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Under decompression, disordered solids undergo an unjamming transition where they become under-coordinated and
lose their structural rigidity. The mechanical and vibrational properties of these materials have been an object of
theoretical, numerical, and experimental research for decades. In the study of low-coordination solids, understanding
the behavior and physical interpretation of observables that diverge near the transition is of particular importance.
Several such quantities are length scales (ξ or l) that characterize the size of excitations, the decay of spatial correlations,
the response to perturbations, or the effect of physical constraints in the boundary or bulk of the material. Additionally,
the spatial and sample-to-sample fluctuations of macroscopic observables such as contact statistics or elastic moduli
diverge approaching unjamming. Here, we discuss important connections between all of these quantities, and present
numerical results that characterize the scaling properties of sample-to-sample contact and shear modulus fluctuations
in ensembles of low-coordination disordered sphere packings and spring networks. Overall, we highlight three distinct
scaling regimes and two crossovers in the disorder quantifiers χz and χµ as functions of system size N and proximity
to unjamming δ z. As we discuss, χX relates to the standard deviation σX of the sample-to-sample distribution of the
quantity X (e.g. excess coordination δ z or shear modulus µ) for an ensemble of systems. Importantly, χµ has been
linked to experimentally accessible quantities that pertain to sound attenuation and the density of vibrational states in
glasses. We investigate similarities and differences in the behaviors of χz and χµ near the transition and discuss the
implications of our findings on current literature, unifying findings in previous studies.

I. INTRODUCTION

Jamming is a common phenomenon in nature - from clog-
ging of grain hoppers, to traffic congestion and crowding
in collective animal behavior, and biological tissue rigidifi-
cation, objects collected at high enough densities behave as
solids, resisting deformation and flow1–6. What is the small-
est density that a collection of macroscopic objects could
have such that it would still behave as a solid? What are
the mechanical features of such a material? The physics
of the jamming/unjamming transition seeks to answer these
questions7,8.

In disordered systems of soft spheres under decompression,
the unjamming transition occurs upon vanishing pressure p,
where the material loses its ability to resist applied deforma-
tion and constituent particles begin to be able to move past
each other freely. Understanding both i) the nature of this
transition and ii) the mechanical and vibrational properties
of materials near the transition is important for the develop-
ment of predictive theories and for enabling functional mate-
rial design. A number of theoretical, numerical, and experi-
mental approaches have made progress toward this goal in re-
cent years. Mean field theories connected the physics of spin
glasses and unjamming phenomena, highlighting the com-
plexity of the glassy potential energy landscape9,10 and the ex-
istence of spatially extended excitations in low-coordination
solids11,12. Numerical and experimental studies formulated

a jamming phase diagram (consisting of packing fraction φ ,
shear stress τ , and temperature T ) and investigated the yield-
ing behavior of deformed jammed solids1,7.

Recent work studying a variety of modeled disordered ma-
terials has identified many length scales (denoted by ξ or l)
and frequency scales (denoted by ω) that diverge or vanish
respectively via power laws with decreasing excess coordina-
tion number, δ z ≡ z− zc (where zc ≡ 2d). See Ref. 13 for a
comprehensive literature review14–18. Thus, theoretical work
and simulation studies have focused on the critical behavior
that occurs at the unjamming transition as well as the pos-
sible universal behaviors of low-coordination solids11,19. A
length scale of particular importance is the correlation length
ξ ∼ δ z−1/2 which has a variety of physical interpretations.
First, it is associated with the breakdown of continuum elas-
ticity, as the inherent structural disorder of a jammed solid be-
comes vitally important to its mechanical response20,21. Con-
sistent with this interpretation, ξ represents the core size of
low-energy excitations that constitute defects in glasses22.
Thus, several independent studies14,15,19–21,23–26 measured ξ

numerically through examining the response of jammed dis-
ordered solids to multiple types of local, global, and boundary
perturbations (see Ref. 13). Additionally, the scaling relation-
ship ξ ∼ δ z−1/2 was rationalized in Ref. 27 and predicted via
Effective Medium Theory (EMT) in Refs. 24 and 28, where ξ

corresponds to the transverse wavelength of vibrational modes
in the boson peak23.
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In investigating the scaling properties and physical inter-
pretation of diverging unjamming length scales, there are two
important and understudied considerations that we highlight
and characterize in this work. Although several existing stud-
ies have examined the significant finite size effects that occur
in modeled jammed solids, few have determined how those
effects might influence the measurement of ξ or its relation-
ship with δ z. Particularly, given the relation ξ ∼ δ zγ where
γ =−1/2 has been observed widely in the literature and pre-
dicted by EMT, it is possible that measurements of γ that are
close to, but distinct from γ = −1/2 have been influenced by
finite size effects29. Further, it is not clear in the current liter-
ature how long power-law scaling relations such as ξ ∼ δ zγ ,
and importantly, the underlying physics, persist in δ z. As dis-
ordered solids become denser and more deeply quenched far
from the unjamming transition, one expects that the length
scale ξ becomes irrelevant or exhibits a different scaling rela-
tionship with δ z. Here, we clarify both of these concerns with
numerical evidence and scaling arguments that are relevant to
the correlation length ξ .

