#(I'; C) — LP(I'; C)
for all 1 < p < co. A similar set of computations can be performed to prove . (f; C) <
Lp(f; C) for 1 < p < oo. For the second item, suppose that we have a sequence { f;}7°, C
LP(T;C) for 1 < p < oo such that fr — f in LP(I";C). We note that the canonical
distribution Ty, : #(I';C) — C associated to each fj defined via

(Tfp, @) 1,7 = /fkgp dx for all p € .7 (T; C) (A.9)
T

is clearly linear. By the first item and Holder’s inequality, if {¢,, 5o ; € Z(T;C) and
©m — @ as m — oo in . (I'; C), then for each k we have

(Tse om = @)zl < fillpo lom = @llpa = 0. (A.10)

This implies that 77, € &/(I';C). Furthermore, since fi — f in LP(T';C), by the first
item and Holder’s inequality again, we have

(T = Tr )7l < Wk = fllpw l@ll e = 0 for all o € #(T5C). - (A11)

Since the map LP(I;C) 3 f — Ty € /(I';C) is also clearly injective, the inclusion
map i : LP(I';C) — #/(T'; C) as is well-defined and continuous. This proves the second
item for .(T'; C), and the same argument can be applied to prove the second item for
.#(I';C). The third item follows directly from the Leibniz rule.

To prove the fourth item, we first note that if f € #(T";C), by the first and third
items we have 0%((—2miz)7 f) € #(I';C) C LY(T'; C) for any a,y € N9 This shows that
ﬁl?f(,k) € C®(R%;C) for any k € H?il L7'7Z. Then for any a,y € N 3 € N9 we

have
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(—2mi€)* (= 2mik) O F{f}(€, k)

- (—271'2'5)0‘(—271'2'16)[3057/f(cmy)eﬂmg'xeﬂ”my dxdy
:/f(a:,y)(ZFZm'x)Vﬁgejﬁ”g'm@geﬂ“ik'y dxdy
= ()L [ oel(amia) 05 £ o)l dady. (A12)

By the first and third items, we find that the preceding inequality implies .# i{ f} €
Z([;C) and if {f}32, € .Z(T;C) and f — f in Z(T;C), then ZE{fr} — FI{f}
in .7 (I; C). Therefore, we can conclude that if f € .(I;C) then FE{f} € .#(I;C),
and the map f +— ﬁ#{ f} is continuous. Likewise, by a similar calculation we find that
if f e.#(I;C) then ﬁ}i{f} e S (T;C), and the map f — ylf{f} is continuous. To
prove the fifth item, we note that by the first item and Fubini’s theorem,

/ FEFHER)g(E k) dédk = / / fla,y)eF?meme T2 Ry qady | g(€, k) dédk
s T

r
/ fa) | [atememmeermiracan | = [ fo.)FE ) o) dody. (A13)
r r

To prove the sixth item, suppose f € .7 (T’; C) and for any fixed ¢ > 0 and (x,y) € T we
consider the function

21l 5 it 6:|:2'n'ik-y
OF (€ k) = e (TR e - (A.14)
2
\/ H¢:1 L;

We note that
Fi{o™ . s) = Fi{a}(r — s —y), (A.15)
where ¢:(&, k) = (Hd2 L;)~Y/2e=*(EF+IE*) | Furthermore, we note that the dual lattice

of A = Hd2 L7 is A = H?il L;Z and the volume of the fundamental domain of A’
is Hl: L;. Therefore,

FE g} @) = FE AT @) P AT )

do -1
2,2 27,2 -
— t—dle—ﬂ|r| /t (l I Lz) § e~ |&| 627r2k y

= et
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— p—digmla|?/t? —da Z e mlytk?/t

kGHfil LiZ

— g (dtds) =l /22 3 elu kT (AL16)

kell{2, LiZ

where we used the Poisson summation formula for h(y) = e=1v* on lattices to justify
the second to last equality. By the fifth item, (A.15) and (A.16), we have