As in standard critical phenomena, the existence of a di-
vergent length scale at unjamming implies that macroscopic
quantities do not concentrate around their mean and show
anomalous fluctuations. In generic disordered systems, fluc-
tuations are due both to thermal effects within a single sam-
ple, and to the disorder that induces sample-to-sample fluctu-
ations. Given that jammed packings are athermal, however,
thermal fluctuations can be neglected and we thus focus here
on sample-to-sample fluctuations. Indeed, work by Lerner
et al. (Refs. 30–33 and others), examined the relationship
between sample-to-sample fluctuations of the shear modulus
and several important vibrational (Ag and Γ(ω), discussed in
Sec. II C below) and mechanical (ξ ) observables in ensembles
of packings and spring networks. For a given macroscopic ob-
servable X (e.g. the shear modulus µ or coordination number
z), one can introduce the normalized sample-to-sample stan-
dard deviation χX and study its behavior approaching unjam-
ming. Because studies that sought to connect the underlying
elasticity of low-coordination harmonic sphere packings with
unjamming physics showed that, on average, the shear modu-
lus µ scales linearly with δ z near the transition34, a reasonable
guess (that we will challenge below) is that the fluctuations of
these quantities also scale together, i.e. χµ ∼ χz

29.
More precisely, in Ref. 31, the scaling relation that the

authors measured in spring networks between the so-called
sample-to-sample disorder quantifier χµ and δ z strongly sup-
ports a related scaling between the unjamming lengthscale
ξ and δ z, χµ ∼ ξ ∼ δ zγ with γ = −1/2 (we provide sup-
port for χµ ∼ ξ in Sec. III A 3 below). Similar evidence
for χµ ∼ δ z−1/2 is also put forward in Ref. 30. Distinctly,
in Ref. 35, Hexner et al. investigated both sample-to-sample
and sub-system fluctuations of the contact number z in har-
monic packings and mean-field models. Ultimately, using the
sample-to-sample disorder quantifier associated with contact
number, χz, the authors present numerical data that disagrees
with γ =−1/2 in favor of a value numerically close to −3/8.
This discrepancy could have a variety of interpretations in-
cluding i) the existence of another unjamming lengthscale,

and ii) that there are subtleties in analysis (χµ vs. χz) or
material preparation (system size effects, differences in mi-
croscopic interactions, proximity to unjamming, etc.) that af-
fect the measurement of the exponent γ . Still, to form a more
complete understanding of the properties of low-coordination
disordered solids, it is important to resolve this inconsistency.
In the discussion that follows, we will refer to γ as a generic
scaling exponent in the relation ξ ∼ χX ∼ δ zγ . As discussed
below, we find that γ takes on different values in different con-
texts and model systems.

Here, we have expanded upon the work in Ref. 35, to study
sample-to-sample fluctuations of both µ and z in large ensem-
bles of harmonic packings and disordered spring networks in
a wide range of δ z. In addition to convincingly reproducing
similar scaling behavior found in Ref. 35 (with |γ|< 1/2), we
highlight three distinct scaling regimes and two crossovers for
the disorder quantifier χz in harmonic packings as a function
of δ z and system size N. Further, our results below provide a
stringent test of the hypothesis χµ ∼ χz and show that it does
not hold in all ranges of average coordination. As we discuss,
χµ is a very important measure of fluctuations that has been
connected to interesting physical observables. Thus, devel-
oping more precise characterizations of both χz and χµ is of
crucial importance.

Overall, this study brings attention to effects of finite size
and proximity to unjamming that are vital to consider to unify
theories for and observations of the interesting properties of
low-coordination solids. The work we present here stimu-
lates future work in this area, and relates to a number of scal-
ing behaviors relevant to anomalous elasticity, sound attenua-
tion in amorphous solids, and the glassy vibrational density of
states36–39.

II. METHODS

In this work we examine sample-to-sample contact and
shear modulus fluctuations in both harmonic sphere packings
and diluted spring networks approaching the unjamming tran-
sition. The disorder quantifiers χX that are the focus of our
analysis relate distributions of macroscopic observables from
ensembles of configurations (and ensembles of sub-systems)
to the vibrational density of states, sound attenuation, and
other quantities of interest such as the correlation/unjamming
lengthscale ξ described above30–32. This section describes our
numerical models as well as the computation and interpreta-
tion of χX .

A. Computer glass model

This section discusses the computer glass model (similar
to that described in Ref. 35) from which we generate our
main results regarding sample-to-sample contact fluctuations
in systems approaching unjamming. We first note that al-
though (as is common in the literature) we refer to our jammed
harmonic sphere packings as glasses, they are indeed ather-
mal. Further, we emphasize that our work studies only the
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(athermal) jamming transition that occurs with vanishing pres-
sure, not the glass transition which is distinct, occurs as a
function of (finite) temperature, and is the focus of a breath
of other studies.

Individual realizations of our computer glass model con-
sist of N pairwise interacting particles in d̄ = 3 spatial di-
mensions and periodic boundary conditions. The harmonic
pairwise potential uharm(ri j) depends only on the distance ri j
between particles i and j. We use a 50:50 binary mixture of
harmonic spheres with unit mass and a 1:1.4 ratio between
the particle diameters to prevent crystallization. The units of
length in the simulations are chosen such that the diameter
of the small particle species is 2Rsmall = 1.0. The harmonic
potential uharm(ri j) is given by

uharm(ri j) =

{
1
2 k(ri j − l0,i j)

2, ri j ≤ l0,i j

0, ri j > l0,i j.
(1)

where the constant k is set to unity and the bond rest length
l0,i j is equal to the sum of the radii of the particles i and j,
l0,i j = Ri +R j. The total energy U of the system is equal to
the sum of uharm over all interacting particle pairs.

To examine the behavior of this model approaching the
unjamming transition, we prepare ensembles of packings at
16 different target pressures p between p = 10−6 and p =
10−1 using the FIRE minimization algorithm and a Berend-
sen barostat40,41. We first prepared initial states at the highest
pressure (p = 10−1) by minimizing the total energy U from
random initial conditions. Then, we decompress the packings
to each intermediate pressure state by repetitively changing
the target pressure of the simulations and re-minimizing the
energy. Since finite size effects are relevant to our analysis, we
study large ensembles of packings at a variety of system sizes.
Table I below summarizes the number of independent samples
Nens prepared at each system size for all pressure states.

TABLE I. Ensemble sizes Nens for each system size N and all pres-
sures p ∈

[
10−6,10−1]

System size N Ensemble size Nens
1000 9500
4000 9500
8000 5000
32000 1400
64000 650

B. Spring network model

Several existing studies that utilize χµ as a quantifier of me-
chanical disorder in low-coordination solids have used spring
networks as a model system due to their simplicity and sim-
ilarity to biological networks31,33. The diluted networks in-
cluded in this study are composed of relaxed Hookean springs
that connect unit masses. Each network is initialized by adopt-
ing the disordered structure of a soft-sphere glass in d̄ = 3. We
achieve this by placing a node at the center of each particle

and a relaxed spring between each pair of interacting parti-
cles in the parent glass (see Ref. 42 for a description of the
glass model, which differs from the harmonic sphere model
in Sec. II A). Since the networks produced by this protocol
have high coordination and we wish to study their behavior as
a function of decreasing excess contact number δ z, we then
dilute the networks to reach a range of desired mean con-
nectivities δ z ∈

[
10−4,101

]
. The edge-dilution algorithm is

described in Ref. 31 and involves criteria that minimize the
coordination fluctuations of the resulting networks. For this
reason, we study the shear modulus fluctuations of the net-
works via χµ and do not measure χz. The data reported below
are from ensembles of at least 3000 independent networks at
each value of δ z and N ∈ {512,2048,8192,32768}.

C. Disorder quantifier

The parameter that is the focus of this study is the dimen-
sionless disorder quantifier χX , computed for both sample-to-
sample fluctuations in excess contact number δ z and shear
modulus µ . Our computation of the shear modulus in this
study follows the formalism detailed in Ref. 43. For an arbi-
trary macroscopic observable X , χX is computed as

χX =

√
N⟨(X −⟨X⟩)2⟩

⟨X⟩
=
√

N
σX

⟨X⟩
, (2)

where ⟨·⟩ denotes an ensemble average, and σX is the standard
deviation of the sample-to-sample distribution of X .

Since one of the goals of this work is to unify the findings of
several existing studies that have examined sample-to-sample
and sub-system fluctuations in low-coordination solids, we
note that Ref. 35 examines contact fluctuations via a similar
variance,

δ
2Z(N)≡ N

[
⟨z2⟩−⟨z⟩2]= (χz⟨δ z⟩)2. (3)

Thus, in our analysis below, when we determine the exponent
γ in the relation χz ∼ δ zγ , it will be equivalent to measuring
the exponent ν f = 2(γ +1) in Ref. 35.

In our comparison of χz and χµ , it is useful to note that
the two quantities, while similar, exhibit different finite size
effects. Particularly, the shear modulus fluctuations in small
computer glasses at low pressure can be large enough to make
determining a clear trend (i.e. power law scaling) in χµ(δ z)
difficult21,38. In other words, the measurement of χµ is sensi-
tive to outliers and can be quite noisy as a function of δ z or
other control parameters. To address this challenge, Ref. 30
examined several different methods for computing χµ : the di-
rect method via Eq. (2), an outlier exclusion method, and a
median method via:

χX ,med =

√
N median

(
(X −⟨X⟩)2

)
⟨X⟩

. (4)

Ultimately, the authors showed that all three methods yield
similar results, where χµ,med is simpler to compute than
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implementing a outlier exclusion protocol and, in compari-
son to the direct measurement χµ , exhibits more consistent
(smoothly-varying and less noisy) behavior as a function of
their control parameter. Our results for shear modulus fluctu-
ations in packings (not spring networks) below and in Appen-
dices B and D thus feature χµ,med.

A key feature of disordered solids approaching the unjam-
ming transition is the substantial broadening of the sample-
to-sample distributions of µ and δ z. This behavior is con-
sistent with the divergence of the unjamming correlation
length ξ which we discuss further in the results that fol-
low. Fig. 1 shows the distributions of µ and δ z for our en-
sembles of harmonic sphere packings with N = 8000 and
p = 10−5,10−3,10−1. χX is an effective parameter to capture
this broadening and its scaling characteristics with p. While
the distributions are qualitatively quite similar, the fluctua-
tions of the shear modulus are ∼ 10 times larger than those
of the contact number.

FIG. 1. Sample-to-sample distributions of the shear modulus µ and
excess contact number δ z rescaled by means for ensembles of har-
monic sphere packings with N = 8000 and p = 10−5, 10−3, and
10−1.

The authors of Refs. 30, 31, and 44 observed that χµ is
sensitive to control parameters involved in a wide variety of
material preparation protocols: proximity to unjamming (δ z),
degree of annealing (Tp as in Refs. 30 and 31 or Ṫ as in
Ref. 44), amount of internal stress (∆ as in Ref. 31), strength
of long-range attraction between constituent particles (Q as
in Ref. 31), and others. Additionally, in numerical studies
of amorphous plasticity and the brittle-to-ductile transition
in glasses under shear and tensile deformation, χµ has been
shown to relate to Ag, the density of micromechanical defects
(or quasilocalized modes, QLMs) in computer glasses30,44.
Thus, χX is a useful parameter for characterizing changes in
material behavior that result from general mechanical disor-
der.

Further motivating our investigation of χµ as a physical ob-
servable, it has the distinct benefit of being experimentally
accessible via its connection to the glassy vibrational density
of states (vDOS), Fluctuating Elasticity Theory (FET), and
wave attenuation rates30,45–48. Specifically, in Ref. 30, the
authors study a distinct but related disorder quantifier (also
denoted χ) that characterizes the spectral broadening of dis-

crete phonon bands that occurs in the low-frequency vibra-
tional spectra of computer glasses created by quenching sys-
tems equilibrated (via swap-Monte-Carlo) at varying ‘parent’
temperatures Tp. They show that spectral broadening occurs
with increasing Tp, which also corresponds to increasing me-
chanical disorder (quantified by χ or χµ ). Further, assuming
the equivalence (demonstrated in Ref. 49) of spatial fluctua-
tions of the shear modulus over a coarse-graining lengthscale
and sample-to-sample fluctuations (χµ as we define it here),
the same work30,32 supports the predictions of FET, that the
low-frequency wave attenuation rate Γ scales with χ2

µ and has
frequency dependence ω d̄+1 .