+2wik-y

/e—wt2<|£\2+lk\2>ei2“€“ : FrASYE ) dedk

R \Y; Hfil L;

— [ 1.7 E it — .5 —y) drds
T

= /f(r, s)ﬁfi{gt}(x —r,y—s)drds = f ﬁfi{gt}(a:,y). (A.17)
r

We note that by the dominated convergence theorem, we have

+27ik-y
lim [ e~ 7t (€K gx2micw _©

t—0+ dz
P V Hi:l Li

FEASHER) dédk = FF o FE{f}(w,y)
(A.18)

for all (z,y) € T'. On the other hand, we note that {ﬂ}i{gt}}bo form an approximate
identity on T' since for all t > 0, #*{g;}(r,s) = 0 on I and by (A.16),

/ﬁfi{gt}(r, s) drds = ¢~ (ditdz) /e"rlr‘z/t2 Z e‘”‘s+kl2/t2 drds
r r kell$2, L,Z

:t_(dl"’dz)/e‘”l’“lz/t2 dr/e‘”ls‘2/t2 ds=1, (A.19)
Rd1 Rd2

and by (A.19) we also have lim;_,q fF\B(O 5) ﬁfi{gt}(n s) drds — 0 for all 6 > 0. There-
fore, for all (z,y) € T" we have

FF o FE{fYw,y) = lim [ F{g}(e.y) = (). (A.20)

li
t—0

To prove the analogous inversion formula on . (f‘, C), for any given t > 0 and (£,k) € T
we consider the function
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ds 1/2
y) _ (H Lz) efth|x|26:t27ri.£-z6:|:27rik-y. (A21)
=1
We note that
T} n,m) = Fi{he}(n — € m — k) (A.22)

1/2
where hy(x,y) = d2 L; e’”t2|$‘2, and by a change of variables we have
i=1

1/2
FE{h}(E k) = L T {e™ VNG - Fray o {1}(k) =t~ N e mE P,
M2, L,T

(A.23)
where dg 1, is the Kronecker delta. Thus, by the fifth item, we have
d 1/2
/ (H Lz) e—frtz|w\2eiQﬂ'if‘xeiQﬂihyﬂ}:‘t{f}(x, y) dady
£ \i=1
= [ #.m)ZE e}~ €~ b) dnm
r
= [ f.m)FE gt~ k= m) dndm = £+ FERHED). (A21)

r

We note that by (A.22), {#ZZ{h:}}i>0 form an approximate identity on I, therefore by
repeating the same argument on .%(I'; C) we find that f(&, k) = ZF o g‘fi{f}(f, k) for

all (¢, k) € I'. This proves the sixth item.
The last item follows immediately from the fourth item and the seventh item. 0O

We then extend the definition of the Fourier transform to the class of tempered dis-
tributions.

Definition A.3. Suppose T} € .%/(I';C) and Ty € .&/(I'; C), where X is defined via (1.25).

(1) We define the Fourier and inverse Fourier transform of T} to be ZZ{T} € .#/(’;C)
given by

(FETL) ¢) = (T, Fi{p)) for all g € 7(D;C) (A.25)

(2) We define the Fourier and inverse Fourier transform of T3 to be fri {Tr} € /' (I';C)
given by



74 J. Koganemaru, I. Tice / Journal of Functional Analysis 285 (2023) 110057
(FAToY, ) = (Tn, Fo{p}) for all p € 7(T;C) (A.26)

We note that by Proposition A.2, the maps .Z3 : ./(T;C) — .&'(I;C) and fri :
S (I;C) = .&/(I'; C) are also isomorphisms.

Throughout the paper we will follow standard notation by denoting the Fourier and
inverse Fourier transforms for a Schwartz function f € #(T';C) or a tempered dis-
tribution f € ./(I';C) by f= FH f= F1 {f}. Sometimes we will also write
Frlfl = 7Y 700 = Fr f)
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