Now, in the discussion of the unjamming/QLM core-size
lengthscale ξ that follows in Sec. III A 3, we will relate the
square of the disorder quantifier to a correlation volume. This
is a reasonable assumption given the proposed equivalence be-
tween spatial and sample-to-sample fluctuations of the shear
modulus, but remains to be demonstrated directly30,49. Re-
garding this equivalence, note that in Ref. 35, the authors show
that spatial and sample-to-sample contact fluctuations are not
equivalent for finite N and constant δ z. Rather, the sub-system
fluctuations are much larger than the sample-to-sample ones
and grow much faster with decreasing N. However, it may be
the case that contact and shear modulus fluctuations differ in
this feature, or that we can proceed with assuming proportion-
ality between sub-system and sample-to-sample fluctuations
of the contact number at fixed N and varying δ z. The primary
reasoning for examining sample-to-sample fluctuations over
spatial fluctuations is computational simplicity. We also note
that computing χX is generally simpler than obtaining direct
measurements of ξ .

To summarize this section and highlight the utility of χX
(with X → µ,δ z) as a quantifier of mechanical disorder, we
emphasize that χX is relevant to understanding the physical
properties of low-coordination disordered solids in several re-
lated contexts. First, χX is sensitive to several model param-
eters that control the overall stability of glassy samples. Sec-
ond, χµ has been shown to relate to the density (Ag) and size
(ξ ) of glassy defects. Last, χµ relates to experimentally ac-
cessible quantities via wave attenuation rates and the glassy
vDOS. Overall, the inherent structural disorder and corre-
sponding unique mechanical behaviors of glasses are directly
reflected in the spatial and sample-to-sample fluctuations of µ

and/or δ z.

III. RESULTS

As mentioned in Sec. I, by analyzing contact fluctuations
in ensembles of harmonic packings, we have identified three
scaling regions in χz(N,δ z) that are relevant to understand-
ing the relationship between structural disorder and material
behavior in the proximity of the unjamming transition. We
investigate the value of the scaling exponent γ (in the rela-
tion χX ∼ δ zγ ) in both packings and disordered spring net-
works and discuss the dependence of the results on model and
analysis details. Additionally, by associating the scaling be-
havior of the disorder quantifier χX with that of the correla-
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FIG. 2. Contact number disorder quantifier χz as a function of δ z for all system sizes (increasing from top to bottom) of harmonic sphere
packings in d̄ = 3. Three distinct scaling regimes are visible as discussed in the main text. The dashed line is a guide to the eye and has a slope
of γ ≈−2/5. The shaded region depicts the N-independent glassy regime for δ z ≲ 7×10−1.

tion lengthscale ξ , we discuss the crossover from unjamming-
like behavior to that of higher coordination (more deeply an-
nealed) glasses. This section presents our numerical results in
the context of existing studies and theories.

A. Scaling regimes of contact fluctuations in packings

To begin, we consider the scaling of χz with δ z in our en-
sembles of three-dimensional harmonic sphere packings un-
der decompression. This analysis closely follows the results
for sample-to-sample coordination fluctuations presented in
Ref. 35, although we explore a larger range of δ z here. Fig. 2
highlights one of the main results of this work, that there are
three distinct scaling regimes in χz as a function of δ z and
N: (i) a finite size regime at low δ z ≲ 5 × 10−2 and small
N ≲ 8000, (ii) an unjamming regime at low-intermediate δ z∼
10−1 and large N ∼ 32000, and (iii) a system size independent
so-called glassy regime at δ z ∼ 7× 10−1. We proceeding by
discussing the functional behavior in each regime separately.

1. Finite size regime

As we show in Fig. 2, at low δ z ≲ 5 × 10−2 and small
N ≲ 8000, χz increases significantly with decreasing system
size. Once the system size is sufficiently large, χz converges to
a finite value at constant δ z (which corresponds to the unjam-
ming regime described next). To characterize the dependence
of χz on system size, we follow a similar scaling procedure to
the one in Ref. 35. First, we assume that χz scales with N and
δ z as

χz ∼ N−β f (δ z Nα), (5)

where α and β are to be determined below, and in the large-
argument limit the function f achieves f (x → ∞) ∼ xγ . Be-

cause at large δ z, χz is independent of N, we must have that
β = αγ . Thus, we write

χz Nαγ ∼ f (δ z Nα). (6)

Since this scaling form with N depends on the determination
of the exponent γ associated with the unjamming regime, we
now turn to the data collapses presented in Fig. 3. Note that
the finite size effects associated with χz observed here are
likely relevant in many numerical studies of low-coordination
amorphous particulate solids.

2. Unjamming regime and scaling exponents

The second scaling regime we identify in χz(N,δ z) is the
unjamming regime that occurs for δ z ≲ 7× 10−1 in the limit
N → ∞ (see Fig. 2). For finite size systems, the scaling
of χz crosses over from the finite size to the unjamming
regime roughly around δ z ∼ 10−1 (depending on N). In
this range of δ z, the contact fluctuations (quantified by χz)
scale as χz ∼ δ zγ . As we emphasized in Sec. I, the expo-
nent γ = −1/2 was both theoretically predicted and numeri-
cally demonstrated in existing studies of disordered solids ap-
proaching unjamming23,24. This scaling is often associated
with the correlation length ξ or a corresponding correlation
volume. However, in Ref. 35, the authors demonstrated (via
δ 2Z as defined in Sec. II C) that γ ≈−3/8 in harmonic sphere
packings with d̄ = 3 and 4 and mean field models with d̄ = 2
and 3. While the values of these exponents are quite close, it is
important to distinguish between them to understand the rela-
tionship between disorder and mechanics in low-coordination
disordered solids.

Here, we determine γ via the scaling form proposed in
Eq. (6), by fitting the large-N data in the unjamming regime to
the power law χz ∼ δ zγ . Then, to determine the finite size be-
havior described above, we plot χzNαγ vs. δ zNα and alter α
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FIG. 3. Scaling collapses via Eq. (6) comparing values of γ for the
same data as shown in Fig. 2. The red shaded region depicts the
collapse of both the finite size and unjamming regimes up to the onset
of the glassy regime for the smallest system size N = 1000 (after
which the data for that system size is not expected to collapse).

until the data collapses up to δ z ∼ 7×10−1, where χz(N,δ z)
exhibits a second scaling crossover into the glassy regime. In
this representation, we do not expect a data collapse in the re-
gions corresponding to the high-coordination solids for each
system size (where Nα δ z exceeds ∼ Nα(7× 10−1)). Fig. 3
summarizes the results of this scaling analysis, where panel
(a) shows the collapse for γ ≈ −2/5 and α = 0.7 and (b) for
γ = −1/2 and α = 1.0. While both collapses are reasonably
good, the first set of exponents, consistent with Ref. 35, pro-
duce a better collapse in both the finite size and unjamming
regimes. The data collapses in these two regimes are high-
lighted for example in Fig. 3 up to the values of Nα δ z where
the N = 1000 systems cross over to the glassy regime. An al-
ternative representation of this finite size analysis is presented
in Appendix A.

We note here that there is a slight difference between the ex-
ponent γ ≈−2/5 that we report here and the measurement of
γ ≈ −3/8 by Hexner et. al. However, γ ≈ −3/8 and α = 0.6
also work quite well for our χz(N,δ z) data. Viewing the
rescaling of the χz data in Appendix D, Fig. 10 below, we
favor γ ≈ −2/5. Overall, the values of the scaling exponents
here and in Ref. 35 are only approximate, and we emphasize
that our analysis still supports the results of Ref. 35, particu-
larly the fact that |γ|< 1/2.

3. Glassy regime and lengthscale crossover

The final scaling regime that we identify in χz(N,δ z) is the
N-independent glassy regime, which occurs for δ z≳ 7×10−1

and is depicted in the shaded region of Fig. 2. In this re-
gion, it appears that the scaling of χz with δ z crosses over
from χz ∼ δ zγ to a steeper negative power-law. However, we
cannot precisely determine a power-law scaling exponent for
χz deep in the glassy regime, as our harmonic sphere pack-
ings become over-compressed and have trivial structure for
δ z ≳ 10 due to the absence of a strong short-range repulsion.
To further investigate this point, future studies might examine
a different glass model which produces more well-annealed
(high coordination) samples. We note here that Ref. 31 stud-
ies the behavior of the disorder quantifier χµ in a wide variety
of modeled disordered solids, but only briefly investigates the
effect of varying the excess contact number δ z.

To explain the occurrence of the second scaling crossover
in χz around δ z ∼ 7 × 10−1, we will draw upon the work
of Ref. 33, where the authors studied a crossover in anoma-
lous to elastic behavior in the displacement response u⃗(⃗r) of
disordered spring networks to applied force dipoles. These
displacement response fields have been studied thoroughly
in modeled amorphous solids, particularly due to their struc-
tural similarity to quasilocalized vibrational modes (QLMs),
which are good representations of microstructural defects in
glasses20,22,33,50,51. Fig. 4 depicts two such displacement
fields for d̄ = 2 harmonic sphere packings with p = 10−1 and
p = 10−4. We obtain the displacement fields through a similar
numerical procedure to that described in Refs. 20 and 50.

In Ref. 33, Lerner et. al. present numerical evidence for
the following form of dipolar response fields in dimension d̄,
where the ‘core’ behavior for r ≪ ξ is caused by microme-
chanical disorder and for r ≫ ξ is the result from continuum
linear elasticity:

|⃗u(⃗r)| ∼

{
r−

(d̄−2)
2 , r ≪ ξ

r−(d̄−1), r ≫ ξ .
(7)

This difference in behavior in u⃗(⃗r) is visible in Figs. 4a and
4b. The packing depicted in Fig. 4a was prepared at a rel-
atively high overall pressure (p = 10−1), where continuum
elasticity is relevant to the behavior on a macroscopic length
scale. Thus, the dipole response field features a small dis-
ordered core decorated by a decaying quadrupolar field. In
Fig. 4b, the packing was prepared at a pressure corresponding
to the unjamming regime (p = 10−4), and the behavior of the
dipole response field is not as characteristic of continuum elas-
ticity. Rather, the displacement field features a much larger
core and a more disordered decaying elastic field. Recall from
Sec. I above that the diverging length scale ξ ∼ δ z−1/2 is as-
sociated with the core size of glassy defects. Since the dipo-
lar response fields pictured above are structurally extremely
similar to QLMs, we take Fig. 4 and Fig. 9 in Appendix
Ref. C to somewhat directly depict the growth of ξ approach-
ing unjamming22,50.

From Eq. (7), the authors of Ref. 33 construct a correlation
function C(r) = ⟨⃗u(⃗r) · u⃗(⃗r)⟩ and a corresponding correlation
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FIG. 4. Displacement response fields that result from dipolar forces
applied to particle pairs in harmonic sphere packings with d̄ = 2 (for
illustrative purposes) and N = 102400, at p = 10−1 and p = 10−4.
We show only the displacement vectors with the top 25% in magni-
tude. The insets show the approximate relative sizes of the disordered
cores of the response fields, where the core grows substantially upon
decreasing the pressure of the packings.

volume Vξ via Vξ ∼
∫ ξ

0 dd̄r C(r). Thus, following Ref. 33,
when we compute this correlation volume for r ≪ ξ , we ob-
tain Vξ ∼ ξ 2 independent of d̄ (consistent with Refs. 52–54).
Since the elastic decay for r ≫ ξ in Eq. (7) is fast compared
to the anomalous behavior for r ≪ ξ , we next assume that
for r ≫ ξ , Vξ scales with ξ in the ‘naive’ way, correspond-
ing to random fluctuations in material properties Vξ ∼ ξ d̄ (see
Ref. 33 for details). Finally, if we accept that χ2

X ∼Vξ and that
ξ ∼ δ z−1/2, we have:

χX ∼

{
ξ ∼ δ z−1/2, δ z ≲ 10−1 and ξ ≫ O(10)
ξ d̄/2 ∼ δ z−d̄/4, δ z ≳ 1 and ξ ∼ O(10),

(8)

where ξ ∼ O(10) is the typical core size of QLMs in well-
annealed glasses22,50. Noticeably, this scaling relationship for
χz with δ z ≲ 10−1 is not consistent with the above obervation,
that γ ≈−2/5. As we discuss below, this deviation can likely
be attributed to the difference between contact and shear mod-
ulus fluctuations in our harmonic sphere packings.

While Eq. (8) involves several assumptions, the general in-
tuition is that if low-coordination glassy samples have large
anomalous cores in the field u⃗(⃗r), then χµ , which can be mea-
sured from local spatial fluctuations of elastic moduli, will re-
flect that behavior in its scaling with ξ and δ z. If we consider
instead a high-coordination sample, the core of u⃗(⃗r) will be

small, and local mechanical fluctuations will not pick up the
anomalous behavior.

Overall, the scaling behavior of χz(δ z) in the glassy regime
(Fig. 2) is consistent with the direction of the crossover pre-
dicted by Eq. (8), although as mentioned above, a clean
power-law scaling at high-δ z is not discernible from our
dataset. Still, it is important to note that there is likely a simul-
taneous crossover in ξ (δ z) that occurs around δ z ∼ 7×10−1,
which would cause the behavior of χz(δ z) to further deviate
from Eq. (8)31,32. Further classifying the behavior of χX (ξ )
and ξ (δ z) is an interesting avenue for future work.

B. Disorder quantifier in spring networks

Having examined the behavior of contact fluctuations
in modeled glasses under decompression, we now study
χµ(N,δ z) in diluted spring networks. Ref. 31 recently pre-
sented a similar dataset, supporting γ =−1/2. As mentioned
in Sec. II C above (and demonstrated in Appendix B below),
χµ measured in our ensemble of harmonic packings does not
exhibit clean scaling behavior compared to χz in packings, or
as we will see, χµ in networks.

FIG. 5. (a) Shear modulus disorder quantifier χµ as a function of
δ z for all system sizes (decreasing from top to bottom) measured in
ensembles of diluted spring networks. (b) The same data as panel
(a), rescaled by δ z1/2 on the vertical axis, to verify the relation χµ ∼
δ z−1/2.

Fig. 5a shows χµ(δ z) for ensembles of networks with sev-
eral different system sizes N. Similarly to our analysis of
χz above, we notice the same three scaling regimes and two
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crossovers as a function of δ z: finite size, unjamming, and
glassy. However, the finite size regime here exhibits the op-
posite behavior with increasing N and constant δ z to that of
χz in packings. That is, χµ increases with N to a constant
value instead of decreasing to a constant value as χz does.
Further, in the unjamming regime, the scaling of χµ with δ z is
quite convincingly characterized by γ =−1/2. This is further
evidenced by the representation in Fig. 5b, where we show
χµ/δ z−1/2 vs. δ z and the region of 10−3 < δ z ≲ 10−1 is hor-
izontal for large-N. Last, we note that the scaling crossover
into the glassy regime around δ z ∼ 7×10−1 follows the gen-
eral behavior predicted by Eq. (8).

Clearly, there are distinct behaviors exhibited in χz(δ z,N)
measured in packings under decompression and χµ(δ z,N)
measured in diluted spring networks in the finite size and un-
jamming regimes. One hypothesis to explain these differences
is that packings under decompression undergo significant non-
affine rearrangements that lead to differences in local struc-
ture, while the diluted networks have minimal changes in co-
ordination (see Sec. II B above). However, in Appendix D
we compare χµ(δ z,N ∼ 8000) in the diluted networks and
spring networks derived directly from our harmonic sphere
packings. We observe little-to-no difference in behavior, ex-
cept that the crossover to the glassy regime occurs slightly
quicker in the packing derived networks. Thus, we expect that
there are more fundamental differences between contact and
shear modulus fluctuations in disordered solids, that warrant
future study.

C. Direct comparison of χz and χµ in harmonic sphere
packings

FIG. 6. Ratio χµ,med/χz for harmonic sphere packings at all system
sizes (N increasing from bottom to top) as a function of δ z. The
dashed horizontal line at χµ,med/χz ∼ 9 is a guide to the eye, depict-
ing the realationship χµ ∼ χz.

Lastly, we test a main hypothesis of this work, that χz ∼ χµ .
Fig. 6 shows the ratio χµ ,med/χz as a function of δ z for our en-
sembles of harmonic sphere packings. If χz ∼ χµ holds in gen-
eral, this ratio should be constant for large ranges in δ z and N.
However, χµ ,med/χz deviates significantly from constant for

all system sizes. Even for the largest system sizes N = 32000
and N = 64000, there is a systematic dependence of χµ ,med/χz
on δ z. Particularly, the ratio between the two disorder quan-
tifiers grows in the finite size regime, decreases in the unjam-
ming regime, and is relatively constant in the glassy regime.
We emphasize here that the behavior of the ratio χµ ,med/χz

in the unjamming regime (N ≳ 8000 and 10−1 ≲ δ z ≲ 1) is
consistent with the interpretation that χz(δ z) and χµ(δ z) dis-
play different scaling exponents γ there. These observations
are significant, as they provide intuition as to which principles
connecting χµ to other mechanical and vibrational properties
(see Sec. II C) can be extended to χz.

IV. DISCUSSION AND OUTLOOK

In this work, we investigated the scaling properties of
sample-to-sample contact and elastic modulus fluctuations
in disordered solids (harmonic sphere packings and diluted
spring networks) approaching the unjamming transition. Our
numerical results support three conclusions that have impor-
tant implications for understanding critical behavior near the
transition as well as related vibrational and mechanical fea-
tures of low-coordination solids. First and foremost, we
identified three scaling regimes and two crossovers in the
disorder quantifiers χz(N,δ z) and χµ(N,δ z): the finite-size
regime at low-δ z and small N, the unjamming regime at low-
intermediate δ z and intermediate-large N, and the system size
independent glassy regime at large δ z. Even though they
likely have significant effects on measurements of the diverg-
ing coordination length scale ξ and corresponding mechanical
behavior, these regimes in N and δ z have not been thoroughly
accounted for in previous literature. Second, in our investiga-
tion of the scaling of χz with δ z in the unjamming regime, we
determined that the value of the scaling exponent γ ≈ −2/5
differs considerably from γ = −1/2, the value predicted by
EMT, observed widely in existing studies, and observed in this
study (Sec. III B above) for diluted spring networks13,23,24.
While more research is required to understand this discrep-
ancy, we propose that the difference in scaling behavior is re-
lated to our third major finding, that there are fundamental
differences in the behavior of contact and shear modulus fluc-
tuations in sphere packings under decompression. In other
words, even though the means of the sample-to-sample distri-
butions of µ and δ z scale together near unjamming, the vari-
ances do not.

Relevant to our findings here, Ref. 29 briefly examines con-
tact and shear modulus fluctuations as a function of system
size and proximity to unjamming in their discussion of the ef-
fects of finite size systems on elastic response. Particularly,
the authors investigate distributions of δ z and µ in ensembles
of harmonic packings by computing σZ/⟨δ z⟩ and σµ/⟨µ⟩ as
a function of pN2. They conclude that the scaling of both
quantities is consistent with σX/⟨X⟩ ∼ (pN2)−1/4 (or equiv-
alently χX ∼ δ z−1/2) for some range in pN2. However, we
note that, upon close examination, there are subtle differences
in the behavior of σZ/⟨δ z⟩ and σµ/⟨µ⟩ that seem to support
our conclusions. First, the scaling of σZ/⟨δ z⟩ with pN2 de-
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viates slightly from (pN2)−1/4, while σµ/⟨µ⟩ seems better
characterized by that power law. Further, the characteristics
of the two standard deviations differ significantly at low pN2,
which is consistent with our observation that the contact and
shear modulus fluctuations exhibit different finite size effects
at low coordination, and that χz ∼ χµ does not hold in general.

Our results presented above motivate several directions for
future research. For example, subsequent studies might in-
vestigate interpretations and consequences of the unique scal-
ing behavior of χz in the unjamming regime. More specif-
ically, the relation ξ ∼ χµ ∼ δ z−1/2 implies that there may
exist a previously unstudied unjamming length scale (which
for the sake of discussion we refer to as ξz) that scales as
ξz ∼ χz ∼ δ z−2/5. If such a length scale associated with con-
tact fluctuations did exist, future work should focus on its
physical meaning. If ξ ∼ δ z−1/2 corresponds to the size of
glassy defects and is reflected in the scaling of the disorder
quantifier χµ(δ z), what does ξz ∼ δ z−2/5 correspond to that
is reflected in the scaling of χz(δ z)? Overall, as noted in
Sec. III A 3, it would be valuable for future work to further
investigate the relationships between disorder quantifiers χX
and diverging length scales approaching the unjamming tran-
sition. Alternatively, model details such as microscopic inter-
action potential and decompression protocol may contribute
to discrepancies in the unjamming scaling behavior of χX (δ z)
for different observables.

As we have shown, the relative behavior of χz and χµ as
a function of N and δ z differs significantly from the naive
expectation, χz ∼ χµ , based on the fact that the means of µ

and δ z are proportional. This motivates further characteri-
zation of the differences between sample-to-sample distribu-
tions of shear moduli and coordination numbers in disordered
solids approaching unjamming. Notably, Ref. 38 found that
such shear modulus distributions exhibit heavy leftward tails
(visible in Fig. 1a above) of the form P(µ;N)∼ N−3/2(⟨µ⟩−
µ)−7/2. Considering the dependence of the nonaffine contri-
bution to the shear modulus on the vibrational density of states
(see Ref. 43), the authors of Ref. 38 attribute the behavior
of these tails to the existence of low-frequency non-phononic
(quasilocalized) excitations in disordered solids. Conversely,
there is not as direct of a connection between the vibrational
spectra of glasses and their contact statistics, and heavy left-
ward tails are not visible in Fig. 1b above. Future work in-
vestigating connections between χz and χµ as quantifiers of
mechanical disorder would be useful, as χµ is directly related
to other quantities of interest that can be measured in sound
attenuation experiments.
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Appendix A: Additional collapses of χz in the unjamming
regime

To provide additional support for our measurement of the
exponent |γ| < 1/2, Fig. 7 shows a alternative representation
of the same χz(N,δ z) data as Fig. 3 in the main text, in terms
of the quantities h = Nαγ χz and s = Nα δ z. Observing that
both panels of Fig. 3 exhibit the scaling h ∼ s−η in the finite-
size regime, we plot hsη vs. s in Fig. 7. With this rescaling,
we expect the data in the finite-size regime to stay relatively
constant as a function of s, and the data in the unjamming
regime to scale as sγ+η . Viewing the quality of the scaling
collapses in panels (a) and (b) of Fig. 7, we again conclude
that χz scales as χz ∼ δ zγ with γ ≈ −2/5 in the unjamming
regime. The unjamming regime for the system size N = 8000
is highlighted in both panels of Fig. 7. We emphasize again
that the collapses due to this rescaling and that in Fig. 3 are
only expected to work up to the onset of the (N-independent)
glassy regime for each system size.

Appendix B: χµ for harmonic packings

As mentioned in the main text, due to large shear modu-
lus fluctuations in our ensembles of packings approaching the
unjamming transition, the functional behavior of χµ(N,δ z) is
too noisy to determine robust (power law) scaling relation-
ships (distinctly to our results presented above for χz in pack-
ings and χµ in spring networks). Fig. 8a shows χµ,med(N,δ z)



10

FIG. 7. Reduced representations of χz(N,δ z) further comparing val-
ues of γ , similarly to Fig. 3 in the main text. (a) Scaling collapse
according to the exponent γ ≈−2/5 and the parameters α ≈ 0.7 and
η ≈ 2/3. The scaling of the data in the unjamming regime is con-
sistent with γ +η ≈ 4/15, as shown by the scale bar. (b) Scaling
collapse according to the exponent γ ≈−1/2 and the scaling param-
eters α ≈ 1.0 and η ≈ 3/4. The data does not collapse as well in
the unjamming regime as the rescaling in panel (a). The shaded re-
gion depicts the approximate extent of the unjamming regime for the
system size N = 8000, where we expect the data collapse and sγ+η

scaling to be well-represented.

for the same ensembles of packings as Fig. 2. The scal-
ing regimes discussed in the main text (finite size, unjam-
ming, and glassy) are likely still present, but it is difficult to
discern from this data set. Still, to check the general scal-
ing behavior of χµ,med in the unjamming regime, we plot
χµ,med/δ z−1/2 as a function of δ z in Fig. 8b. Again, the be-
havior is quite noisy, but overall consistent with the scaling
relationship χµ ∼ δ z−1/2.

Appendix C: Dipole response fields in d̄ = 2 harmonic packings

To more specifically depict the growth of the length scale
ξ approaching the unjamming transition, Fig.9 shows exam-
ple displacement response fields in two-dimensional harmonic
packings subject to applied force dipoles. As described in
Sec. III A 3, these displacement fields are generally charac-
terized by disordered cores of size ξ decorated by elastic de-
caying fields. This structure is the most discernible deep in
the glassy regime, where continuum elasticity is the most rel-
evant to the macroscopic behavior. As the overall pressure

FIG. 8. The shear modulus disorder quantifier χµ,med computed us-
ing the median method and measured in our ensembles of harmonic
sphere packings approaching the unjamming transition. (a) The raw
χµ,med(δ z) data plotted for all system sizes (increasing N from bot-
tom to top). (b) The same data as panel (a) rescaled by δ z−1/2 on the
vertical axis to check the correspondence to the scaling relationship
χµ ∼ δ z−1/2.

p ∈
[
10−6,10−1

]
of the packings decreases, the core size ξ

drastically increases and the displacement fields exhibit the
disordered, anomalous behavior usually associated with the
unjamming transition.

Appendix D: Comparison of model systems

In this Appendix, we directly compare the scaling prop-
erties (at constant system size N and varying excess coor-
dination δ z) of all of the disorder quantifiers discussed thus
far: χz in packings, χµ in packings, and χµ in diluted spring
networks. Additionally, we examine χµ in packing-derived
spring networks to test the hypothesis proposed in Sec. III B
above, that the observed differences in scaling behavior be-
tween χz(N,δ z) in packings and χµ(N,δ z) in diluted spring
networks can be explained by the presence or absence of con-
siderable structural rearrangements under decompression. To
begin, we briefly describe our method for producing packing-
derived networks.
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FIG. 9. Displacement fields that result from applied force dipoles in
harmonic packings with d̄ = 2 and N = 102400, similarly to Fig. 4 in
the main text. Panels (a)-(f) show these displacement fields for pack-
ings prepared at the specified overall pressures p ∈

[
10−6,10−1].

Note that the fields become significantly less localized and less char-
acterizable as quadrupolar elastic fields with decreasing pressure.

1. Preparation of packing-derived networks

In comparison to the harmonic sphere packings and diluted
spring networks described above, we study packing-derived
networks. Similarly to the protocol for initializing diluted
spring networks, the packing-derived networks are comprised
of unstressed Hookean springs and adopt the structure of our
configurations of harmonic spheres at varying overall pres-
sure p. Thus, as particulate rearrangements occur in the mod-
eled glasses under decompression, the same changes in coor-
dination are present in the corresponding spring networks. In
our scaling analysis of shear modulus fluctuations approach-
ing unjamming, we examine the ensemble of networks that
corresponds to the packings with N = 8000 and Nens = 5000.

2. Disorder quantifiers in spring networks and harmonic
packings

Fig. 10 shows the shear modulus disorder quantifier χµ(δ z)
for our ensembles of harmonic packings, diluted spring net-
works, and packing-derived spring networks with N ≈ 8000.
Additionally, it shows the contact number quantifier χz(δ z)
for the ensemble of harmonic packings with N = 8000. Since
each χ(δ z) curve has a different overall scale, we rescale them
by their value at p ∼ 2× 10−6 (denoted χ0) for ease of com-
parison. Last, we rescale the vertical axis by δ z−2/5, which
is the approximate scaling of χz in the unjamming regime as
described in the main text. With these rescalings, the three
scaling regimes in χz(δ z) are clear to see. More specifically,
the rescaled χz curve is horizontal in the shaded region of the
figure, 8×10−2 ≲ δ z ≲ 1, while all of the rescaled χµ curves
have a noticeable slope. This provides further evidence for
our claims that i) χz ∼ δ zγ with |γ| < 1/2 in the unjamming
regime and ii) χz ∼ χµ does not hold in general.

FIG. 10. Shear modulus disorder quantifier χµ as a function of δ z
with N ∼ 8000 for ensembles of sphere packings, packing-derived
networks, and diluted networks. Contact number disorder quantifier
χz for the same ensemble of sphere packings. The data for each curve
are rescaled by the value χ0 ∼ χ(p∼ 2×10−6) for visualization pur-
poses. Additionally, the y-axis is rescaled by δ zγ≈−2/5. The shaded
region highlights the approximate extent of the unjamming regime
for χz measured in packings. Notably, the rescaled χz data remains
relatively constant in this regime, contrasting all χµ measurements
in the same range of δ z.

Now comparing the behavior of χµ(N,δ z) for the two dif-
ferent spring network preparations, we notice that the scal-
ing behavior is very similar in the finite size and unjamming
regimes. The most noticeable difference between χµ ’s be-
havior for diluted vs. packing-derived networks occurs in the
crossover to the glassy regime, which begins slightly sooner
in δ z for the packing-derived networks. Overall, we con-
clude that the coordination changes that occur in the packing-
derived networks do not contribute significantly to the scaling
behavior (i.e. the measurement of the exponent γ) in the un-
jamming regime.
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